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In electron cooling, the transverse cooling rate is usually smaller than the longitudinal rate, especially at
high energies. By introducing dispersive cooling, it is possible to redistribute the cooling rate between
longitudinal and transverse planes. Theoretically, achieving dispersive electron cooling requires an ion
dispersion and a transverse gradient of longitudinal friction force. The latter depends on many factors such
as the relative momentum offset, transverse displacement, e-beam density distribution, and space charge
effect. Therefore, several methods can be employed to achieve dispersive electron cooling based on these
factors. Based on the dc electron beam, these factors and their respective impacts on the cooling rate are
discussed and analyzed. For the first time, we propose a new mechanism to achieve dispersive cooling for a
uniform electron beam by placing part of the ion beam outside of the electron beam. Based on a linear
friction force model, we propose a simple formula to numerically estimate the cooling rate redistribution
effect of these methods. The analytical results are in good agreement with Monte Carlo calculation and
numerical simulation.
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I. INTRODUCTION

Electron cooling has become one of the most important
methods to reduce beam emittance and momentum spread,
and it has been widely applied in several proton and ion
storage rings [1–9]. In the future, it is desirable to extend
this method to high-energy facilities, such as Electron-Ion
Colliders [10,11], where an electron beam of at least tens of
MeV is required. Usually, the transverse momenta of the
electron beam in the particle reference frame is larger than
the longitudinal momenta, resulting in weaker transverse
cooling, especially at high energies. Magnetized cooling is
a useful method to compensate for this. Due to the Larmor
motion in the longitudinal magnetic field, the effective
temperature of the electron beam is determined by its
longitudinal velocity spread, thereby increasing the trans-
verse cooling rate to the same as the longitudinal one [12].
Another method is the so-called dispersive electron cool-
ing, which redistributes the cooling rates by introducing a
dispersion function, i.e., increasing the cooling rate in one
direction at the expense of the other [13].

In theory, dispersive cooling requires both ion beam
dispersion and a transverse gradient of the longitudinal
friction force. To simply explain that, we assume an off-
momentumparticle passing through the cooling sectionwith
a dispersion function D and only consider the longitudinal
cooling with a linear friction forceΔδp ¼ −λδp, the particle
coordinate after cooling can be written as

xβ2 ¼ x −Dδp2 ¼ xβ1 þDλδp1; ð1Þ

where xβ denotes the betatron oscillation with amplitudeAx,
and x is the real coordinate which is assumed to be
unchanged during passing through the cooling section. If
the cooling coefficient λ is constant, the dispersion term in
Eq. (1) is uncorrelated with the betatron oscillation. As a
result, the center of the betatron oscillation shifts with
longitudinal cooling, but the amplitude remains unchanged
Ax2 ¼ Ax1. This means that longitudinal cooling does not
contribute to transverse cooling. If the longitudinal friction
force has a transverse gradient, i.e., coupled to the betatron
oscillation, it is possible to redistribute the cooling rate
between the two directions. For example, assuming a
negative gradient λðxÞ ¼ ðM − jxjÞλ0 with M > Max½x�,
which means that particles near the center are subject to
larger friction force. Then, the amplitude of the betatron
oscillation turns to Ax2 ≃ ð1 − λ0jDδp1jÞAx1. It indicates the
amplitude damping of the betatron motion, which exactly
results from longitudinal cooling. A numerical result of
these two processes based on Eq. (1) is shown in Fig. 1,
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where the x axis represents betatron oscillation under the
longitudinal cooling with and without the transverse gra-
dient. It clearly shows the amplitude damping process
(dispersive cooling) with an appropriate longitudinal fric-
tion force setting. The mechanism is similar to the radiation
decrements partitioning in electron storage rings. Particles
with large transverse displacement emit more radiation
power, indicating a positive damping gradient. As a result,
the longitudinal damping increases at the expense of the
horizontal damping, which is represented by the damping
repartition number D [14].
We see that the transverse gradient of the longitudinal

friction force plays a key role in dispersive electron cooling.
Some experimental and simulation studies have demon-
strated several approaches to obtain this gradient. As
indicated in Refs. [15,16], one approach is to introduce
a displacement between electron and ion beams and utilize
the parabolic velocity profile of the e-beam that is caused
by its space charge. Another method is by using a relative
momentum offset (or energy offset) compared to the central
momentum, a displacement, and a transverse density
gradient of the e-beam [17]. Recently, it has been demon-
strated that an e-beam with Gaussian transverse distribution
can naturally provide this transverse gradient, thus achiev-
ing dispersive cooling. At the same time, it shows that
electron dispersion is also beneficial to dispersive cooling
[18]. Generally, these methods can be applied to both
magnetized and nonmagnetized cooling since the magnetic
field does not affect the transverse gradient. In this article,
we conduct theoretical and simulation studies of these
methods and show how they affect the cooling rate. For the
first time, we propose a new mechanism to achieve
dispersive cooling for a uniform electron beam by placing
part of the ion beam outside of the electron beam.

Considering a dc e-beam and linear friction force model,
we finally propose a simple formula to numerically
estimate the cooling rate redistribution effect of these
methods, and the analytical result agrees well with
Monte Carlo calculation and numerical simulation.
This paper is organized as follows: In Sec. II, the friction

force is briefly described, and the space charge effect of the
e-beam and its influences on the electron velocity distri-
bution are introduced. In Sec. III, a theoretical study of
dispersive cooling is presented based on a linear cooling
model. Meanwhile, four different cases that can be used to
achieve dispersive cooling are discussed and analyzed. In
Sec. IV, a numerical simulation is carried out and compared
with the analytical model. Finally, the summary and
discussion are presented in Sec. V.

II. FRICTION FORCE AND E-BEAM SPACE
CHARGE

When an ion moves in the accompanying electron beam
with the same average velocity, it experiences the friction
force resulting from the Coulomb interaction with elec-
trons. In the particle reference frame (PRF), the non-
magnetized friction force on an ion is [19]

Fðr; uiÞ ¼ −4πmer2eZ2c4
Z

lnΛ
ui − ue
jui − uej3

feðr; ueÞdue;

ð2Þ
where Z is the atomic number of the ion, me is the electron
mass, re is the classical electron radius, c is the speed of
light, lnΛ is the Coulomb logarithm, ui and ue are the
velocities of ion and electron in PRF, respectively. For
small relative velocities, a linear friction force proportional
to the velocity can be used, and in some cases, an analytical
formula can be obtained. For example, considering an
isotropic e-beam velocity distribution (Gaussian) and only
working on the leading order of the distribution, the friction
force can be simplified to

F ≃ KneðrÞui ðjuij < σveÞ; ð3Þ

where K ¼ −4
ffiffiffiffiffiffi
2π

p
mer2eZ2c4 lnΛ=3σ3ve, and σve is the rms

velocity spread of e-beam. Then the cooling effect can be
described by Δui ¼ −Cneui, where C ¼ KL=βγmic, β and
γ are the Lorentz factors, and L is the length of the cooling
section [18]. On the other hand, magnetized cooling is more
desirable for improving the cooling efficiency in conven-
tional electron coolers, for which a semiempirical formula
of the friction force is proposed by Parkhomchuk [20]:

Fm ¼ −4nemeZ2r2ec4 lnΛ
ui

ðu2i þ u2effÞ3=2
; ð4Þ

where the Coulomb logarithm lnΛ and the effective velocity
ueff of electrons depend on the e-beam distribution and the

FIG. 1. Comparison of the cooling process with and without the
transverse gradient of longitudinal friction force, where the x axis
represents betatron oscillation under longitudinal cooling in the y
axis. It demonstrates that dispersion and the transverse gradient
are necessary for dispersive cooling (xβ ¼ 1 cm, D ¼ 1 m,
δp ¼ �1 × 10−2, λ0 ¼ 1).
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longitudinal magnetic field. Expanding the formula
to the first order, we can also estimate the cooling
effect by linear friction force Δui¼−Cneui, where C¼
−4meLZ2r2ec3 lnΛ=βγmiu3eff . For a well-cooled ion beam,
most ions fall into the linear friction force region due to the
small velocity spread. Therefore, the cooling process can be
well and simply described using the linear friction force, as
we will do in the next section. However, it is difficult to
obtain an analytical solution of the cooling coefficient C for
an arbitrary e-beam velocity distribution. Accurate result
still needs to be calculated through numerical integration.
In addition, the space charge effect of the e-beam will

cause a transverse drift velocity and a relative momentum
deviation along the beam radius, especially at low energy.
On the one hand, it affects the cooling process because it
introduces an undesired velocity offset between electrons
and ions. On the other hand, this effect is critical in
dispersive electron cooling because it is one of the con-
ditions to obtain the transverse gradient of longitudinal
friction force. Before going through the study of dispersive
cooling, we first introduce the space charge effect of the
e-beam.
According to the e-beam density distribution, the space

charge field Esc can be easily calculated. Also, a longi-
tudinal magnetic field Bg is usually applied in an electron
cooler, which is essential for the e-beam adiabatic expan-
sion [8], e-beam focusing [9], magnetized cooling, etc.
As a consequence, an azimuthal drift velocity vdrift will be
generated by these two fields, i.e., E × B drift. Moreover,
due to the space charge potential depression, electrons
inside the beam have a radial-dependant longitudinal
velocity Δvs after being accelerated by the electric field
[21]. Here, we assume a round dc electron beam, these
effects in PRF can be described as follows:

EscðrÞ ¼
R
r
0 xρðxÞdx

ε0r
r̂

vdriftðrÞ ¼
Esc × Bg

B2
g

¼
R
r
0 xρðxÞdx
ε0rBg

r̂ × ŝ

δeðrÞ ¼ γ2
ΔvsðrÞ
v0

¼ 1

γβ2E0

Z
r

0

EscðrÞdr; ð5Þ

where ρðrÞ is the electron beam distribution in the trans-
verse direction, ϵ0 is the vacuum permittivity, E0 is the rest
energy of the electron, vdrift is the radial drift velocity, δe is
the momentum deviation in the longitudinal direction, and
v0 is the reference particle velocity. The e-beam space
charge can also introduce a tune spread and may drive
resonances in the ion beam. In this paper, we do not include
this effect because it is negligible as long as the e-beam
current is not too large, which is generally true for a typical
cooling process [22,23].
Based on Eq. (5), velocity distributions of the e-beam

with various transverse profiles can be calculated. In this

paper, we only discuss the dc e-beam with a Gaussian
and uniform profile, for which Eq. (5) can be solved
analytically [24]. Considering a Gaussian e-beam with
ρðrÞ ¼ Iee−r

2=2σ2r =2πγβcσ2r , we have the two velocity
distributions inside the e-beam

vdriftðrÞ¼
Ie

2πϵ0γβcBgr

�
1−e

− r2

2σ2r

�

δeðrÞ¼
Ie

4πϵ0E0γ
2β3c

�
γeþ ln

�
r2

2σ2r

�
þE1

�
r2

2σ2r

��
; ð6Þ

and for a uniform e-beam with ρðrÞ ¼ Ie=πγβcR2
e,

we have

vdriftðrÞ ¼
Ier

2πϵ0γβcBgR2
e

δeðrÞ ¼
Ier2

4πϵ0E0γ
2β3cR2

e
; ð7Þ

where Ie is the current in the laboratory frame, Re is the
beam radius, γe ≈ 0.57721566 is the Euler’s constant, and
E1ðzÞ ¼

R
∞
z e−t=tdt is the exponential integral. A com-

parison of the two e-beams under at same current is shown
in Fig. 2. In the next section, we will discuss dispersive
cooling of Gaussian and uniform e-beams, respectively. For
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FIG. 2. Comparison of the space charge induced velocity
distribution of two e-beam profiles under the same current: r0 ¼
0.0 cm and σr ¼ 0.6 cm for Gaussian beam, and Re ¼ 2 cm for
uniform beam.
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simplicity, we assume vdrift ¼ Lscr and δe ¼ Kscr2 for both
e-beams, where the coefficients Lsc and Ksc are obtained by
numerical fitting according to Eqs. (6) and (7).
As discussed in Ref. [15,16], the transverse gradient of

longitudinal friction force can be achieved by a radial
displacement of the e-beam, which takes advantage of the
velocity distribution that is determined by δeðrÞ. However,
this displacement will directly introduce a coherent tune
shift. Additionally, it will consequently produce an average
velocity offset both in transverse and longitudinal direc-
tions, which may lead to a beam circular attractor in phase
space and even the anticooling effect [25]. In this paper, our
focus remains exclusively on dispersive cooling, other
effects arising from beam displacement will not be
discussed.

III. DISPERSIVE ELECTRON COOLING

In this section, we discuss several methods to achieve
dispersive electron cooling and develop a simple analytical
tool to estimate the cooling rate redistribution effect. To
begin with, we assume a linear friction force Δu ¼ −Cneu
both in transverse and longitudinal directions, where
ne is the electron beam density, and C is the cooling
coefficient that depends on the velocity distribution of
the electron beam. Consider a beam displacement xo, a
relative momentum offset δo, and horizontal dispersion D
of ions in the cooling section, the momentum change
of a single particle after cooling can be described by
Δδ ≃ −Cpneðδ − δe − δoÞ, where δe ¼ Kscðx2 þ y2βÞ is the
electron momentum deviation due to space charge and
x ¼ xβ þ xo þDδ. Then we have

Δδ2≃−2Cpneδ2þ2Cpneδδoþ2CpneKscδðx2þy2βÞ: ð8Þ

For transverse, we only discuss the horizontal direc-
tion. Assume α ¼ 0 and ignore the betatron evolution in
the cooling section, the single particle emittance is
ϵx ¼ ðx − xo −DδÞ2=2βx þ βxx02=2, and the cooling effect
can be written by

Δϵx ≃ −DxβΔδ=βx þ βxx0Δx0; ð9Þ

whereΔx0 ¼ −Cxneðx0 − x0eÞ, and x0e ¼ −Lscyβx̂ is the drift
velocity caused by the space charge and magnetic fields.
Note that we think the e-beam space charge is not very
strong, so the drift velocity does not affect the assumption
of the linear friction force.
Expanding Eqs. (8) and (9) and ignoring high-order and

noncorrelated terms, the longitudinal and horizontal cool-
ing effects of the ion beam can be described as

hΔδ2i ¼ −2Cphneδ2i þ 2Cpδohneδi
þ 2CpKscxoðxohneδi þ 2hnexβδi þ 2Dhneδ2iÞ

hΔϵi ¼ −Cxϵ0hnei þ
CpD

βx
hnexβδi −

CpDδo
βx

hnexβi

−
CpDKscxo

βx
ðxohnexβi þ 2hnex2βi þ 2DhnexβδiÞ;

ð10Þ

where hi denotes averaging over the ion beam phase space
and neðx; y; sÞ is the local density of e-beam at the location
of an ion particle. Since the e-beam density ne is uncorre-
lated with x0, so here we have βxhnex02i ¼ ϵ0hnei, where ϵ0
is the rms emittance. The equation shows that momentum
offset, beam displacement, space charge effect as well as
the e-beam density are the main factors affecting the
cooling rate and that the coupling between horizontal
position, longitudinal momentum, and e-beam density
caused by dispersion is responsible for the rate redistrib-
ution. The term related to drift velocity is eliminated as it is
not relevant to longitudinal cooling. Additionally, the
average drift velocity can be compensated by adjusting
the angle of the e-beam with respect to the trajectory. Based
on the ion and electron beam distributions, Eq. (10) can be
calculated analytically according to the law of the uncon-
scious statistician (LOTUS) [26]. As shown in Ref. [18],
the cooling rate redistribution for the e-beam with a
Gaussian profile is studied. In this section, we will discuss
the effect of rate redistribution for both Gaussian and
uniform electron beams, while including all the mentioned
factors.
We define the cooling rates λp ¼ hΔδ2i=δ2p and

λx ¼ hΔϵi=ϵ0, where δp and ϵ0 are the rms momentum
spread and emittance, respectively. And the gain factor is
the ratio of the cooling rate with and without dispersion and
other factors k ¼ λ=λ0. Using the same method in Ref. [18],
several cases that can realize dispersive electron cooling are
studied based on the e-beams with transverse Gaussian and
uniform distributions. It is worth noting that we briefly give
the derivation details in the Appendix, and for each case, a
Monte Carlo calculation based on Eq. (10) is performed
and compared with the analytical formula in the next.

A. Case 1: Gaussian e-beam with momentum offset δo
and beam displacement xo

As Derbenev introduced in Ref. [13,17], dispersive
electron cooling can be achieved by a longitudinal velocity
offset, a beam displacement as well as a transverse gradient
of electron density. For this case, Eq. (10) can be written as

hΔδ2i¼−2Cphneδ2iþ2Cpδohneδi

hΔϵi¼−Cxϵ0hneiþ
CpD

βx
hnexβδi−

CpDδo
βx

hnexβi: ð11Þ
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Here, we use a Gaussian e-beam to produce the transverse
density gradient

neðx; y; sÞ ¼
Ne0e

−
ðxβþxoþDiδÞ2

2σ2ex
−

yβ
2

2σ2ey
− s2

2σ2es

ð2πÞ3=2σexσeyσes
: ð12Þ

Furthermore, we assume that the ion beam also has a
Gaussian distribution in the transverse direction. Then,
Eq. (11) can be calculated and the final cooling rates and
the gain factors are

a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2exþσ2ix

q
b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2exþσ2ixþD2δ2p

q

λp ¼−
2e0CYIffiffiffiffiffiffi

2π
p e−

x2o
2b2

�
Cp

a2

b3
þCp

D2δ2px2o
b5

þCp
Dδoxo
b3

�

λx ¼−
e0CYIffiffiffiffiffiffi

2π
p e−

x2o
2b2

�
Cx

b
−Cp

D2δ2p
b5

ðx2o−b2Þ−Cp
Dδoxo
b3

�

kp ¼ e−
x2o
2b2

�
a3

b3
þ a
b5

D2δ2px2oþ
a
b3

Dδoxo

�

kx ¼ e−
x2o
2b2

�
a
b
þ Cpa

Cxb5
D2δ2pðb2−x2oÞ−

Cpa

Cxb3
Dδoxo

�
; ð13Þ

where CYI is a constant that depends on beam distribution
(see Appendix).
Using arbitrary parameters with σex¼ 1 cm, σix ¼ 1 cm,

δp ¼ 1 × 10−2, and Cp=Cx ¼ 2, the dependence of the gain
factors on the dispersion function under different condi-
tions is calculated and shown in Fig. 3. The Monte Carlo
results show a good agreement with the analytical formula.
We see that using dispersion alone can realize dispersive
cooling and a factor of 1.4 is achieved for the horizontal
cooling rate. This effect is mainly due to the Gaussian
e-beam distribution, which naturally provides the trans-
verse gradient of the longitudinal force. The details of the
explanation can be found in Ref. [18]. When beam
displacement is applied, it shows that the horizontal gain
factor drops off and the maximum value of kx decreases to
1.1. This is due to the fact that the displacement reduces
the average friction force on the ion beam, which is
density dependent, thereby weakening the dispersive
cooling effect as shown by the second term in the bracket
of Eq. (13). Meanwhile, the third term in the bracket
depends on both momentum offset and beam displace-
ment. The increase and decrease of the horizontal cooling
rate can be adjusted by the product of the two values. This
conclusion agrees with Refs. [13,17]. As shown in Fig 3,
the maximum value of kx can reach 1.75 by using xo ¼
1 cm and δo ¼ −1.5 × 10−2, even though the beam dis-
placement introduces a certain degradation of the hori-
zontal cooling rate.

However, an energy mismatch between electron and ion
beams may result in a circular attractor in the longitudinal
phase space of the ion bunch. If the relative shift exceeds a
critical value, beam heating instead of cooling may occur
[25]. Therefore, the method of using a momentum offset to
realize dispersive cooling needs to be carefully calculated
and evaluated in practical applications.

B. Case 2: Gaussian e-beam with space charge Ksc and
beam displacement xo

Another method to realize dispersive cooling relies on
the space charge effect of the e-beam, which in combina-
tion with a beam displacement can generate the transverse
gradient of the longitudinal force [15,16]. As discussed in
Sec. II, a radial-dependant velocity deviation in the
longitudinal direction will be produced due to the space
charge effect. Here we assume a parabolic velocity profile,
i.e., δeðrÞ ¼ Kscr2, then Eq. (10) can be written as

hΔδ2i ¼ −2Cphneδ2i
þ 2CpKscxoðxohneδi þ 2hnexβδi þ 2Dhneδ2iÞ

hΔϵi ¼ −Cxϵ0hnei þ
CpD

βx
hnexβδi

−
CpDKscxo

βx
ðxohnexβi þ 2hnex2βi þ 2DhnexβδiÞ.

ð14Þ

The final result for the cooling rate and gain factor is

FIG. 3. Monte Carlo and analytical results of the gain factor
dependence on dispersion for case 1 with σex ¼ 1 cm,
σix ¼ 1 cm, δp ¼ 1 × 10−2, Cp=Cx ¼ 2.
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a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ex þ σ2ix

q
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ex þ σ2ix þD2δ2p

q
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ex − σ2ix −D2δ2p

q

λp ¼ −
2e0CYIffiffiffiffiffiffi

2π
p e−

x2o
2b2

�
Cp

a2

b3
þ Cp

D2δ2px2o
b5

− Cp
DKscxo

b5
ð2σ2exb2 − x2oc2Þ

�

λx ¼ −
e0CYIffiffiffiffiffiffi

2π
p e−

x2o
2b2

�
Cx

b
þ Cp

D2δ2p
b5

ðb2 − x2oÞ

þ Cp
DKscxo
Cxb5

ð2σ2exb2 − x2oc2Þ
�

kp ¼ e−
x2o
2b2

�
a3

b3
þ a
b5

D2δ2px2o −
a
b5

DKscxoð2σ2exb2 − x2oc2Þ
�

kx ¼ e−
x2o
2b2

�
a
b
þ Cpa

Cxb5
D2δ2pðb2 − x2oÞ

þ Cpa

Cxb5
DKscxoð2σ2exb2 − x2oc2Þ

�
: ð15Þ

It shows that the first and second terms in the bracket of
the cooling rate formula come from the Gaussian e-beam
distribution, which has already been discussed above. The
third term is of interest to us, and it is directly determined
by the e-beam space charge and beam displacement. We see
that the sign of this term also depends on the electron and
ion beam parameters. Considering arbitrary parameters, the
dependence of the gain factor on ion dispersion and beam
displacement is shown in Fig. 4, and a comparison between
the Monte Carlo calculation and analytical formula is
shown in Fig. 5. It is clear that beam displacement and
the space charge effect contribute to dispersive electron
cooling. As discussed in Refs. [15,16], an outward

displacement of the e-beam is required for the increase
of the horizontal cooling rate, which is consistent with our
result. The equation also shows that a larger Ksc can
improve the rate redistribution effect. However, a strong
space charge field is not desirable for cooling since the
transverse drift velocity and the longitudinal velocity
deviation have a significant influence on the cooling
process. Therefore, when studying dispersive electron
cooling, the value of Ksc or the e-beam density should
be carefully determined according to the beam energy and
cooling requirements.
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FIG. 4. Dependence of gain factors on ion dispersion and beam displacement considering Gaussian electron and ion beams with
σex ¼ 1 cm, σix ¼ 1 cm, δp ¼ 1 × 10−2, Cp=Cx ¼ 2, Ksc ¼ 20 m−2.

FIG. 5. Monte Carlo and analytical results of the gain factor
dependence on dispersion for case 2 with σex ¼ 1 cm,
σix ¼ 1 cm, δp ¼ 1 × 10−2, Cp=Cx ¼ 2.
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C. Case 3: Uniform e-beam with infinite radius Re,
space charge Ksc, and beam displacement xo

In the above, we investigated two methods that can be
used to realize dispersive cooling for a Gaussian e-beam. In
addition to the momentum offset and space charge effect,
we see that the e-beam itself also contributes to the rate
redistribution effect since the Gaussian density distribution
naturally provides a transverse gradient of the longitudinal
force. In fact, a uniform or hollow e-beam is much
preferable for most electron coolers to avoid beam losses
due to recombination, overcooling, and instabilities
[27,28]. Therefore, it is necessary to study the rate redis-
tribution effect for these two e-beams. The analytical
process of the hollow e-beam is too complicated, and it
can be further studied by numerical simulation. Here we
only discuss the uniform e-beam.
We first assume a uniform e-beam with an infinite radius

that is ne ¼ ρ0. Then there is no correlation between the
three variables ne, xβ, and δ, and Eq. (10) becomes

hΔδ2i ¼ −2Cpnehδ2i þ 4CpDKscnexohδ2i

hΔϵi ¼ −Cxϵ0ne −
2CpDKscnexo

βx
hx2βi: ð16Þ

Since there is no density gradient, the momentum offset
does not affect the dispersion cooling as discussed in case
1, and the density distribution will not provide the trans-
verse gradient of the friction force. So, using the space
charge effect of the e-beam is the only useful approach. In
this case, the gain factors can be easily calculated

λp ¼ −2ρ0ðCp − 2CpDKscxoÞ
λx ¼ −ρ0ðCx þ 2CpDKscxoÞ
kp ¼ 1 − 2DKscxo

kx ¼ 1þ 2DKscxoCp=Cx: ð17Þ

It shows the same conclusion that dispersive electron
cooling can be achieved by the velocity deviation caused
by the e-beam space charge, combined with a beam
displacement. This result is consistent with Eq. (5) in
Ref. [16], which was benchmarked by the experimental
measurement.

D. Case 4: Uniform e-beam with finite radius Re, space
charge Ksc, and beam displacement xo

For a uniform e-beam with a finite radius Re, the density
distribution is

neðrÞ ¼
	
ρ0; r ≤ Re

0; r > Re:
ð18Þ

For this distribution, we think that there is a density
gradient which is created by the density difference

between the inside and outside of the e-beam. Due to
the betatron motion, particles with large amplitude will
cross the boundary of the e-beam back and forth.
After averaging over several turns, the particle will be
subject to a transverse gradient of the longitudinal friction
force. As a result, a uniform e-beam itself can also be
applied to achieve dispersive cooling as well as a
Gaussian e-beam.
For simplicity, we only consider the space charge effect

δeðrÞ ¼ Kscr2 and beam displacement. So, the longi-
tudinal and horizontal cooling effects can be described
by Eq. (14). Based on the uniform density distribution
[Eq. (18)], the analytical result of the gain factors is
calculated below

m ¼ Erf

�
Reffiffiffiffiffiffiffiffi
2σ2ix

p �

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ix þD2δ2p

q
a ¼ Erf

�
Re þ xoffiffiffi

2
p

σ

�
þ Erf

�
Re − xoffiffiffi

2
p

σ

�

b ¼ e−
ðRe−xoÞ2

2σ2 ðRe − xoÞ þ e−
ðReþxoÞ2

2σ2 ðRe þ xoÞ
σ3

c ¼ e−
ðReþxoÞ2

2σ2 − e−
ðRe−xoÞ2

2σ2

σ

λp ¼ −2e0ρ0
�
Cp

a
2
− Cp

D2δ2pbffiffiffiffiffiffi
2π

p

þ Cp
DKscxoffiffiffiffiffiffi

2π
p ð2σ2b −

ffiffiffiffiffiffi
2π

p
a − xocÞ

�

λx ¼ −e0ρ0
�
Cx

a
2
þ Cp

D2δ2pbffiffiffiffiffiffi
2π

p

− Cp
DKscxoffiffiffiffiffiffi

2π
p ð2σ2b −

ffiffiffiffiffiffi
2π

p
a − xocÞ

�

kp ¼ a
2m

−
D2δ2pbffiffiffiffiffiffi
2π

p
m
þDKscxoffiffiffiffiffiffi

2π
p

m
ð2σ2b −

ffiffiffiffiffiffi
2π

p
a − xocÞ

kx ¼
a
2m

þ Cp

Cx

�
D2δ2pbffiffiffiffiffiffi
2π

p
m
−
DKscxoffiffiffiffiffiffi

2π
p

m
ð2σ2b −

ffiffiffiffiffiffi
2π

p
a − xocÞ

�
ð19Þ

It shows that the first and second terms of the cooling rate
are due to the e-beam distribution, and the third term
comes from the space charge effect. As an example, the
dependence of the gain factors on the ion dispersion and
beam displacement is shown in Fig. 6, which proves that
proper dispersion and beam displacement can achieve
dispersive cooling. A comparison of different settings is
shown in Fig. 7, and the Monte Carlo results agree well
with the analytical formula. We see that the rate redis-
tribution effect strongly depends on the e-beam radius
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since it directly determines how many particles can see the
density gradient. If the e-beam radius is smaller than the
ion beam, it is easy to realize dispersive cooling with small
dispersion. Otherwise, dispersive cooling is less likely to
occur unless the dispersion is large enough. However, the
difference in the radius of the two beams should be
reasonable to ensure the overall cooling performance
and avoid any aberrations in the ion beam phase space
distribution.

IV. NUMERICAL SIMULATION

To verify the above conclusions, a numerical simulation
is carried out and compared with the analytical result. We
use the multiparticle tracking code TRACKIT and mainly
consider the magnetized cooling, e-beam space charge, and
ion dispersion [29]. Other effects such as intrabeam
scattering (IBS) and ion space charge are not included in
our simulation. Since the code has already been well
applied in several cooling experiments [30–32], we directly
use it for the dispersive cooling simulation. The ion and
electron beam parameters in the simulation are listed in
Table I, which are mainly based on the HIRFL-CSRe
facility and its electron cooler EC300 [6].
In order to effectively include the space charge effect of

the e-beam, we choose the ion beam Fe26þ at a relatively
low energy of 35 MeV/u. The energy and current of the
e-beam are 19.2 keVand 30–50 mA, respectively. Figure 8
shows the calculated results of the longitudinal velocity
deviation for Gaussian and uniform electron beams, as well
as the dependence of the magnetized friction force on the
electron-ion relative velocity (Parkhomchuk model [20]).
According to the density and velocity distribution of the ion
beam, we know that most particles are located in the linear
friction force region. Moreover, because the radius of the
ion beam with Gaussian distribution is less than 1.0 cm, the
electron velocity deviation has little effect on the relative
velocity distribution between electrons and ions. As a
result, the analytical model with the assumption of linear
friction force is suitable for benchmarking with the
simulation.
Figures 9 and 10 show the simulation results of the

dispersion dependence of the horizontal cooling gain factor
kx for Gaussian and uniform e-beam, respectively. In the
simulation, the cooling rate is estimated based on a short
cooling process, during which ion emittance and
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m
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0.485
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0.873

1.067

1.261

1.455

FIG. 6. Dependence of gain factors on ion dispersion and beam displacement considering uniform electron beam with Re ¼ 2 cm,
σix ¼ 1 cm, δp ¼ 1 × 10−2, Cp=Cx ¼ 2, Ksc ¼ 20m−2.

FIG. 7. Monte Carlo and analytical results of the gain factor
dependence on dispersion for case 4 with σix ¼ 1 cm,
δp ¼ 1 × 10−2, Cp=Cx ¼ 2.
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distribution change small enough that the cooling rate is not
affected by these parameters. According to the simulation
result without the dispersion and other factors, we get the
original cooling rate λx=λy=λp ¼ 25.3=33.9=63.5 s−1 for
Gaussiane-beam, λx=λy=λp¼10.2=13.1=24.4s−1 (Re¼1.5cm)
and λx=λy=λp ¼ 6.8=9.0=16.4 s−1 (Re ¼ 2.0 cm) for uni-
form e-beam. Then, we estimate the value of Cp=Cx is
about 1.2. Moreover, the value of Ksc is based on the fitting
result of the velocity deviation using the power function,
which gives Ksc ∼ 0.3m−2 for Gaussian e-beam with
Reð3σÞ ¼ 2.0 cm, and Ksc ∼ 0.2 m−2 (Re ¼ 1.5 cm),
∼0.15 m−2 (Re ¼ 2.0 cm) for uniform e-beam. Using these
parameters, the analytical result is calculated and compared
with the simulation, as shown in Figs. 9 and 10. Typical

simulation results for the cooling rates are listed in Table II. It
shows that the analytical model agrees well with the simu-
lation results. However, there is a discrepancy between the
simulation and analytical model, especially for large
dispersion. One reason is the nonlinear part of the friction
force, which is related to both the dispersion function and
the e-beam space charge effect. And this is not considered
in the analytical model. Another reason is that the calcu-
lated cooling rate depends on the beam distribution, so the
value of Cp=Cx is actually dispersion dependent. We
equate dispersion to the horizontal beam size in the
simulation and estimate that the value of Cp=Cx with
dispersion is in the range of 1.18–1.31,whichwe think is an
acceptable error for the analytical model.

TABLE I. Beam parameters in the simulation.

56Fe26þ Electron

Circumference (m) 128.8
Length of cooler (m) 3.4
Transverse displacement Gaussian Gaussian Uniform
Longitudinal displacement Coasting dc dc
Energy (MeV/u) 35.0 0.0192 0.0192
Beam current (mA) 0.5 50.0 30.0
Beam radius (cm) 1.0=0.5 2.0 2.0
rms ϵx=ϵy (μm) 0.5=0.1 · · · · · ·
rms δp 1.0 × 10−4 · · · · · ·
βx=βy @cooler (m) 25=25 · · · · · ·
Longitudinal temperature (eV) 0.7 5.0 × 10−5 5.0 × 10−5

Transverse temperature (eV) 1.4=0.3 0.5 0.5
B field in cooler (Gs) · · · 500 500
B field parallelity · · · 2.0 × 10−4 2.0 × 10−4

Longitudinal rate λp (s−1) · · · 63.5 16.4
Transverse rate λx=λy (s−1) · · · 25.3=33.9 6.8=9.0

FIG. 9. Comparison between the simulation (dots) and analyti-
cal model (solid line) of the horizontal gain factor for Gaussian
e-beam with Reð3σÞ ¼ 2.0 cm, Cp=Cx ¼ 1.2 and Ksc ¼ 0.3m−2.

FIG. 8. Calculated velocity deviation in the longitudinal direc-
tion for Gaussian (Reð3σÞ ¼ 2.0 cm) and uniform (Re ¼ 2.0 cm)
e-beam, as well as the dependence of the magnetized friction
force on the relative velocity.
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V. SUMMARY AND DISCUSSION

In electron cooling, transverse cooling is usually
weaker than the longitudinal direction. For this reason,
dispersive electron cooling is an effective scheme to
redistribute the cooling rate, especially for future high-
energy coolers. In this paper, we investigated several
approaches that can be applied to achieve dispersive
electron cooling. It is demonstrated that beam relative
momentum offset, transverse displacement, density dis-
tribution, and space charge effect of e-beam all contribute
to the rate redistribution in dispersive cooling. For the first
time, we propose a new mechanism for dispersive electron
cooling in the case of uniform e-beam by placing part of
the ion beam outside of the electron beam. Based on a
linear friction force model, we present an analytical
formula for numerically estimating the cooling rate
redistribution effect. Moreover, a Monte Carlo calculation
and numerical simulation are carried out, and all results
show good agreement with the analytical model.

However, we only discuss the cooling rate redistribution
effect between horizontal and longitudinal directions. To
increase the vertical cooling rate, the same method of
applying vertical dispersion can be used or simply by
introducing betatron coupling in the ion machine.
As previously discussed, the beam relative momentum

offset and displacement may affect the cooling performance
and may induce some undesired effects such as circular
attractor or even beam heating. So, these two approaches
should be carefully calculated and evaluated in practice.
Moreover, since the strong dependence of the space charge
effect on beam energy, the method using the velocity
deviation is only suitable for low-energy beam cooling, such
as conventional electron cooling with electron energies
below a few MeV. For high-energy beam cooling, such as
EIC, where e-beam energy would reach tens or hundreds of
MeV, the method employing beam density is much prefer-
able. However, these factors in dispersive electron cooling
have not been well explored through experiments. The
influences of these factors on the cooling rate need to be
further investigated. Additionally, the effects induced by the
dispersion function, such as ion beam dynamics and IBS,
require comprehensive exploration. It is also important to
note that the dispersion function in accelerators is quite
limited. Therefore, considering all the above points, dis-
persive cooling needs further extensive research in the future.
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APPENDIX: DERIVATION OF THE DISPERSIVE
COOLING RATE

In this section, we present the derivation of the cooling
rate for Eq. (10). It is clear to see that the dispersion
function couples the transverse motion and longitudinal
momentum and affects the electron density encountered by
the ions. Therefore, the calculation of the cooling rate
requires averaging over the entire ion phase space based on
the electron and ion beam distributions. For example
hneδxβi ¼

R
neδxβPidXdYdS, where Pi is the ion proba-

bility density function (PDF). Here, we discuss Gaussian
and uniform e-beams, respectively, and always assume a
Gaussian ion beam in phase space,

Pi ¼
e
−

x2
β

2σ2
ix
−

y2
β

2σ2
iy
− s2

2σ2
is
− x02
2σ2

ix0
− y02
2σ2

iy0
− δ2

2δ2
ip

ð2πÞ3σixσiyσisσix0σiy0δip
; ðA1Þ

where (σix; σiy; σis; σix0 ; σiy0 ; δip) are the standard deviation
of the beam distribution.

FIG. 10. Comparison between the simulation (dots) and ana-
lytical model (solid line) of the horizontal gain factor for uniform
e-beam with Cp=Cx ¼ 1.2 and Ksc ¼ 0.15–0.2 m−2.

TABLE II. Typical cooling rates in simulation.

Gaussian e-beam

D ¼ 50 m λx=λy=λp ðs−1Þ
xo ¼ 0.0 mm, δo ¼ 0 × 10−5 28.5=29.4=38.5
xo ¼ 0.5 mm, δo ¼ 0 × 10−5 28.8=29.4=37.8
xo ¼ 0.5 mm, δo ¼ 5 × 10−5 29.6=28.4=32.2

Uniform e-beam

D ¼ 80 m λx=λy=λp ðs−1Þ
xo ¼ 0.0 mm, Re ¼ 1.5 cm 12.3=13.3=17.6
xo ¼ 0.0 mm, Re ¼ 2.0 cm 7.6=9.2=14.9
xo ¼ 0.5 mm, Re ¼ 2.0 cm 7.7=9.3=14.8
xo ¼ −0.5 mm, Re ¼ 2.0 cm 7.4=9.2=15.0
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1. Gaussian e-beam

First, we assume a Gaussian e-beam and the local
number density of at the position ðx; y; sÞ ¼ ðxβ þ xo þ
Diδ; yβ; sÞ is given by

neðx; y; sÞ ¼
Ne0e

−
ðxβþxoþDiδÞ2

2σ2ex
−

yβ
2

2σ2ey
− s2

2σ2es

ð2πÞ3=2σexσeyσes
: ðA2Þ

Then we have

hnei ¼
Z

nePidXdYdS

¼ CYI

Z
e
−
ðxβþxoþDiδÞ2

2σ2ex
−

xβ
2

2σ2
ix
− δ2

2δ2
ip

ð2πÞ3=2σexσixδip
dxβdδ; ðA3Þ

where

CYI ¼
Ne0

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2ey þ σ2iyÞðσ2es þ σ2isÞ

q : ðA4Þ

For a dc e-beam with the linear number density ρL, we have

CYI ¼ ρL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2ey þ σ2iyÞ

q
. Rewrite the exponential func-

tion in Eq. (A3) into the general form:

e
−
ðxβþxoþDiδÞ2

2σ2ex
−

xβ
2

2σ2
ix
− δ2

2δ2
ip ¼ e

− 1

2ð1−ρ2Þ

h
ðxβ−MÞ2

2σ2
1

−
2ρðxβ−MÞðδ−NÞ

σ1σ2
þðδ−NÞ2

2σ2
2

i
þK

;

ðA5Þ

where

σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ixðσ2ex þD2δ2pÞ
σ2ix þ σ2ex þD2δ2ip

s

σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2ipðσ2ix þ σ2exÞ

σ2ix þ σ2ex þD2δ2ip

s

ρ ¼ −
Dδipσixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσ2ix þ σ2exÞðσ2ex þD2δ2ipÞ
q

M ¼ −
xoσ2ix

σ2ix þ σ2ex þD2δ2ip

N ¼ −
xoDδ2ip

σ2ix þ σ2ex þD2δ2ip

K ¼ −
x2o

2ðσ2ix þ σ2ex þD2δ2ipÞ
: ðA6Þ

Based on this general form and after some trivial derivation,
we finally get

n0 ¼
eKCYI

ð2πÞ3=2σixσexδp
; a¼ 1

2ð1−ρ2Þσ21
b¼ 1

2ð1−ρ2Þσ22
; c¼−

ρ

2ð1−ρ2Þσ1σ2
hnei¼ e0n0

πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab−c2

p

hnexβi¼ e0n0M
πffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ab−c2
p

hneδi¼ e0n0N
πffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ab−c2
p

hnex2βi¼ e0n0

�
πbðab−c2Þ−3=2

2
þM2

πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab−c2

p
�

hneδ2i¼ e0n0

�
πaðab−c2Þ−3=2

2
þN2

πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab−c2

p
�

hnexβδi¼ e0n0

�
−
πcðab−c2Þ−3=2

2
þMN

πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab−c2

p
�
:

ðA7Þ

Substituting the above into Eq. (10), the dispersive cooling
rates can be calculated.

2. Uniform e-beam

We only consider a dc e-beam with a uniform profile and
radius Re, the average on the phase space turns into a
surface integral on the e-beam profile

Z
nePidXdYdS ¼

Z Z
S
ρ0

e
−

x2
β

2σ2
ix
−

y2
β

2σ2
iy
− δ2

2δ2
ip

ð2πÞ3=2σixσiyδip
dxβdyβdδ;

ðA8Þ

where ρ0 is the e-beam density and S∶ðxβ þDδþ xoÞ2þ
y2β ≤ R2

e. Since the dispersion only couples the horizontal
amplitude and the longitudinal momentum, we ignore the
vertical betatron motion, then Eq. (A8) can be simplified to

hnei ¼
Z Z

S1

ρ0
e
−

x2
β

2σ2
ix
− δ2

2δ2
ip

ð2πÞσixδip
dxβdδ; ðA9Þ

where S1∶ ðxβ þDδþ xoÞ2 ≤ R2
e. This integral is much

easier to solve. After some derivation, we finally get
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σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ix þD2δ2p

q
a ¼ Erf

�
Re þ xoffiffiffi

2
p

σ

�
þ Erf

�
Re − xoffiffiffi

2
p

σ

�

b ¼ e−
ðRe−xoÞ2

2σ2 ðRe − xoÞ þ e−
ðReþxoÞ2

2σ2 ðRe þ xoÞ
σ3

c ¼ e−
ðReþxoÞ2

2σ2 − e−
ðRe−xoÞ2

2σ2

σ

hnei ¼ e0ρ0a=2

hnexβi ¼ e0ρ0σ2ixc=
ffiffiffiffiffiffi
2π

p

hneδi ¼ e0ρ0Dδ2pc=
ffiffiffiffiffiffi
2π

p

hnex2βi ¼ e0ρ0σ2ixa=2 − e0ρ0σ4ixb=
ffiffiffiffiffiffi
2π

p

hneδ2i ¼ e0ρ0δ2pa=2 − e0ρ0D2δ4pb=
ffiffiffiffiffiffi
2π

p

hnexβδi ¼ −e0ρ0Dδ2pσ
2
ixb=

ffiffiffiffiffiffi
2π

p
: ðA10Þ

Substituting the above into Eq. (10), the dispersive cooling
rates can be calculated.
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