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We describe a method that measures the unloaded quality factor Q0, the external quality factor QE, and
the cavity detuning Δω with a recursive least-squares algorithm. It combines a large number of consecutive
measurements to successively improve an estimate of fit parameters that asymptotically converges to the
“real” values. Exploiting the large amount of data acquired by a digital low-level radio frequency system
permits us to reach this asymptotic regime in a moderate time frame of seconds to minutes. Simulations
show that the method works both for critically coupled and overcoupled cavities. A new calibration method
addresses very tight tolerances of the method on system parameters.
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I. INTRODUCTION

The unloaded quality factor of superconducting cavities,
commonly referred to as Q0, parameterizes the losses due
to the energy dissipated in the walls of the cavity. These
dynamic losses constitute a major heat load for the
cryogenic system, especially for accelerators operating in
continuous-wave mode [1–3], because it limits their energy
efficiency. Measuring Q0 is therefore of paramount impor-
tance for the successful operation of superconducting
accelerating structures and the accelerators that use them.
Measuring Q0 in critically coupled cavities is usually

done in a vertical cryostat and is based on comparing the
incident power to the power escaping through the power
coupler, the measuring antenna, and via losses in the cavity
walls [4]. A careful analysis of the associated uncertainties
is documented in [5]. Those were found to be in the several
percent range. Additional systematic errors, especially due
to rereflections from the circulator, are discussed in [6,7].
Refined methods, exploiting both amplitude and phase
information, are discussed in [8,9].
Measuring Q0 in overcoupled cavities equipped with

high-power couplers, usually found in cryomodules, is
more difficult. In particular, because the power escaping
through the power couplers is orders of magnitude larger
than the power dissipated in the cavity walls or escaping
through the measuring antenna. In the past, this made it
practically impossible to measure Q0 by analyzing radio-
frequency (rf) signals, where [10] is an exception.

Therefore, calorimetric measurements are normally used.
Either by measuring the increase of the helium pressure [11],
if the enclosing helium vessel is closed, or by measuring the
flow of evaporated helium [12], if helium cooling is operated
in a steady state. The situation is aggravated, if multiple
cavities are jointly connected to a single helium vessel,
which only allows to measure their combined power dis-
sipation. The cited accuracies for the determination ofQ0 are
in the 10%–15% level, reached after averaging the helium
flow for times measured in hours.
In this report, we extend the analysis from [13] and

describe a new method that measures the unloaded quality
factor Q0, the external quality factor QE, and the cavity
detuning Δω for critically coupled and for overcoupled
cavities. It uses a recursive least-squares algorithm and
combines a large number of successive measurements to
improve an estimate of the fit parameters. Affected by
process noise only, this type of measurement can be shown
to asymptotically converge to the “real” values [14], whereas
measurement noise can slightly bias the asymptotic value.
We will discuss this further below. Nevertheless, exploiting
the large amount of data acquired by a digital low-level
rf system permits us to reach the asymptotic regime in a
moderate time frame of seconds or minutes.
This report is organized as follows: We first discuss the

model and the system identification process in Sec. II,
before simulating a generic system in Sec. III, where we
find that, especially for overcoupled systems, the sensitivity
to systematic errors are extreme. We address this problem
in Sec. IV with a new calibration method, specific to this
type of measurement, before concluding.

II. MODEL AND SYSTEM IDENTIFICATION

We describe the superconducting cavity as resonator
with resistor R, capacitor C, and inductor L coupled in
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parallel that is driven by a current I. After averaging over
the rf oscillations, the envelope of the voltage across the
components is described by V ¼ Vr þ iVi, where Vr is the
real part of the voltage (in-phase, I) and Vi is the imaginary
part (quadrature phase, Q). This dynamical system can be
written as [15]

 
dVr
dt
dVi
dt

!
¼
�−ω12 −Δω

Δω −ω12

��
Vr

Vi

�
þ
�
ω12R 0

0 ω12R

��
Ir
Ii

�
;

ð1Þ

where Δω is the cavity detuning, ω̂ is the resonance
frequency of the cavity, and ω12 ¼ ω̂=2QL is the cavity
bandwidth with the loaded quality factor 1=QL ¼
1=QE þ 1=Q0 þ 1=Qt. Here QE is the external quality
factor, Q0 is the unloaded quality factor, and Qt ≫ Q0 is
the quality factor of the antenna that measures the field in
the cavity. I ¼ Ir þ iIi is the current that drives the cavity.
It is measured by directional couplers that determine the
forward current Iþ ¼ Iþr þ iIþi and the reflected current
I− ¼ I−r þ iI−i . Close to resonance I⃗þ ¼ ðIþr ; Iþi Þ⊤ is
related to I⃗ ¼ ðIr; IiÞ⊤ through I⃗ ¼ ð2QL=QEÞI⃗þ, which
leads us to [13]

 
dVr
dt
dVi
dt

!
¼
�−ω12 −Δω

Δω −ω12

��
Vr

Vi

�
þ
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0 ωER
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:

ð2Þ

Converting the system to discrete time with time step Δt
results in

V⃗tþ1 ¼ AV⃗t þ BI⃗þt þ w⃗t with

A ¼
�
1 − ω12Δt −ΔωΔt
ΔωΔt 1 − ω12Δt

�
ð3Þ

and B ¼ ωEΔtR1. Here w⃗t is the uncorrelated process noise
with magnitude σp. It is thus characterized by its expect-
ation value Efw⃗tw⃗⊤

s g ¼ σ2pδts1. Additionally, we add
measurement noise w⃗0

t by using

V⃗ 0
t ¼ V⃗t þ w⃗0

t ð4Þ

in the system identification process. We assume it is
uncorrelated, has magnitude σm, and is characterized by
Efw⃗0

tw⃗0⊤
s g ¼ σ2mδts1.

Similar to [13], we isolate the dependence on the fit
parameters by first writing Eq. (3) as

V⃗ 0
tþ1 − V⃗ 0

t ¼ FV⃗ 0
t þ ωEΔtRI⃗

þ
t ð5Þ

with

F ¼
�− 1

2
ðωE þ ω0ÞΔt −ΔωΔt

ΔωΔt − 1
2
ðωE þ ω0ÞΔt

�
ð6Þ

and ω0 ¼ ω̂=Q0
0 with 1=Q0

0 ¼ ð1=Q0 þ 1=QtÞ. That ω0

depends on both Q0 and Qt indicates that we cannot
disentangle their respective contributions using this method.
Since normally Qt ≫ Q0, this should not be a big problem.
Otherwise, βt ¼ Q0=Qt must be determined by conventional
methods [4,5] of the critically coupled cavity. Continuing
with the discussion of the system identification process, we
write the right-hand side of Eq. (5) as

FV⃗ 0
t þ ωEΔtRI⃗

þ
t

¼ ωEΔt

 
− 1

2
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This allows us to write Eq. (5) in the compact form

y⃗tþ1 ¼ Gt

0
B@

ωEΔt
ΔωΔt
ω0Δt

1
CA ð8Þ

with

Gt ¼
 
− 1

2
V 0
r þ RIþr −V 0

i − 1
2
V 0
r

− 1
2
V 0
i þ RIþi V 0

r − 1
2
V 0
i

!
t

and

y⃗tþ1 ¼ V⃗ 0
tþ1 − V⃗ 0

t ð9Þ
which has the same structure already encountered in [13].
Following in the same vein, we write successive versions of
Eq. (8) in a vectorized form0
BBBBB@

y⃗2
y⃗3

..

.

y⃗Tþ1

1
CCCCCA¼UT

0
B@

ωEΔt
ΔωΔt
ω0Δt

1
CA with UT ¼

0
BBBBB@

G1

G2

..

.

GT

1
CCCCCA ð10Þ

and solve it with the Moore-Penrose pseudoinverse [16] to
arrive at

q⃗T ¼

0
B@

ωEΔt
ΔωΔt
ω0Δt

1
CA

T

¼ ðU⊤
T UTÞ−1U⊤

T

0
BBBBB@

y⃗2
y⃗3

..

.

y⃗Tþ1

1
CCCCCA; ð11Þ
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where we introduce the vector q⃗T of the estimate of fit
parameters after T iterations.
The matrix UT rapidly grows to unmanageable propor-

tions such that we resort to a recursive algorithm that solves
it one step at a time. We therefore introduce P−1

T ¼ U⊤
T UT

and its initial value P0 ¼ p01 and express PTþ1 through PT
in the following way:

P−1
Tþ1 ¼U⊤

Tþ1UTþ1

¼ p01þG⊤
1 G1 þG⊤

2 G2 þ � � � þG⊤
T GT þG⊤

Tþ1GTþ1

¼ P−1
T þG⊤

Tþ1GTþ1: ð12Þ

And here the previously mentioned bias originates. Since
the matrices Gt depend linearly on the voltages V⃗ 0

t, the
terms G⊤

t Gt depend quadratically on V⃗ 0
t ¼ V⃗t þ w⃗0

t. The
measurement noise w⃗0

t from Eq. (4) therefore also appears
quadratically and on average causes a bias proportional to
σ2m, which turned out to be insignificant in all simulations
reported below.
It turns out that retrieving PTþ1 from inverting

P−1
T þ G⊤

Tþ1GTþ1 can be efficiently done with the
Woodbury matrix identity [17]

ðAþ VW⊤Þ−1 ¼ A−1 − A−1Vð1þW⊤A−1VÞ−1W⊤A−1:

ð13Þ

With the substitutions A−1 ¼ PT , V ¼ G⊤
Tþ1, and W⊤ ¼

GTþ1, we obtain

PTþ1¼½1−PTG⊤
Tþ1ð1þGTþ1PTG⊤

Tþ1Þ−1GTþ1�PT: ð14Þ

We now continue to find q⃗Tþ1 by writing Eq. (11) for T þ 1

q⃗Tþ1 ¼ PTþ1ðG⊤
1 y⃗2 þG⊤

2 y⃗3 þ � � � þG⊤
T y⃗Tþ1 þG⊤

Tþ1y⃗Tþ2Þ
¼ ½1− PTG⊤

Tþ1ð1þGTþ1PTG⊤
Tþ1Þ−1GTþ1�PT

×
�XT

t¼1

G⊤
t y⃗tþ1 þG⊤

Tþ1y⃗Tþ2

�

¼ ½1− PTG⊤
Tþ1ð1þGTþ1PTG⊤

Tþ1Þ−1GTþ1�
× ðq⃗T þ PtG⊤

Tþ1y⃗Tþ2Þ: ð15Þ

Equations (14) and (15) constitute the algorithm to con-
tinuously update estimates for the three components of q⃗,
the bandwidth qð1Þ ¼ ωEΔt, the detuning qð2Þ ¼ ΔωΔt,
and qð3Þ ¼ ω0Δt as new voltage and current measurements
become available.
Like in [13] we introduce a “forgetting factor” α ¼

1 − 1=Nf, where Nf is the time horizon over which old
measurements are discounted. This is of limited practical
value here, because it limits the achievable accuracy of the
method. It might, however, become useful to investigate
the stability of the measurements and whether some

unaccounted external factors cause the fit parameters to
vary over time. To avoid the limitation of the accuracy in
this report, we choose Nf ¼ 106 in all simulations, a value
much larger than the number of iterations used. With α
included, Equation (12) reads P−1

Tþ1 ¼ αP−1
T þ G⊤

Tþ1GTþ1

and Equation (14) becomes

PTþ1 ¼
1

α
½1 − PTG⊤

Tþ1ðαþ GTþ1PTG⊤
Tþ1Þ−1GTþ1�PT

ð16Þ

whereas Equation (15) turns into

q⃗Tþ1 ¼ ½1 − PTG⊤
Tþ1ðα1þGTþ1PTG⊤

Tþ1Þ−1GTþ1�

×

�
q⃗T þ 1

α
PtG⊤

Tþ1y⃗Tþ2

�
: ð17Þ

In these equations, the calculations are moderately time
consuming, because the involved quantities are matrices. In
particular, PT is a 3 × 3 matrix, GTþ1 is a 2 × 3matrix, and
the inversion involves the 2 × 2 matrix α1þ GTþ1PTG⊤

Tþ1.

III. SIMULATIONS

In the simulations, we assume a generic superconducting
cavity with a resonance frequency ω̂=2π ¼ 109 Hz and
Q0

0 ¼ 109. As in [13], we scale the voltages and currents to
their maximum values and denote the corresponding real
and imaginary values by vr, vi, ir, and ii, respectively. For
the process noise, we assume σp ¼ 10−4 × Vmax and for the
measurement noise, σm ¼ 10−3 × Vmax. Once the cavity
reaches a steady state, the first and last columns of Gt in
Eq. (9) become linearly dependent. We therefore have to
pulse the generator that excites the cavity. In all simula-
tions, we turn it on and off every 1000 iterations. We
refer to the MATLAB [18] code on github [19] for the details
of the implementation.
We first consider a close to critically coupled system

and assume QE ¼ 8 × 108, which results in a bandwidth of
f12 ¼ ω12=2π ¼ 1.125 Hz. For the detuning, we assume
Δω ¼ ω12=2. Since both ωE and ω0 are very small, we
chose a moderately slow sampling rate of 1 kSample/s or
Δt ¼ 10−3 s. If the LLRF system operates at a higher rate,
low-pass filtering and subsequent undersampling of the
output are beneficial because it reduces the measurement
noise and reduces the bias mentioned before.
The top-left part in Fig. 1 shows the normalized voltages

and currents for 10 000 iterations, which corresponds to
10 s in real time. The pulsing currents (lower panel) and
the responding voltages (upper panel) are clearly visible.
The top-right plot shows fE ¼ ωE=2π, Δf ¼ Δω=2π, and
fQ0

¼ ω0=2π as the simulation progresses. We observe that
these fit parameters approach constant values after a few
thousand iterations. The lower-left part shows QE ¼ ω̂=ωE
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and Q0
0 ¼ ω̂=ω0. Both quantities approach the correct

values on the same timescale as the frequencies. The part
on the lower right shows the relative uncertainties σðQÞ=Q
(the “relative error bars”) derived from the diagonal
elements of the empirical covariance matrix PT . For
example, the error bar of Q0

0 is approximately given by
σðQ0

0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PTð3; 3Þ

p
σm. We find that these statistical uncer-

tainties quickly approach the percent level.
We evaluate the sensitivity to systematic uncertainties

by either changing the resistance R or the calibration scale
factor to determine V⃗ 0

T by 5% when producing the data,
thus causing a systematic mismatch between the assumed
and the “real” model. We find that these changes also
affect the fitted values of QE and Q0

0 by about 5%. We
conclude that the method is reasonably robust in this
regime of operation.
Next, we consider an overcoupled cavity withQE ¼ 106,

which results in a bandwidth of f12 ¼ ω12=2π ¼ 500 Hz.
Again, we use Δω ¼ ω12=2 in the simulations. Since QE is
much lower, the system reacts much more speedily and we
choose a smaller value of Δt ¼ 10−4 s. The simulation
extends over 6 × 104 iterations which corresponds to 6 s
real time.

The four parts in Fig. 2 follow the same order as in Fig. 1
where the top left shows the pulsing voltages and currents
and the top right shows the fit parameters with ω0=2π ≈
1 Hz and ωE=2π ≈ 1000 Hz due to the large difference
betweenQE andQ0

0. These frequencies lead to the fit values
for Q0

0 and QE shown on the bottom left. Within about
2 × 104 iterations, they approach the values used to gen-
erate the data. The corresponding relative uncertainties,
shown on the bottom right, are 2% and less than 10−3,
respectively. We conclude that the algorithm actually
recovers the quality factors with good resolution, despite
their 3-order-of-magnitude difference.
The sensitivity to calibration uncertainties of the resis-

tance R and voltage measurement, on the other hand, is
extreme. Scale errors, off by 5 × 10−4, either of the shunt
impedance or the voltage measurements scale almost
double the fitted value of Q0

0. Repeating the sensitivity
analysis for a cavity with QE ¼ 107 we find that 10 times
larger scale errors of 5 × 10−3 double the fitted value of
Q0

0, whereas in a cavity with QE ¼ 108, scale errors of
5 × 10−2 double Q0

0.
This extreme sensitivity to systematic errors warrants a

discussion of methods to calibrate the hardware.

FIG. 1. Simulation of a critically coupled cavity: voltages and currents (top left); fit parameters fE ¼ ωE=2π, Δf ¼ Δω=2π, and
fQ0

¼ ω0=2π (top right); QE and Q0
0 (bottom left); relative uncertainties (bottom right).
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IV. CALIBRATION

We emphasize that all hardware must be meticulously
calibrated following the discussion in [4,5] as well as
calibrating the propagation delays by de-embedding [20]
the ancillary hardware.
Once this is accomplished, we turn our attention to the

new algorithm and note that it depends entirely on the
definition of the matrix Gt from Eq. (9). We observe that
any scale factors of currents or voltages can be absorbed in
the resistance R, which serves as a factor to make currents
and voltages commensurate. The systematic errors dis-
cussed at the end of the previous section were caused by
such an imbalance between the currents and voltages that
we can compensate by adjusting R. For example, simulta-
neously increasing all voltages tenfold and, at the same
time, increasing R tenfold, leaves the fit parameters
unaffected. This is easy to see, because both Gt and y⃗tþ1

from Eq. (9) are multiplied by ten, but this common factor
cancels, once q⃗T is calculated in Eq. (11). Being the only
free parameter in the algorithm, we therefore have to
determine R to the 10−4 level.
We determine R from Eq. (1) in steady state (dV=dt ¼ 0)

and on-resonance (Δω ¼ 0). With input currents at a
constant value, the steady state is typically reached after

a few seconds. If the data acquisition system runs with a
high sampling rate, the algorithm from [13] can validate
that Δω is indeed zero. Under these conditions,
Equation (1) simplifies to

0 ¼
�−ω12 0

0 −ω12

��
Vr

Vi

�
t

þ
�
ω12R 0

0 ω12R

��
Ir
Ii

�
t

:

ð18Þ

Note that here we use the total current I⃗ ¼ I⃗þ þ I⃗− instead
of the forward current I⃗þ. We thus need to add both
channels from the directional coupler normally used to
measure the forward current only. By inspecting Eq. (18),
we find that the bandwidth ω12 cancels, leaving us with

�
V 0
r

V 0
i

�
t

¼ R

�
Ir
Ii

�
t

: ð19Þ

In the latter equation, we added the prime to the voltages to
indicate that their measurement is affected by measurement
noise of magnitude σm. Moreover, we explicitly added the
subscript t to denote that even in a steady state, the noise
causes the values to vary with time. Thus, we can also

FIG. 2. Simulation of an overcoupled cavity: voltages and currents (top left); fit parameters (top right); QE and Q0
0 (bottom left);

relative uncertainties (bottom right).
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repeat measurements to improve the accuracy of determin-
ing R. Equation (19) has indeed the same structure as
Eq. (8) with V⃗ 0

t taking the role of y⃗tþ1, the resistance R
taking the role of q⃗T , and I⃗t taking the role of Gt. We can
therefore use the same recursive least-squares algorithm
already described in Sec. II, especially Eqs. (16) and (17),
to determine R. The corresponding equations now read

PTþ1 ¼
�

1

αþ PTI⃗
2
T

�
PT ð20Þ

and

qTþ1 ¼
�

1

αþ PTI⃗
2
T

�
ðαqT þ PTI⃗

⊤
T V⃗

0
TÞ ð21Þ

where qT is the steadily improving estimate of the
resistance R. Again, we refer to [19] for the details of
the implementation in MATLAB.
The left-hand plot in Fig. 3 shows the difference between

the estimated value of R and the true value, often referred to
as estimation error, as the calibration progresses for 106

iterations after the steady state was reached. Here we do not
use any forgetting factor and set α ¼ 1. We observe that the
estimation error steadily decreases below the 10−4 level that
is required to determine the unloaded quality factor in
overcoupled cavities. The right-hand plot shows the
empirical covariance matrix PT as the calibration pro-
gresses. It steadily decreases as well. From PT , we can
obtain the approximate error bars of R by evaluat-
ing

ffiffiffiffiffiffi
PT

p
σm.

We thus find that the described calibration procedure
indeed allows us to determine R with high precision. All
systematic scale factors are then incorporated in R as long
as the hardware used in the calibration is the same one used
to measure Q0

0.

V. CONCLUSIONS

We described a new method to determine the unloaded
quality factor of superconducting cavities. The method
works both for critically coupled and overcoupled cavities
but is very sensitive to systematic calibration errors. This
sensitivity can be absorbed into the resistance R that can be
calibrated with high precision. Both the identification of the
quality factors and the calibration of R employ recursive
least-squares algorithms, which are known to converge
toward the “real” values.
We have, however, to keep in mind that the method

relies on the fit parameters being constant while the
measurement is ongoing. This can be verified, provided
the data acquisition system and the analog-to-digital
converters sample at a high rate. Low-pass filtered and
undersampled signals are passed to the algorithm described
in this paper, while the high-speed signals are passed to the
algorithm described in [13]. The latter can then be operated
in parallel to determine the detuning Δω and the bandwidth
ω12 at high speed to ensure that the parameters are indeed
constant. A rapid increase in ω12 would indicate a quench,
while microphonics or Lorentz force detuning show up as
variations of Δω.
In particular, at very high power levels, the Lorentz

force detuning could become a problem, especially due to
pulsing the input current. This might limit the new method
to lower power levels. Optionally, other, more gentle
excitation patterns, for example by amplitude modulating
the input power with a sinusoidal variation, can be
explored. This would still ensure the algorithm works,
though possibly at the expense of slower convergence.
Optimizing these methods is, however, outside the scope
of this report.
The need to pulse or modulate the input power interferes

with continuous-wave operation of an accelerator, but only
very briefly, because the time needed to achieve reasonable
accuracies is very short, only a few seconds or minutes are
needed. This could either be scheduled during dedicated

FIG. 3. The estimation error (left) during the calibration of R and the empirical covariance matrix PT (right) as a function of the
number of iterations.
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machine development shifts or during brief interruptions of
regular operations.
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