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In electron storage rings, an accurate description of particle dynamics near third-integer resonance is
crucial for various applications. The conventional approach is to extrapolate far-resonance dynamics to near
resonance, but the difficulty arises because the nonlinear detuning parameter diverges at this critical point.
Here we derive, via a suitable application of the canonical perturbation theory, a revised detuning parameter
that is well behaved near resonance. The resultant theory accurately describes the morphology of resonance
islands for a wide range of parameter space and facilitates its optimization.
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I. INTRODUCTION

A charged particle in an electron storage ring experi-
ences a periodic potential which makes the particle sus-
ceptible to various resonances. Such resonance phenomena
have traditionally been viewed as detrimental to beam
confinement, and operating the electron storage ring near
resonance tunes has been avoided. However, if it has a
certain nonlinear potential, it can form additional or
secondary stable islands surrounding the central primary
island. Various means are being revisited to actually utilize
this resonance phenomenon in applications such as multi-
turn extraction [1-4]. CERN has made significant progress
in generating transverse resonance islands for proton beams
across various resonance tune orders [I-4]. In this
approach, the proton beam disperses from the main orbit
to the secondary stable orbit for utilization, thereby avoid-
ing the concurrent use of two orbits.

In operation modes of electron storage rings that utilize
resonance islands, electrons are simultaneously confined
to main and secondary stable orbits in transverse phase
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space [5]. Sextupole magnets in electron storage rings can
form additional stable islands surrounding the central
primary island. Previous research focus had been on
eliminating these additional islands [6], but particles
can actually be trapped in them by choosing the appro-
priate tune and applying external kicks [7], allowing for a
multiobjective utilization of the stored beam [8,9]. This
mode has been implemented at several facilities such as
BESSY I [5] and MAX IV [10]. The presence of
additional stable orbits in the ring has enabled pump-
and-probe experiments with spatially separated short
x-ray pulses [11], synchrotron-radiation-based electron
time-of-flight spectroscopy [12], and control of x-ray
helicity using APPLE-type undulators in conjunction with
operation with resonance islands [9].

Despite the experimental implementation of resonance
islands, the theoretical description of this phenomenon is
still a subject of ongoing research and is not fully under-
stood [13]. A widely used dynamical framework in electron
storage ring physics is the Hamiltonian formalism [14-16].
When investigating higher-order effects beyond linear
electron storage ring dynamics, a common approach is
to separate long-term and short-term motions to derive an
effective or average Hamiltonian that describes the system’s
long-term behavior and driving mechanisms. This math-
ematical approach has been applied to study amplitude-
dependent tune shifts [17] and nonlinear chromaticity [18]
in electron storage rings.

A key aspect for understanding resonance islands is the
dynamical properties near the tune v, =13, /3, which

Published by the American Physical Society
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corresponds to the third-integer resonance. Near this
resonance, the Hamiltonian has been proposed as [19]

[ 1
H(p,J)= (%‘%)J‘f‘g&o,zg“ﬁ COS<3¢)+§0‘012, (1)
where (¢,J) are the action-angle variables, v, is the
horizontal tune, /3, is the integer number closest to 3v,,
930, is the resonance strength, and g is the nonlinear

detuning parameter [19,20]. In special cases like single kick
approximation, €2, is also used instead of a [21]. However,

[3bx

ay diverges as v, — 3%, and so this theory breaks down
near the third-integer resonance around which resonance
islands are supposed to form. In fact, in concurrent
theoretical studies and applications of resonance islands,
the detuning parameter is either deemed too difficult
to derive [22] or just artificially supplemented or
modified [13]. The derivation of the correct detuning
parameter near resonance is therefore a crucial challenge
in understanding and predicting resonance islands.

In this paper, we present a revised expression for the
nonlinear detuning parameter using perturbative canoni-
cal transformations. The revised parameter is well
behaved near third-integer resonance and so accurately
describes the presence and morphology of the resonance
islands. Particle tracking simulations using the lattice
information of a currently operating electron storage ring
(PLS-II) are performed and their results are shown to
conform to the analytical predictions. The bearing of our
findings on advanced operations of electron storage rings
is discussed.

II. THEORY

A. Hamiltonian for a electron storage ring
with sextupole magnet

The coordinate system (Frenet-Serret) employed in this
study is depicted in Fig. 1. The Hamiltonian, as given in
Egs. (10)—(12) of Ref. [17], is presented below:

My = G VL) )
V(B 9) =200 (VR eos (3) + cos()]

(3)

where f.(s) is a horizontal betatron function, (¢, 1) is
action-angle variables, and the sextupole magnet strength
m(s) is given by

_ ed’B
 pox?’

4)

m(s)

>

Trajectory

FIG. 1. The Frenet-Serret coordinate system used in this study.
The particle moves along the trajectory line, with the position
denoted by the vector 7. The origin of the Frenet-Serret coordinate
system is denoted by the vector 7. The ideal orbit is represented
by the dotted curved line. The bending radius is denoted by p, and
the unit vectors of each axis are denoted by %, y, and 3.

In the above definitions, p is the momentum of an
electron, e is the charge of an electron, and B is the
magnetic field strength of the sextupole magnet.

A canonical transformation mapping from (¢,,1,) to
(wo,J,) is performed using the second type of generating
function, as given by [19]

F2(¢x7‘]2’s>: <¢x_\/0sﬂ1(1_>d7+2fﬂsyx>']27 (5)

where L is the periodicity in the electron storage ring (for
example, the length of a lattice or the circumference) and v,
is defined as

1 L 1
v, = EA 5.0 dr. (6)

Note that the 3 times of tune is near an integer, which is
denoted as 3v, = [3, . The new canonical action-angle
variables are given below:

_OF,
- 0,

OF, s 2
_ det+ T, (8
7§) an ¢x A /))x (T) T+ L SUx ( )

Iy

=T, (7)

where the numerical subscript signifies the number
of canonical transformations from the (x,x’) position-
momentum space. Replacing the system variable from s
to @ == = £ the transformed Hamiltonian is given by

Ha(w2,J2.0) = v Jy + V(wa, J5.6), )
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where

Rm(0)

Vi d2.0) =~ 2 [ (VBO) cos Bys = 31,0 + 37.(0)] + 3(VB0)]2) cosyr = 1,0+ 2.0)]], (10)

6v2

and

Then, Fourier expanding V in 6, the Hamiltonian is now

de. (11)

oo 12.0) = vids + (V) Z G30m €08 By — 0+ E30,) + (V) Z 9104 €08 (o —n8 +&10,),  (12)

n=—0o0

where the Fourier coefficients g3 ,,, £3.0.0> G1.0.0> $1.0.0 are
given in Appendix A.

We now perform a canonical transformation using the
generating function

l3,
Gy, J3.0) = <1//2— 33x9)J3, (13)

which in effect eliminates the linear § dependency of the
angle variable. Then, the new Hamiltonian is given as
|

n=-—oo

[
Gy, 3.0
Hs (w3, J3,0) = Ho (w3, J3,0) +%

= 6,05+ V(ys.J3.0), (14)

where the resonance proximity parameter J, is defined by

l3y.
O, =v, —— 15
=y = (15)

and potential term is given by

(s} [c] l y
V(ys.J5.0) = (\/J_3)3 Z 93,01 €08 Bz + (I3, =)0 +&30,) + (\/73)3 Z 91,0.n COS <l//3 + ( ;X - ">9+§1,0,n>-

n=—oo

While v, is a fast-varying variable, if % < 1, y3 is now

i i dvs _ OHs _
a slowly varying function of 6 because 5= o

o, +g—JV3<< 1 near resonance. Then, Eq. (16) shows that

V consists of fast-varying terms that depend on 6 and a
slowly varying term cos(3y3 + &30, ) which depends
only on 3.

B. Canonical perturbation and #-independent
Hamiltonian 7,

Now we perform another perturbative canonical trans-
formation from (y3,J3) to (w,J) that renders the trans-
formed Hamiltonian to be explicitly #-invariant for up to
second order in m(@) [17,23]. Consider a generating
function, written in the following way:

F(W37J79) = W3J+F(1)(l//3,],9) +F(2)(‘//3,J’9) +oee
(17)

n=—oo

(16)

[
where F(¥) denotes the kth order generating function. Here,
the kth order means the proportionality to power of the
function m(0). The transformed action variable J is now

determined by the following relation:

OF (w3, 7.0 OF D (y3,J,0) oF®(ys,J.0
Iy = (w3 ):J+ (w3 )+ (w3 )_
a3 a3 a3
(18)
The Hamiltonian H, is given by
OF (y3,J.,0
Hy = Hs + %. (19)

By using a Taylor series, the Hamiltonian H, can
be arranged in order of m(6) and is given up to second
order by

Ha(ps. J,0) = HO +HD 4 HO), (20)

044001-3



NAM, HWANG, YOON, and PARC

PHYS. REV. ACCEL. BEAMS 27, 044001 (2024)

where
HO =5,J, (21)
oF)  oF(M
O =vV(ys;,J.0)+ 6, —— +——. 22
F(1) F2 F2)
w2 Vs JO)OFT o oFT | OF% (23)

Then H" for n€{0,1,2} is @ invariant if the nth order
generating function F") satisfies

HW — (HM), =0, (24)

where (A), means the average of A over 6. Note that H() is
already 6 invariant, so we start from n = 1.
For the first-order Hamiltonian H, it should satisfy

HD — (HD), =0. (25)
The 6 average of the first-order Hamiltonian is given by

oF)  oF(M
Ny=(V(y3,J,0)+6,——
(0= (Vi 10)+8,% “+705)

oF() oF)
st 0o+, (%) +(%) o

0

Allterms in (V (w3, J, 0)), are 0 except one term because
other terms in V (3, J, 0) have explicit oscillatory depend-
ency on @. In order to satisfy H(!) = (H(),, thus we need
to find the generating function that satisfies the following
relations:

aF<1>>
=0, 27
<61//3 0 @7)
oF()

=0. 2
(%), @)

Assuming that the above two equations are satisfied by
some generating function, the first-order Hamiltonian is
given by

HY = (HM),

oF™) oF()
— s+ =) + (%)
’ ’ w3 /g 0 /g

= (\/3)393,0,13”'r cos (3ys + &0, )- (29)

From Egs. (22) and (29), we can derive the following
equation:

0
{(%M + @}F(l) =—-(V(y3,J.0) - (\/3)393,0.1% cos 3y + &0, ))- (30)

Using the above equation, we can determine the first-order generating function, F!) (y5, J, 8). We try the following ansatz

for the generating function based on the form of V(y3,J,6):

k - . 3 = . lfw
FO (y3.0.0)=J: Z f30m8i0 Bys— (=13, )0+&30,,) + 2 Zfl.O,nSln <1l/3—<”— ">9+51,o,n>- (31)

n=—00,n#l3,,

Note that the removed term (n # I3, ) is originated from
. .. 3
fact that there is a missing term g3 ;. J2cos(3y3+&3,, )

in the potential V at the right side of Eq. (30). We can obtain
the following relations from Egs. (30) and (31):

36uf3,0.n + f3,0.n (l3ux - }’l) = —93.0n> (32)

and

Z3L;
5z/fl,0‘n +f1,0Vn T —n) = =g10n- (33)

3

n=—00

Thus, using the definition of §,, we obtain the
coefficients of the first-order generating function as
follows:

Ya 0.
fu,O,n = __Jabn

f e{l,3}. 34
o forae(13). (34)

Now, we can calculate the second-order Hamiltonian
using the following relation:

HP — (H?), =0. (35)
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The average value of the second-order Hamiltonian is
oF®

calculated as follows:
oF®)
0 W3 /g 0 /4

oV (y,J,0)oFD)
+< (ll/3 ) > .
0

aJ o3
Following the same way as in the first-order Hamiltonian,
we can assume the following:

(36)

1
(HOY, <6V(w3,J, 0) oF()
aJ a3

0

[Se]

>

:§ﬂ<
4 n.n'=—co.n'#l,,

oF 2
< > =0, (37)
W3 /g
oF ()
=0 38
< a0 >e (38)

Detailed discussion for the existence of F?)(y5,J,6) is
given in Appendix B. Consequently, the second-order
Hamiltonian contains only @-invariant terms, which can
be calculated to obtain the resulting expression:

3930mf 300 €08 (=(n=n")0 + &30, — E30.)

+ Z gronfrom cos(=(n—n")0+ &0, — &)

nn'=—oc0

[Se]

D

!
n,n :—oo,n;él%,

+

3 (&)
=_7J?
4 {n:—;#lg,,x
+ cos (6y3) Z

n+n' =21, n#l,

2.

1 3
EJZ{(Z_I + ECOS (61//3)

3 . .
a_y Zz (nz_;#h 3f3,0,ng3,0,n + Z fl,O,ngl,O,n> . (40)

n=-—oo

For a mirror-symmetric ring, i.e., m(0) and f,(0) are even
functions of 6, the integrals in Eqs. (A12) and (A14) are
|

(5]
J3.0n93.0.0 €08 830, COSE3 0,7 = Z

>

ntn'=2l, n#l,,

k=—00.k0

n+n' =21, n#ls,,

k=—00.k#0

3f30n93.0m €08 (6y3 — (n+n' =213, )0+ &30, + 53,o,n’)>

[4

3f30n93.00 + Z J1.00910n

n=—oo

3f3,0,n93,0,n’ Ccos rfs,o,n CosS 53,0,n’ }

33,093,000 €08 &30, COS E3 } (39)

both zero. This means that both &5, , and &3, are either O
or 7. Here we have assumed such a mirror-symmetric ring
so that cos (A + &3, + &30.0) = cOsAcos &3, €08 &30,
for any A. Note that for a nonmirror-symmetric ring, the
theory can still be applied with appropriate changes to
the cosine terms, albeit in a more complicated manner. The
coefficient of cos (6y3) can be expressed in the following
form:

93,013, +k93,0,13, .~k
k—30,

oS &30, +£COSE30.1;, —k

93,015, +k93.,0,13, ~k
k

(41)

08 &30, +kCOSE3 0.y, —k T 0(3,).
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In Eq. (41) because n = I3, — k and n # l3, , we naturally
have k # 0. The function under the summation in Eq. (41)
is odd with respect to k, so the sum’s lowest order value is
zero, and Eq. (41) is O(6,). However, Eq. (40) is constant
with respect to 9,, thus Eq. (41) can be disregarded
(see details in Appendix C). Therefore, the second-order
Hamiltonian can be obtained as follows:

1
H(Z) = Ea_llz. (42)

The full Hamiltonian can be obtained from Egs. (21), (29),
and (42) as follows:

3 1
Hy(ws. J) =6,J + 93,0.1%]% cos 3y + &304, ) T 5017

S
(43)

To express the Hamiltonian in terms of new variables, we
use the following relation between the old and new angle
variables:

0F<1)(l/’37 J’ 8)

oJ ' (44)

W Eys+
where the last term Ay is of first order in m(0). However,

cos (3w + &30, ) = c0s By + &304, — Aw)
= cos(3y + &304, ) + O(AY?)
=~ cos(3y + 53,0,;3”). (45)

Here, the term O(Awy?) is removed because, being of
second order in itself, it introduces a third-order effect in
the Hamiltonian H,. Therefore, the resulting f-invariant
Hamiltonian H, is obtained as follows:

1
Ha(y,J) =0,J + 93,0,1_%1% cos By + &304, ) + Ea—ljz-
(46)

It should be emphasized that the removed term in the
summation in Eq. (40) corresponds to the slowly varying
term in the first-order Hamiltonian in Eq. (22). By
comparison to Eq. (1), we can express a_; as the revised
detuning parameter and it is one of our main results. The
first (unperturbed), second (resonance driving), and third
(detuning and island forming) terms in Eq. (46) correspond
to H®, H, and H?, respectively.

In contrast, the conventional detuning parameter in
Eq. (1) is effectively given by

3 Y
a =5 ( Z 3f3.0n93.00 F Z fl,o,,,g1,o.n>' )

n=-—oo n=—oo

The reason why Eq. (47) corresponds to Eq. (63) in
Ref. [17] or Eq. (196) in Ref. [19] is given in
Appendix D. Equation (47) is derived by averaging over
both the faster-varying 6 and the slowly varying w3 in
Eq. (24). The relation between Eq. (40) and (47) is given by

2
9 930,

Z B0 48
213% - 3I/x ( )

ap = a—

It is clear that the last term of Eq. (48), which is the
removed term in Eq. (40), diverges when the tune v, is
close to I3, /3. Because of this removal, a_, is well
behaved and correctly describes near-resonance dynamics.

The analytical prediction given by a_; will now be
verified through comparisons to numerical simulations.
An electron tracking code was written in MATLAB that treats
dipole and quadrupole magnets as transfer matrices and
solves sextupole effects using the fourth-order Runge-Kutta
method. The algorithm was tested against the PLS-II
electron storage ring lattice [24]. To facilitate the compari-
son, we define the following quantities:

X =T cos(y), (49)
P = —VJsin(y). (50)

Note that above transform from (v, J) into (X, P) is also
canonical.
Because &3, is 0 or # in mirror-symmetric ring (see

Appendix A), Eq. (46) is now given by
Hs(X,P)=6,{X*>+P*} +g30., c08(&304, )J{X°—3XP?}
1
+§aj{x2+P2}2, (51)

where j = —1 yields the revised detuning parameter in
Eq. (40), and j =0 yields the conventional detuning
parameter in Eq. (47).

C. Size of secondary islands

In this part, we will show the relation between the size of
secondary islands and the revised nonlinear parameter a_;.
Figure 2 exhibits an example of islands in phase space. We
will calculate the fixed points of the islands on the horizontal
axis (P = 0). According to the definition of fixed points, the
fixed points must satisfy the following condition:

ap _ s
do — oX
=26,X +3G(X? — P?) + 2a_(X* + P)X
=25,X +3GX? + 2a_, X3

=0, (52)

044001-6
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x 1073

1. ° X1 x Xo ¢ Xyrp A Xgpp
0.5
QL 0
~0.5
1!

-1 0 1
X x1073

FIG. 2. Example of phase space configuration with Hs.

where G = 93.0.1,,, COS 53,0,13” to reduce notational clutter.

The relation between the fixed points and a_; is given by the
following equation:

3G+ /9 - 16a_,, (53

9
4(1_1

XUFP

~3G - /9% — 16a_,5,
Xsrp = do Y (54)

If 9G* < 16a_,6,, secondary islands cannot be formed. As
shown in Fig. 2, Xypp lies at the apex of the central triangle
while Xgpp is in the center of the island.

To describe the sizes of the island and the central
triangle, the values of X; and X, in Fig. 2 need to be
known. Since Hs(X,0) — Hs(Xypp,0) is a fourth-order
polynomial with zero crossings at X, X,, and Xygp, where
Xyrp also corresponds to a local extrema, X and X, should
satisfy the next equation:

H5(X.0) =51 (X = Xur (X =X1) (X = X2) + Hs (Xug.0)

1
:5DX2+QX3+§C!_1X4. (55)

By comparing the coefficients, we can compute X; and X,
as follows:

(O OF —T6045)) — /AP + 465G ~ 615,

! 4(1_]

X —(G+/9G* —16a_,5,) + \/4g2 +4G+\/9G* — 16a_,6,
2 = .
4(1_1

III. NUMERICAL RESULTS

A. Validity of a_;

While the designed tune of the PLS-II lattice is 1.273, the
fiducial tune was set to 1.3325 to form resonance islands.
There are four pairs of sextupole magnets (green boxes in
Fig. 3) whose strengths determine the values of a;. The
behavior of a; for the PLS-II lattice as a function of v,
around the fiducial v, is presented in Fig. 4. The original
detuning parameter « (red line) diverges when the frac-
tional tune is close to 1/3 (vertical dashed line) while the
revised parameter a_; (blue line) is well behaved near 1/3.
At the fiducial tune v, = 1.3325, ag is 2594.2 and a_; is
1058.1 (circles in Fig. 4).

The simulated electron phase-space trajectories are
shown as a Poincare section (red) in Fig. 5. About 10
electrons were initiated with (X, P) = (X,,0), where X,
uniformly ranges from —0.0017 to 0.0017 in normalized
phase space. As they pass through the periodic lattice,
their phase-space positions at the start of the lattice were
recorded for 1500 cells. Also plotted in gray is a contour
plot of Hamiltonian in Eq. (51) with a_; [Fig. 5(a)]
and aq [Fig. 5(b)]. There is good agreement between
the Poincare section and the gray contour using a_;.

In contrast, the prediction given by a does not conform
to the simulation results.

To further contrast the analytical fidelity of a_; to that
of a, a parametric study was conducted by scanning the

300 59 S5 S8 S 106

1 0.3

1 (m)

Buy (m)

FIG. 3. Thehorizontal (blue) and vertical (red) beta functions, and
the horizontal dispersion function (black) in PLS-II lattice. PLS-IT is
a “double bend achromat (DBA)” lattice. The initial horizontal
beta function is 3,y = 7.006 m and the tune is v, = 1.3325. The
rectangular inset illustrates the magnet distribution within PLS-II,
where the red denotes the quadrupole magnets, the blue the bending
magnets, and the green the sextupole magnets S;_y.
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3000

_a_1

2000 | —a,
S 1000 F
0,

~1000 ‘ ‘
1.33 1.332 1334  1.336
UZL'

FIG. 4. Nonlinear detuning parameter vs tune. The original
detuning parameter « is plotted by red line. The revised detuning
parameter a_; is plotted by blue line. The circles denote the
values of detuning parameters when the tune is v, = 1.3325 for
PLS-II lattice.

(a)

-2

FIG. 5. (a) Phase-space trajectories with contour plots of the
Hamiltonian in Eq. (51) where §, = —8.33 x 1074, G0, =
—0.923 and j = —1 (gray line). Red dots represent phase-sp‘ace
trajectories from tracking results. Normalized coordinates are

defined as (x, = —2A—, p, = —1/ broy ) where f3, is the beta
\/2Bx0 o 2 -

function at the starting position of the lattice. (b) Same as (a), but
for j =0.

strengths of the sextupoles S;_4. Varying these strengths
effectively changes the morphology of the Poincare section
in Fig. 5. Then, the value of the detuning parameter that
renders the contour to align exactly with the simulated
Poincare section is dubbed «, i.e., a; is the empirical
detuning parameter (see details in Appendix E). a; for
different S;_, are plotted in Fig. 6 (blue dots).

Also shown in Fig. 6 are a_; (red lines) and « (black
dashed lines) as a function of the sextupole strengths. The
dependency of a_; and o on S;_4 can be written as

ao(Si) = a2, 5% + 2a, 1Sy + aoy. (58)

a_1(Sy) = by St + 2by 1Sy + boy. (59)

(b) 2000

\ — Q1

(@) 1500

1000
3

1000 -~
25 35 45 55 21000 —90  —80  —70

S1(1/m?) Sy(1/m?)
(c) 4000, . (d) 4000
‘\ — 0] 1
30000 b Tt ; 3000
=~ \\ o /I o~
S 2000 ' S 2000
1000 TR 1000 L
55  —45 -35  —25 3
S3(1/m?)

FIG. 6. The empirical nonlinear detuning parameter a; (blue
dots) when (a) Sy, (b) S, (¢) S3, and (d) S, sextupole strength
are varied. Also shown are a_; (red lines) and « (black
dashed lines).

where k€{1,2,3,4}. These coefficients are derived in
Appendix F. For instance in Fig. 6(c), the coefficients are
calculated as a,3 = 17.887 and b, 5 = —0.251. It is clear
that a_; agrees with a; better than « does.

Another analytical prediction that the detuning param-
eter gives is the location of the fixed point of the rightmost
island. The distance from the origin to the fixed point can
be analytically derived from Eq. (51) and is given by [19],

303 160,35,
<1+1 ) (60)

99%,0,1@‘
The theoretical predictions of Eq. (60) with a_; (red lines)
and a (black dashed lines) are plotted in Fig. 7. Again, the
better agreement between a_; and «; is clear.

In Fig. 7, there are regions in parameter space where a_;
and a yield similar predictions (for example, around
S3 = —40 or S, = 48). This is because these are regions
where g3, changes sign and therefore its magnitude

930,15,

V JFP:

J

becomes small. Then, at regions where gs;(;, <+/6,,

a_; ~ ay by Eq. (48) and so the two detuning parameters
are indistinguishable. This can actually be seen in Fig. 6 as
well; the regions in question correspond to regions
where a_; ~ a.

Figure 8 depicts the predicted fixed points using Eq. (60)
while varying the tune. The red line represents the
predictions using a_; while the dashed black line represents
the predictions using a,. As the tune approaches 4/3, the
predictions using a exhibit larger errors. On the other
hand, the predictions using a_; show a better fit.
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-3 -3
(a)5 x10 (b)5 x10

-100 -90 -80  -70
Sy(1/m?)

25 35 45 59

(c), x1072 (d), x107

5

FIG.7. Fixed points (blue dots) for varying (a) Sy, (b) S,, (c) S3,
and (d) S4. The theoretical prediction of Eq. (60) with a_; is
plotted in red solid line and that with «, is plotted in black
dashed line.

1.329 1.331

Vg

1.325 1.327 1.333

FIG. 8. Fixed points (blue dots) vs tune. The theoretical
prediction of Eq. (60) with a_; is plotted in red solid line and
that with « is plotted in black dashed line.

From the results presented in Figs. 6-8, we conclude
that a_; is a much better predictor of resonance islands in
electron storage rings than «. It is also valid for a much
wider range of sextupole strengths or when 93015, is large.

The simulation results shown so far are based on the
lattice of PLS-II. However, because the only assumption
behind the derivation of a_; is that the tune is near the
third-integer resonance, the theoretical result can be
applied to any electron storage ring lattice. For instance,
our predictions were also checked favorably against
simulation results based on the BESSY-II lattice [25],
which are not presented here.

There are still some discrepancies between the prediction
by a_; and the simulation results. These differences may

come from higher order terms in the perturbation or
from the approximations used in the derivation of the
Hamiltonian in Eq. (46). As in the case of Ref. [17],
the higher order terms can in principle be calculated
and is left here for future work. Coupling with other
motional degrees of freedom will also be left for future
work, although for flat beams the present theory should
suffice.

B. Optimization of secondary islands

In this section, a method is presented for optimizing the
size of the secondary islands. Sextupoles in a electron
storage ring can control not only the morphology of phase
space but also chromaticities. The method introduced in
this section allows for the adjustment of the size of
secondary islands and center triangle while maintaining
or changing both horizontal and vertical chromaticities to
desired values.

From Eq. (55), we can derive next relations:

O:XUFP(X] +X2)+2X1X2, (61)

26
a—y = Xtpp + 2Xupp (X1 + X3) + X1 Xa, (62)

2
—a—g = 2Xurp + X + X». (63)
-1

Because X; and X, determine the size of the secondary
islands, one can choose the desired values of X; and X,
and derive the required Xypp, a_;, and then G from
Egs. (61)-(63). Now what is left is to determine the
sextupole strengths that yield these required values while
maintaining particular desired chromaticities (&,,¢,).

Because there are four target variables (a_;,G.&,.&,),
there should be at least four pairs of sextupole magnets in
one period. Now, S;, S,, and S3 can be represented as
follows:

S i M2 p3 \ T [ G —uaSs
S 1=1%&1 &2 Gs & —CiaSy (64)
S3 S G2 Gys & =848
K1 — 0154
=| Ky — 0,8, |, (65)
K3 — 0354

where y; = 0G/9S;, {,; = 9&,/9S;, and {,; = 9&,/aS; for
i€(1,2,3,4) [see Egs. (F8), (F19), and (F20) for details].
Equation (64) effectively expresses S;_3 as linear functions
of 4. The coefficients k; and o; are functions of y;, ;. y ;s
G, and §,,. Therefore, because a_; =}, A;;S;S; for
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(a) 90 (b) 50
80
o =00
g E|
=10 R =
= Sy - 3
0)60 n |
*
50 —100 i
500 1000 1500 5 60 70 80 90
a1 S4(1/II13)
FIG.9. (@ Syvsa_, () S; i=1,2,3)vs S,.

i,j€(1,2,3,4) [see Eq. (F10)], a_; can be expressed as a
quadratic function of S, by using Eq. (65) as follows:

a1—<A44 ZZAmG +ZAU '>S421

i=1 i,j=1

; 3
+ Z(Z Ayik; — Z Ainio'j> Sy + Z AjjKiK;
=1 ij=1 ij=1

Thus, knowing a_;, one can obtain S4 as follows:

_Bl + \/B% - BZ(BO - a_l)

S =

(67)

For example, let us assume the desired boundaries are
X, =239 x 1073 and X, = 2.47 x 107*, and the desired
chromaticities are (&,.¢,) = (3.016,1.207). (X;,X;) can
be converted to (a_;, G) using Egs. (61)-(63), which give
(a_1,G) = (1058.1,-0.923). Now that the desired
(@_1,G.¢,.¢,) are known, the above method can be
used to first find S4 from a_; by using Eq. (67) [denoted
as black star in Fig. 9(a)] and then find S;_5 from Eq. (65)
[denoted as black stars in Fig. 9(b)]. The resulting set of
sextupole strengths is (S, S,, S3,S4) = (29.67,-35.21,
—74.84,74.36). These are the parameters that were used
in Fig. 5(a); the island boundaries indeed conform to the
desired (X1, X, ), and the chromaticities were also found to
conform to the desired values.

IV. SUMMARY

In summary, we have derived a revised detuning param-
eter that is well behaved near third-integer resonance,
in contradistinction to the conventional parameter that
diverges near this critical point. The resultant Hamiltonian
accurately predicts the morphology of resonance islands in
transverse phase space, which are crucial for advanced
electron storage ring operations. This new theory paves the
way for the previously inaccessible, systematic optimiza-
tion of island sizes and locations in phase space and reduces
unnecessary efforts in haphazard empirical searches for
secondary stable orbits.
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APPENDIX A: FOURIER EXPANSION OF
SEXTUPOLE POTENTIAL

The sextupole potential in the Hamiltonian can be
separated into two terms based on the coefficient of v,
in the cosine function, as given by

V(V/2J27‘9> =

where

RV (y2,J5,0) + RV, (w2, J5.0), (A1)

V= (V2 (@) o~ 00 +310),

(A2)

Vs = (V32 "9 (/B8 cos Iy

o~ ~ 1.0+ 2.(0)).

(A3)

We can separate the first subpotential V| as follows:

Vi=(V72) M; (0)cos (3y) — (\/72) M5 4(0) sin 3y,

(A4)
where
m(0) B
M3,c(9) 6\/_( ﬁx( )) COS[ 3yx6+3)(x(9)]7 (AS)
M3,0) =" (VBB sin 30,0+ 32,0).  (A6)

6v2
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We can express the second subpotential V, in a similar
manner as follows:

Va= (V1) My.(0) cos(wz) = (v/72) M (0) sin(y).
(A7)

where
110 =2 (VBO) o0+ (0. (A8)

Ho (Y2, 1. 0) = vidy + (V7o) Z 9304 €08 (32 —n0 + &,,) + (V2

n=-—0o

where

A=

930008830, =

%\“ sL

I
I
9102 €081 0 = EAZH }Z\(f—) (

a8 =

930 810E30, =

R [27m(0
91.0.n Sinél,o,n = ;A m( ) ( ﬂx( )) sin (_yx9+)(x(9) + ng)de

42

m(0)

Ml,s<9) 2\/—

( ﬂx( )) Sln[_yx9+)(x(9)]' (A9)

Equations (A5) and (A6) and (A8) and (A9), which are
periodic functions of 0, contain all the € dependency of
the subpotentials V| and V,, Note that V itself is not a
periodic function of . Expressing the above functions by
Fourier harmonics yields the following expression for the
Hamiltonian:

)’ i 91008 (W2 —n0+&1p0,),  (A10)

VB.(0)) cos (=31,0 + 3x,(6) + nd)de, (A11)
9)) sin (—3v,0 + 3y, (0) + n0)deo, (A12)
(0))” cos (—1,0 + x,(6) + nd)do, (A13)
(A14)

If m(0) and f.(0) are distributed mirror symmetrically, the oddness of the integrated function implies that Eqs. (A12)
and (A14) are equal to zero. This implies that the Fourier expansion of sextupole potential have a phase of either zero or z.
Another notable feature is that Eqs. (A11)—(A14) can be expressed in complex form as follows:

Groneion = g / " m(0) (VB2(0))* exp {i[=(Bu, — n)0 + 37.(6)]}do. (Al5)
T Jo
Groneror = % A - m(0) (v/$.(0))’ exp {i[~ (v, — n)0 + x.(6)] }d6. (A16)

APPENDIX B: DERIVATION OF THE SECOND-
ORDER GENERATING FUNCTION F® (y3.].0)

In this section, we derive the second-order generating

function F® (y3,J,0). In the context of a first-order
generating function, we assumed that

<6F(‘)(1//3,J,9)> :<0F(‘>(1//3,J,9)> _0 (81)
oy 0 a0 0

and derived F(")(y3,J,0) using Eq. (25). Subsequently,

we showed that both (%)H and (W) p

are actually zero. Applying the same logic, for the

second-order generating function F ) (w3, J,0), we now
assume that

0F‘2)(W3J,«9)> <0F(2)(W3,J,9)> _
< o = - =0 (B2)

After this assumption, if we find the second-order gen-
erating function using Eq. (35) and if this function satisfies
the above condition, the aforementioned assumption holds
true. The differential equation for second-order generating
function is given as follows:

oF?®  9F® oFDov 1

) = J?.
Vous T o0 ops ol 2%

(B3)
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First-order generating function is given as follows:

RS : TS . b,
F (y3,J.0) =T Z F30m8in(3ys = (n—13, )0+&50,) + 2 Z S1on810 <1//3— < ) x>6+fl On) (B4)

n=—o0,n#l3,, n=—co

For simplicity, if we set f3;, = 0 only for notational reasons, above equation can be simplified as follows:

00 oo 5,
FOs . 0) =1 " frgusin@Gys—(n=15,)0+&0,) + 75 > froasin (1//3 - (n— 3~*>9+51,o.n>

n=—oo,n#l3,, n=—o0o

S S faonsin (alm = (n —glsyx>9+§a.o,n)- (BS)

a€(1,3) n=—

With same notation, V can be denoted as follows:

) , ) l )
V(ys.J.0) = J3 Z 930 €08 By3 + (I3, —n)0 + &30,) + J2 Z 91,0.n COS <l//3 + ( 33 - n>9 + 51.0,n>

n=-—oo n=—oo

= Z Z gu.O,n Cos <allf3 - (I’l - g l3yx>e + éu.(),n) . (B6)

a€(1,3)n=—

oV oF()

To estimate the form of second-order generating function, by expanding %7 oy

we can obtain the following relations:

oFov 3 . a
B AT Eﬂ( Z Z af 0., oS (ay/3 — (n - 513%)9 + 5a,0,n>>

€(1.3) ==
a
( Z Z Ya,0.n €OS <Cll[/3 <I’l - § l3ux) 0+ fa,OVn))
b
Z Z b9a0.f b.0.n €OS (al//3 - ( -3 °n )9 + 5uon> cos <bl//3 - (r - 313%)9 + éb,o.,>
a, be n r=—00

:%Jz Z Z z [|b|9aorf|b|on

ae(13)be(-3,~1,13) n,r=—c0

s
sccos ((a+ O + 50+ 0 = (- san(6)n) 3+ S+ san(®)ean )| (87)
We can try the following ansatz for the second-order generating function based on the form of % ? ?,‘J/ as follows:
P ) =2 Y S 3 e
ae(1.3)be(-3,-1.1.3) n.r=—o
. 1 s
sin (Dl 5 @+ D0 = 0+ 5B 3+ Lo+ 53 (B)ion ) |- (B9

This satisfies following equation:
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OF?  gF?® 1 3 -
byt = =D > > {Iblgu.o,rfh,o.n
dys 00 2 4 T be (3T n—e

1
sccos (0 s + 50+ U0 = (- sgnB)n) %+ G+ 59n®)enn )| (B9
From definition of a_;,
3 - 1 s
ap =3 Z Z |:|b|ga,0,rfb,0,n cos ((“ +b)ws + 5 (a+b)l3,0 = (r+ sgn(b)n) - + Eao.r + Sg”(b)fb.o,nﬂ .
2 — 3 R
a+b=0,a € (3,1) n,r=—o0
(B10)

Thus, the cases where a + b = 0 and r + sgn(b)n = 0 are removed due to a_;. In this case,

fa—ann =0 (B11)

In other instances, the coefficient of second-order generating function is expressed as

Fabrn = — 22 900.f l0m B 0 (B12)
ab.rn S,(a+b)+(a+b)x—(r+sgn(b)n) (a+b,—(r+sgn(b)n)’

Since f, 4., = 0, it always has a term periodic in ¢ and thus indeed,

2) ()
<aF <W3,J,9)> :<0F (W3,J,9)> _0. (B13)
o3 0 a0 0

APPENDIX C: 6, DEPENDENCE OF THE SECOND-ORDER COEFFICIENTS

In this section, we describe the physical properties of the a_;, ay, and ag with respect to ,. Here, o, represents the
coefficient of cos 6y;. The definitions of these parameters are given as follows:

9 & 3%
=3 Z F3.onS 300 T 3 Z 91,001,005
11:—00,”?5131/)( n=e
9 & 3%
ay = E Z g3,0,nf3,0-" + 5 Z gl.O,nfl,O,n’
9
% =5 Z 1301930 €08 3,0, OS50, (€D

n+n' =21, n#=ls,,

where g3, and g, o, are Fourier coefficients defined by Eqs. (A11)-(A14), and f3, and f} ¢, are first-order generating
functions defined by Eq. (34). These parameters can be represented as power series in terms of §,. The coefficients of these
power series effectively represent the physical characteristics of each parameter. To simplify the argument, we assume that
there is no dependence of g3, and g;, on 6,. Under this assumption, a_; is expanded as follows:

9 & 3%
ay =5 Z 93.0nS 300 + 2 Z 9100 1.0
n=—o00,n#ly,, n=—oco

9 = g%,O.n 3 = g%.(),n
2 Z n—3vx+2 Zoon—vx

n=-—00,n#l3,,

9 & Foxn 3 g
2,U, +3D 1,0.n

[ E w4 = § )
2k:—oo,k;é0 k=35, 2n=—oo (I’l - —13%) -9,
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_ 9 i 930k+1% 43 Z Gron 27 i 9%,0,k+13bx+§ = Ton 5,

L, 2 I, \2
2 k=—c0.k#0 2,5 (n : ) - k=—c0.k#0 k 2,4, (n - ‘T)

8l & gSOkl,,
+_Z +s)+z 10n355+

ll/
2 k=—c0.k#0 n—oo < 3 )
=a_jg+a_116, + a8+, (C2)
where we used the formula 71~ = 3"/ x"(|x| < 1). & can be expanded using the same procedure except that the term

39%01 . L.
55 *x can be omitted, and it is expressed as follows:
v

n:—oo

(s
Z 30n _Z o
< Bt el 2

3g§,0,13” 2 - 9%,0,k+13“ 3
25, 2,4, k=35, 2

:% Z 930nf30n+ Z gr.0nf 1,000
9
2.

3030, 9 & Boi 3, g, 27 S Ross 3 = gio.
:_T% 3 T‘”*_Fixil" + ) 2% EZ ln 5,
v k=—00,k#0 n=—co <n - %) k=—00,kz0 P——. ( %)
81 S Foks 3 i
3.0.k+13,, 1.0,
s A a5 ey
k=—c0.k#0 Pra— (n — ’T)
Q.
= (()S ! +apo + a0.15y + ao_zé,% + - (C3)

ag is given as follows:

NS} INe)

Z J3.0093.0 €08 &30, CO8 &30,

n+n'=2ly, n#=l,,

z 93.0.15,,—k93.0.15,, +k £ £
k=35, COS€3.0.15, +k €08 G301, —k

9

2

9 = 93015, —k930.55, +k 27 N 930,05, k930,05, +k
5 E A €08 &30.1;, +k €08 &30, —k + 5 0, 2
k=—00,k#0 k=—00,k#0

08 &30.0,, +kCOS 30,0, &

81 2N 93,00, k93,01, +k

3
2 k=—00,k#0 k

= a0+ @16, + A6 207 + -+ - (C4)

08 &30, +£COS &304, —k 00

Considering the coefficients of the 2pth power of 5, (p is non-negative integer), denoted as g, these coefficients are
given as summations of g3 ;. 19301, +kC0SEy, xC0s&;. i divided by the 2p + 1th power of k. The value of ag ), is
calculated as follows:
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93,015, —k93.0.15,, +k
k2p+l

[ee]
Qe2p = E

k=—00,k#0
-1

2p+1
k=—00 k

o]

oS &y, 1k COSEL g

930,15, —k93.0,15, +k X 930,15, ~k93.0.15, +k

ssb3y, T 2Jul3y, ssl3y, T SUsl3y,

= E : ——Cos &y, £ COSEy g+ E . —cos &y, 1 CosE i
k=1

k2p+]

93.0,05, +k93.0,05, —k 2 3,00, —k93.0,15, +k

53y, b3y T b3y T sty

= = Z - ~——COS 513” _k COS €l3v)g+k + g - ~—COS ngprt"'k CcOS 513%_](
=1

k2p+1

=0.

This derivation demonstrates that the summands in the
even powers of 9, are always zero and so only odd powers
of §, remain. Therefore, g can be expressed as follows:

Ag — a(,yléy + 06’353 + e (C6)

We can see that while o and a_; have terms that are bigger
than O(6,), ag is only of O(§,). Therefore, ag < ag, a_;.

Figure 10 shows the graph of Eq. (Cl) in 10(a) and
compares the fitting results up to the first order of §, with
each parameter a_; [Fig. 10(b)], aq [Fig. 10(c)], and ag
[Fig. 10(d)]. In Fig. 10(b), the results of fitting a_; to 5, are
a_j; = 6056, a_;y = 1063, and a_; _; = 0. It describes
that a_; does not exhibit a term that diverges at v, = %. In
case of ay shown in Fig. 10(c), the fitting results for a are
apq = 6056, ay o = 1063, and ay _; = —1.27. It shows that
the nonzero term o _; gives diverging behavior and other
all terms are same. Figure 10(d) shows that ag is linear
function of §, that passes through the origin and its value is
ag = —885, app = 0. It shows that it pass the origin, the

(a)

3000

X107

by 1073 by

FIG. 10. Plot of coefficients and fittings. (a) Plot of a_;, ay and
ag vs 6, (b)—(d) precise plot of each coefficients and fitting
results. Fitting was performed up to second order.

2p+1
k=1 k

(C5)

zeroth order of ag, a5, is zero and it approaches to zero
when 0, becomes small.

APPENDIX D: PROOF OF EQUIVALENCE
BETWEEN TWO DETUNING PARAMETERS
a,, AND a,

In this section, we present a proof for the equivalence
between two parameters

3 /& )
% =3 ( Z 3f30n93.0n + Z fl,o,ngl,o,n>, (D1)

n=-—00 n=-—0co
and

—— L T asm(s)pis)

a -
- 64r J

x/HLm(s/)/é(s’) [COS?PX(S/J) +

sin3zv,

3cos?, (s,
cost (s s>]ds,,
sinzv,

(D2)
where

‘Px(s/vs) :)(x(s/> _)(x(s) LT (DS)

Equation (D1) is derived in the main article, Eq. (D2) is
the well-known nonlinear detuning parameter. By applying
the delta function approximation for the sextupole strength
m(s) into Eq. (D2), we show that the above equation is
equivalent to Eq. (196) in [19]. To prove the equivalence,
we separate integral form of the nonlinear detuning
parameter a, , into two terms as follows:

1 Ld 3
Oy x3 = _% 0 sm(s)ﬂx(s)
s+L 3., cos3¥ (s, 5)
. / %c / X ’ d /, D4
[ s I E s s
3 Ld 3
Dol = T ear A s m(s)px(s)
s+L 3. cosW (s, s)
. Npr(s') ——————=ds'. (D5
[ e s tas. (os)
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We express a, .3 as follows to facilitate further calculation,

1 L 3oy amin(s) . | TE NG (i it (L) € el
Gyn = — /dsm< B () e / m(s") B (s )e= 7 C g
1287 0 s x

sin 3zv
+ Ld (s) %< i3y.(s) s (s") > el (£=5) e i) ds' (D6)
A s [ m(s')P(s')e sin 3zv, A
where
s'—s

Tx(S,s/) E3){X(s/>—3ﬂl/x+3llx( R > (D7)

If we apply the following relation [20]

©_ i(nf+b) . '

= - ilb+3v,(0-1)] DS
—n =3, sin 3zv, ¢ ’ (D8)

where 3v, is not an integer, we can express Eq. (D6) as follows:

ol ()

3”):‘ ns s+L 3
Ay x3 = 1287[2 Z {/ dsm(s ﬂZ( )ei () + R)/S m(s,)ﬁi(y)n——?wxds,

L 3 . s | ns s+L 3 e_,-(n%_% 137.(5)
+/ dsm(s)ﬂfc(s)el(%‘(‘) & TR )x/ m(s)p(s) e gy b D9)
0

s n-—3v,

The exponential function can be modified as follows due to the periodicity of the internal functions:

o (30, (G437, (5 +L)) — piln=3u,(3)+37:(5")) (D10)

Using the relation in Eq. (D8), we can express Eq. (D6) by using Egs. (A15) and (A16) as follows:

/

: s [F gy €D
s = 128,,22{ [ asmpiisrecnor= [Cneple) o a

L 3 . 3,,)3 s L 3 e[(_3xx<s/)+3p+-s’_%/)
i / ds m(s)pi(s)e/ ) 7w )/ m(s")fi(s") ———F——ds’
X 0 n—73v,
3
— E _Z 393,0,11f3.0,m (Dl 1)

where f3,, is given in Eq. (34). By following a similar calculation process, we can also obtain the following relation:
33 o (D12)
a =— .
x.x,1 2 2o 9100 1,0,
Thus, the nonlinear detuning parameter «a, , is expressed by

oo

3
Ay x = Ay x 3 + Ay x,1 = E Z (393,0,nf3.0,n + gl,O.nfl.O,n) = ap- (D13)

n—=—0o

As a result, we have demonstrated the equivalence of the two nonlinear detuning parameters given in Egs. (D1) and (D2).
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FIG. 11. « calculating process (a) Tracking results of electron

for 1500 cells and contour plot. The tracking was performed for
every three cells to confine the results to a single island. The blue
line represents the tracking results near the center of the islands.
(b) Oscillation part of H, for blue line of Fig. 11(a). It is defined
by (H4 — (H,)) (c) We calculated the standard deviation of the
oscillation part of H, for the blue line in Fig. 11(a) and defined
the value of a that minimizes the function 65, _¢3,) as a;. a_; in x
axis is 1058.1 and «; is 981.9. (d) Graph of tracking results and
Hamiltonian contours in (a) and plot of Hamiltonian defined by
using ;.

APPENDIX E: DETERMINATION OF THE
EMPIRICAL DETUNING PARAMETER a,

This section describes the process used to determine the
value of a; in this study. First, a tracking simulation was
performed using an arbitrary value on the x axis as the
initial point. This simulation was conducted over 1500
cells, using the lattice presented in Fig. 4 of main article. To
ensure consistency, results were stored every three cells,
ensuring all tracking simulation results were in the same
island. The results are shown in Fig. 11(a).

= (')

Then, the point on the x axis closest to the fixed point of
the island was identified from the tracking results. The blue
line in Fig. 11(a) depicts the tracking result of the electron
closest to the fixed point. Following this, the Hamiltonian
was redefined as a function of o and the number of cells
which electron passed and it is given by

3 1
Hy =6+ g30.,, J2cos By + &0, ) + 505]2 (E1)

The graph of the Hamiltonian’s oscillation part for the
electron closest to the fixed point at each @ was obtained.
This oscillation part was calculated by subtracting the mean
value of the Hamiltonian with respect to its position from
the Hamiltonian itself. The graph of the oscillation part of
the Hamiltonian is shown in Fig. 11(b).

The value of @; was defined by computing the standard
deviation of the oscillation part of the H, for each a value
and selecting the point where 64,3, is minimized as ;.
This selection was made because the same particle has the
same H, values. Figure 11(c) shows the graph of the
standard deviation of the oscillation part. The a value which
has the minimum standard deviation corresponds to the
value of a;. Finally, a; was used to redraw the contour of
the tracking results, and the Hamiltonian plot with a; is
depicted in Fig. 11(d). This plot demonstrates that all
electrons on the contour can be covered. Therefore, we can
assume that a, is a reliable value.

APPENDIX F: CALCULATION OF THE RING
AND RESONANCE ISLAND PARAMETERS AS A
FUNCTION OF SEXTUPOLE STRENGTH IN A
MIRROR-SYMMETRIC LATTICE

This section presents the derivation of the detuning
parameters a_; and «; as functions of sextupole strength,
for a symmetric ring. Equation (D2) can be simplified by
removing the s dependence of the integrand over the ds’
integration range.

—x:(9)]) | 3cos (v = ra(s)

=gz [ [ (2

To exploit the lattice symmetry, the integral range in the above equation can be shifted by

expression:

sin 3zv,

x(5)

_XX(S)D)dS/dS. (Fl)

sin v,

L resulting in the following

_)(x(s>|)+ IZX( )

3 cos (av, —

ap = — 647[/__/__”11(5 my(s)p xl( s') i ()<C083(ﬂyx_

where m(s) = m(s +%) and §, ; (s)
limited to O to % the resulting equation is as follows:

sin 3zv,

£60) v,

(F2)

sin v,

=p(s+ %) If the integral expression is rearranged such that the integral interval is
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oy = 6477: %/ ml ml X, l(s) (S)[{COt:;”Ux{COS:;b(x(S/) _)(x(s)] + COS3b(x(s/) +)(x(s)}}

+ 51n3|)(x(s ) _Zx(s)| + S11’13()(X(S ) +Zx(s)]} + 3{COt7n/x[COS (Zx(sl) _Zx(s)] + cos b(x(sl) +)(x(s)]}
+ sin [y () = xa(s)| + sin [y (s') + xx(5)]})ds'ds, (F3)

where s; is the positive position of ith sextupole magnet, /; is a length of ith sextupole magnet, S; is a strength of sextupole
magnet, and N is the number of sextupole magnets pairs. The index is arranged according to the distance from the origin and
is restricted to sextupole magnets situated in the positive position due to their symmetrical distribution. Expressing the
above equation as a quadratic function for the kth sextupole strength yields the following result:

ao(Sk) = a2S% + 2a1 4k + ao . (F4)
where a,  is
S+l s+l 3 3
ary = —a / P 2 1 (8)(2 cot 378, cos 3y, (s) cos3y.(s") + sin 3|y, (s") — x.(s)] + sin 3(y,(s')
T Sk Sk -
Fx(5)])+3{2 cot vy cos y(s”) cos y(s) + sin [y, (s") — xx(s)] 4 sin [y (s') + 2. (5)]})ds'ds. (F5)

al’k is

s+l
iy = / ol / P ()B4 (5)(2cot3ns, cos 37, (s) cos 3y, (s7) + sin 3lyx(s)) — 2:(5)]
’ 6471' Tk s *

i=

+sin3([x(s") + xx(8))+3{2 cotzw, cos y,(s") cos y.(s) + sin [y (s) = xx(s)| + sin [r.(s') + xx(5)]})ds’ds,  (Fo)

and ag is
2 si+l; +1; 3 .
ok =~ B (5)E 1 (5)(2 cot 375, cos 3y, (5) cos 3, (s') + sin 3 (57) 14 (5)]
i,j=1 lj;ék

+5in 3(x(s") +xx(s) |)+3{2 cot v, €os y(s") cos yx(s) + sin [y, (s) = xx(s)] + sin [y (s') + . (s)]})ds'ds.  (F7)

For a symmetric cell, the expression for g3, ~is given by

S
93,015, 00553,0.@ = 27 ZS / xl (s) cos <3)(x(s) (v ve— 13, E)ds_ZSlu, (F8)

Hence, the expression for g3, 1, 1s given by

3 g 3 35, 3 Sasds.  (F9
25 93013” 9651/”22 l] ﬂxl(S>COS )(x( >_ 5DE cos )(x(s)_:%(svﬁ sas. ( )

Thus, the value of a_; is obtained as follows:
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=35, 2088 [ [T L) (2 ot dmccon 30 os 3,9

3(Syﬂcos (3)(x( " =36, > cos (3;(x(s) -36, %) + sin 3|y, (s") — x(s)]

T sin3fz,(s7) +24(5)] + 3{2c0t v, cos 1, (s) cos 1, (s') + sin () = x4(5)] + sin [t () +xx<s>]})ds’ds

N
i,j=1

Expressing the above equation as a quadratic function for the kth sextupole strength yields the following result:
a_1(S) = by xSi + 261 1Sk + o (F11)
where by is
. 3

b= a3 5 [ [0 (2eo3mm.con (5 con37.(5)
k=35 ; . ; Pra(8)p (s cot3zv, cos3y,(s)cos3y,(s
/

i=1,ik

cos (3)(X(S,) - 35, %) cos <3;(x(s) -36, %) + sin 3|y, (") — x(8)] + sin 3y, (") + xi(s)]

36,7
+ 3{2cotzv, cos y,(s) cos y,(s") + sin |y, (s) — x.(s)| + sin [y, (s) +)(x(s)]}> ds'ds, (F12)
by is
1 si+l;
by = — / / ( ) <2 cot3zv, cos 3y, (s) cos 3y, (s")
' 32
i,j= 1 g, j#Fk
oo (3000 - 3,3 ) cos <3xx< )= 30,3 )+ sin 3l )]+ 5in30es(5) +406)
T
+3{2cotzv, cos y,(s)cos y,(s") + sin [y (s") — x.(s)| + sin [y, (s") +)(x(s)]}) ds'ds, (F13)
and b, is
Sitle [t 3 2 , 2 s , s
byy=— n / / ( )(3 3, cos 3y, (s)cos3y,(s) 37[5DCOS <3)(x(s) 35,,R> cos (3;(x(s) 35”R>
—20c0837.(s) cos yx(s') 76, +sin 3y (s") —xx(s)] +sin 3y, (s") +2.(s)]
+3{2cotav, cosy,(s) cosy(s") +sin |y, (s") —x.(s)| +sin [y, (s") —I—){x(s)]}> ds'ds. (F14)

Taking the limit of §, — 0, we can use next relation,

. 36,

sin (%5 £) s
li 2R = ) F15
a}%( 375, ) 27R (F13)

Finally, b, is calculated as,

sitle [sitle 3 3 35, s 368, s 35, s\ s
by = —— g —8sin [ 3y,(s) — xS 3y (s) — xS 2
o [ a0 (<8 (3000 - ) eos (300 -5 ) eos (1) o

=2 cos3y,(s)cos 3y, (s, + sin 3|y, (s") — x.(s)] + sin3[y,(s") + x.(s)]

+ 3{2cot 7w, cos y,(s) cos y,(s") + sin [y (s") — x,(s)| + sin [y, (s') +)(x(s)]}> ds'ds. (F16)

Due to the absence of ¢, in the denominator, the coefficient b, ; remains finite for all values of 6,.
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Horizontal and vertical chromaticities are given as
follows:

1
fx,total = - E % ﬁx(k - mnx)ds’ (F17)

1
éy,total = E%ﬂy(k - m’/lx)ds7 (FIS)

where k is the quadrupole distribution function, 7, is the
horizontal dispersion function, f3, is the vertical betatron
function, and the integral is performed over the inside of the
cell. Chromaticity is represented as the sum of contribu-
tions from the sextupole and quadrupole components.
Particularly, the terms — - § f.kds and - § § kds arising
from the quadrupole component are denoted as &, ,,,, and
&) nat» respectively, and referred to as horizontal and vertical
natural chromaticity. If the cell is mirror symmetric,
Egs. (F17) and (F18) can be arranged as linear functions
with respect to the strengths of sextupoles as follows:

N 1 [sit
éx = éx,total - gx,nat = Z Szz_/ ﬂx,l’/lx,lds
i=1 T Js;

N
= SiCris (F19)
i=1
N
1 s;+1;
&y =&y ol ~ Synat = — Z Siz_/ Pyitixads
i=1 s
N
=3 St (F20)
i=1

where ﬂx,l = ”x(s + %)’ ﬁy,l = ﬂy(s + %)
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