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Imposing angular momentum to a particle beam increases its stability against perturbations from space
charge [Y.-L. Cheon et al., Phys. Rev. Accel. Beams 25, 064002 (2022)]. In order to fully explore this
potential, proper matching of intense coupled beams along regular lattices is mandatory. Herein, a novel
procedure assuring matched transport is described and benchmarked through simulations. The concept of
matched transport along periodic lattices has been extended from uncoupled beams to those with
considerable coupling between the two transverse degrees of freedom. For coupled beams, matching means
the extension of cell-to-cell periodicity from just transverse envelopes to the coupled beam moments and to
quantities being derived from these.
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I. INTRODUCTION

Preservation of beam quality is of major concern for
acceleration and transport, especially of intense hadron
beams. This aim is reached at best through the provision of
smooth and periodic beam envelopes, being so-called
matched to the periodicity of the external focusing lattice.
The latter is usually composed of a regular arrangement of
solenoids or quadrupoles. For the time being, the quality
of matching has been evaluated through the periodicity of
spatial beam envelopes. This is fully sufficient as long as
there is no coupling between the phase space planes (for
brevity “planes”), neither in beam properties nor in lattice
properties.
For beams without coupling, various matching methods

for intense beams have been proposed and realized in
operation. First approaches, being still applied nowadays,
base on differential rms-envelope equations formulated by
Sacherer [1,2]. These assume KV distributions and calcu-
late space charge forces from homogeneously charged rms-
equivalent ellipsoids. The forces are linear and preserve the
rms emittances. Albeit assuming artificial KV distributions,
rms-equivalent matching of real beams has been conducted
very successfully during the last decades. It became a state-
of-the-art tool in the operation of modern intense-beam
accelerators, see [3–5] for instance. Proper periodic solutions
are especially relevant for systematic optimization of differ-
ent lattice properties with respect to preservation of beam

quality. Usually, the lattice parameter being optimized is its
focusing strength, i.e., the imposed phase advance.
Variation of lattice parameters revealed many tools to

optimize acceleration of intense beams with given emit-
tances and intensity. Focusing can be accomplished by
solenoids or by quadrupoles and systematic comparisons
are discussed in [6]. Another way is varying the phase
advance along the periodic structure as considered in [7].
Already in 1960s, different quadrupole focusing schemes
such as FODO, FOFODODO, and FOFOFODODODO
have been analyzed systematically [8].
Recent studies revealed that introducing angular momen-

tum to the incoming beam opens another set of free
parameters for further optimizing beam quality along
periodic lattices [9]. Evidence has been provided that beam
stability against perturbations from nonlinear space charge
forces increases with the amount of introduced angular
momentum. This is in analogy to the stabilization of flying
objects such as bullets or footballs through spinning.
Imposing angular momentum is a very promising tool to

further augment accelerator performance. It causes cou-
pling between the horizontal and vertical plane and thus
implies dedicated efforts for proper matching to periodic
lattices. Matching with coupling between the horizontal
and longitudinal plane has been investigated in [10]. Beams
acquire finite angular momentum through, i,e., the presence
of skew quadrupole errors or longitudinal magnetic fields
[11]. Special cases of beams with zero four-dimensional
emittances have been treated in [12] (x-y coupling).
The present work is on the development and demon-

stration of a method to determine a solution for four-
dimensional (4D) rms-matched transport of intense beams
with considerable transverse coupling, an issue being
addressed conceptually in [13]. It partially implements the
early concept, i.e., tracking of moments, into a procedure to
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obtain full cell-to-cell 4D-periodicity. Through simulations,
it is shown that the lattice periodicity is not just matched by
the two transverse envelopes but also by the beam rms
moments that quantify coupling. To this end, an iterative
procedure toward the periodic solution is applied. It starts by
determining the solution with zero current, using a method
that is applied later also to beams with current.
The TRACE-2D code [14] is well suited to provide for a

matching beam line between a given initial beam matrix
and a desired exit beam matrix even for a full 4D scenario.
However, it is an intrinsic property of the periodic-solution-
problem that the initial beam matrix at the entrance of the
periodic channel is unknown. Accordingly, this code cannot
be applied to the present scenario in a straightforward way.
It is explicitly stated here that providing for a specific

design of the matching line itself is beyond the scope of
the present work. This paper aims to demonstrate that a
4D-periodic cell-by-cell solution exists and demonstrates
its derivation. A detailed definition of the specific matching
line is a hard task to be addressed in future work. However,
a tentative approach is sketched in the Appendix.
The following section briefly introduces basic terms of

beam rms-moments transportation through linear lattice
elements. Afterward, the beam line providing angular
momentum, matching, and periodic focusing is introduced.
The fourth section is on modeling the periodic channel for
beams without and with current, followed by the descrip-
tion of the procedure to determine the fully 4D-periodic
solution for intense coupled beams. Maintenance of peri-
odic solution along the quadrupole channel is discussed in
the fifth section. Finally, benchmarking of the procedure to
results obtained from tracking an intense coupled Gaussian
beam using a well-established simulation code is presented.
This includes also a comparison of the fully 4D-periodic
solution with the solution from simple 2D-envelope match-
ing with respect to their performance regarding suppression
of 4D emittance growth.

II. BASIC CONCEPTS OF BEAM SECOND
MOMENTS TRANSPORTATION

Particle coordinates are denoted by a 4 × 1 column
vector r⃗ðsÞ with elements xðsÞ, x0ðsÞ, yðsÞ, and y0ðsÞ with

u0ðsÞ ≔ duðsÞ
ds

; ð1Þ

defining the derivation of the spatial coordinate u (refers to
either x or y) with respect to the longitudinal coordinate s. It
is assumed that the according transverse velocity βcu0 is
small in comparison to the main propagation velocity βc of
the beam along s. Linear transport of particle coordinates
from an initial location to a final location is modeled
through a linear 4 × 4 matrix equation

½r⃗ðsÞ�final ≔ M · ½r⃗ðsÞ�initial: ð2Þ

Coupled beams inhabit ten independent second-order
rms moments. They are summarized within the symmetric
beam moments matrix

C ≔

2
6664
hxxi hxx0i hxyi hxy0i
hx0xi hx0x0i hx0yi hx0y0i
hyxi hyx0i hyyi hyy0i
hy0xi hy0x0i hy0yi hy0y0i

3
7775 ð3Þ

and beam moments are transported through

Cfinal ¼ M · Cinitial ·MT: ð4Þ

Four of the elements of C quantify beam coupling.
Beams are x-y coupled if at least one of these elements is
different from zero. The projected rms emittances εx and εy
are defined through the determinants of the two on-
diagonal sub-matrices as

εu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huuihu0u0i − huu0i2

q
; ð5Þ

i.e., they do not depend on coupled beam moments. In turn,
the transverse eigenemittances [15]

ε1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
tr½ðCJÞ2�

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2½ðCJÞ2�

16
− detðCÞ

rs
ð6Þ

and the 4D emittance is defined as

ε4d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ

p
¼ ε1 · ε2 ð7Þ

depend on all beam second moments including those with
coupling. Any linear transformation M obeying

J ¼ MT · J ·M; J ≔

2
6664

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

3
7775; ð8Þ

is called symplectic and preserves both eigenemittances.
Just if M does not include any coupling elements, it will
also preserve the projected rms emittances. In case a
transformation M decouples a given beam, the decoupled
beam’s rms emittances are equal to the transverse eigene-
mittances that remain unchanged by M. Coupling can be
quantified by the coupling parameter [16]

t ≔
εx · εy
ε4d

− 1; ð9Þ

and if and only if t is equal to zero, there is no interplane
correlation and the projected rms emittances are equal to
the eigenemittances.
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Coupling is introduced by solenoids and rotated quadru-
poles. A solenoid of length L shall have the longitudinal
magnetic field strength B along the positive beam direction.
The solenoid’s strength is defined by K ≔ B=2ðBρÞ.
Additionally, we have C ≔ cos ðKLÞ and S ≔ sin ðKLÞ.
The solenoid transport matrix is

Msol ¼

2
6664

C2 SC
K SC S2

K

−SCK C2 −S2K SC

−SC − S2
K C2 SC

K

S2K −SC −SCK C2

3
7775: ð10Þ

Although introducing coupling, solenoids preserve the
beam angular momentum.
Quadrupoles instead, may change the amount of cou-

pling as well as the angular momentum. The on-diagonal
submatrices of a transport matrix Mquad of a regular quad-
rupole of strength k ≔ GL=ðBρÞ and effective length L are
given by

Qxx ¼
�

cos ðkLÞ sin ðkLÞ
k

−k sin ðkLÞ cos ðkLÞ

�
; ð11Þ

and

Qyy ¼
�
cosh ðkLÞ sinh ðkLÞ

k

k sinhðkLÞ cosh ðkLÞ

�
; ð12Þ

with G being the magnetic field gradient inside the
quadrupole implying By ¼ Gx and Bx ¼ −Gy. For positive
(negative) G, quadrupoles focus in the horizontal (vertical)
plane and defocus in the vertical (horizontal) plane. The
coupling submatrices are zero.
The on-diagonal submatrices of a drift (Mdrift) are

Dxx ¼ Dyy ¼
�
1 L

0 1

�
; ð13Þ

with its coupling submatrices being equal to zero. Finally,
clockwise rotation of the beam by θ around the positive s
axis is modeled through the symplectic matrix

RðθÞ ¼

2
6664
cosðθÞ 0 − sinðθÞ 0

0 cosðθÞ 0 − sinðθÞ
sinðθÞ 0 cosðθÞ 0

0 sinðθÞ 0 cosðθÞ

3
7775: ð14Þ

III. BEAM LINE FOR COUPLING, MATCHING,
AND TRANSPORTATION

The beam line being used to determine the periodic
solution of an intense coupled beam along a periodic

channel is sketched systematically in Fig. 1. It comprises
three sections, starting with a section that imposes coupling
to the beam. It comprises five rotated quadrupoles and four
solenoids being followed by a generic matching section.
This section transports the beam parameters from the
coupling section exit to the entrance of the periodic
quadrupole channel. These two sections include coupling
elements. The third section is a periodic sequence of
noncoupling regular quadrupoles.
At the beginning of the beam line, an uncoupled beam is

assumed with beam sigma-matrix

Cðs0Þ ¼
�
Cxx O

O Cyy

�
; O ¼

�
0 0

0 0

�
; ð15Þ

the on-diagonal submatrices are

Cxx ¼ εx ·

"
βx −αx
−αx

1þα2x
βx

#
; Cyy ¼ εy ·

"
βy −αy

−αy
1þα2y
βy

#
;

ð16Þ

and βu ¼ huui=εu and αu ¼ −huu0i=εu. The beam matrix
at the beginning of the matching section is calculated as

Cðs1Þ ¼ ℘ · Cðs0Þ · ℘T; ð17Þ

and ℘ indicates the transfer matrix of the coupling section.
In order to obtain a periodic solution for this beam, the

details of the matching section are not required as seen in
the following. However, it is modeled by a transport matrix
including 16 elements (in units of m and rad)

Rðm1;m2;…;m16Þ ¼

2
6664
m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

m13 m14 m15 m16

3
7775: ð18Þ

FIG. 1. The beam line comprises three parts: (I) coupling
production section; (II) matching section; (III) regular quadrupole
doublet section (12 cells). Red, yellow, and blue blocks indicate
the rotated quadrupole, solenoid, and regular quadrupole, re-
spectively. Space charge effects are not considered in the first two
sections (see text).

PERIODIC FOUR-DIMENSIONAL SOLUTION FOR … PHYS. REV. ACCEL. BEAMS 27, 031602 (2024)

031602-3



Although initially being unknown, the 16 elements must
ensure that R is symplectic according to Eq. (8). For
brevity, the set of m1;m2;…;m16 shall be denoted by ℵ.
The detailed layout of the matching section is beyond the
scope of this paper. However, a conceptual approach is
sketched in the Appendix.
The matching section is modeled through the symplectic

and coupling matrix R and hence

Cðs2Þ ¼ R · Cðs1Þ ·RT ð19Þ

is the beam matrix at the entrance to the quadrupole
channel. The beam matrix at the exit of the first cell of
the quadrupole channel is calculated as

Cðs2 þ lÞ ¼ I ·R · Cðs1Þ · ðI ·RÞT: ð20Þ

The transport matrix of one cell has 16 elements

I ¼

2
6664
a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

3
7775; ð21Þ

and the beam matrix at the entrance of the quadrupole
channel has ten independent moments

Cðs2Þ ¼

2
6664
x1 x2 z1 z2

� � � x3 z3 z4

� � � � � � y1 y2

� � � � � � � � � y3

3
7775: ð22Þ

Accordingly, the analytical periodic solution of one cell
meets the subsequent ten equations:

8>>><
>>>:

x1 ¼ a2
1x1 þ 2a1a2x2 þ a2

2x3 þ 2a1a3z1 þ 2a1a4z2 þ 2a2a3z3 þ 2a2a4z4 þ a2
3y1 þ 2a3a4y2 þ a2

4y3

x2 ¼ a1b1x1 þ ða1b2 þ a2b1Þx2 þ a2b2x3 þ ða1b3 þ a3b1Þz1 þ ða1b4 þ a4b1Þz2 þ ða2b3 þ a3b2Þz3

þða2b4 þ a4b2Þz4 þ a3b3y1 þ ða3b4 þ a4b3Þy2 þ a4b4y3

x3 ¼ b2
1x1 þ 2b1b2x2 þ b2

2x3 þ 2b1b3z1 þ 2b1b4z2 þ 2b2b3z3 þ 2b2b4z4 þ b2
3y1 þ 2b3b4y2 þ b2

4y3

ð23Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

z1 ¼ a1c1x1 þ ða1c2 þ a2c1Þx2 þ a2c2x3 þ ða1c3 þ a3c1Þz1 þ ða1c4 þ a4c1Þz2 þ ða2c3 þ a3c2Þz3

þða2c4 þ a4c2Þz4 þ a3c3y1 þ ða3c4 þ a4c3Þy2 þ a4c4y3

z2 ¼ a1d1x1 þ ða1d2 þ a2d1Þx2 þ a2d2x3 þ ða1d3 þ a3d1Þz1 þ ða1d4 þ a4d1Þz2 þ ða2d3 þ a3d2Þz3

þða2d4 þ a4d2Þz4 þ a3d3y1 þ ða3d4 þ a4d3Þy2 þ a4d4y3

z3 ¼ b1c1x1 þ ðb1c2 þ b2c1Þx2 þ b2c2x3 þ ðb1c3 þ b3c1Þz1 þ ðb1c4 þ b4c1Þz2 þ ðb2c3 þ b3c2Þz3

þðb2c4 þ b4c2Þz4 þ b3c3y1 þ ðb3c4 þ b4c3Þy2 þ b4c4y3

z4 ¼ b1d1x1 þ ðb1d2 þ b2d1Þx2 þ b2d2x3 þ ðb1d3 þ b3d1Þz1 þ ðb1d4 þ b4d1Þz2 þ ðb2d3 þ b3d2Þz3

þðb2d4 þ b4d2Þz4 þ b3d3y1 þ ðb3d4 þ b4d3Þy2 þ b4d4y3

ð24Þ

8>>><
>>>:

y1 ¼ c2
1x1 þ 2c1c2x2 þ c2

2x3 þ 2c1c3z1 þ 2c1c4z2 þ 2c2c3z3 þ 2c2c4z4 þ c2
3y1 þ 2c3c4y2 þ c2

4y3

y2 ¼ c1d1x1 þ ðc1d2 þ c2d1Þx2 þ c2d2x3 þ ðc1d3 þ c3d1Þz1 þ ðc1d4 þ c4d1Þz2 þ ðc2d3 þ c3d2Þz3

þðc2d4 þ c4d2Þz4 þ c3d3y1 þ ðc3d4 þ c4d3Þy2 þ c4d4y3

y3 ¼ d2
1x1 þ 2d1d2x2 þ d2

2x3 þ 2d1d3z1 þ 2d1d4z2 þ 2d2d3z3 þ 2d2d4z4 þ d2
3y1 þ 2d3d4y2 þ d2

4y3:

ð25Þ

A. General case: Matrix I includes coupling

For matched envelopes, their respective waists occur at
the quadrupole centers, hence they do as well occur at the
entrance to the periodic channel as

x2 ¼
x0
1

2
¼ 0; y2 ¼

y0
1

2
¼ 0: ð26Þ

In the following shall be assumed (and shown later on)
that the matching section can provide for a beam with
coupled moments z2 ¼ z3 ¼ 0 (beam is coupled in x − y
space) at the centers of the quadrupoles along the periodic

channel. The matched beam moments are accordingly
rephrased as

8>>>>>>>>><
>>>>>>>>>:

x1 ¼ a2
1x1 þ a2

2x3 þ 2ða1a3z1 þ a2a4z4Þ
þa2

3y1 þ a2
4y3

x2 ¼ a1b1x1 þ a2b2x3 þ ða1b3 þ a3b1Þz1

þða2b4 þ a4b2Þz4 þ a3b3y1 þ a4b4y3 ¼ 0

x3 ¼ b2
1x1 þ b2

2x3 þ 2ðb1b3z1 þ b2b4z4Þ
þb2

3y1 þ b2
4y3

ð27Þ

C. XIAO and L. GROENING PHYS. REV. ACCEL. BEAMS 27, 031602 (2024)

031602-4



8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

z1 ¼ a1c1x1 þ a2c2x3 þ ða1c3 þ a3c1Þz1

þða2c4 þ a4c2Þz4 þ a3c3y1 þ a4c4y3

z2 ¼ a1d1x1 þ a2d2x3 þ ða1d3 þ a3d1Þz1

þða2d4 þ a4d2Þz4 þ a3d3y1 þ a4d4y3 ¼ 0

z3 ¼ b1c1x1 þ b2c2x3 þ ðb1c3 þ b3c1Þz1

þðb2c4 þ b4c2Þz4 þ b3c3y1 þ b4c4y3 ¼ 0

z4 ¼ b1d1x1 þ b2d2x3 þ ðb1d3 þ b3d1Þz1

þðb2d4 þ b4d2Þz4 þ b3d3y1 þ b4d4y3

ð28Þ

8>>>>>>>>><
>>>>>>>>>:

y1 ¼ c2
1x1 þ c2

2x3 þ 2ðc1c3z1 þ c2c4z4Þ
þc2

3y1 þ c2
4y3

y2 ¼ c1d1x1 þ c2d2x3 þ ðc1d3 þ c3d1Þz1

þðc2d4 þ c4d2Þz4 þ c3d3y1 þ c4d4y3 ¼ 0

y3 ¼ d2
1x1 þ d2

2x3 þ 2ðd1d3z1 þ d2d4z4Þ
þd2

3y1 þ d2
4y3:

ð29Þ

Using these prerequistes, a dedicated numerical routine
varies the 16 elements m1;m2;…;m16 in order to provide for
according ten moments x1;x2;…;y3. Equations (27)–(29)
shall be fully met by the input beam matrix Cðs2Þ and the
coupled matching matrix I. Finally, it shall be mentioned
that the expression for the 4D emittance simplifies to

ε4d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2
1z

2
4 − x2y2z2

1 − x1y1z2
4 þ x1x3y1y3

q
: ð30Þ

B. Special case: Matrix I includes no coupling

In special cases, even with space charge, the effective
transfer matrix I includes no coupling terms, i.e.,

I ¼

2
6664
a1 a2 0 0

b1 b2 0 0

0 0 c3 c4

0 0 d3 d4

3
7775; ð31Þ

for this case shall be assumed that the matching section can
provide for a beam with the coupled moments z1 ¼ z4 ¼ 0
(beam is upright in x − y space). The matched moments
turn into

8<
:

x1 ¼ a2
1x1 þ a2

2x3

x2 ¼ a1b1x1 þ a2b2x3 ¼ 0

x3 ¼ b2
1x1 þ b2

2x3

ð32Þ

8>>><
>>>:

z1 ¼ a1c4z2 þ a2c3z3 ¼ 0

z2 ¼ a1d4z2 þ a2d3z3

z3 ¼ b1c4z2 þ b2c3z3

z4 ¼ b1d4z2 þ b2d3z3 ¼ 0

ð33Þ

8<
:

y1 ¼ c2
3y1 þ c2

4y3

y2 ¼ c3d3y1 þ c4d4y3 ¼ 0

y3 ¼ d2
3y1 þ d2

4y3:

ð34Þ

In consequence, the generic matching section can be
described by or replaced by a sequence of regular quadru-
poles. Conventional 2D-envelope matching methods vary
the matrix of the matching section m1;m2;m5;m6 and
m11;m12;m15;m16, i.e., the gradients of individual quadru-
poles, in order to produce the proper ten beam moments
x1;x2;…;y3 and the eight elements a1;a2;b1;b2, and
c3;c4;d3;d4. Equations (32)–(34) shall be fully met by the
input beam matrix Cðs2Þ and the uncoupled transfer matrix
I. In this case, the 4D emittance simplifies to

ε4d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2
1z

2
4 − x1y3z2

3 − x3y1z2
2 þ x1x3y1y3

q
: ð35Þ

IV. MODELING OF PERIODIC CHANNEL

For zero current, the effective focusing forces are given
solely by the external lattice. The actual beam shape has no
influence on them and therefore the periodic solution even
for coupled beams may be found analytically.
For intense beams instead, defocusing space charge

forces depend on the beam shape and orientation in real
space. Actually, they depend also on the spatial distribution
type. However, since modeling of space charge forces
using rms-equivalent KV distributions proved to work very
well for matching purposes, this approach is followed here
as well.
In the following, an iterative method is described to

determine the periodic solution for zero current. At first
glance, it seems more complicated with respect to a straight
analytical approach. However, it has the advantage of being
applicable easily to obtain the periodic solution even with
current.

A. Beam with zero current

The periodic solution meets the condition

Cðs2Þ ¼ I · Cðs2Þ ·IT ð36Þ

and the transport matrix from the exit of the solenoid s1 to
the exit of the first cell is

℧ðℵÞ ¼ I ·RðℵÞ; ð37Þ

where I is fully known from the cell of the quadrupole
channel.
From the first principles, neither the periodic solution is

known nor are the elements ℵ that provide for the according
matching from the exit of the solenoid s1 to the entrance of
the channel s2. The iterative procedure to obtain finally
both, starts with a guessed initial set ℵ{ that just meets the
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condition of being symplectic. It will most likely not meet
the condition of the periodic solution, i.e.,

Rðℵ{Þ · Cðs1Þ ·RTðℵ{Þ ≠ ℧ðℵ{Þ · Cðs1Þ ·℧Tðℵ{Þ; ð38Þ

hence the beam matrix in front of the channel is different
from the one behind the first cell.
With the MATHCAD [17] routine Minerr, a set of match-

ing matrix elements ℵ0 for zero beam current can be found,
such that the symplectic condition is met sharply together
with providing periodicity. The routine is dedicated to solve
an underdetermined system of equations with a defined set
of boundary conditions, such that

Rðℵ0Þ · Cðs1Þ ·RTðℵ0Þ ¼ ℧ðℵ0Þ · Cðs1Þ ·℧Tðℵ0Þ: ð39Þ

The parameters of the initially (s0) uncoupled beam and
the beam line are shown in Tables I and II, respectively.
After transport through the coupling production section

(in units of m and rad)

℘ ¼

2
6664
þ0.221 þ1.002 −0.305 þ0.956

−0.604 −0.237 −0.458 −0.030
−0.230 −0.964 −0.342 þ1.130

þ0.459 −0.019 −0.558 þ0.226

3
7775; ð40Þ

the beam matrix is (in units of mm and mrad)

Cðs1Þ ¼

2
6664
þ133.6 −8.578 þ1.232 þ34.39

� � � þ139.5 þ33.85 þ133.3

� � � � � � þ151.4 þ28.22

� � � � � � � � � þ154.1

3
7775: ð41Þ

With ℵ0 being determined, the periodic beam matrix at
the beginning of the channel has been calculated as (in units
of mm and mrad)

C0ðs2Þ ¼

2
6664
þ125.5 0 þ54.87 þ27.77

� � � þ77.71 −8.058 þ117.1

� � � � � � þ46.70 0

� � � � � � � � � þ343.6

3
7775; ð42Þ

and it is equal to C0ðs2 þ lÞ.
As for the case of an uncoupled beam, the periodic

solution of the coupled beam features αx ¼ αy ¼ 0 as
expected from the symmetry of the regular cell of the
channel. However, the corresponding coupling parameters
from combinations of other planes are different from zero
due to interplane coupling. The zero current transport
matrix of one cell is (in units of m and rad)

Iðℵ0Þ ¼

2
6664
þ0.321 þ1.203 0 0

−0.745 þ0.321 0 0

0 0 þ0.321 þ0.349

0 0 −2.569 þ0.321

3
7775; ð43Þ

and evaluation of its subtraces delivers the zero current
phase advance of μ0 ¼ 71.26°.

TABLE I. Parameters of the uncoupled beam at position s0.

Parameters Value Unit

Mass 1.672621924 × 10−27 kg
Charge 1.602176634 × 10−19 C
Vacuum permittivity 8.854187813 × 10−12 Fm−1

Light speed 2.99792458 × 108 ms−1

Energy 150 keV
Current 10 mA
εx and εy 29.97 and 195.5 mmmrad
βx and βy 0.460 and 3.032 m rad−1

αx and αy −0.233 and −0.782 rad

TABLE II. Parameters of the simulated beam line including the
coupling production section, matching section, and one periodic
cell. The unit of strength of solenoid is T.

Elements Length (cm) Strength (T/m) Rotation (°)

Drift 5
Rotated quad 20 0.024 0.068
Drift 5
Solenoid 25 0.075
Drift 5
Rotated quad 20 −0.291 0.192
Drift 5
Solenoid 25 0.075
Drift 5
Rotated quad 20 0.372 −0.066
Drift 5
Solenoid 25 0.075
Drift 5
Rotated quad 20 −0.261 2.854
Drift 5
Solenoid 25 0.075
Drift 5
Rotated quad 20 0.126 1.220
Drift 5
Matching section Unknown Unknown
Quadrupole 10 1.0
Drift 20
Quadrupole 20 −1.0
Drift 20
Quadrupole 10 1.0
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B. High current case

For KV beams, the electric self-field caused by space
charge can be calculated analytically as done by Sacherer
[1] for uncoupled beams, i.e., for upright ellipses. In the
case of coupling, the ellipse is generally tilted as drawn in
Fig. 2. Here, the space charge forces are first calculated
within the tilted frame. In the second step, these forces are
projected into the upright laboratory frame and applied to
the beam. They are equivalent to a defocusing quadrupole
kick in both planes. The strengths are not equal along both
planes but the resulting 4D transformation is linear and
symplectic. Hence it will be modeled by another 4 × 4
transport matrix ϰ.
The ellipse is described by its two semiaxes a1 and a2

and by the rotation angle θ of a1 with respect to x axis. Its
rms area is given by

Axy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxxihyyi − hxyi2

q
¼ a1 · a2: ð44Þ

The above ellipse parameters are calculated from the
beam second moments through

βxy ¼
hxxi
Axy

; αxy ¼ −
hxyi
Axy

; ð45Þ

Θ ¼ 1

2
arctan

0
@ −2αxy
βxy −

1þα2xy
βxy

1
A; h ¼ βxy

2
þ 1þ α2xy

2βxy
; ð46Þ

and

a1;2 ¼
ffiffiffiffiffiffiffi
Axy

2

r
ð ffiffiffiffiffiffiffiffiffiffiffi

hþ 1
p �

ffiffiffiffiffiffiffiffiffiffiffi
h − 1

p
Þ: ð47Þ

The transport matrix ϰ is calculated from the ellipse
geometric parameters and the general beam parameters as

ϰ ¼ R−1ðΘÞ · ϰ� · RðΘÞ; ð48Þ

where ϰ� is the matrix in the tilted ellipse frame. It reads

ϰ�1;2 ¼
�

1 0

κ1;2δs 1

�
; ϰ� ¼

�
ϰ�1 O

O ϰ�2

�
; ð49Þ

with δs being the step size along s between two space
charge kicks. κ1;2 are the respective kick strengths along
each semiaxis and are given by

κ1 ¼
κsc

2a1ða1 þ a2Þ
; κ2 ¼

κsc
2a2ða1 þ a2Þ

; ð50Þ

from the generalized beam perveance

κsc ¼
qI

2πϵ0mðγβcÞ3 ; ð51Þ

with q as particle charge, I as beam current, and β and γ as
relativistic factors.
With these prerequisites, any beam line from (skewed)

quadrupoles transporting a coupled intense beam is mod-
eled through a sequence of symplectic linear transport
matrices. Quadrupoles and drifts are subdivided into many
slices each and transportation through them is by a
sequence of transports along slice length δs without space
charge and execution of the space charge kick with ϰ
afterward. This method has been implemented into many
codes. For uncoupled beams, the PARMILA code [18] for
instance uses it to design periodic lattices and to evaluate
their performances. Here it shall serve to obtain cell-by-cell
periodic solutions for intense coupled beams.

V. PERIODIC SOLUTION OF ONE CELL

Solutions C of the beam matrix along periodic channels
are considered periodic if they meet

Cðs2Þ ≈ Cðs2 þ lÞ ð52Þ

to a very good approximation. Section IVA presented such
a solution C0ðs2Þ for zero current. This solution will not
hold with the beam current being switched on. This is from
the dependence of the cell transport matrix I from the
beam current and from the beam Twiss parameters at the
entrance to the channel as shown in Sec. IV B.
In order to find a solution that holds even with current,

another iterative procedure is applied. It uses the method of
determining a matching setting ℵ presented in Sec. IVA.

FIG. 2. Ellipse of an x-y coupled beam in real space. Axy is the
rms area of the beam, see Eq. (44). Parameters αxy and βxy are its
equivalent Twiss parameters defining the ellipse orientation and
aspect ratio in real space. The x, y, and s unit vectors of the
Cartesian coordinate system follow the right-hand rule.
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Additionally, it performs an iterative switching between
obtaining the periodic transport matrix from tracking and
using it to readapt the matching to it.
The iterative procedure starts from the beam moments

matrix Cðs1Þ behind the solenoid being then transported
through the matching line Rðℵ0Þ for zero current. The
resulting beam matrix at the entrance to the channel

C0ðs2Þ ¼ Rðℵ0Þ · Cðs1Þ ·RTðℵ0Þ; ð53Þ

is then tracked with high current (I ¼ 10 mA) through one
cell. Accordingly, the total transport matrix of the cell
Iscðℵ0Þ is a result of the tracking procedure described in
Sec. IV B. Iscðℵ0Þ depends on the current I and on the
spatial beam parameters at the entrance of the channel. The
4 × 4 elements of Iscðℵ0Þ are stored for further use. Most
likely, C0ðs2Þ does not meet the condition of the periodic
solution with current, i.e.,

C0ðs2Þ≠Iscðℵ0Þ ·Rðℵ0Þ ·Cðs1Þ ·RTðℵ0Þ ·IT
scðℵ0Þ: ð54Þ

However, the cell matrix Iscðℵ0Þ is used to readapt the
matching setting such, that a new matching ℵ1 is found
which provides for equal beam matrices before and after
transport through the cell matrix Iscðℵ0Þ

C1ðs2Þ ¼ Iscðℵ0Þ ·Rðℵ1Þ · Cðs1Þ ·RTðℵ1Þ ·IT
scðℵ0Þ;

ð55Þ

emphasizing that the above equation uses the stored
elements of Iscðℵ0Þ.
This new matching ℵ1 delivers the beam matrix C1ðs2Þ

in front of the channel. It is now retracked with current
through the cell as described in Sec. IV B. The tracking will
provide a new cell matrixIscðℵ1Þ. Again its 4 × 4 elements
are stored to readapt the matching to a setting ℵ2 meeting
the periodic solution assuming the new matrix Iscðℵ1Þ
along the channel

C2ðs2Þ ¼Iscðℵ1Þ ·Rðℵ2Þ ·Cðs1Þ ·RTðℵ2Þ ·IT
scðℵ1Þ: ð56Þ

This in turn provides a new beam matrix C2ðs2Þ in front
of the channel, which changes the transport matrix of
the cell to Iscðℵ2Þ. Continuing this procedure finally
converges, i.e., the changes from ℵn−1 to ℵn become very
small and finally negligible. Accordingly, after a sufficient
amount of iterations |, the periodic condition is fulfilled
through

C|ðs2Þ≈Iscðℵ|Þ ·Rðℵ|Þ ·Cðs1Þ ·RTðℵ|Þ ·IT
scðℵ|Þ: ð57Þ

The matrix C|ðs2Þ contains the periodic beam moments
at the entrance to the channel and Iscðℵ|Þ is the periodic
transport matrix of the cell including current and coupling.

Since all IscðℵnÞ are products from symplectic slice matri-
ces, all matrices Cnðs2Þ have the same eigenemittances.
In case of the example presented here, sufficient con-

vergence has been reached at | ¼ 6, and the corresponding
input beam matrix (in units of mm and mrad) is

C6ðs2Þ ¼

2
6664
þ147.8 þ0.006 þ59.34 −0.006
� � � þ80.44 þ0.006 þ114.9

� � � � � � þ47.36 þ0.011

� � � � � � � � � þ286.7

3
7775; ð58Þ

with coupling parameter of t ¼ 1.07. The corresponding
output beam matrix (in units of mm and mrad) is

C6ðs2 þ lÞ ¼

2
6664
þ147.8 þ0.026 þ59.33 −0.106
� � � þ80.41 þ0.035 þ114.9

� � � � � � þ47.34 −0.017
� � � � � � � � � þ286.8

3
7775;

ð59Þ

and the according transport matrix along one cell is
determined as (in units of m and rad)

Iscðℵ6Þ ¼

2
6664
þ0.452 þ1.254 −0.091 −0.016
−0.633 þ0.452 −0.092 −0.027
−0.027 −0.016 þ0.447 þ0.376

−0.092 −0.091 −2.125 þ0.447

3
7775; ð60Þ

with corresponding phase advances of μx ¼ 63.11°
and μy ¼ 63.44°, respectively. The corresponding beam
moments along a channel comprising two cells are plotted
in Fig. 3. It shows that the cell-to-cell periodicity of an
intense coupled coasting beam can be achieved under
the assumption of a KV distribution. Figure 4 plots the
six 2D projections of the phase space ellipses in front of and
behind the channel.
This section shall be closed by a comparison of the fully

4D-periodic solution along the channel with the one
obtained from simple 2D-envelope matching. The latter
is state-of-the-art and uses just regular quadrupoles.
Accordingly, the details of the latter are not given and
just the results shall be reported.
This 2D envelope matching ignores the coupled beam

moments leading to the noncoupling matching transfer
matrix (in units of m and rad)

R† ¼

2
6664
þ0.361 þ1.114 0 0

−0.829 þ0.211 0 0

0 0 þ0.035 þ0.613

0 0 −1.609 þ0.382

3
7775: ð61Þ
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The resulting beam matrix at the entrance of the channel is
(in units of mm and mrad)

C†ðs2Þ ¼

2
6664
þ183.6 þ0.169 þ100.0 0

� � � þ101.1 0 −10.00
� � � � � � þ59.34 þ0.019

� � � � � � � � � þ379.7

3
7775; ð62Þ

while the corresponding beam matrix at the exit is (in units
of mm and mrad)

C†ðs2 þ lÞ ¼

2
6664
þ186.1 þ1.967 þ6.026 −103.7
� � � þ105.1 −30.71 þ157.4

� � � � � � þ61.88 þ5.640

� � � � � � � � � þ388.7

3
7775:

ð63Þ

Figure 5 compares the six 2D projections of the 4D phase
space ellipses C†ðs2Þ and C†ðs2 þ lÞ in front of and behind
the first cell of the periodic channel. As expected, perio-
dicity is achieved for the horizontal and vertical planes.
However, there is no periodicity in the projections that mix
the two planes. In the following section, the results from
KV-rms-tracking are benchmarked with particle tracking of
a beam with Gaussian distribution.

FIG. 4. From full 4D-periodic solution: projected 4 × rms
ellipses of the beam second moments matrix at the entrance
(blue) and exit (red) of the periodic channel for a coupled proton
beam with 10 mA. It is obtained that C6ðs2Þ ≈ C6ðs2 þ lÞ.

FIG. 3. Full 4D-periodic solution: the ten independent rms moments along the regular quadrupole channel (two cells) for a coupled
proton beam with 10 mA. Left: rms moments x1, y1, and z1 (red, blue, and green); Middle: rms moments x2, y2, z2, and z3 (red, blue,
green, and magenta); Right: rms moments x3, y3, and z4 (red, blue, and green).
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VI. BENCHMARKING

Benchmarking has been done with MATHCAD using a
KV-type beam and BEAMPATH [19] using a Gaussian-type
beam. Initial distributions of 2 × 104 particles are rms

equivalent to the second beam moments matrices C6ðs2Þ
from Eq. (58) and C†ðs2Þ from Eq. (62), respectively.
Particle-tracking simulations have been done using a
10 mA proton beam and 12 cells of the periodic channel.
Figures 6 and 7 show the transverse 2 × rms-beam sizes
along the quadrupole channel obtained from rms tracking
described in Sec. IV B and extracted from particle tracking
simulation with BEAMPATH.
Applying cell-to-cell second moments matching, both,

transverse 2 × rms-beam sizes from KV-rms tracking and
from particle tracking a Gaussian beam, reveal a high
degree of envelope matching to the lattice periodicity.

FIG. 6. From full 4D-periodic solution: horizontal and vertical
2 × rms-beam sizes of a coupled 10 mA proton beam along a
regular FODO quadrupole channel as obtained from rms tracking
(blue) and particle tracking (red). The initial particle distribution
is rms equivalent to beam matrix C6ðs2Þ.

FIG. 7. From 2D-envelope matching: horizontal and vertical
2 × rms-beam sizes of a coupled 10 mA proton beam along a
regular FODO quadrupole channel as obtained from rms tracking
(blue) and particle tracking (red). The initial particle distribution
is rms equivalent to beam matrix C†ðs2Þ.

FIG. 8. From full 4D-periodic solution: transverse projected
rms emittances as obtained from rms tracking (blue) and particle
tracking (red). Green (magenta) curves indicate the eigenemit-
tances (square roots of the 4D emittances) calculated from
particle tracking. The initial particle distribution is rms equivalent
to beam matrix C6ðs2Þ.

FIG. 5. From 2D-envelope matching: projected 4 × rms ellipses
of the beam second moments matrix at the entrance (blue) and exit
(red) of the periodic channel for a coupled proton beamwith 10mA.
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The KV-based rms-beam size is very regular and the
Gaussian rms-beam size shows slight fluctuation. Those
are to be expected since space charge forces especially at
the outer parts of the beam are different for KV and for
Gaussian distributions. The matching proofed to work very
well even for the Gaussian beam. Applying simple
2D-envelopes matching, the transverse 2 × rms-beam sizes
are still well matched with the periodic quadrupole channel,
although the fluctuations are notably larger compared to
those of the full 4D solution.
Eigenemittances are preserved by symplectic transforma-

tions as KV-rms tracking. Instead, nonlinear space charge
forces occurring at particle tracking of a Gaussian beam do
not preserve the eigenemittances. Figures 8 and 9 plot

eigenemittances, projected rms emittances, and square roots
of 4D emittances along the channel from particle-tracking
simulations.
Beam transport along the channel applying the full 4D-

periodic solution results in a total growth of the 4D emittance
of 15%. If instead the simple 2D-envelope matched transport
is used, the corresponding growth is 90%. This provides for
strong evidence, that full 4D-periodic transport has strong
advantages compared to simple 2D matching in case of a
coupled beam. For completion, Figs. 10 and 11 plot the beam
angular momentum along the channel as obtained from the
full 4D-periodic solution and 2D-envelope matching.

VII. CONCLUSION

It has been shown that a cell-to-cell full 4D-periodic
solution can be determined for a coupled beam with
considerable space charge forces. This has been accom-
plished by rms tracking of coupled beams with KV
distribution combined with a dedicated iterative procedure
of tracking and generic rematching. Benchmarking with an
initial Gaussian distribution along a channel with a large
cell number revealed that the method works very well.
Hence, it provides a tool for systematic investigations of
intense, coupled beam transport along periodic lattices. Full
4D periodicity of the beam revealed to suppress the growth
of the 4D emittance much better with respect to simple
2D-envelope matching. One special application for 4D
periodicity is imposing well-defined angular momentum to
beams being transported along such lattices as drift tube
linacs for instance.

APPENDIX: TRANSFER MATRICES
OF MATCHING SECTION

For high current beam injection into the channel, the zero
current transfer matrix of the matching section Rðℵ0Þ has

FIG. 9. From 2D-envelope matching: transverse projected rms
emittances as obtained from rms tracking (blue) and particle
tracking (red). Green (magenta) curves indicate the eigenemit-
tances (square roots of the 4D emittances) calculated from
particle tracking. The initial particle distribution is rms equivalent
to beam matrix C†ðs2Þ.

FIG. 10. From full 4D-periodic solution: angular momentum as
obtained from rms tracking (blue) and particle tracking (red).
The initial particle distribution is rms equivalent to beam
matrix C6ðs2Þ.

FIG. 11. From 2D-envelope matching: angular momentum as
obtained from rms tracking (blue) and particle tracking (red).
The initial particle distribution is rms equivalent to beam
matrix C†ðs2Þ.
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been used as the initial transfer matrix and the optimization
routine has been applied again giving (in units of m and rad)

Rðℵ5Þ ¼

2
6664
þ1.048 þ1.153 þ0.620 −1.553
−0.036 þ0.325 þ0.268 þ0.325

þ0.119 −0.842 þ0.434 þ0.558

þ0.664 þ0.499 −0.129 þ0.713

3
7775; ðA1Þ

satisfying Eq. (57) and

C6ðs2Þ ¼ Rðℵ5Þ · Cðs1Þ ·RTðℵ5Þ: ðA2Þ

As mentioned previously, the detailed provision of the
4D-matching beam line is a hard task being beyond the
scope of this paper. However, this section shall sketch a
conceptual approach to obtain an according layout. It is
drawn schematically in Fig. 12 and it comprises three
sections.
Sections-a and c each comprise five rotated quadrupoles

being separated by solenoids. Within these sections, the
beam is coupled. Section-b in between comprises just four
regular quadrupoles and the beam along this section is fully
decoupled.
Provision of the full matching beam line starts with the

determination of the settings of section-c. It uses the known
periodic solution with space charge at the beginning of the
periodic channel at position s2. Its according beam
moments matrix C6ðs2Þ is transported backward to position
s�2. This backward transportation is done such that the
resulting beam is fully decoupled at s�2. The required
settings are denoted as §c and they comprise the quadrupole
strengths, rotation angles, and solenoid strengths. These
parameters are obtained through an appropriate numerical
routine (Minimize of MATHCAD for instance). The according
backward transport matrix is denoted as R−1

c .
Within the second step, the settings of section-a are

determined numerically in order to decouple the beam at
the coupling production section’s exit at position s1. The
according transport matrix is denoted asRa and it provides
for the decoupled beam at position s�1. Its settings are
summarized as §a. Finally, the matching beam line is
completed by an appropriate section-b modeled by the

transport matrix Rb, which just provides for the matching
between the two uncoupled beam matrices at s�1 and s

�
2. The

transportmatrix of the completematching line hence reads as

R ¼ Rc ·Rb ·Ra; ðA3Þ

and accordingly

C6ðs2Þ ¼ Rc ·Rb ·Ra · ℘ · Cðs0Þ · ℘T ·RT
a ·RT

b ·R
T
c ;

ðA4Þ

15 rotated quadruples, 4 regular quadrupoles, and 12
solenoids are needed totally.
An alternative beam line may just apply section-c to

replace the coupling section and matching section

C6ðs2Þ ¼ Rc · Cðs�2Þ ·RT
c ; ðA5Þ

requiring just five rotated quadrupoles and four solenoids
(coupling section and section-a and b are not needed). It
corresponds to (in units of m and rad)

Rc ¼

2
6664
−0.122 þ2.338 þ0.414 þ1.280

−0.245 þ0.419 −0.401 −0.086
þ0.064 −1.225 þ0.237 þ0.734

þ0.428 −0.730 −0.765 −0.164

3
7775; ðA6Þ

and the parameters of this alternative beam line (section-c)
are listed in Table III. It is emphasized that the quadrupole
magnets in this section must be individually rotatable

FIG. 12. Conceptual matching beam line includes the rotated
quadrupoles (red blocks), solenoids (yellow blocks), and regular
quadrupoles (blue blocks).

TABLE III. Parameters of the alternative beam line (section-c).
The unit of the solenoid field is T.

Elements ‘Length (cm) Strength (T/m) Rotation (°)

Drift 5
Rotated quad 20 0.136 11.53
Drift 5
Solenoid 25 0.075
Drift 5
Rotated quad 20 −0.022 −9.390
Drift 5
Solenoid 25 0.075
Drift 5
Rotated quad 20 −0.155 3.462
Drift 5
Solenoid 25 0.075
Drift 5
Rotated quad 20 −0.046 −5.477
Drift 5
Solenoid 25 0.075
Drift 5
Rotated quad 20 0.105 2.487
Drift 5
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to adapt the line to input beam matrices with different
amounts of coupling according to different amounts of
angular momentum for instance. Corresponding transverse
2 × rms-beam sizes are shown in Fig. 13.

[1] F. Sacherer, RMS envelope equations with space charge,
IEEE Trans. Nucl. Sci. 18, 1105 (1971).

[2] T. P. Wangler, RF Linear Accelerators, 2nd ed.
(Wiley-VCH, Mannheim/Germany, 2008), p. 296.

[3] L. Groening, W. Barth, W. Bayer, G. Clemente, L. Dahl,
P. Forck, P. Gerhard, I. Hofmann, G. Riehl, and S.
Yaramyshev, Benchmarking of measurement and simula-
tion of transverse rms-emittance growth, Phys. Rev. ST
Accel. Beams 11, 094201 (2008).

[4] L. Groening, M. Maier, C. Xiao, L. Dahl, P. Gerhard, O. K.
Kester, S. Mickat, H. Vormann, M. Vossberg, and M.
Chung, Experimental proof of adjustable single-knob ion
beam emittance partitioning, Phys. Rev. Lett. 113, 264802
(2014).

[5] Dong-O Jeon, Experimental evidence of space charge
driven resonances in high intensity linear accelerators,
Phys. Rev. Accel. Beams 19, 010101 (2016).

[6] M. Reiser, Theory and Design of Charged Particle Beams
(John Wiley & Sons Inc., New York, 1994).

[7] Linac4 Technical Design Report, edited by F. Gerigk and
M. Vretenar, CERN, Geneva Report No. CERN-AB-2006-
084-ABP/RF, 2006.

[8] R. Friehmelt, Dimensionierung der Quadrupolfokussier-
ung in einem Schwerionen-Linearbeschleuniger, UNILAC
Bericht Nr. 5-67, Universität Heidelberg, 1967.

[9] Yoo-Lim Cheon, Seok-Ho Moon, and Moses Chung,
Effects of beam spinning on the fourth-order particle
resonance of 3D bunched beams in high-intensity
linear accelerator, Phys. Rev. Accel. Beams 25, 064002
(2022).

[10] A. Khan, O. Boine-Frankenheim, F. Hug, and C. Stoll,
Beam matching with space charge in energy recovery
linacs, Nucl. Instrum. Methods Phys. Res., Sect. A 948,
162822 (2019).

[11] J. J. Barnard and B. Losic, Envelope modes of beams
with angular momentum, in Proceedings of the 20th
International Linac Conference, LINAC-2000, Monterey,
CA, 2000 (SLAC, Menlo Park, CA, 2000).

[12] A. Hoover, N. J. Evans, and J. A. Holmes, Computation
of the matched envelope of the Danilov distribution,
Phys. Rev. Accel. Beams 24, 044201 (2021).

[13] D. Chernin, Evolution of rms beam envelopes in transport
systems with linear x-y coupling, Part. Accel. 24, 29
(1988), http://cds.cern.ch/record/1053510/files/p29.pdf.

[14] K. R. Crandall and D. P. Rusthoi, Documentation for
TRACE: An interactive beam-transport code, Los Alamos
National Laboratory, Internal Report No. LA-10235-MS,
1985.

[15] R. A. Kishek, J. J. Barnard, and D. P. Grote, Effects of
quadrupole rotations on the transport of space-charge-
dominated beams: theory and simulations comparing linacs
with circular machines, in Proceedings of the 1999 Particle
Accelerator Conference (PAC'99), New York, 1999 (IEEE,
New York, 1999), pp. 1761–1763, https://ieeexplore.ieee
.org/stamp/stamp.jsp?tp=&arnumber=794251.

[16] C. Xiao, M. Maier, X. N. Du, P. Gerhard, L. Groening,
S. Mickat, and H. Vormann, Rotating system for four-
dimensional transverse rms-emittance measurements,
Phys. Rev. Accel. Beams 19, 072802 (2016).

[17] PTC Mathcad, https://www.ptc.com/en/engineering-math-
software/mathcad.

[18] J. H. Billen and H. Takeda, PARMILA Manual, Report
No. LAUR-98-4478, Los Alamos, 1998 (Revised 2004).

[19] Y. K. Batygin, Particle-in-cell code BEAMPATH for
beam dynamics simulations in linear accelerators and
beam lines, Nucl. Instrum. Methods Phys. Res., Sect. A
539, 455 (2005).

FIG. 13. Horizontal (red) and vertical (blue) 2 × rms-beam
sizes along the alternative beam line (section-c) and six cells of
the quadrupole periodic channel.
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