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Landau cavities used to lengthen the bunches in storage rings necessarily constitute a significant
impedance. Because of the particular phase of the field required for bunch lengthening, they are often
detuned quite considerably from resonance, more so than the main cavities. As a result, their impedance can
excite the first coupled-bunch mode such that it becomes unstable. This phenomenon has previously been
predicted [M. Venturini, Phys. Rev. Accel. Beams 21, 114404 (2018)] and characterized in simulations
[T. He, Phys. Rev. Accel. Beams 25, 024401 (2022)] but experimental observation is yet to be documented.
In this paper, the experimental observation of coupled-bunch modes-�1 excited by the Landau and main
cavities in a fourth-generation light-source storage ring is presented. Features of the instability such as
amplitude and coherent frequency at saturation have been measured and its dependency on the main rf
voltage has been explored. The impact of a parked main cavity has also been investigated.
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I. INTRODUCTION

Landau cavities (LCs, also known as harmonic cavities or
higher-harmonic cavities) are used in many light-source
storage rings to lengthen the electron bunches. Their usage
is particularly common in the latest fourth generation of such
rings where they are relied upon to increase the Touschek
lifetime and reduce the emittance blow-up due to intrabeam
scattering. They can either be passive cavities loaded by the
beam itself or active cavities with an input power coupler. In
both cases, they constitute a large impedance in the ring.
A common configuration for running Landau cavities is

so that their fields just cancel the slope of the rf voltage at
equilibrium phase, the phase at which a particle gains as
much energy from the rf system as it loses to synchrotron
radiation. This condition is referred to here as the flat-
potential condition and Appendix A outlines how to obtain
this condition with passive cavities. The slope of the rf
voltage can also be canceled such that not just the first
derivative of the total voltage but also the second derivative
become zero. The bunches are then contained in a quartic
potential, which is described in detail in [1]. If only the first
derivative is zero, the equilibrium phase is at a local
maximum or minimum and is actually unstable and there
exists a second equilibrium phase that is stable. In all cases,

the flat-potential condition marks the boundary between
lengthened bunches (with a single equilibrium phase) and
overstretched bunches (with two stable equilibrium
phases). For a fixed main-rf voltage and energy loss to
synchrotron radiation, the Landau voltage at flat potential is
practically independent of the beam current.
The larger the total R=Q of the cavities, the larger

their detuning from resonance at which the flat-potential
condition is satisfied for a given beam current and main-
cavity (MC) voltage. If the detuning is too large then the
impedance at the first revolution harmonic will be enough
to excite a coupled-bunch instability (mode þ1). This was
already predicted by Bosch [2] and Venturini [3] and has
recently been explored further in simulation [4].
The higher the beam current and the lower the main-

cavity voltage, the more likely it is that mode þ1 is
unstable [4]. A lower quality factor for the same R=Q is
also worse in these terms because it increases the imped-
ance overlap at the first revolution harmonic. All things
being otherwise equal, active Landau-cavity systems are
able to achieve flat-potential conditions with a lower shunt
impedance (and therefore R=Q) than passive systems
thanks to their external power source. The detuning of
the cavity that minimizes the required input power is also
smaller than the detuning of a passive cavity, approaching
the same value if the shunt impedance and beam current are
both large enough that no input power is required [5,6].
However, other arguments exist for having a high shunt
impedance, regardless of whether the LCs are active or
passive. These include better Robinson stability [1,3] and
less demanding cavity cooling if the power consumption is
spread over multiple cavities.
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A mode-1 instability has been observed in the 3 GeV
storage ring at MAX IV, a fourth-generation synchrotron
light source that makes use of passive Landau cavities. In
fact, both modes þ1 and −1 have been observed and these
are excited by a combination of the fundamental modes of
the Landau cavities with the fundamental mode of a parked
main cavity that was detuned significantly below the rf
frequency. The presence of the parked main cavity does
influence the instability thresholds and the mode number
but the Physics is largely the same, as will be demonstrated.
The phrase “mode-1 instability” is therefore used here to
refer to both modes.

II. THEORETICAL BACKGROUND

Figure 1 shows predictions of whether modeþ1 is stable
or not for the parameters of the MAX IV 3 GeV ring [7]
given in Table I running at a beam current of 200 mA, with
a uniform fill (all rf buckets filled with the same bunch

charge), with three Landau cavities and a main-rf voltage
of 1 MV from 5 active main cavities (none parked).
Predictions of three different theories are shown: one by
three of the current authors [8] based on the approach taken
by Thompson and Ruth [9], an approximation by Venturini
within a more comprehensive analysis [Eq. (47) in [3]] and
a stability prediction based on the method of Tianlong He
[10]. This last method does not predict a growth rate but
rather calculates the amplification of a mode þ1 perturba-
tion: it returns a value that is greater than one if modeþ1 is
predicted to be unstable and less than one otherwise. It
should be noted that the approximation of Venturini is only
valid for a limit of very low incoherent synchrotron
frequency, which is why it matches well with the theory
of the current authors in the regime close to flat-potential
conditions and for overstretched bunches. The switch to
this regime is very clear in the theory of the current authors
and is predicted to occur very close to the flat-potential
condition. The reason for this is the lowering of the
incoherent synchrotron tune to close to zero. This also
lines up with the unity crossing in the prediction from
Tianlong He, which is not surprising because the physics
and the main assumptions behind the two approaches are
the same. Although the latter does not predict growth rates,
it is simpler because, by focusing solely on mode þ1, it
bypasses the need to calculate a whole matrix.
In light of these predictions, the nature of the mode-1

instability can be understood to some extent. From inspec-
tion of Eq. (17) in [8], the condition for a large growth rate
which dominates the radiation damping is

ImðλÞ
2ReðΩÞ ≫

1

T 0

; ð1Þ

where λ is an eigenvalue of the coupling matrix defined in
Eq. (14) in [8],Ω is the complex coherent frequency and T 0

is the radiation damping time. It can be seen that an
instability with a low coherent frequency of oscillation
ReðΩÞ is likely to fulfill this condition.
The expression for ReðΩÞ is given by Eq. (16) in [8]:

ReðΩÞ2

¼ ReðλÞ − 1=T 2
0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReðλÞ − 1=T 2

0Þ2 þ ImðλÞ2
p

2
. ð2Þ

Substituting this into the square of Eq. (1) and multiplying
both sides by T 2

0 gives

2ðImðλÞT 0

2
Þ2

ReðλÞ − 1
T 2

0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReðλÞ − 1

T 2
0

Þ2 þ ImðλÞ2
q ≫ 1: ð3Þ

The denominator on the left-hand side is small under the
following conditions

FIG. 1. Predictions for the stability of mode þ1 for different
Landau voltages using three different theoretical approximations
[3,8,10]. The stability threshold is the radiation damping rate on
the left axis and 1.0 on the right axis.

TABLE I. Parameters of the MAX IV 3 GeV ring without
insertion devices and the cavity parameters including the shunt
impedance Rs per cavity along with its definition where V and P
are the voltage and power in the cavity, respectively.

Parameter Value

Energy E0 3 GeV
Circumference 528 m
rf frequency frf 99.931 MHz
Harmonic number h 176
Energy loss per turn U0 363.8 keV
Radiation damping time T 0 25.194 ms
Momentum compaction αc 0.000306
Natural normalized energy spread 0.000769
Landau cavity (LC) harmonic 3
LC shunt impedance Rs ¼ V2=ð2PÞ 2.75 MΩ
LC quality factor 20,800
MC loaded shunt impedance 0.320 MΩ
MC loaded quality factor 3688
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�
ImðλÞ

ReðλÞ − 1
T 2

0

�
2

≪ 1; ReðλÞ < 0: ð4Þ

After conversion of the wake function to impedance (see
Appendix B), inspection of the coupling matrix in [8]
reveals what this means in terms of the reactive impedance
ImðZÞ:

− qbjFj2fω1−Im½Zðω1−Þ� þ ω1þIm½Zðω1þÞ�g

≫
E0T2

0

e0αc
ω2
s ; ð5Þ

where qb is the magnitude of the bunch charge, ωs is the
incoherent angular synchrotron frequency, T0 is the revo-
lution time, αc is the momentum compaction factor, E0 is
the beam energy, e0 is the elementary charge, F is the
bunch form factor at the operational rf harmonic of the
Landau cavities n and ω1� ¼ nωrf � 2π=T0 � ReðΩÞ are
the nearby angular coherent synchrotron sidebands of the
mode-(þ1) instability. Bunch-lengthening Landau cavities
with excess shunt impedance have a large negative reactive
impedance at ω1þ, significantly larger in magnitude than
at ω1− where it is positive (see Fig. 12 in Sec. IV).
Furthermore, the incoherent angular synchrotron frequency
ωs is significantly reduced. Both of these factors contribute
to fulfill the condition given by Eq. (5). A large real part of
the impedance will also contribute but is not the dominant
factor, as remarked by Venturini [3].
So far, the discussion has neglected Landau damping,

which is present thanks to the spread in synchrotron
frequency within each bunch due to the anharmonicity
introduced to the total rf potential by the Landau cavities.
This is expected to be particularly significant when close to
flat-potential conditions. On the other hand, an instability
with a very low coherent oscillation frequency may be
expected to be resistant to such Landau damping due to its
frequency being outside of the distribution of frequencies
within the bunch.
In order to account for Landau damping, we use the

Krinsky dispersion relation [11] for a quartic potential, as
formulated by Lindberg [Eq. (50) in [12]]:

1 ¼ λ0στ
αcσδ

128πe−π

Γð1=4Þð1þ e−πÞ2
Z

∞

0

x5=2e−x
2

ξ2 − x
dx: ð6Þ

Here, λ0 is the eigenvalue of the coupling matrix defined in
Eq. (19) in [12] (which is similar but not equivalent to the
aforementioned coupling matrix for λ), στ is the rms bunch
duration, σδ is the normalized relative energy spread, ΓðxÞ
is the Gamma function and ξ is a normalized coherent
frequency defined as

ξ ¼ Γð1=4Þ
25=4Γð3=4Þ2

Ωστ
αcσδ

; ð7Þ

where Ω is the complex coherent frequency. What is
important is that stability is determined by whether the
value of λ0 sits within or outside of Landau contours in
complex frequency space as this corresponds to whether the
beam is predicted to be stable or unstable, respectively.
Finding the beam current at which the contour is crossed is
therefore a method of determining the threshold current for
a coupled-bunch instability. An example of such a calcu-
lation is shown in Fig. 2.
Under certain assumptions, specifically a particular

incoherent synchrotron frequency, no Landau damping
and a small difference between the coherent and incoherent
synchrotron frequencies, the eigenvalue λ0 can be inter-
preted as a complex frequency shift, where the imaginary
component is the growth rate. This may be useful for
comparing the stability of a higher-order-mode-driven
(HOM-driven) coupled-bunch mode with and without
Landau cavities but since the fundamental modes of the
Landau cavities are expected to be the source of the
instability in this case, the utility here is not so obvious.
Another limitation of Eq. (6) is that it assumes a perfect

quartic potential. For a passive Landau cavity system and
fixed rf voltage (and all other relevant machine parameters
constant), this can only be true at one beam current.
Nevertheless, as can be seen in the following sections,
this method has been used to predict trends in the threshold
current with some success, even for conditions where the
flat potential obtained is clearly very different from a
quartic potential.
Because they neglect the Landau damping, the approx-

imations shown in Fig. 1 tend to predict a mode-1
instability at flat potential when one is not seen in reality.
The Krinsky dispersion relation was found to be more
successful when comparing with measurements and so is
used for all theoretical predictions presented in Sec. III
unless otherwise stated. Although the complete analysis of

FIG. 2. Stability diagram, as predicted by the theory presented
in [11], for a beam in a quartic potential with an rf voltage of
1 MV and the impedance given by the fundamental of the
harmonic cavities. If the parameter λ0 is within the Landau
contour, it is predicted to be stable due to Landau and radiation
damping.
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Venturini [3] does also include Landau damping, and for
arbitrary rf potentials, it is numerically more complex to
solve. Macroparticle tracking includes Landau damping as
well but requires significantly more computing resources.
The simulations must include selective damping of the
Robinson instability and enough macroparticles to accu-
rately model the Landau damping (further increasing the
computing resources). This is therefore also left for further
work. The active main-rf cavities are always included in the
theoretical predictions but their influence is negligible.

III. EXPERIMENT

The mode 1 instability has been observed at the 3 GeV
ring at MAX IV for quite some time [13]. Initially, attempts
to understand it focused on the possibility that it was a
mode-coupling instability similar to the observed mode-0
instability (see Appendix C). Recently, a concerted effort
has been made to reproduce the instability reliably enough
to study it systematically. The latest measurements have
been made using the streak-camera setup installed in late
2021 [14]. The streak camera was set up in dual-time-base
mode: a synchroscan unit streaking vertically at the rf
frequency (one forward sweep every rf period synchronized
with the electron bunch) and a second slower streak along
the horizontal axis covering 5 μs, which corresponds to just
under three revolution periods. Although the limited
horizontal resolution means that individual bunches cannot
be distinguished, this setup allows for single-shot mea-
surements of the evolution of the bunch profile over the
bunch train. Sequences were taken of one hundred single-
shot measurements with an interval of 120 ms between
them. This is slightly below the 10 Hz maximum acquis-
ition rate of the setup to ensure equally spaced images.
Assuming the mode number is known, this acquisition rate
limits measurements of the coherent oscillation frequency
of the instability to a maximum of 8.3 Hz while the total
acquisition time for the 100 shots defines the frequency
resolution of 0.08 Hz.
Figure 3, shows three frames of a mode-(−1) instability.

It has the distinct appearance that led to it sometimes being
referred to as “periodic transient beam loading” [4] and is
clearly oscillating (clear shift in phase between images).
The shift in phase over a given time period is an illustration
of the coherent frequency.
In order to observe the instability shown in Fig. 3, the fill

pattern must be sufficiently uniform. This is because, when
the Landau cavities are tuned such that the total rf voltage is
close to flat, inhomogeneous beam loading of the cavities
due to small differences in charge between bunches can
lead to large differences in their profiles.
Accumulation in the MAX IV 3 GeV ring is achieved by

injecting trains of around ten ring bunches from the full-
energy linac injector [15] and stepping the timing of the
linac between shots to change the target bucket number.
The linac pulse does not have a square current profile so the

step size is deliberately not a factor of the harmonic
number. This ensures that, provided enough linac pulses
are used during an injection, all ring rf buckets receive
charge from all parts of the linac pulse and therefore,
roughly equal total charge. In order to increase the fill-
pattern uniformity even further during these tests, the
charge in each linac pulse was reduced to increase the
total number of pulses required to fill the machine to high
current. The measurements were then performed on a
decaying beam.
Figure 4 demonstrates why this is important. Under the

conditions of the measurement, with a uniform fill, stable
overstretched bunches are obtained with a Landau voltage
of 376 kV. With a slightly nonuniform fill, on the other

FIG. 3. A mode-(−1) instability as seen in three streak-camera
images equally separated in time over a period of 7.2 s with a
beam current of 240 mA, an rf voltage of 1 MV and a Landau
voltage of 337 kV.

FIG. 4. Single-shot dual-timebase streak-camera measurement
at 300 mA of beam current for a uniform fill and Landau voltage
of 376 kV (top) and a nonuniform fill and Landau voltage of
372 kV (bottom) with a main-rf voltage of 1.13 MV. The
horizontal time axis covers just under three machine revolution
periods. Both images remain stable from frame to frame.
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hand, already at a Landau voltage of 372 kV, inhomo-
geneous beam loading leads to significant variation in the
longitudinal charge profiles of the different bunches. This
variation is very similar to a single frame of the mode-(−1)
instability in Fig. 3 but does not oscillate: the picture
remains stable from frame to frame. A Landau voltage of
376 kV could then not be reached without a mode-1
instability developing. The fill-pattern uniformity clearly
has a large impact on the dynamics and nonuniformity can
make accurate measurement of the thresholds impossible. It
is therefore essential that, for a mode-1 instability to be
identified, it must be oscillating and to obtain consistent
results, it must develop from a uniform fill. Once excited,
any modulation of the coherent frequency of the instability
is an indication that there is still some nonuniformity
present.
Figure 5 shows the fill patterns measured using time-

correlated single-photon counting [16] at the times when
the two images in Fig. 4 were taken. In this case, an
increase in the normalized standard deviation in the bunch
charges from 0.5% to 1.7% (and the time structure of this
increased charge variation) was enough to cause the change
from uniformly overstretched bunches to large variation in
the bunch profiles. The precise fill-pattern diagnostic used
for this measurement was acquired after the bulk of the
results presented in this paper were obtained. Nevertheless,
the importance of this effect was already understood and so
the fill-pattern was always kept as uniform as possible
using the precautions mentioned above.
Something that proved crucial in these experiments was

the mode-0 damper [17]. This is because modes �1 were
both seen exclusively in conditions where mode 0 would
otherwise be unstable due to a mode-coupling instability
[13]. The measurements took place over a period of two
years during which three cavities (one Landau and two
main) were removed from the ring for unrelated reasons.
The combination of cavities present in the ring is specified
explicitly in each subsection. Table II provides a summary
for reference.

A. Instability thresholds

In order to measure instability thresholds for the mode-1
instability, first the ring was injected in a uniform fill
pattern up to a current of 300 mA with an rf voltage of
1 MV. The Landau cavities were then tuned toward
resonance, increasing the cavity voltage and if present,
the mode-1 instability was measured using the streak
camera. The presence of the mode-1 instability reduces
the measured Landau voltage and so the autotuning would
often react, tuning the cavities even closer to resonance to
maintain the set cavity voltage. This was compensated for
by reducing the set voltage when necessary. The process
was then repeated at a different beam current. To move on
to the next current step, the Landau cavities were detuned
once more and a beam scraper was inserted in order to
lower the beam lifetime until the current had reached the
desired lower value. The reason for detuning the Landau
cavities first is the presence of the mode-1 instability could
introduce a nonuniformity in the fill pattern when scraping
down the beam current. These measurements were made
with three Landau cavities installed in the ring (total shunt
impedance 8.25 MΩ as per Table I), five main-rf cavities
active and one parked.
Figure 6 shows the results. No mode-1 instability was

observed in the empty regions of the plots. The saturation
amplitudes and coherent frequencies were extracted from
the streak camera images as follows. First, for each image,
the centre of charge in time offset hτim was taken from an
intensity-weighted average of the pixel time coordinates
along the vertical axis for each column m of pixels:

hτim ¼
P

N−1
n¼0 τnPnP
N−1
n¼0 Pn

; ð8Þ

where τn is the time coordinate of pixel n along the vertical
axis, Pn is the intensity measured by said pixel and N is the
number of pixels in each column. The amplitude A1 and
phase θ1 of mode �1 in each image was then calculated
from a Fourier transform of the centres of charge along the
horizontal axis knowing the wave number of mode �1:
2π=T0.

FIG. 5. Fill patterns corresponding to the two images in Fig. 4
as measured using time-correlated single-photon counting.

TABLE II. Combination of main and Landau cavities present in
the MAX IV 3 GeV ring during the measurements for each
subsection where results are presented.

Section
Number of
active MCs

Number
of LCs

Parked
MC

III A 5 3 Yes
III B 4 2 Yes
III C 4 2 No
Appendix B 4 2 Yes
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A1eiθ1 ¼
1

M

XM−1

m¼0

exp

�
i2π

tm
T0

�
hτmim; ð9Þ

where tm is the time coordinate of pixel columnm andM is
the total number of columns. The saturation amplitude was
then determined from the mean value of A1 over all the
images in a sequence and the coherent frequency was taken
from a linear fit of the θ1 values over time given the known
time separation of the images.
Data was also taken using the bunch-by-bunch (BBB)

phase-detection capabilities of a Dimtel feedback system
[18] and the saturation amplitudes and coherent oscillation
frequencies were extracted by Fourier transform in a similar
way. This data allowed for measurement of the coherent
frequencies to larger values since the sampling rate is a lot
faster. In fact, the turn-by-turn sampling rate had to be
limited to once every 32 turns in order to maximize the
acquisition time to around 4 s and maximize the frequency
resolution. This is still shorter than the total acquisition
time of the one hundred streak-camera shots (12 s) so the
streak camera still has better frequency resolution. Another
advantage of the streak camera is that it provides calibrated
time axes while the scale of the bunch-by-bunch phase
detection is not calibrated by default and calibration is
unreliable for the large phase-excursions seen. This is why
the saturation amplitudes in Fig. 6 are displayed in counts
and only relative differences can be compared with the
calibrated amplitudes measured using the streak camera.
There is good agreement between the two measurement

methods, although the streak camera occasionally under-
estimates the oscillation frequencies due to its limited
bandwidth and aliasing. As predicted, the measured coher-
ent frequency, with a maximum magnitude of just over
12 Hz, is always low compared to the average incoherent
synchrotron frequency of around 130 Hz in a quartic
potential. For a harmonic oscillator, a lower frequency of
oscillation means there is a weaker restoring force and
therefore a lower amount of energy stored in the system for

a given peak excursion and so the appearance of a mode-1
instability does not lead to a large increase in the energy
spread.
The frequency axis in Fig. 6 is such that a negative

oscillation frequency corresponds to mode −1. Positive
frequencies are colored light green and are generally very
low in magnitude, less than 1=3 Hz and mostly too small
for the BBB measurement to resolve. The results indicate
that mode −1 was observed much more frequently than
mode þ1. This is because of the presence of the parked
main cavity as discussed in detail in Sec. III B and Sec. IV.
The results shown in Fig. 6 are for conditions that would

lead to overstretched bunches if the beam were stable. An
attempt was also made to establish the thresholds for the
mode-1 instability that would prevent the flat-potential
condition from being reached. For each beam current, the rf
voltage was reduced until the Landau voltage correspond-
ing to flat potential, as calculated using the theory presented
in Appendix A, could not be reached without the mode-1
instability appearing (specifically in this case mode −1).
Similar to before, the Landau voltage also had to be
reduced between each step to ensure that the appearance
of the mode-1 instability was not a transient effect caused
during the reduction in the rf voltage. These mode-1
instability thresholds are shown in Fig. 7. Example out-
comes of Landau-voltage and bunch-length calculations are
listed in Table III (see columns labeled “3LCs”).
There is some numerical noise in the determination of

exactly when the Landau contour is crossed but the trend in
the theoretical predictions is clear and so a linear fit could
be performed. The rf voltages for which mode −1 appears
are all lower than those that have typically been used during
user operation of the MAX IV 3 GeV ring. However,
continuing the measured trend predicts that an rf voltage of
1.48 MV would be needed for a threshold current of
500 mA (the design current). This would place significant
demands on the power required from the rf transmitters.
The theoretical predictions do not account for the

presence of the parked main cavity. Unfortunately, the

FIG. 6. Amplitudes and coherent frequency of a mode-1 instability with 6 MCs (5 active, 1 parked) and 3 LCs as measured using
bunch-by-bunch phase-detection (left) and sequences of streak-camera images (right) with an rf voltage of 1 MV. Negative oscillation
frequencies correspond to mode −1 while light green patches outlined on three sides and with a cross over the top indicate a positive
oscillation frequency (mode þ1).
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importance of this was not realized until after the cavity in
question had actually been removed from the ring for the
testing and installation of HOM dampers. This prevented
any measurement of its exact resonant frequency so that it
could be included in the theoretical predictions. Just before
the removal, one passive Landau cavity was also removed,
and this prevents any attempt at reproducing these results
without the parked cavity present.
The difference between the experimental results and the

theoretical predictions in Fig. 7 is quite significant.
Nevertheless, it is encouraging that they both show the
linear relationship that has previously been found in
simulation [4]. Tests of inserting a parked main cavity
into the theoretical calculations with an arbitrary detuning
changed the threshold currents but not the slope of the
trend. The difference in the slope may be due to the
presence of short-range wakefields, which are not included
in the theory. The theory also assumes a longitudinally
stable beam as a starting point while in reality, HOM-driven
coupled-bunch modes were always present, albeit at low
amplitude. The differences in the absolute values of the
threshold currents cannot be commented on at this stage

because of the unknown impedance of the parked main
cavity as previously mentioned.
Experimental investigations into the effect of a parked

main cavity were made with the two Landau cavities and
five main cavities remaining in the ring as outlined in the
next section.

B. Parked main cavity

It had been known for some time that the removal of a
Landau cavity could assist in the increase in the highest
current at which a stable beam can be stored in the MAX IV
3 GeV ring both due to the mode-1 instability and the rf
voltage required to achieve quartic potential. The disad-
vantage of the lower shunt impedance would be the
inability to achieve flat potential at low currents. The
decision to remove a Landau cavity was forced toward
the end of 2022 by the discovery of a vacuum leak in one of
them and this one was therefore removed from the ring in
December of 2022. This provided an opportunity to test the
influence of the total R=Q of the Landau cavities. First
however, the impact of a parked main cavity, was inves-
tigated. As it is a normal conducting cavity with the input
power coupler still attached, it is assumed that it is only the
resonant frequency of the fundamental mode that changes
when the cavity is parked and the shunt impedance and
quality factor remain those given in Table I.
Measurements were made with the five main-rf cavities

that remained in the ring. Four of the cavities were active
and one was parked. First, the potentiometer readback from
the tuning mechanism of the parked cavity was calibrated
using drive-damp measurements [19] performed with the
aforementioned bunch-by-bunch feedback system [18].
These measurements were made with an rf voltage of
1.13 MV, 20 mA of beam current in a uniform fill pattern
and one insertion device closed for additional damping.
The results are shown in Fig. 8. A Lorentzian fit was
applied and the resulting bandwidth was used to determine
a linear conversion from the reading of the potentiometer
readback of the tuning mechanism to the detuning of the
cavity, assuming the theoretical MC quality factor of 3688.
An independent calibration was also made offline using a

FIG. 7. Threshold currents of the mode-1 instability for differ-
ent rf voltages as measured (mode −1) in the MAX IV 3 GeV ring
with 6 MCs (5 active, 1 parked) and 3 LCs and as predicted (for
modeþ1) using the Krinsky dispersion relation, Eq. (6) in Sec. II.
The errorbars correspond to half the step sizes in the scans of
current and rf voltage.

TABLE III. Outcomes of example calculations of Landau voltages for flat-potential conditions for different main-rf voltages.
Threshold currents extrapolated or interpolated from the measured results are also given, although the voltages and bunch lengths are
practically constant across the full current range.

rf voltage
(kV)

Natural bunch
length (ps)

Mode-1 threshold
current (mA) Landau voltage (kV) Bunch length (ps)

Minimum current
for flat potential (mA)

3 LCs 2 LCs 3 LCs 2 LCs 3 LCs 2 LCs 3 LCs 2 LCs

900 43.0 274 344 272 271 210 207 28.7 42.7
950 41.7 292 360 290 290 207 203 30.7 46.0
1000 40.4 310 377 308 308 203 199 32.6 48.8
1050 39.3 329 393 326 326 199 196 34.9 52.1
1100 38.3 347 410 344 343 195 194 36.9 54.9
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network analyzer and the conversion gradient obtained was
within 4% of the result obtained from the Lorentzian fit.
The agreement in the intercept parameter was not as good,
differing by the equivalent of 22 kHz on resonance, most
probably due to a mismatch between the calibration of the
network analyser and the assumed frequency of the
machine main oscillator. The advantage of a beam-based
calibration is that the exact same rf frequency that is used in
the machine is essentially used as a reference signal in the
measurements.
The peak growth rate measured from the Lorentzian fit is

þ18.1 s−1, which agrees to a similar level with the
theoretical growth rate of þ19.2 s−1. It is also reassuring
that the growth rate without Landau-cavity bunch length-
ening has the expected dependence on the frequency offset.
Mode −1 instability threshold currents were then mea-

sured for different parking frequencies of the inactive main
cavity. For a number of different current levels, the parked
cavity was tuned toward the resonant frequency of coupled-
bunch mode −1 until it went unstable, at which point the
frequency offset was recorded. At each beam current, the
Landau voltage was set to the value corresponding to flat
potential, as determined using the theory presented in
Appendix A. This was done with the maximum obtainable
rf voltage of 1.13 MV so that the mode-0 damper had
enough gain to keep mode 0 stable across the whole current
range. At the lowest beam currents at which measurements
were taken, the Landau cavities had to be tuned close to
resonance to reach flat potential conditions and so mode 0
was particularly unstable. This is the reason why results
could not be obtained at lower beam currents.
The results are shown in Fig. 9. Unlike the dependence of

the growth rate on the frequency offset without bunch
lengthening shown in Fig 8, the dependence of the threshold
current with bunch lengthening is very asymmetric and the
threshold currents are lower for negative frequency offsets.

This is seen very clearly in both the theoretical predictions
and the experimental results and is due to the influence of the
parked cavity on the coherent frequency of the instability, as
discussed below in Sec. IV. Overall, the theory tends to
overestimate the threshold currents quite significantly but
once again, follows the trend seen in the experimental results
very well. As mentioned in the previous section, the reason
for the discrepancy could be the presence of low-amplitude
HOM-driven coupled-bunch instabilities and the short-
range wakefields, neither of which are included in the
theory and which could negatively impact both the bunch
lengthening and the Landau damping.

C. Two Landau cavities

Measurements of the mode-1 instability with two
Landau cavities were made in the autumn of 2023. By
this time, an additional main-rf cavity had been removed
from the ring, also for the installation of HOM dampers.
Measurements were therefore made with four main cavities
active and none parked. The measurements performed were
otherwise very similar to those presented in Sec. III A.
Although the results cannot be directly compared due to the
unknown influence of the parked main cavity in Sec. III A,
they show the expected difference from the reduction in the
Landau-cavity R=Q and also confirm that it is mode þ1
that is excited by the Landau cavities.
Figure 10 shows the amplitude and coherent frequency of

the instability for different beam currents and Landau
voltages at a total rf voltage of 1.13 MV. The reason that
a higher rf voltage was used than in Sec. III A was so that
mode-0 was kept stable at high current over a broad range of
Landau voltages. Once again, there is good agreement on the
coherent frequencies between the results using the BBB
phase detection and the streak camera. The only points at
which they differ arewhen the coherent frequency is too high
for the streak-camera sampling rate, which leads to aliasing.
Although the BBB does not provide calibrated values for the

FIG. 8. Drive-damp measurements of the growth time of
coupled-bunch mode −1 for different detunings of a parked
main cavity from frf − f0. The error bars are estimated from the
uncertainty of the fits to the mode amplitudes and assuming a
Gaussian response for the Chebyshev filter used in the signal
processing.

FIG. 9. Measurements of the threshold current for different
detunings of a parked main cavity from frf − f0 compared to
theoretical predictions using the Krinsky dispersion relation,
Eq. (6) in Sec. II. The point-to-point variation between the data
points is an indication of the statistical uncertainty.
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oscillation amplitudes, the relative amplitudes of the different
points agree between the two methods.
Unlike the coherent frequencies shown in Fig. 6, all of

those shown in Fig. 10 are positive confirming that without
the presence of the parked main cavity, it is modeþ1 that is
driven by the Landau cavities. Something that was not
observed with three Landau cavities but that was observed
here was that when steadily increasing the Landau voltage,
there came a point at which the mode-1 instability
disappeared and stable overstretched bunches formed.
This occurred for Landau voltages above around 383 kV
and at beam currents of 370 mA and lower.
Figure 11 is the analog of Fig. 7 for two Landau cavities

and no parked main cavity. Example cavity voltages in this
case are given in columns labeled “2 LCs” in Table III. The
theory overestimates the measured threshold currents to a
very similar level to in Fig. 9. However, once again, the
measured trend is very similar to the predicted one and
shows a linear dependence on the rf voltage for the
threshold current of the mode-1 instability at flat potential.
Unlike in Fig. 7, the slopes of the measured and predicted
trends are here very similar, differing by less than 10%.
Also included in the figure are predictions using the method

of Tianlong He [10]. The theory of the current authors [8] is
not included in the figure but predicts something very
similar as expected. As anticipated, these methods signifi-
cantly underestimate the threshold currents because they do
not include the Landau damping.
In general, the threshold current at a given rf voltage is

significantly higher with two Landau cavities than with
three due to the R=Q being lower by a third.
As well as threshold currents, the Krinsky dispersion

relation [11] can be used to make predictions of the
coherent frequencies. These predictions were around
50 Hz for all rf voltages. The measured coherent frequen-
cies, on the other hand, were in the order of 1 Hz. However,
the prediction applies to an instability growing from a
stable beam whereas all of the coherent frequencies were
measured on the instability in saturation.

IV. CAVITY IMPEDANCES

Looking at the cavity impedances in the relevant
frequency range can help to form a qualitative under-
standing of the experimental results and in particular, why
mode −1 was observed instead of mode þ1 when a parked
main cavity was present. Figure 12 shows the reactive
impedance of five active main cavities, three Landau

FIG. 10. Amplitudes and coherent frequency of a mode-1 instability with 4 active MCs and 2 LCs as measured using bunch-by-bunch
phase-detection (left) and sequences of streak-camera images (right) with an rf voltage of 1.13 MV.

FIG. 11. Threshold currents of the mode-1 instability for
different rf voltages as measured in the MAX IV 3 GeV ring
with 4 active MCs and 2 LCs and as predicted using the Krinsky
dispersion relation and the Tianlong He method, both discussed
in Sec. II. The errorbars correspond to half the step size in the
scan of rf voltage.

FIG. 12. Reactive part of the impedance for flat-potential
conditions with a beam current of 200 mA, three Landau cavities
and an rf voltage of 1 MV. For the Landau impedance n ¼ 3
while for the main cavities n ¼ 1.
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cavities and a single parked main cavity for flat potential
conditions and a beam current of 200 mA and a main rf
voltage of 1 MV. To first order, the reactive impedance is
the dominant factor in determining the coherent frequency
of the instability and the relevant frequencies for coupled-
bunch modes �1 are the synchrotron sidebands of the
revolution harmonics nfrf � f0 marked in the figure, where
n ¼ 1 for the active and parked main cavities while n ¼ 3
for the Landau cavities. The reactive impedance affects
both modes similarly and it is clear that the reactive
impedance of the Landau cavities is dominant.
When it comes to determining which mode is unstable

and which one is damped, the real part of the impedance is
more important. This is shown in Fig. 13. Generally
speaking, a larger impedance at the nfrf þ f0 harmonics
than at the nfrf − f0 harmonics means that the coupled-
bunch mode þ1 is more likely to be unstable, and vice
versa for coupled-bunch mode −1. Here, it is clear that the
parked main cavity is the dominant source of real imped-
ance and is driving mode −1 and damping mode þ1. This
is a simplified explanation and neglects effects such as
Landau damping and the interplay between the coherent
frequency and the growth rate.
The parked main cavity can have a significant impact on

the threshold current, as shown in Sec. III B, but its reactive
impedance will only be dominant very close to resonance.
Here, when tuned below frf − f0, it will combine with the
Landau cavities and further lower the coherent frequencies
of modes �1 while when tuned above, it will push the
coherent frequencies to higher values. Depending on the
tuning of the parked main cavity, the difference between the
stability of the two modes may not be large, as evidenced
by the fact that both feature in Fig. 6, although predomi-
nantly mode −1.

V. CONCLUSION

The mode-1 instability has been observed and inves-
tigated in the 3 GeV ring at MAX IV. The expected

dependence on the rf voltage was observed. It was also
found that prediction methods that neglect the Landau
damping may significantly underestimate thresholds of the
mode-1 instability.
The removal of a Landau cavity from the ring provided

an opportunity to see how a reduction in the R=Q relaxed
the thresholds of the instability. As it significantly impacted
the results, the effect of a parked main cavity was also
investigated. The measured threshold currents showed an
asymmetric dependence on the detuning of the parked
cavity around the frequency of coupled-bunch mode −1
and that the presence of a parked cavity can both decrease
and increase the threshold of a mode-1 instability.
The mode-1 instability does not at present limit the

bunch lengthening that can be achieved in the 3 GeV ring at
MAX IV. The rf voltage of 1.13 MV that is currently used
during operation of is large enough that the threshold
current of the mode-1 instability at flat potential is above
the operating current of 400 mA. It is therefore not
necessary to switch to an uneven filling pattern, which
would degrade the bunch lengthening [8].
Many new fourth-generation light-source storage rings

are expected to come online during the next decade and the
use of Landau cavities is an essential component of their
design [20]. It is therefore very important that the mode-1
instability be avoided and for that, accurate threshold
predictions must be made. This investigation provides
useful information to those making these predictions.
With this in mind, all of the experimental results displayed
here have been uploaded as Supplemental Material [21] and
the computer code used to evaluate the theoretical pre-
dictions has been uploaded to Github [22].
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APPENDIX A: DETERMINATION
OF FLAT POTENTIAL CONDITIONS

IN A PASSIVE SYSTEM

The following gives a procedure for determining
the Landau voltage and phase to cancel out the first
derivative of the main rf and deliver flat-potential con-
ditions. Following the convention in [1], the voltage and its
first derivative are written

VTðφÞ ¼ Vrf ½sinðφþ ϕsÞ þ k sinðnφþ nϕhÞ�; ðA1Þ

V 0
TðφÞ ¼ Vrf ½cosðφþ ϕsÞ þ kn cosðnφþ nϕhÞ�; ðA2Þ

where φ is the phase, n is the harmonic of the main rf at
which the Landau-cavity system operates, Vrf is the main rf
voltage and k is the voltage fraction (Landau voltage

FIG. 13. Real part of the impedance for flat potential conditions
with a beam current of 200 mA, three Landau cavities and an rf
voltage of 1 MV. For the Landau impedance n ¼ 3 while for the
main cavities n ¼ 1.
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divided by the main-rf voltage). The synchronous phases
ϕs and nϕh are such that VTð0Þ ¼ U0 where eU0 is the
energy loss per turn due to synchrotron radiation and e is
the elementary charge.
To obtain a flat potential, the derivative of the total rf

voltage must be zero at the synchronous phases. If the
synchronous phase of the main rf is eliminated, the
following condition is obtained for V 0

Tð0Þ ¼ 0:

½ð1 − n2Þ sin2ðnϕhÞ þ n2�k2 − 2
U0

Vrf
sinðnϕhÞk

þ U2
0

V2
rf

− 1 ¼ 0: ðA3Þ

In the case of a fully-active system, this condition can be
achieved for a continuum of Landau voltages and phases:
as long as the voltage fraction k is large enough, there exists
a phase where this condition can be met.
With passive Landau cavities on the other hand, there is

only one solution for k and ϕh if all other parameters are
fixed. From Eqs. (18) and (19) in [1], under the approxi-
mation of a scalar form factor,

sinðnϕhÞ ¼ −
kVrf

2IFRs
; ðA4Þ

where I is the beam current, F is the scalar bunch form-
factor at the Landau-cavity harmonic n and Rs is the total
Landau-cavity shunt impedance. Substituting Eq. (A4) into
Eq. (A3) gives the following expression

ð1 − n2ÞV2
rf

ð2IFRsÞ2
k4 þ

�
n2 þ U0

IFRs

�
k2 þ U2

0

V2
rf

− 1 ¼ 0: ðA5Þ

This can be solved for k using the quadratic formula. Once
k is obtained, Eq. (A4) can be used to determine the
Landau-cavity field phase and from that, the tuning angle
and cavity detuning. For most accurate results, the solution
should be determined self-consistently, calculating the
resulting bunch profile and iterating on the form factor
as in [1]. The approximation of a scalar form factor is a
shortcoming but in practice, the equations still deliver
accurate results for a large range of parameters and have
proved useful for operation of the 3 GeV ring at MAX IV.
At a particular beam current, the flat-potential conditions

will correspond to a quartic potential and this beam current
can be varied by changing the rf voltage Vrf , making a
quartic potential also accessible over a wide range of beam
currents with a fully passive system and a fixed Landau-
cavity shunt impedance. However, lower beam currents
will require a lower rf voltage and this may compromise the
beam lifetime.
Equation (A5) has no real roots when the beam current is

too low to generate the required fields. The expression for

the minimum current at which a flattened potential can be
obtained is therefore given as

Imin ¼
−U0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − n2ÞðU2

0 − V2
rfÞ

p
RsFn2

: ðA6Þ

This equation neglects the fact that it may be impossible to
reach flat potential at low currents due to a Robinson
instability.

APPENDIX B: TRANSFORMATION
TO IMPEDANCE

We follow the approach of Ng [23]. Equation 11 for the
coupling matrix Mlj in [8] reads

Mlj ¼
X∞
n¼0

RefF�
l FjqjW0½nT0 þ Δtljðτl; τjÞ�g

×
rjðnT0Þ

r̂j
; ðB1Þ

where W0 is the derivative of the wake function, Fj is the
form factor of bunch j at the operational rf harmonic of the
Landau cavities and τj is its time offset and Δtlj is the time
difference between bunches l and j as defined in [8].1 The
limitation to a resonant wakefield in the use of a form factor
is a little early here but makes sense in the context of the
original publication and will eventually be justified here.
The assumed motion of bunch j is rjðtÞ ¼ r̂j expðiΩtÞ
where Ω is the coherent frequency and r̂j is its peak time
offset.
To convert to impedance, the following definition is used

W0ðtÞ ¼ i
2π

Z
∞

−∞
e−iωtωZðωÞdω; ðB2Þ

where ω is the angular frequency. Using the following
identity:

X∞
k¼−∞

eikz ≡ 2π
X∞
p¼−∞

δðz − 2πpÞ; ðB3Þ

exploiting the causality of the wake functionWðt < 0Þ ¼ 0
and changing the variable of integration to y ¼ ðω −ΩÞT0,
Eq. (B1) becomes

Mlj ¼
ijFj2qb
T0

X∞
p¼−∞

�
2πp
T0

þ Ω
�
Z

�
2πp
T0

þΩ
�

× exp

�
−i
�
2πp
T0

�
Δtljð0; 0Þ

�
; ðB4Þ

1The subscripts l and j have been added for both brevity and to
be more accurate.
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where it has been assumed that the bunches are evenly
spaced so that Δtljðτl; τjÞ ¼ Δtljð0; 0Þ and all have the
same form factor F and bunch charge qb as expected in a
uniform fill. Under these conditions, it is also justified to
isolate mode 1 by setting p1� ¼ �nhþ 1. We then obtain

Mlj ¼
ijFj2qb
T0

½−ω1−Zð−ω1−Þ þ ω1þZðω1þÞ�

× exp½−i2πΔtð0; 0Þ=T0�; ðB5Þ

where we have defined ω1� ¼ �2πp1�=T0 � ReðΩÞ
and recognized that exp½−i2πp�Δtð0; 0Þ=T0� ¼
exp½−i2πΔtð0; 0Þ=T0�. The real part of the coupling matrix
is then given by

ReðMljÞ ¼ −
jFj2qb
T0

× fω1−Im½Zðω1−Þ� þ ω1þIm½Zðω1þÞ�g
× exp½−i2πΔtð0; 0Þ=T0�; ðB6Þ

where we have additionally made use of the fact that
Im½ZðωÞ� is an odd function. Substituting this into Eq. (14)
of [8] is the basis for the inequality in Eq. (5) here in
the case of the mode-(þ1) instability. One additional
assumption in Eq. (B6) is that the form factor does not
change in the frequency range of ω1− ≤ ω ≤ ω1þ. This is
generally justified.

APPENDIX C: COHERENT FREQUENCY

Robinson-mode coupling can cause a strong instability
even when the dipole and quadrupole Robinson modes are
predicted to be stable in isolation. Although no mode
coupling is predicted for mode 1, an experiment was
performed to try and confirm this. A longitudinal kicker
cavity was used to drive the beam over a broad frequency
band around the synchrotron tune. The combined signal
from the four buttons of a beam-position monitor (BPM)
pick up was connected to a spectrum analyser. The coherent
frequencies of the dipole and quadrupole Robinson modes
were then determined from the difference in frequency
between the peak at the fifth harmonic of the rf and its
synchrotron sidebands. An image of such a measurement is
shown in Fig. 14. The fifth harmonic was chosen for
increased BPM sensitivity compared to the first. Similarly,
the coherent frequencies of coupled-bunch modes �1 were
determined from the synchrotron sidebands at the first
revolution harmonic above the fifth rf harmonic. The
measurements were made with two Landau cavities in
the ring, four active main cavities and one parked. Unless
explicitly mentioned, the parameters used are those listed in
Table I.
The measurements were performed at 90 mA and with an

rf voltage of 689 kV. This combination is predicted to

deliver an approximately quartic potential at a Landau
voltage of 190 kV given the machine parameters. The
advantage of performing the experiment at as low a current
as possible is that the beam is less unstable due to HOM-
driven coupled-bunch modes and Robinson-mode coupling
(as discussed below), which may interfere with measure-
ments of the modes of interest.
The results are shown in Fig. 15 and are compared with

the predictions of the theory presented in [8].

FIG. 14. Example spectrum-analyzer measurement of the
coherent dipole and quadrupole Robinson modes from sidebands
of the fifth rf harmonic.

FIG. 15. Measurements of the coherent dipole and quadrupole
resonant frequencies for coupled-bunch modes 0 (top) and �1
(bottom) along with the theoretical predictions at 50 mAwith an
rf voltage of 650 kV. The errors are estimated as half the
resolution bandwidth of the spectrum analyser.
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As the Landau voltage is increased, the coherent
frequency of the Robinson dipole mode stays roughly
constant while that of the Robinson quadrupole mode
decreases. At a particular Landau voltage, both modes
have the same frequency and a coupling instability occurs.
Although, under the theory used here which does not treat
mode-coupling at all, this is at a single point, there is in
reality a coupling bandwidth due to radiation damping and
the tune spread within the bunches. Under the experimental
conditions specified here, the mode-coupling bandwidth is
small enough that the instability does not persist when flat-
potential conditions are met, even without the mode-0
damper [17]. Throughout the measurement, modes �1
were stable but at the lowest Landau-cavity fields, other
coupled-bunch modes were unstable.
The coherent frequencies of the mode-1 dipole and

quadrupole modes are both reduced by the impedance.
Eventually, they reach very low values but at 90 mA, no
mode-1 instability occurs because of Landau damping.
Nevertheless, these measurements give confidence that the
origin of the mode-1 instability is not a mode coupling and
no mode coupling is predicted at higher currents either
where mode þ1 is predicted to be unstable.
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