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In this work, we propose to use a pinhole camera at high photon energies, specifically 200–300 keV, to
measure ultra-small electron beam size by means of bending magnet radiation. We show that there is a
sufficient photon flux at the detector position. Our theoretical analysis includes an examination of the
applicability of the van Cittert-Zernike theorem for the bending magnet radiation generated by an ultralow
emittance electron beam and a detailed analysis of the imaging properties of rectangular pinhole cameras.
This led us to practical, universal formulas. We identify the optimal aperture size and resolution of the
camera in the given geometry. The theoretical findings are further substantiated by wavefront propagation
numerical simulations of partially coherent radiation. This study serves both as a practical guide for optical
engineering and an educational resource for explaining the imaging properties of pinhole cameras.
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I. INTRODUCTION

Advancements in the magnetic lattice design for storage
rings [1], along with the rapid design and construction of
next-generation synchrotron radiation (SR) light sources
[2,3], and cited within [4], have significantly reduced the
transverse electron beam size with respect to third-
generation light sources. This leads to a clear benefit in
terms of (spectral) brightness and coherence properties
[5,6] for users’ applications [7,8] but imposes tight require-
ments on electron beam diagnostic techniques based on
synchrotron radiation, in particular, those that utilize pin-
hole cameras.
The imaging properties of pinhole cameras have been

known since ancient times and are now routinely used to
visualize the objects at different wavelengths. In the case of
x rays, they have served as robust and effective tools for
electron beam size measurements throughout the develop-
ment years of SR sources, with recent applications [9–11];
a review table can be found in [12], numerical analyses of
the spatial resolution of x-ray pinholes were conducted in
[9,11] with SRW code [13,14] and with comparisons to
measurements presented in [15]. Incoherent imaging of

objects as small as the transverse size of the electron beam
in the modern diffraction-limited storage rings (with low
emittance on the order of 20 pm rad) requires the use of
shorter wavelengths compared to previously proposed
setups to achieve sufficient resolution. The reason being
the width of the point-spread function is proportional to the
square root of the radiation wavelength [16], Eq. 319.
Incoherent imaging enables the direct measurement of

the source size distribution without being influenced by the
radiation distribution from a single electron emitter. In the
case presented here, the setups necessitate the installation
of a dedicated radiation source, for example, a three-pole
magnetic chicane with a high magnetic field. In contrast,
techniques that rely on the partially coherent properties of
radiation, wherein the correlation function retains informa-
tion about the electron beam size, usually do not require the
installation of a separate radiation source. However, data
interpretation and the retrieval of electron beam size may be
more complex. An overview of SR-based diagnostics for
measuring the transverse size of the electron beam can be
found in [12,17]. Furthermore, there exist more subtle
techniques that leverage both imaging and partially coher-
ent properties of radiation to determine the electron beam
size, as demonstrated in [18,19].
In this paper, we propose a pinhole camera setup using

higher than usual photon energies, up to 200–300 keV,
generated by a central magnet of a magnetic chicane, so it
can be considered as the bending magnet radiation. Our
research focuses on optimizing the resolution capabilities
of this setup. For this, we studied the imaging character-
istics of a rectangular pinhole camera with wave optics
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approaches based on [16]. This study is augmented by
examining the applicability of the van Cittert-Zernike
theorem in the case of bending magnet radiation. As a
result, we present analytical design formulas and an
expression for the point spread function of a rectangular
pinhole camera and compare these results with numerical
simulations. We validate these theoretical derivations with
wavefront propagation simulations in the OCELOT toolkit
[20,21] using the Gaussian random fields approach [22] for
simulating partially coherent radiation. We conclude our
paper with the calculation of photon flux to demonstrate
that it is sufficient for electron beam diagnostics purposes.

II. THEORY

In this section, we first provide proof of the applicability
of the van Cittert-Zernike theorem within the parameter
space of our problem, with a quantitative estimation
presented in Sec. II A. Then we outline the requirements
for an aperture to function as a pinhole and to form an
image. We conclude this discussion by presenting calcu-
lations for the optimal parameters of a pinhole camera to
achieve the best possible resolution. Our findings include
simple design formulas and universal plots that can be
employed in the optical engineering of pinhole cameras.
These results are further supplemented by wavefront
propagation simulations of pinhole optics.

A. Applicability of the van Cittert-Zernike theorem

Let us consider the applicability of the van Cittert-
Zernike theorem to bending magnet radiation at a fre-
quency much higher than its critical frequency. The
theorem connects the radiation distribution of the source
with the coherence properties in the far zone. It can be
stated as follows: The modulus of the spectral degree of
coherence between two points in the far field of an
incoherent source is equivalent to the two-dimensional
Fourier transform of the source intensity distribution. The
validity of this theorem forms the basis for applying
incoherent imaging theory in the case of a pinhole camera.
Within statistical optics, SR is described as a Gaussian

random process. An important consequence of this is that
the higher-order correlation functions of the process can be
expressed in terms of the first-order correlation function
(G) with the help of the moment theorem. As a result,
knowing the second-order correlation function in the space-
frequency domain is all one needs to completely character-
ize the signal from a statistical viewpoint.
The following definition holds:

Gðr⃗1; r⃗2;ω1;ω2Þ ¼ hEðr⃗1;ω1ÞE�ðr⃗2;ω2Þi; ð1Þ

where brackets indicate ensemble averaging, E is the
electric field (considered as a scalar, i.e., limiting ourselves
to a given polarization component), r⃗ is the transverse

coordinate, and ω is the radiation frequency. By ensemble
averaging in the case of SR, we mean averaging of radiation
samples from different electron bunches that are considered
to share the same phase-space distribution.
Since SR radiation constitutes an ensemble of pulses of

finite duration, it is an intrinsically nonstationary statistical
process. However, in most practical cases, the electron
beam defines the duration of the radiation pulses (σt),
which is the order of several picoseconds (corresponding to
a few millimeters length), while the coherence time is
related to the formation length of the radiation (Lf). For
example, for bending magnet radiation at the critical
wavelength ƛc, coherence time is given simply by
ðτc ≈ Lfð1 − v=cÞ ∼ ƛc=cÞ, where γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
is

the Lorentz factor. It is evident that for x-ray sources,
τc ≪ σt, resulting in a very large number of spikes,
classifying this type of source as quasistationary and
granting applicability of the Wiener–Khinchin theorem.
In this case, hEðr⃗;ωÞi varies negligibly at the spike width
scale ∼1=σt. Hence, we can simplify the correlation
function to

Gðr⃗1; r⃗2;ωÞ ¼ hEðr⃗1;ωÞE�ðr⃗2;ωÞi: ð2Þ

This function is known as cross-spectral density.
Before continuing, we introduce the notion of spectral

degree of coherence gðr⃗1; r⃗2Þ, as

gðr⃗1; r⃗2Þ ¼
Gðr⃗1; r⃗2Þ

½Gðr⃗1; r⃗1ÞGðr⃗2; r⃗2Þ�1=2
; ð3Þ

where, for the notation simplicity, we omitted the depend-
ence on ω. The function gðr⃗1; r⃗2Þ is normalized to unity by
definition.
The concept of quasistationarity in the time domain

is the temporal analogy of quasihomogeneity in the
spatial domain. A quasihomogeneous source obeys the
assumption that hjEðr⃗Þj2i varies slowly on the scale of
the transverse coherence length, which is the effective
width of the spectral degree of coherence gðΔr⃗Þ. Because
of this, for quasihomogeneous sources, the following
approximation holds

Gðr⃗;Δr⃗Þ ¼ Iðr⃗ÞgðΔr⃗Þ; ð4Þ

where now Iðr⃗Þ is proportional to the radiation intensity
distribution at the source and where Δr⃗ ¼ r⃗2 − r⃗2.
A significant special case follows from Eq. (4) when

gðΔr⃗Þ has a spatial width comparable to the radiation
wavelength. In practical calculations, it is possible to
approximate gðΔr⃗Þ with a two-dimensional Dirac delta
function δðΔr⃗Þ even when the optical system has much
poorer resolution than the wavelength [23]. Thus the
expression for the cross-spectral density can be approxi-
mated by
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Gðr⃗;Δr⃗Þ ¼ Iðr⃗ÞδðΔr⃗Þ; ð5Þ

This kind of source is transversely incoherent. Both types
of sources: Eqs. (4) and (5) follow the van Cittert-Zernike
theorem. The original theorem was formulated for incoher-
ent sources in [24,25], followed by the generalized version
that was presented in [26,27].
Here we provide a quantitative estimate of the appli-

cability of the theorem in the case of bending magnet
radiation. We can always express the diffraction-limited
size and the divergence of the radiation through SR
formation length (Lf) as σr0 ∼

ffiffiffiffiffiffiffiffiffiffi
λ=Lf

p
and σr ∼

ffiffiffiffiffiffiffiffi
λLf

p
.

This always guarantees that

σrσr0 ∼ λ: ð6Þ

In our case of small wavelengths, we consider the
asymptotic limit with a large y ¼ λphc=λph and obtain
σr0 ∼ 1=ð ffiffiffi

y
p

γÞ, where λphc ∼ R=γ3 [28]. Using the relation
in Eq. (6), we obtain that Lf ∼ R=γ. Substituting this into
the expression for the diffraction-limited radiation size
results in σr ∼ R=ð ffiffiffi

y
p

γ2Þ. To estimate the beam size, we
use R ≈ 10 m, y ≈ 10, and γ ¼ 12000. This yields
σr ∼ 20 nm. We see that this size is much smaller than
the size of the electron beam, and thus we are in the
quasihomogeneous asymptotic regime and can safely apply
the van Cittert-Zernike theorem.

B. Rectangular pinhole camera

In the following analysis, we consider the behavior of
x-ray pulses impinging on a rectangular pinhole, although
our results are applicable to any wavelength. Upon apply-
ing similarity techniques, only one dimensionless param-
eter determines the characteristics of the pinhole camera:
the Fresnel number.
First, we define a pinhole camera as an optical element

that is typically associated with the following requirements:
(i) The pinhole must be situated in the far zone from the

source. This condition is necessary for relating the cross-
spectral density function of the imaged object in the far
zone to the source’s intensity distribution. This requirement
stems from the van Cittert-Zernike theorem. (ii) The pin-
hole size must be larger than the radiation coherence length,
ensuring the aperture does not alter the cross-spectral
density function. (iii) The source size must be larger than
the aperture size to achieve adequate resolution.
These three conditions are general requirements for an

aperture to function as a pinhole and to form an image of
the source. We present the outline of the pinhole imaging
setup in Fig. 1. In Figs. 2 and 3, we present snapshots of the
radiation as seen from a perfect monochromator at a
specific frequency ω. This representation remains general
because, in the frequency domain, different spikes in the
spectrum are statistically independent and can be analyzed
separately.
After propagating to the far zone, the radiation from

the source undergoes spatial filtering by the pinhole.
The pinhole ensures that the coherence properties of the

(a)

(b)

FIG. 1. Pinhole camera imaging setup: (a) outline of the proposed setup and (b) a visual explanation of the imaging properties of a
pinhole in the ray-tracing approximation. Image blurring represents the actual blurring.

FIG. 2. (a) A single statistical realization of the monochrom-
atized radiation field at the source, characterized by a Gaussian
distribution with a standard deviation of the transverse size of
20 × 10 μm2. This realization includes a noise structure that
models the source’s incoherence. (b) A single statistical realiza-
tion after propagation through a 10 × 10 μm2 aperture. In these
images, false colors represented by red and blue indicate the
positive and negative amplitudes of the slowly varying envelope
of the electric field.
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radiation are preserved while it significantly alters the
spatial frequency distribution (kx, ky), or equivalently, the
angular distribution. This effectively creates a secondary
source, preserving the coherence length in the far zone
along with all information about the source size.
Consequently, an image of the source forms in the far
zone beyond the pinhole. In the following section, we will
detail the optimal parameters for the pinhole camera and
elaborate on the first and second conditions previously
discussed.

C. Optimal parameters for a rectangular pinhole

We observe that the pinhole point spread function can be
factorized and may be presented as multiplication of two
one-dimensional line spread functions for each direction:
lps ¼ lpsx · lpsy , where line spread functions are written as
[16], Eq. 313

lpsx;yðΩ; y0Þ ¼
Z

1

−1
dξ

sin ½2ðξΩþ y0
ffiffiffiffi
Ω

p Þð1 − jξjÞ�
ξΩþ y0

ffiffiffiffi
Ω

p ; ð7Þ

where ξ is the transverse coordinate normalized by the
aperture size. The point spread function is determined
solely by the dimensionless parameter Ω ¼ a2=ðƛzeffÞ,
where zeff ¼ z1d=ðz1 þ dÞ, z1 is the distance from the
source to the pinhole, d is the distance from the pinhole to
the image plane, and a is the half-width of the aperture.
To optimize pinhole imaging performance and achieve

higher resolution, one should minimize the width of the
distribution given by Eq. (7) with respect to the Ω
parameter. Figure 4 presents a scan of the line spread
function as a function of Ω. Due to the presence of sinc-
function side lobes, the shape of the line spread function is
nontrivial. Given that its full width at half maximum may
not clearly indicate the best performance, selecting the
optimum Ω parameter is a subjective matter. We chose
Ω ¼ 4.5. This choice ultimately leads to the following
formula for the optimal pinhole camera aperture size:

a2 ≈ 4.5ƛzeff : ð8Þ

This corresponds to an optimum between defocusing
aberrations and diffraction effects. For a detailed explan-
ation of the limits of large and small Ω, we refer the reader
to [16].
We analyzed the imaging problem numerically using the

OCELOT toolkit [21], employing a model where a point
source propagates through an optical system. This simu-
lation yields a point spread function at the pinhole when the
aperture is set to its optimal size. The results are presented
in Fig. 5.
We also studied the evolution of the point spread

function downstream of the aperture, as illustrated in
Fig. 6(a). After normalizing the spatial units, as depicted
in Fig. 6(b), the relative resolution stabilizes to its mini-
mum, approximately 0.3 times the diffraction length
(ƛz=a2), from the slit, as also noted in [9]. We provide
an expression for the full width at the half maximum of the
line spread function:

FIG. 3. A single shot image taken after the pinhole in the far
zone. The spiky structure indicates the acquired coherence of the
radiation that occurred upon free space propagation. Note
quadratic phase front curvature, visible as rings of alternating
false color.

FIG. 4. Line spread functions for variousΩ. We may choose the
optimum as Ω ¼ 4.5, while other choices can be equally valid as
in the region 2 < Ω < 5 we have almost the same width of the
main peak and slightly different “wings.” Here we found an
optimum between defocusing aberration and diffraction effects.

FIG. 5. Comparison of the analytical point spread function with
numerical calculations for Ω ¼ 4.5.
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δr ≃ 1.5

ffiffiffiffiffiffiffi
ƛ
zeff

s
d: ð9Þ

As evident from the preceding discussion, rectangular
geometry serves as a demonstrative approach for teaching
the optics of a pinhole camera. Explaining the concept with
a rectangular aperture helps to demonstrate the properties
of the diffracted field, eliminating the need for complex
derivations.

D. Numerical simulations

Wavefront simulations based on the propagation of
partially coherent fields were investigated in [22]. We used
this technique to model the bending magnet radiation. We
generated numerous (104) statistical realizations of the
radiation field, as illustrated in Figs. 2(a) and 3, and
ensemble-averaged them to obtain an experimentally
observable distribution, as would be observed on a beam-
line equipped with a conventional monochromator. In
Figs. 7 and 8, we illustrated how the size of the point
spread function compares to the size of the image. We
utilized the parameters listed in Table I.

We roughly estimated the expected blurring of the size of
the image beam size using an approximate formula

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2e þ σ2psf

q
: ð10Þ

This formula underestimates the actual resulting size
because it assumes that widths sum up quadratically, which
is only true for Gaussian distributions. However, in this
case, we are dealing with a non-Gaussian distribution of the
point spread function, as observed in Fig. 4. The factor of 4
originates from the specific geometry of the pinhole
camera. Based on a Gaussian fit, σpsf is estimated to be

FIG. 6. Line spread function evolution after the pinhole with the
optimal size of Ω ¼ 4.5 or 10 × 10 μm2 at 250 keV. In (a), the
axes are presented in physical units, while in (b), the axes are in
dimensionless units. The horizontal axis is in units of the
diffraction length, where 0.63 corresponds to the image location
at 20 m. The vertical axis is expressed in units of relative
resolution, as derived from the expression in Eq. (9). The right-
hand side of (a) and (b) illustrates the variation of the line spread
function with respect to energy. Interestingly, the distribution
undergoes a series of abrupt transitions before reaching the far
zone, indicating that the transition from the near zone to the far
zone is not smooth but rather abrupt.

FIG. 7. (a) Source distributions and (b) its twofold magnified
image, convolved with the point spread function (provided to
scale in an embedded inset).

(a) (b)

FIG. 8. Image (dashed line) and the source distribution (solid
line), which is 2 times magnified for comparison. Slice over
x ¼ 0 and y ¼ 0 from Fig. 7 for each direction correspondingly.

TABLE I. Simulation parameters.

Parameter Value

Natural emittance (ϵ0x × ϵ0y ) 20 × 5 ðpm radÞ2
Beta function (βx;y) 20 m
Beam size (σx × σy) 20 × 10 μm2

Beam energy (Ebeam) 6 GeV
Photon energy (Eph) 250 keV
Source to pinhole (z1) 10 m
Pinhole to image (d) 20 m
Pinhole size (a) 5 μm
Point spread function:
FWHM 10.3 μm
σpsf 6.7 μm
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6.7 μm from the simulation. We present a comparison of
this estimation with the simulation results in Table II.

III. PROPOSED SETUP

In this section, we propose the conceptual design of a
setup to diagnose the electron beam size. We suggest a
three-pole, 1-m-long magnetic chicane, schematically
depicted in Figs. 1 and 9, to serve as a synchrotron
radiation source. The device features a single yoke with
coils powered by a single power supply. The magnetic field
in the outer compensatory coils is three times lower than
that in the central coil. The design’s advantages include its
compactness and low cost. The SR background from the
outer magnets of the chicane and other storage ring bending
magnets is negligibly small, as we operate at large values of
y ¼ λphc=λph. This kind of device should be installed in a
zero-dispersion section of the storage ring. This placement
is crucial to prevent an increase in beam emittance.
In the hard x-ray range, a rectangular pinhole can be

easily formed using a combination of two perpendicular
conventional slits. It is important to note that the slits
should be sufficiently thick to block 300-keV-order hard
x-ray light.
The SR emitted by the central pole is filtered through

a 4-mm-thick lead filter to narrow down the radiation
bandwidth. We need this filtration to mitigate the effects of
dispersion at the lower end of photon energies. The
exponentially decaying tail of the SR spectrum, combined
with the transmission characteristic of the filter, effectively
creates a bell-shaped spectrum with a 150 keV bandwidth
and 250 keV central energy, as seen in Fig. 11. The filter
thickness is optimized for sufficient photon flux at the
detector and acceptable resolution based on the radiation
bandwidth. We estimate the photon flux to be around
8 × 107 photons=s for a 4-mm-thick Pb filter, chicane
magnetic field of 1.7 T, and 100 mA electron beam.

Figure 10 provides an estimation of the photon flux for
magnetic fields ranging from 1.5 to 1.9 T.

IV. DISCUSSION

In this section, we address important considerations for
implementing the pinhole camera in a real facility, which
were not covered in the main body of this paper. First, one
needs to consider that to obtain accurate results from the

TABLE II. Image sizes.

σi; μm [(Eq. (10)] σi; μm (simulation)

σx ¼ 20 μm 40.6 42.3
σy ¼ 10 μm 21.1 22.3

Z

B

FIG. 9. Magnetic chicane for the proposed x-ray pinhole
camera. The magnetic field of the central pole is about 1.7 T.
The overall length of the device is 1 m.

FIG. 10. Estimation of the photon flux through the pinhole
from a 6 GeV electron beam as a function of the thickness of the
Pb filter, plotted for different amplitudes of the magnetic field of
the central magnet of the chicane.

FIG. 11. On-axis spectrum of synchrotron radiation upon
spectral filtering with 4 mm lead plate. We provide the distri-
bution for different magnetic field strengths of the central pole,
assuming a 6 GeV electron beam and with the red line the
transmission characteristic of 4 mm of Pb. Calculations are made
with SPECTRA code [30].
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measured images, one must perform a deconvolution
operation. This operation uses the point spread function
described earlier in this paper. Moreover, it is crucial to
consider the broad spectrum of radiation passing through
the pinhole, as illustrated in Fig. 11. To address this, one
must calculate a weighted average of the point spread over
the spectrum and perform a deconvolution operation using
this average. We present this in comparison to the line
spread functions for 250 keV in Fig. 12. The variation of the
line spread functions within this energy range is depicted in
the right subplot of Fig. 6. The FWHM of the spectrum-
averaged line spread function increases from 10.3 μm for
monochromatic radiation to 13.7 μm. The subsequent step
in data analysis involves deconvolution using the point
spread function of the x-ray camera employed in the
experiment, as discussed in [9].
Another important question to address is the design of an

appropriate detector for the proposed setup. Given these
stringent requirements, one may use indirect detectors that
convert x-ray photons to the visible range using a scintil-
lator. For high conversion efficiency of the scintillator,
materials with a high atomic number (Z) are preferred, such
as lutetium compounds, such as Lu2O3∶Eu, as suggested in
[31]. A scintillator made from such materials will generate
a sufficient number of photons to be detected by a standard
industrial camera and associated optics, as noted by [31].
The photon flux for a specific detector can be readily
calculated using data from Fig. 11.

V. CONCLUSION

In this paper, we discussed the applicability of the van
Cittert-Zernike theorem to the imaging of incoherent syn-
chrotron radiation with a pinhole. As a result of our analysis,
we have provided an exact expression for the point spread
function, which can be factorized as the product of two one-
dimensional line spread functions. Using simple analytical
expressions, we derived design formulas for a rectangular
pinhole camera and calculated its resolution. As a practical
application, we proposed a diagnostic beamline based on a
magnetic chicane to measure the transverse electron beam
size at ultralow-emittance machines with a pinhole camera.
Operating at high photon energies (∼200–300 keV) and

applying spectral filtering with a 4-mm-thick lead plate
allows one tomaximize spatial resolution, resulting in a point
spread function width of approximately 13.7 μm. We con-
clude our paper with estimates of the photon flux and
demonstrate sufficient photon flux for effective imaging
using the pinhole camera.
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