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In high intensity proton accelerators, there are two main mechanisms that can cause beam degradation:
incoherent and coherent effects due to nonlinear space charge forces. The incoherent effects represent the
single particle dynamics while the coherent effects represent the collective response of the beam. Of
particular interest is the region above a zero current phase advance (σ0) of 90° where the (coherent) second-
order envelope instability and the (incoherent) fourth-order particle resonance are seen to lead to emittance
growth. Large emittance growth is also seen below the envelope instability region as the full current beam
phase advance (σ) decreases. In the present study, we have studied the nonlinear effects in a high intensity
beam propagating through a focusing-defocusing (FD) quadrupole channel for σ0 greater than 90°, both
analytically, by studying the solutions of Kapchinsky-Vladimirsky (KV) equation and the particle core
model, and through detailed particle-in-cell (PIC) simulations using the TRACEWIN code. The KVenvelope
equation gives the collective response of the beam while the particle core model gives the contribution of
the single particle effects. With pic simulations, which resemble the behavior of the real beams more
closely as compared to envelope calculations or the particle core model, it is possible to study the evolution
of the beam in a self-consistent manner. Our studies show, that it is possible to identify the specific process
responsible for beam degradation in high intensity beams. It is also possible to identify which process
dominates under different conditions. We further show that the width of the emittance increase stop band
calculated from PIC simulations is wider than that calculated by the envelope equations and that the width
depends on the length of the channel being studied.
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I. INTRODUCTION

In recent years, there has been a lot of interest in the
development of high intensity proton accelerators for appli-
cations like Accelerator Driven Systems (ADS) [1–5],
Spallation Neutron Sources (SNS) [6–8], Radioactive Ion
Beam (RIB) production [9], Neutrino factories [10], etc.
These accelerators are required to operate at high beam
currents of the order of milli amperes for various applica-
tions. At these currents, the nonlinear space charge forces are
very high and can lead to an increase in beam emittance and
the formation of beam halos. The main design goal in high
intensity accelerators, in order to allow hands-on mainte-
nance, is to minimize the beam loss by avoiding or
minimizing contributions of various halo-forming mecha-
nisms. There are several mechanisms that can cause signifi-
cant halo formation and lead to beam loss. Among these are

coherent and incoherent effects due to the nonlinear space
charge forces of the high intensity beam.The coherent effects
are due to the dynamics of the beam as a whole while
incoherent effects are due to the dynamics of single particles
in the beam. These can lead to beam degradation causing an
increase in beam size, beam emittance, and halo formation.
The second-order envelope instability [11–15], which is

a coherent effect, and the fourth-order single particle
resonance [16,17], which is a single particle effect, have
been widely studied in the past. These effects have also
been widely studied in circular accelerators [18–22]. All
linear accelerators were designed to avoid the envelope
instability by keeping the zero current phase advance (σ0)
less than 90°. The earliest experimental study in a periodic
focusing-defocusing (FD) channel, done by Tiefenback
using 87 quadrupoles, showed beam degradation when σ0
was greater than 90°. However, the beam behavior was not
consistent with the calculated envelope instability stop
band [23,24]. Several experiments were also done at
UNILAC at GSI to study the variation of beam emittance
with phase advance [25,26]. In 2009, experiments con-
ducted at UNILAC at GSI revealed that for σ0 > 90°, the
fourth-order particle resonance is excited [26]. Another
experiment at the Spallation Neutron Source (SNS) at

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 034201 (2024)

2469-9888=24=27(3)=034201(16) 034201-1 Published by the American Physical Society

https://orcid.org/0009-0002-5961-5491
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.27.034201&domain=pdf&date_stamp=2024-03-19
https://doi.org/10.1103/PhysRevAccelBeams.27.034201
https://doi.org/10.1103/PhysRevAccelBeams.27.034201
https://doi.org/10.1103/PhysRevAccelBeams.27.034201
https://doi.org/10.1103/PhysRevAccelBeams.27.034201
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Oakridge also confirmed the presence of the fourth-order
particle resonance [27]. Compact linear Paul trap devices
have also been used to study, experimentally and theoreti-
cally, coherent and incoherent resonances in periodic
focusing channels [28]. There has been much debate on
whether the envelope instability or the fourth-order reso-
nance dominates for σ0 > 90°. Several studies have tried to
distinguish between these two effects [29–32]. High
emittance growth is also seen below the envelope instability
region as the full current beam phase advance decreases. In
this paper, we study the differences between the two
processes and identify the specific process responsible
for beam degradation under different initial conditions,
for σ0 > 90°.
In the transport of real beams with space charge through

periodic focusing channels, both, coherent and incoherent,
effects are responsible for the increase in beam emittance
and beam halo formation. The coherent effects are the
collective behavior of the beam as a whole. These are
excited by beam mismatch and can lead to resonances
[33,34] and instabilities [13] of the beam envelope. The
second-order envelope instability is a well-known collec-
tive effect of the beam as a whole for σ0 > 90° and is
responsible for accelerator designers keeping the zero
current phase advance σ0 less than 90°. It is possible to
study the coherent effects of the beam envelope by
analytical calculations using the Kapchinsky-Vladimirsky
(KV) envelope equations. These were first derived, for a
continuous beam with uniform charge density and elliptical
cross section, by Kapchinsky and Vladimirsky [35]. Later,
Sacherer showed that the linear part of the self-field
depends mainly on the rms size of the distribution and
only weakly on its exact form [36]. Since then, the KV
envelope equation has been used extensively to study the
beam collective instability [11,12], nonlinear dynamics
of beam envelope [33,34], and beam halo formation.
The perturbed KV envelope equations of motion around
the matched beam envelopes can be utilized to analyze the
stability properties of the beam envelope by calculating the
eigenvalues of the transfer map over one lattice period.
These effects can also be studied through envelope tracking
calculations that use matrix multiplication and consider a
linear space charge due to a uniform beam, as in envelope
tracking codes.
The incoherent effects represent the single particle

behavior of the beam and can be seen as single particle
resonances. The single particle resonances are excited
when the resonance condition

mkxy ¼ 360°

is satisfied. Here, m is the order of the resonance and kxy is
the single particle phase advance per focusing lattice
period. Of particular interest is the fourth-order particle

resonance for m ¼ 4, which is seen for high current beams
in a lattice with σ0 > 90°.
Since both, the second-order envelope instability and the

fourth-order particle resonance, are seen for σ0 > 90°, and
both cause an increase in beam emittance and lead to beam
halo formation, it is important to differentiate between the
two processes and identify when one process dominates
over the other. In the present work, we have studied the
collective behavior of the beam by studying the behavior of
the beam envelope for various initial conditions using the
analytical envelope equation. The collective beam behavior
has also been studied using the envelope tracking matrix
method using the TRACEWIN [37] code. In addition, the tools
of nonlinear analysis like Poincare maps and fixed point
analysis [38] have also been used to study the collective
instability. The single particle behavior has been studied in a
simple way using the particle core model [39–43]. Then, the
overall behavior of the beamwas studied by performing self-
consistent PIC simulations using TRACEWIN.
For all studies, a proton beam of energy 150 keV

propagating in a periodic focusing-defocusing (FD) quad-
rupole lattice has been considered [12]. The length of the
period of the lattice is 0.2 m and the length of the
quadrupole lenses is 0.1 m as shown in Fig. 1.

II. SECOND-ORDER BEAM ENVELOPE
INSTABILITY

An intense particle beam propagating in a periodic
focusing channel in the presence of mismatch will expe-
rience nonlinear resonances, collective instability, or cha-
otic motion depending on the values of σ0 and σ. Here σ0 is
the zero current phase advance per focusing period and σ is
the phase advance per period of the beam with current, i.e.,
in the presence of space charge. A smaller value of σ
denotes a larger beam current. A widely studied phenome-
non is the second-order envelope instability which can
result in significant beam degradation. The envelope
instability can be studied analytically by solving the KV
envelope equation with mismatch and finding the stability
of the eigenvalues [11].
The transverse KV envelope equations can be written as

d2X
ds2

− kxðsÞX − K
X þ Y

− ε2x
X3

¼ 0; ð1Þ

d2Y
ds2

þ kyðsÞY − K
X þ Y

− ε2y
Y3

¼ 0; ð2Þ

FIG. 1. The quadrupole FD lattice used for the study.
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where X and Y denote the rms beam size in x and y,
respectively, εx and εy are the beam emittance in x and y,
respectively,kx and ky measure the strength of the applied
periodic FD magnetic field and K ¼ 2qI=4πε0mc3β3γ3 is
the generalized perveance of the beam which is a measure
of the beam space charge [11,32].
For a quadrupole channel,

kxðsÞ ¼ −kyðsÞ ¼ kðsÞ ¼ G
mcβγ

;

where G is the quadrupole gradient.
For a periodic lattice with periodicity L, the zero current

phase advance over one period can be defined as

σ0 ¼
�
L
Z

L

0

kðsÞds
�

1=2
:

The beam phase advance for a matched beam in the
periodic channel can be defined as

σx ¼
Z

sþL

s

εx
X2

ds and σy ¼
Z

sþL

s

εy
Y2

ds:

For the lattice shown in Fig. 1, a stability analysis using
the KVenvelope Eqs. (1) and (2) indicates that the envelope
instability exists for σ0 > 90° for a range of σ values, as can
be seen in Fig. 2. The orange line represents the upper
bound of the instability while the blue line represents the
lower bound. We see that as σ0 is increased above 90°, for
each value of σ0,there is a range of values of σ for which the
envelope instability is excited. The region between
the upper and lower bounds of the instability is known
as the instability stop band. The width of the stop band
corresponding to the envelope instability increases with the
increasing value of σ0.

A beam or an envelope is said to be matched if the values
of X and Y and X0 and Y 0 remain the same after the
completion of one lattice period. The solutions of Eqs. (1)
and (2) provide the matched beam solutions. Equations (1)
and (2) are coupled and can be solved for different values of
the space charge parameter (K), chosen such that the beam
phase advance lies outside and within the instability region.
The phase space analysis of these equations has been
studied analytically using Poincare maps [38]. The
Poincare map preserves many properties of the periodic
and quasiperiodic orbits of the original system. It has a
lower dimensionality than the original phase space and can
therefore be used for analyzing the system in a simpler way.
For a matched beam of period 1, the envelope intersects the
Poincare surface of the section at the same point after every
lattice period which is seen as a fixed point. This can be
seen in Figs. 3(a) and 3(b) for beam phase advance lying
outside the envelope instability region (σ0 ¼ 100° and
σ ¼ 89°). In the envelope instability stop band, the beam
does not remain matched and hence the envelope will not
intersect at the same point in the Poincare section as seen in
Figs. 3(a) and 3(b) (σ0 ¼ 100° and σ ¼ 73°). Since the

FIG. 2. Envelope instability stop bands for the FD lattice shown
in Fig. 1.

FIG. 3. Poincare surface of section in X and Y phase space for
50 FD periods, for σ0 ¼ 100°, in different regions (a) in X-X0
phase space for σ ¼ 89° which lies in the envelope stable region
with a fixed point in the phase space and for σ ¼ 73° which lies in
the envelope instability region. No stable fixed point is seen in the
envelope instability region. (b) in Y-Y 0 phase space.
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envelope instability is a parametric resonance of second
order, envelope intersection in the Poincare section is
expected to be a bifurcation of the fixed point into two
islands [as in Figs. 3(a) and 3(b) for σ ¼ 73°]. For the first
50 lattice periods, the Poincare section shows two reso-
nance islands in Y-Y 0. For an FD channel, due to the
coupling between X and Y, bifurcation in X-X0 is not very
clear. It can be seen that the beam remains matched outside
the instability stop band. In the envelope instability region,
since no matched beam exists, it is characterized by the
absence of a stable fixed point in the Poincare map [44]. The
corresponding matched beam envelope for the stable region
and instability region are shown in Figs. 4(a) and 4(b). The
envelope instability is characterized by an erratic change in
the beamenvelope. Studies using the Poincaremap show that
there exists a fixed point for all values of (σ0, σ) except in the
envelope instability stop band.
The envelope instability can also be studied by envelope

calculations using matrix multiplication, where the space
charge is included as a linear defocusing force using
TRACEWIN. The envelope instability grows exponentially
from an infinitesimal mismatch up to saturation [29]. We
define Δa=a, the maxima of relative growth in the beam
size taken over the 206 periods, as the strength of the
instability. Figure 5 shows the variation of the strength of
the instability for different values of σ0 and σ for the FD
channel for 206 periods calculated using the envelope
calculations in TRACEWIN. The stop band calculated by the
eigenvalue analysis is also shown in the figure. We see that

the width of the stop band calculated agrees quite well with
that calculated by the eigenvalue analysis.
It can be seen from Fig. 5 that in the envelope instability

stop band, for each value of σ0, the strength of the
instability increases as σ decreases (i.e., as the beam
current increases). The strength of the instability is maxi-
mum at the lower end of the stop band. Also, as σ0
increases, the maximum value of the strength in the stop
band increases.

III. SINGLE PARTICLE RESONANCES

Single particle resonances are incoherent effects. The
resonance condition is

mkxy ¼ 360°

where kxy is the single particle transverse phase advance per
period. Here m is the resonance order [45]. In general, the
mth-order resonance will be excited only when

σ0 ≥ 360°=m

The fourth-order particle resonance was first predicted in
2009 [16] and subsequently seen experimentally at
UNILAC, GSI [26]. It is characterized by the formation
of a fourfold structure in phase space, and particles lying
within the fourfold structure have a tune of 0.25 where the
tune is defined as kxy=2π.
The envelope calculations using the KV envelope equa-

tion or matrix multiplication, as discussed above, will give

FIG. 5. The contour plot shows the strength of the envelope
instability (Δa=a) for different values of σ0 and σ for the FD
channel in Fig. 1, for 206 periods. The width of the stopband from
envelope calculations is also shown.

FIG. 4. Beam envelope in X (similar behavior is observed for
the Y envelope) for (a) the stable region (σ0 ¼ 100°, σ ¼ 89°) and
(b) the unstable region (σ0 ¼ 100°, σ ¼ 73°), calculated from the
solution of the KV envelope equation.
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only the collective response of the beam as a whole but no
information about the single particle effects. These can be
studied using the particle-core model, where the space
charge calculated from the initial beam envelope is kept
fixed and the macroparticles are tracked as a response to
this force.
The equations of motion of a single particle with space

charge are written as

d2s
ds2

− kxðsÞxðsÞ − KFsc;xðsÞ ¼ 0; ð3Þ

d2y
ds2

− kyðsÞyðsÞ − KFsc;yðsÞ ¼ 0; ð4Þ

where,

Fsc;xðsÞ ¼
xðsÞ

XðsÞ½XðsÞ þ YðsÞ� ; jxðsÞj ≤ XðsÞ

Fsc;xðsÞ ¼
xðsÞ

xðsÞ2 þ jxðsÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðsÞ2 þ YðsÞ2 − XðsÞ2

p ;

jxðsÞj > XðsÞ.

Similarly,

Fsc;yðsÞ ¼
yðsÞ

YðsÞ½XðsÞ þ YðsÞ� ; jyðsÞj ≤ YðsÞ;

Fsc;yðsÞ ¼
yðsÞ

yðsÞ2 þ jyðsÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðsÞ2 þ XðsÞ2 − YðsÞ2

p ;

jyðsÞj > YðsÞ.

These expressions are valid for uniform density beams

[42,45,46] with x2

X2 þ y2

Y2 ¼ 1. Equations (3) and (4) are not
coupled in xðsÞ and yðsÞ (for the current study) and
therefore we can independently analyze these single par-
ticle equations. Simulations using the particle-core model
have been done for 1000 test particles lying between 0
and 3 times the rms envelope for different values of σ.
The envelope is calculated using envelope Eqs. (1) and

(2) and the single particle dynamics is studied for this
envelope. In this model, the self-consistent interactions
among the particles are not considered, i.e., the contribution
of the self-fields of the individual particles is not consid-
ered. The particle-core model will thus give only the single
particle behavior and allow us to separate the single particle
behavior from the collective behavior.
For σ0 ¼ 100°, we can see from Fig. 2 that the stop

band for the envelope instability lies in the region
72.8° < σ < 88.2°. Simulations using the particle-core
model have been done for σ lying within and outside the
envelope instability stop band and the Poincare plots of the
individual particles are shown in Fig. 6. The tunes of the test

particles are calculated by doing a fast Fourier transform
(FFT) for all the particle trajectories. The maximum ampli-
tude frequency peak of the FFT is considered and plotted in
the form of histograms in Fig. 6.

FIG. 6. Poincare plot in y-y0 phase space, particle FFT histo-
grams of 1000 test particles using the particle-core model and the
FFT of a test particle along with the phase space of the test
particle in the inset, for (a) σ0 ¼ 100°, σ ¼ 99°, (b) σ0 ¼ 100°,
σ ¼ 89.8° (above the instability region), (c) σ0 ¼ 100°, σ ¼ 75.9°
(inside the instability region; here the effect of variation of the
beam envelope due to the envelope instability is also included),
(d) σ0 ¼ 100°, σ ¼ 65.7° (below the instability region), and
(e) σ0 ¼ 100°, σ ¼ 28° (below the instability region). The test
particles are distributed at the entry of the channel to lie between
0 and 3 times the rms beam size.
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Figure 6(a) is for an initial condition lying far above the
envelope instability stop band (σ0 ¼ 100°, σ ¼ 99°). The
beam current is small and space charge forces are not very
high. The FFT analysis shows a very sharp tune corre-
sponding to a beam phase advance of 99° as seen in Fig 6(a)
(ii). The absence of any other tune value in the FFT
suggests that no other single particle resonances are excited.
For< 90°, it can be seen fromFigs. 6(b) to 6(e), lying outside
the instability stop band, in the regions above and below the
envelope instability, a fourfold structure is formed in the
Poincare plot. Figure 6(b) is for a case < 90° lying above
the instability stop band. The fourth-order resonance gets
excited for this condition and tunes close to 0.25 are observed
in the FFT histogram as seen in Fig. 6(b)(ii). The full FFT
of a test particle lying in the fourth-order resonance
(tune ¼ 0.249) is shown in Fig. 6(b)(iii) with the phase
space of the particle shown in the inset. The FFThistogramof
the particle trajectories shows tunes of particles close to 0.25
which suggests the excitation of the fourth-order single
particle resonancewhen σ0 > 90° and for particles satisfying
the fourth-order resonance condition, mkxy ¼ 360°. In
Fig. 6(c), σ0 ¼ 100°, σ ¼ 75.9° lies inside the instability
region. Here, due to the envelope instability, a stable fixed
point does not exist for the matched beam [Fig 4(b)]. Using
the unstable beam envelope and studying the behavior of the
test particles, we find that the single particle fourth-order
resonance has been suppressed in this region. The particle-
core model shows that fourth-order resonance is excited in
the initial few lattice periods and gets suppressed once the
beam envelope becomes unstable. FFT of the test particle in
Fig. 6(c)(iii) shows evidence of more than one frequency
having a comparable magnitude in the instability stop band
region.As the beamcurrent increases and the tune depression
decreases, we see a large spread in the tune values in the FFT
plot as seen in Figs. 6(d) and 6(e). This is in addition to the
tunes of particles around 0.25. This suggests the formation of
higher-order single particle resonances in the beam, in
addition to the fourth-order resonance. We also see that
the excursion in the Poincare phase space plots increases as
the tune depression decreases.
For small beam currents, the analysis gives a general linear

shift in the particle tunes. However, at higher currents, or
lower depressed tunes, strong nonlinearity results in the
appearance of additional resonances at different tunes. This
may result in chaotic motion of the particles, resulting from
resonance overlap, as seen in the broadening of the particle
tunes in Fig. 6(e)(ii). The FFT of a test particle no longer
shows a single dominant peak but shows multiple peaks, as
can be seen in Fig 6(e)(iii). The beam remains matched in
this case.
In this model, the transverse beam emittances of the

beam envelope, εx and εy, are assumed to be constant as the
envelope does not evolve self-consistently in these calcu-
lations. To study the contribution of the single particle
effects, we define the single particle emittance Ex and Ey of
the particles as [46]

Ex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x
X

�
2

þ
�
X0x − x0X

εx

�
2

s

and Ey ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
y
Y

�
2

þ
�
Y 0y − y0Y

εy

�
2

s
.

The single particle emittances are calculated in scaled
coordinates—x=X and (X0x − x0X)/εx for x, and y=Y &
(Y 0y − y0Y)/εy for y—and are different from the beam
emittance. The single particle emittance in scaled units
gives a better idea of the excursion of the particle from the
center, relative to the matched beam core. For a stable
beam, when the single particle emittance is unity, the
particle is at the beam envelope. As the particle goes further
out from the center, the value of the single particle
emittance increases. Average emittance is then defined
by taking the average of the single particle emittance for the
1000 test particles and average emittance growth is
observed as tune depression is varied.
The variation of the average emittance growth as a

function of the tune depression (η ¼ σ=σ0) for σ0 ¼ 100°
is shown in Fig. 7.
We see that the average emittance increases in the

stopband of the envelope instability. Qualitatively, the
emittance increase in the stopband also agrees well with
the strength of the envelope instability calculated from the
change in beam envelope in Fig. 5. We also see an increase
in emittance at lower values of tune depression. The
envelope calculations do not show any collective effects
that lead to beam degradation below and above the
instability stop band. Hence the emittance increase at lower
tune depression values is only due to the single particle
resonances. At lower values of the tune depression, we see
from Fig. 6(a), a spread in the values of particle tunes. As
the tune depression decreases, the conditions for several
single particle resonances are satisfied and all these

FIG. 7. Average transverse emittance growth for 1000 test
particles as a function of tune depression for σ0 ¼ 100°, calcu-
lated from the particle-core model.
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resonances are excited which could lead to an increase in
the beam emittance.

IV. SELF-CONSISTENT PIC SIMULATIONS

The particle-core model discussed above does not
include the self-consistent feedback and gives an idea only
about the incoherent behavior of the particles. The self-
consistent PIC simulations include both, the coherent and
incoherent response of the beam. We performed self-
consistent PIC simulations to see the complete behavior
of the beam that includes both the coherent and incoherent
beam dynamics. The TRACEWIN code was used for these
studies.
Figure 8 shows the variation of transverse emittance

growth of the beam (εf=εi) with the tune depression σ=σ0
of the beam for σ0 ¼ 100° for a Gaussian beam through the
FD channel shown in Fig. 1 for 206 periods. Here εf is the
final transverse emittance of the beam and εi is the initial
transverse emittance of the beam. The extent of the
envelope instability stop band from envelope calculations
for σ0 ¼ 100°ð72.8° < σ < 88.2°Þ is indicated in black.
If we compare Fig. 7 with Fig. 8, we see that the pattern

of emittance increase is similar between the particle-core
model and PIC simulations except in the region of the
envelope instability. We see that the width of the region of
emittance increase under the envelope instability region is
now wider than that indicated by envelope calculations and
the particle-core model. From PIC simulations, we see that
the peak of emittance increase extends beyond the region of
envelope instability calculated by the envelope equations at
the lower threshold limit of the envelope instability stop
band. For lower tune depression values, the emittance
increase pattern agrees quite well. The beam envelope

remains stable in the envelope calculations, suggesting that
the emittance increase in the region below the envelope
instability is mainly due to the incoherent single particle
effects. The possibility of higher-order coherent modes of
the beam envelope is also ruled out as these are Landau
damped in a Gaussian beam [47].
To understand the processes responsible for the increase

in beam emittance, we analyzed the evolution of the beam
in the different regions mentioned below for an initially
well-matched 3σ Gaussian beam with σ0 ¼ 100° through
the FD lattice shown in Fig. 1.
(1) Initial σ greater than 90° (σ ¼ 94°).
(2) Initial σ lying above the envelope instability stop

band and less than 90° (σ ¼ 89°).
(3) Initial σ lying in the envelope instability stop

band (σ ¼ 75°).
(4) Initial σ lying below the envelope instability stop

band (σ ¼ 69°).
These points are plotted with respect to the stop band in

Fig. 9. All the calculations have been done using 100,000
macroparticles in TRACEWIN.

1. Initial σ greater than 90°

The results of the PIC simulation of a well-matched
Gaussian beam through the FD channel for σ0 ¼ 100° and
initial σ ¼ 94° are shown in Fig. 10. The beam is stable and
no increase in emittance is seen. The beam phase space in x
and y at 3 m from the entry of the channel and at the end of
206 periods is shown in Fig. 11. It can be seen that the beam
is stable in phase space and no evidence of envelope
instability or single particle resonance is seen.

2. Initial σ less than 90° and lying above
the envelope instability stop band

For an initially well-matched Gaussian beam with initial
phase advance lying above the envelope instability region

FIG. 8. Variation of transverse emittance growth of the beam
(εf=εi) with the tune depression σ=σ0 of the beam for σ0 ¼ 100°.
Also shown is the envelope instability stop band for σ0 ¼ 100°,
calculated from the KV envelope equations.

FIG. 9. Location of the points (initial condition) with respect to
the stop band for which analysis is done for the FD lattice.
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but less than 90° (σ0 ¼ 100° and σ ¼ 89°), the beam
envelope in x from envelope calculations in TRACEWIN,
beam envelope in x from PIC simulations in TRACEWIN,
beam phase advance and transverse emittance are shown in

Figs. 12(a)–12(d), respectively. The beam phase space in x
and y at various locations along the lattice is shown
in Fig. 13.
From Fig. 12(b), we see that the beam size increases

initially and then becomes constant. This increase in beam
size is not seen in the envelope calculations [Fig. 12(a)] and
hence is due to single particle effects. Figure 13 shows the
formation of a fourfold structure in beam phase space that
gradually fades away after about 4 m. This suggests that the
fourth-order particle resonance is excited initially. The
beam emittance also increases in this region [Fig. 12(d)].
We see that, as the beam evolves self-consistently, the beam
phase advance also increases, and once the beam phase
advance is greater than 90°, the beam stabilizes at a new
equilibrium value. Here the fourth-order resonance also
fades away. As the beam phase advance always remains
outside the envelope instability stop band, the envelope
instability is not excited.

FIG. 10. (a) The beam envelope in x from PIC simulations,
(b) beam phase advance, and (c) transverse emittance along the
FD lattice, for σ0 ¼ 100° and initial σ ¼ 94° for an initially well-
matched Gaussian beam in the FD channel.

FIG. 11. Beam phase space at two different locations along the
FD lattice for σ0 ¼ 100° and initial σ ¼ 94°.

FIG. 12. (a) The beam envelope in x from envelope calcu-
lations, (b) the beam envelope from PIC simulations, (c) beam
phase advance, and (d) transverse emittance along the FD lattice
for σ0 ¼ 100°, and initial σ ¼ 89° for an initially well-matched
Gaussian beam in the FD channel.
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3. Initial σ lying inside the envelope instability stop band

Figures 14 and 15 show the results for an initially well-
matched Gaussian beam with initial phase advance lying
inside the envelope instability region. The depressed phase
advance here is 75° which lies within the envelope
instability stop band.
From Figs. 14(a) and 14(b), we see that instability in the

beam envelope is seen both in the envelope calculations as
well as the PIC calculations. From Fig. 14(d), we see that
initially, up to a distance of about 4 m, the emittance
increases gradually. It can be seen from Fig. 15 that the
beam distribution of the initially well-matched Gaussian
beam in phase space evolves into a fourfold structure in a

couple of lattice periods. At around 4 m, the fourfold
structure in beam phase space also starts evolving into a
twofold structure. The rms emittance increases and we see
disturbances in the beam envelope oscillations following
which, at about 32 m, both the rms emittance and the beam
envelope stabilize at higher values. The beam phase
advance also keeps on increasing and the stabilization of
the beam to a new equilibrium value happens when the
phase advance settles to a value slightly above 90°. In this
region, the conditions for neither the envelope instability
nor the fourth-order single particle resonance are satisfied.
These studies show and reconfirm the findings of [48]

that in an initially well-matched beam, the fourth-order
particle resonance is excited first and the envelope insta-
bility is excited subsequently. Once the envelope instability
is excited, it dominates over the fourth-order particle
resonance. This is evident from the beam phase space
evolving from the fourfold structure into the twofold

FIG. 13. Beam phase space at various locations along the FD
lattice for σ0 ¼ 100° and initial σ ¼ 89°.

FIG. 14. (a) The beam envelope in x from envelope calcu-
lations, (b) the beam envelope from PIC simulations, (c) beam
phase advance, and (d) transverse emittance along the FD lattice
for σ0 ¼ 100°, and initial σ ¼ 75° for an initially well-matched
Gaussian beam in the FD channel.
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structure. Within the envelope instability stop band, the
initial mismatch plays a very important role in determining
which phenomenon is excited first. For an initially well-
matched beam in the channel, the fourth-order particle
resonance is excited first and the envelope instability gets
excited later. In the presence of an initial mismatch of 0.1 in
x and y, the envelope instability is excited immediately and
dominates over the fourth-order particle resonance. This
can be seen in Fig. 16. We see that the beam envelope varies
erratically at the entrance of the channel for the mismatched
beam while for the matched beam, the beam envelope first
increases gradually due to the fourth-order resonance and
then after some time, erratic variations in the envelope are
seen. Figure 17 shows the beam phase space at a distance of
about 4 m from the entry of the channel for initially

matched and mismatched beams. It can be seen that for the
well-matched beam, the fourth-order particle resonance is
excited, while, in the presence of an initial mismatch, the
envelope instability is excited immediately and dominates
over the fourth-order resonance. Thus, the initial mismatch
decides how soon the envelope instability is excited.
Here the mismatch factor in x (Mx) between the two

ellipses ε ¼ γx2 þ 2αxx0 þ βðx0Þ2 (matched ellipse) and
ε ¼ Gx2 þ 2Axx0 þ Bðx0Þ2 (mismatched ellipse) is defined
as [37]

Mx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðRþ

ffiffiffiffiffiffi
R2

p
− 4Þ

�s
− 1;

FIG. 15. Beam phase space at various locations along the FD
lattice for σ0 ¼ 100° and initial σ ¼ 75°.

FIG. 16. Beam envelope from PIC simulations in x for σ0 ¼
100° and σ ¼ 75° for (a) initially matched beam, and (b) initial
mismatch of 0.1 in x and y for 206 FD periods.

FIG. 17. Beam phase space at about 3.5 m from the entrance of
the FD channel for (a) initially matched beam and (b) initial
mismatch of 0.1 in x and y.
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where R ¼ βGþ Bγ − 2αA, α, β, and γ are the Twiss
parameters of the matched beam and A, B, and G are the
Twiss parameters of the mismatched beam in the phase
space xx0. The mismatch in y and z is similarly defined.
For well-matched beams with beam phase advance lying

within the envelope instability stop band very close to the
upper end of the stop band, the PIC calculations show that
the envelope instability is not excited and only the fourth-
order resonance is excited. This can be seen for σ0 ¼ 100°,
σ ¼ 88°, which lies within the envelope instability stop
band. This happens because initially when the fourth-order
resonance is excited, the beam phase advance increases and
the beam comes out of the instability region before the
instability can be excited. This can be seen in Fig. 18. The
envelope instability is clearly seen from the envelope
calculations where the beam envelope varies erratically
[Fig. 18(a)]. On the other hand, the beam envelope from

FIG. 19. Beam phase space at 2 and 41.2 m along the FD lattice
for σ0 ¼ 100° and initial σ ¼ 88°.

FIG. 18. (a) The beam envelope in x from envelope calcu-
lations, (b) the beam envelope from PIC simulations, and (c) beam
phase advance for σ0 ¼ 100° and σ ¼ 88°.

FIG. 20. (a) The beam envelope in x from envelope calcu-
lations, (b) the beam envelope from PIC simulations, (c) beam
phase advance, and (d) transverse emittance along the FD lattice
for σ0 ¼ 100°, and initial σ ¼ 69° for an initially well-matched
Gaussian beam in the FD channel.
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PIC calculations [Fig. 18(b)] shows a gradual increase in
beam size which stabilizes after some time as the beam
phase advance crosses 90°. The beam phase space in
Fig. 19 also shows evidence of the fourth-order particle
resonance but no envelope instability.

4. Initial σ lying below the envelope instability stop band

The results of the PIC calculations for an initially well-
matched beam with depressed beam phase advance
σ ¼ 69°, lying below the lower bound of the envelope
instability stop band (σ ¼ 72.2°), are shown in Figs. 20 and
21. From the beam phase space, we can see that initially,
the fourth-order particle resonance is excited. We see from
Fig. 20(c) that as the beam evolves, the beam phase

advance increases and the beam enters into the envelope
instability region (σ > 72.8°). Here, the envelope instability
gets excited. The beam emittance and phase advance
increase and finally stabilize when the phase advance is
just above 90°. This explains the peak in emittance growth
for σ ¼ 69° in Fig. 8, which lies just below the envelope
instability region. The beam evolves self-consistently due
to the fourth-order resonance that results in the gradual
increase of the beam phase advance. Once the phase
advance enters the envelope instability region, the envelope
instability gets excited.
For σ ¼ 67°, the increase in phase advance due to the

fourth-order resonance is not sufficient to push the beam
into the envelope instability region in 206 periods (41.2 m).
However, if we simulate a longer channel of 824 periods
(164.8 m), we see that the phase advance increases
gradually and the beam will eventually enter the instability
region. Once the envelope instability is excited, the beam
phase advance and emittance increase rapidly and the beam
stabilizes after the phase advance is just greater than 90°.
This can be seen in Fig. 22.
Figure 23 shows the variation of transverse emittance

growth εf=εi of the beam with the tune depression η for
σ0 ¼ 100° for 206 and 824 FD periods. For 206 periods, we
see a peak for σ ¼ 69° while for 824 periods, we see a peak
for σ ¼ 65°. For a larger number of periods, σ ¼ 65° is

FIG. 21. Beam phase space at various locations along the FD
lattice for σ0 ¼ 100° and initial σ ¼ 69°.

FIG. 22. (a) The beam envelope in x from PIC simulations,
(b) beam phase advance, and (c) transverse emittance along the
FD lattice for σ0 ¼ 100° and initial σ ¼ 67° for an initially well-
matched Gaussian beam, for 824 FD periods.
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pushed into the instability region. From Fig. 22, we can see
that, for 206 periods (41.2 m), the fourth-order resonance is
seen and the beam phase advance has still not entered the
instability region. If, however, we increase the number of
periods, we can see that envelope instability gets excited
after around 50 m, and the beam emittance and phase
advance increase until the beam exits the instability region

at around 80 m. Hence, the width of the emittance increase
in the instability region is more for a longer channel.
For tune depression less than 0.45, we see, from Fig. 23,

an increase in the beam emittance. In this region, the
conditions for several higher-order single particle resonan-
ces are satisfied and hence due to overlapping of several
higher-order single particle resonances, the beam behavior
becomes chaotic and the beam emittance increases. The
results for beam phase advance σ ¼ 44° are shown in
Figs. 24 and 25.
Simulations were performed with different values of σ0

to study the variation of emittance growth with the tune
depression. The results for σ0 ¼ 96°, 100°, and 110° for 206

FIG. 23. Variation of transverse emittance growth of the beam
εf=εi with the tune depression σ0=σ of the beam for σ0 ¼ 100°,
for 206 and 824 FD periods.

FIG. 24. (a) The beam envelope in x from PIC simulations,
(b) beam phase advance, and (c) transverse emittance along the
FD lattice for σ0 ¼ 100° and initial σ ¼ 44° for an initially well-
matched Gaussian beam in the FD channel.

FIG. 25. Beam phase space at various locations along the FD
lattice for σ0 ¼ 100° and initial σ ¼ 44°.
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FD periods are shown in Fig. 26. The envelope instability
stop band is also marked in the figure for each value of σ0.
For all these cases, we see that the emittance increase
extends beyond the envelope instability stop band. For
σ0 ¼ 96° and 100°, the emittance growth drops for tune
depression values in the intermediate region and then
begins to increase again for tune depression below 0.45.
As discussed above, in this region, only the single particle
effects are seen.
For σ0 ¼ 110°, the emittance keeps on increasing con-

tinuously and there is no reduction in the emittance growth
as the tune depression decreases. This is because the
envelope instability stop band becomes wider as σ0
increases. The envelope instability stop band lies in the
range 50.3° ≤ σ ≤ 86.6°.
The emittance growth in the envelope instability region

is consistent with the strength of the instability calculated in
Fig. 5. For example, it can be seen that the emittance
growth for σ0 ¼ 110°, η ¼ 0.75 is less than for σ0 ¼ 100,
η ¼ 0.75 as the strength of the instability is greater for the
latter.

V. CONCLUSIONS

We have carried out studies on a dc beam in an FD
channel to distinguish between the coherent and incoherent
effects for σ0 > 90°. In this region, the two main effects
seen are the second-order envelope instability and the
fourth-order particle resonance. The envelope instability

is a coherent effect in which the envelope as a whole
becomes unstable. The stopband of the envelope instability
lies over a range of σ values below σ ¼ 90° and can be
calculated analytically using the KV envelope equations.
The strength of the envelope instability has been calculated
using the envelope calculations in TRACEWIN. It is seen that,
qualitatively, the emittance increase in the instability region
agrees very well with the calculated values of the strength
of the envelope instability.
The incoherent effects, which are due to single particle

dynamics, have been studied using the particle-core model.
It is seen that the fourth-order particle resonance is excited
in general for σ0 > 90° and σ < 90° for the particles
satisfying the resonance condition 4kxy ¼ 360°. This is
confirmed by the formation of a fourfold structure in the
Poincare plots and particle tunes around 0.25. It is seen that
as tune depression decreases, single particle resonances
other than the fourth-order resonances are also excited. This
is confirmed by the appearance of tune spread in the FFT
analysis for lower tune depression.
Self-consistent PIC simulations have been performed on

the beam in the FD channel for σ0 > 90° to study the
combined effect of the coherent and incoherent effects on
the beam. The existence of fourth-order particle resonances
is also confirmed by these studies. In PIC studies, as the
beam evolves self-consistently in the channel, it is seen that
in the instability region, for a well-matched beam, the
fourth-order resonance is excited first and then the envelope
instability is excited as the beam gets mismatched. If the
beam is mismatched at the entry of the channel, the
envelope instability is excited sooner and the fourth-order
particle resonance is not seen. Once the envelope instability
is excited, it dominates over the fourth-order resonance. We
see that the fourfold structure evolves into a twofold or
S-shape structure in phase space. PIC simulations show that
when either of the effects is excited, as the beam evolves
self-consistently, the beam emittance and beam phase
advance increase. Even if the starting beam phase advance
is below the instability region, if the phase advance
increases and enters the instability stop band, the envelope
instability is excited. Below the envelope instability stop
band, the fourth-order resonance is excited and the beam
can become unstable if the beam phase advance increases
and enters the instability region. This can happen if the FD
channel is long enough. The further the beam is from the
lower bound of the envelope instability stop band, the
longer the length of the channel is required to enter into
the stop band. Hence the width of the large emittance
growth stop band from the PIC simulation, using an initial
Gaussian distribution, depends on the length of the channel.
For σ0 > 90°, we see that the envelope instability is a more
dangerous effect as it leads to a large increase in emittance
and is excited for lower values of beam current and even for
a shorter channel. The PIC simulations show that whether it
is the envelope instability or single particle resonance, the

FIG. 26. Variation of transverse emittance growth of the beam
εf=εi with the tune depression σ0=σ of the beam for σ0 ¼ 90°,
100°, and 110°, for 206 FD periods. Also shown is the envelope
instability stop band for σ0 ¼ 90°, 100°, and 110° calculated from
the KV envelope equations.
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beam tries to come out of it. The beam phase advance
increases and as it reaches the stable region where the
instability and particle resonances cannot be excited, the
beam stabilizes at a new equilibrium value. The beam size
and emittances also stabilize at a new equilibrium value.
With the help of the stop bands defined by the KVenvelope
equations and the self-consistent PIC simulations using
TRACEWIN code, it is possible to differentiate between the
single particle effects and the collective effects due to space
charge in high intensity beams.
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