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Electrons in an x-ray free electron laser (XFEL) develop periodic density fluctuations, known as
microbunches, which enable the exponential gain of x-ray power in an XFEL. When an electron beam
microbunched at a hard x-ray wavelength is kicked, microbunches are often washed out due to the dispersion
and R56 of the bend. An achromatic (dispersion-free) bend with a small R56, however, can preserve
microbunches, which rotate to follow the new trajectory of the electron bunch. Rotated microbunches can
subsequently interact in a repointed undulator to produce a new beam of off-axis x rays. In this work, we
demonstrate hard x-ray multiplexing in the Linac Coherent Light Source hard x-ray undulator line using
microbunch rotation through a 10 μrad first-order-achromatic bend created by transversely offsetting
quadrupole magnets in the FODO lattice. Quadrupole offsets are determined analytically from beam-matrix
theory. We also discuss the application of microbunch rotation to out-coupling a cavity-based XFEL.
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I. INTRODUCTION

Since their invention, free-electron lasers (FELs) have
become indispensable scientific instruments, especially
when very high-power and/or very short-wavelength coher-
ent radiations are desirable. The most essential process
of the FEL is the formation of microbunches in electron
beams, which is a periodic modulation of the electron
density at the radiation wavelength. In a single-pass,
high-gain FEL, the formation of microbunches generates
coherent radiation that leads to stronger microbunching.
The feedback mechanism sets up an exponential growth
of the radiation power until saturation. The radiation is
the most useful product of FELs. Nevertheless, micro-
bunched electron beams are also very interesting on their
own and can be manipulated for various applications. Our
paper describes an approach and experimental tests of a
method of manipulating these microbunches called
microbunch rotation.
Microbunch rotation using achromatic bends has long

been an option for out-coupling infrared FEL oscillators [1]

and has also been proposed for preserving EUV micro-
bunches in ring FELs [2] and energy-recovery linac-
based FELs [3]. Techniques under the development
for steady state microbunching in a storage ring, recently
demonstrated for IR wavelengths, also often minimize
the dispersion and R56 [4,5]. However, demonstrations
of microbunch rotation in the x-ray regime have been
more recent.
Microbunch rotation can be achieved for soft x rays

without achromatic bends. A microbunched beam kicked
by an offset quadrupole develops tilted microbunches as a
result of quadrupole focusing. This was observed in the
commissioning of the LCLS delta undulator [6] then built
upon by MacArthur et al. [7]. MacArthur et al. described
the evolution of tilted microbunches following an offset
quadrupole using Klimontovich distribution functions
then demonstrated a 55 μrad rotation for microbunches
producing 530 eV photons [7].
However, microbunch rotation at hard x-ray spacing

requires a more complicated setup to preserve micro-
bunches. Shorter microbunches, separated at the radiation
wavelength λr, are more sensitive to bunching factor
degradation due to changes in the z position of the particles
relative to the center of the microbunch. Cavity-based
XFELs, such as the x-ray regenerative amplifier FEL [8,9]
and x-ray FEL oscillator [10] typically operate Bragg-
reflecting cavities at hard x-ray wavelengths. To extend
microbunch rotation as an out-coupling mechanism for
these cavities, we need to extend it to hard x-rays, such
as the 9.832 keV x-ray energy used by the CBXFEL
project [11,12]. Here we describe the theory for a first-order
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achromatic bend of three offset quadrupole magnets and
demonstrate this setup in simulation and experiments at
the LCLS.

II. THEORY

A. Microbunch rotation by offset thin quadrupole

Microbunch rotation arises naturally from beam-matrix
theory when quadrupole effects are included. We begin by
defining a thin quadrupole in 4D phase space ðy; y0; z; δÞ,
where y is a transverse coordinate, y0 ¼ ∂y

∂s, z is longitudinal
along the beam axis, and δ ¼ Δγ

γ , where γ is the relativistic
γ. We use the sign convention, where þz is the beam
head, −z ¼ beam tail. The quadrupole has focal length f
and is offset in y by a distance o1, producing a kick
θ ¼ − 1

f ðy0 − o1Þ, where y0 is the transverse beam position
before the quadrupole. We treat a thin offset quadrupole as
an on-axis quadrupole, which also rotates the coordinate
system in the y-z plane by θ to follow the beam trajectory,
derived in Appendix A2. We define our initial microbunch
size and divergence in the center of the quadrupole, where
the focusing is at a waist (y and y0 are uncorrelated), and
thus specify an offset quadrupole matrix with double the
focal length of our full quadrupole. For a small kick angle
(sinðθÞ ≈ θ, cosðθÞ ≈ 1), and microbunches that are much
thinner in z than in y:

RQθ ¼

2
66664

1 0 0 0

−1
2f 1 0 θ

−θ 0 1 0

0 0 0 1

3
77775: ð1Þ

We apply a drift of length L to get our final transfer
matrix:

R ¼ RLRQθ ¼

2
66664

1 − L
2f L 0 Lθ

−1
2f 1 0 θ

−θ 0 1 0

0 0 0 1

3
77775: ð2Þ

We assume a single Gaussian microbunch, with a
sigma matrix that is uncorrelated in the center of the
quadrupole:

Σ0 ¼

2
666664

σ2y0 0 0 0

0 σ2y0
0

0 0

0 0 σ2z0 0

0 0 0 σ2δ0

3
777775
: ð3Þ

We then evolve the microbunch envelope using the transfer
matrix and obtain the second moments:

Σ ¼ RΣ0RT; ð4Þ

hy2i ¼
�
1 −

L
2f

�
2

σ2y0 þ L2σ2y0
0
þ L2θ2σ2δ0 ;

hz2i ¼ σ2z0 þ θ2σ2y0 ;

hyzi ¼ −
�
1 −

L
2f

�
θσ2y0 : ð5Þ

The tilt in the rotated coordinate system tyz can then be
geometrically found from

tanð2tyzÞ ¼
2hyzi

hy2i − hz2i ; ð6Þ

tyz ≈
hyzi

hy2i − hz2i : ð7Þ

In the limit of pancake microbunches, hz2i ≪ hy2i and

small kick (jθj ≪ σy0
σδ0

and jθj ≪ σy0
0

σδ0
), we write the tilt in

terms of the beta function β0 ¼ σ2y0ϵy ¼
ϵy
σ2
y0
0

at the waist in

the center of the quadrupole:

tyz ≈
hyzi
hy2i ¼

−ð1 − L
2fÞθ

ð1 − L
2fÞ2 þ L2

β2
0

: ð8Þ

Equation (8) is useful for building intuition that the
microbunch rotation direction is determined by the sign
of f. Differentiating Eq. (8), we find

∂tyz
∂L

����
L¼0

≈ −
θ

2f
: ð9Þ

This result shows that a defocusing quadrupole (f < 0) will
rotate the microbunch in the direction of the kick θ. With a
single offset quadrupole kick, the microbunch angle will
evolve continuously with drift. The next section will
discuss how with additional quadrupole kicks we can
create bends that instead lock the microbunch angle into
the new electron trajectory.

B. Microbunch rotation by thin quadrupole triplet

Next, we want to analyze the rotation of a microbunch
through three offset quadrupoles with focal lengths f1, f2,
f3; offset in y from a perfectly straight trajectory by
distances o1, o2,o3; separated by drifts L1,L2; and followed
by a drift L3, as shown in Fig. 1. Subsequent discussion will
consider a defocusing-focusing-defocusing triplet, f1 < 0,
f2 > 0, f3 < 0, as this triplet achieves a given rotation with
the smallest kick angles, but the analytical method can be
applied to quadrupoles of arbitrary focal length.
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We define the transfer matrix for each offset quadrupole:

RQθ1 ¼

2
66664

1 0 0 0

−1
2f1

1 0 θ1

−θ1 0 1 0

0 0 0 1

3
77775;

RQθ2;3 ¼

2
66664

1 0 0 0

−1
f2;3

1 0 θ2;3

−θ2;3 0 1 0

0 0 0 1

3
77775: ð10Þ

The kick angles can be readily solved using a matrix
method, as shown in Appendix B. If hy0i ¼ hy00i ¼ 0, the
kick angles are

θ1 ¼
o1
f1

;

θ2 ¼
1

f1f2
ðf1o2 − L1o1Þ;

θ3 ¼ −
1

f1f2f3
ð−f1f2o3 þ f1L2o2 þ f2L2o1 þ f2L1o1

− L1L2o1Þ: ð11Þ

To better model the microbunch recovery, we also include a
drift R56 term

L
γ2
which we had previously neglected. When

we refer to R56 and other matrix elements in this text, we
will follow the convention to number elements based on the
full 6D phase space, (x; x0; y; y0; z,δ) but will write matrices
in 4D phase space ðy; y0; z; δÞ for compactness. The drift
R56 term accounts for particles with different energies
spreading out in z due to small velocity differences over a
long drift and can be significant when modeling angstrom-
scale microbunches. The drift matrices are then of the form:

RL ¼

2
66664

1 L 0 0

0 1 0 0

0 0 1 L
γ2

0 0 0 1

3
77775: ð12Þ

Thus we can now build our transfer matrix:

R ¼ RL3RQθ3RL2RQθ2RL1RQθ1: ð13Þ

To find the tilt, one can propagate a sigma matrix defined
at the center of the first quadrupole Σ0 through this transfer
matrix using Eq. (4). An analytical expression for the
microbunch tilt can be obtained using Eq. (7).
For arbitrary quadrupole offsets, the microbunch tilt

will continue to evolve with additional drift distance L3. To
lock the microbunch tilt into the direction of beam travel,

we need to choose offsets that satisfy tyz ¼ 0 and ∂tyz
∂L3

¼ 0.
This is equivalent to requiring the matrix be achromatic,
e.g., D ¼ 0 and D0 ¼ 0. D and D0 are the dispersion and
change in dispersion (R36 and R46), read directly from
the transfer matrix. We also require that the sum of the
trajectory kicks equals the microbunch rotation angle α.
Thus we solve this system of equations:

D ¼ 0;

D0 ¼ 0;

α ¼ θ1 þ θ2 þ θ3: ð14Þ

Solving these equations gives us the ideal y offsets of the
quadrupoles relative to the initial z axis:

o1 ¼
αf1f2
L1

;

o2 ¼
−αf2ðf2L1 þ f2L2 − 2L1L2Þ

L1L2

;

o3 ¼
αðL2

2 þ f2f3Þ
L2

: ð15Þ

If we implement microbunch rotation in a FODO lattice,
where f1 ¼ f3 ¼ −f2, and L1 ¼ L2 ¼ L, these simplify to

o1 ¼
−αf21
L

;

o2 ¼ −2αf1
�
1þ f1

L

�
;

o3 ¼
−αðf21 − L2Þ

L
: ð16Þ

The next largest factor contributing to microbunch degra-
dation in a bend is the coupling between the energy spread
and longitudinal spatial dimension, the R56. If we could
create an isochronous bend, where D ¼ 0, D0 ¼ 0, and
R56 ¼ 0, we could preserve all microbunching to first
order, however, this condition requires strong quadrupole
focusing and is much more difficult to achieve. Thus we do
not pursue an isochronous bend but optimize our lattice

FIG. 1. Offset quadrupole triplet for microbunch rotation.
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such that the R56 is small. For an offset quadrupole triplet in
a FODO lattice, R56 is

R56 ¼ α2f1

�
1þ 2f1

L

�
þ 2L

γ2
: ð17Þ

Figure 2 shows an example of tracking D, D0, and R56

through an offset quadrupole triplet, for a 10 μrad rotation
with the parameters given in Table I, experiment I
(f1 ¼ −12 m). The term in Eq. (17) proportional to α2

gives the R56 caused by the kick in the dispersive region in
the center of the quadrupole [R56 ¼

R
Lfull
o hðsÞDðsÞds,

where hðsÞ is the orbit curvature]. The remaining R56

comes from the drift R56 and develops smoothly through
each drift. In hard XFEL regimes, the drift R56 can often be
larger than, or comparable to, the R56 produced by the
quadrupole kicks. We can then obtain an analytical estimate
of the microbunch recovery through an offset quadrupole
triplet in a FODO lattice. We consider a Gaussian micro-
bunch with no initial longitudinal energy correlation
(σz;δ ¼ 0) with an initial bunching factor:

b0 ¼ e−
1
2
ð2πλrÞ2σ2z0 : ð18Þ

Using the Σ matrix method given in Eq. (4), we can evolve
this microbunch through our achromatic bend and find that

σ2z ¼ σ2z0 þ R2
56σ

2
δ0
: ð19Þ

Equation (19) remains true even if hyy0i terms are present in
the Σ0 matrix. The microbunch recovery for ideal Gaussian
microbunches with no initial energy correlation is thus

b
b0

¼ e−
1
2
ð2πλrÞ2ðσ2z−σ2z0 Þ

¼ e−
1
2
ð2πλrÞ2ðR2

56
σ2δ0

Þ

¼ e
−1
2
ð2πλrÞ2

�
α4f2

1

�
4f2

1

L2
þ4f1

L þ1
�
þ4α2f1

γ2
ð2f1þLÞþ4L2

γ4

�
σ2δ0 : ð20Þ

The R56, microbunching wavelength, and electron
energy spread thus set a limit on the bunching recovery
through the achromat.

C. Microbunch rotation by a semithick quadrupole

We also pursued a semithick lens approach, where we
treat the transverse focusing in the y − y0 plane as a thick
quadrupole but treat the kick as instantaneous (see
Appendix A3 for derivation). We consider a quadrupole
with length lQ and k2 ¼ B0e

p ¼ 1
jfjlQ, where p is the electron

momentum and e is the electron charge. A thick offset
defocusing or focusing quadrupole that provides an instan-
taneous kick can be defined, respectively:

RQDθ ¼

2
66664

coshðklQÞ 1
k sinhðklQÞ 0 0

k sinhðklQÞ coshðklQÞ 0 θ

−θ 0 1
lQ
γ2

0 0 0 1

3
77775;

RQFθ ¼

2
66664

cosðklQÞ 1
k sinðklQÞ 0 0

−k sinðklQÞ cosðklQÞ 0 θ

−θ 0 1
lQ
γ2

0 0 0 1

3
77775: ð21Þ

For the defocusing-focusing-defocusing case, we again
build our transfer matrix similar to Eq. (13), shortening
lQ by half in the first quadrupole and using the full lQ in the
second two. θ1, θ2, and θ3 are also recalculated using thick
quadrupoles. We solve for the optimal offsets using the
system of equations in Eq. (14), obtaining a lengthy
analytical solution for the optimal offsets which we applied
to our subsequent experimental and simulated setups (see
Supplemental Material [13]).
Figure 3 shows the microbunch recovery through a triplet

for a single Gaussian microbunch for this analytical model
with the parameters given in Table I, experiment I, and two

FIG. 2. Key matrix parameters for a 10 μrad rotation with the
parameters given in Table I, experiment I.

������� 
������� 
�����	�

FIG. 3. Bunching factor through a microbunch rotation triplet,
using the parameters in Table I, experiment I, 10 μrad. The
bunching factor is compared for the analytical model with thick
quadrupoles, ELEGANT with first- or second-order matrices, and
GENESIS.
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simulation softwareprograms,ELEGANT[14]andGENESIS 1.3
[15,16]. ELEGANTcan performelectron beam transport using
first- or second-order matrices. We find the analytical model
givesa result close toELEGANT’swhenweonlyconsider first-
order effects. The microbunch recovery is then decreased
when the second-order effects are included, as consistently
shown in ELEGANT and GENESIS [13].

III. WORKABLE REGIMES FOR
MICROBUNCH ROTATION

The preservation of microbunches following microbunch
rotation in an achromatic bend depends strongly on the
properties of the bend, bunching, and electron beam. To first
order, the microbunch recovery can be described using
Eq. (20), where the microbunch recovery depends on the
microbunch wavelength (or equivalently, photon energy),
electron beam energy spread, electron beam energy, quadru-
pole strength, and the drift distances between the quadru-
poles. Figure 4 shows the variation in microbunch recovery
for the conditions in experiment I as each of these parameters
is scanned, and the quadrupole offsets were updated accord-
ingly. Here we use the experiment I parameters given in
Table I, except for the initial energy spread, where we use
6.1 MeV instead of 5 MeV to account for the increase in
energy spread from the beginning of the undulator hall to the
microbunch rotation triplet. The analytical curve represents
Eq. (20), and the datapoints represent simplified GENESIS

simulations, where a single Gaussian microbunch is trans-
ported through an offset quadrupole triplet.

TABLE I. Experimental parameters.

B0
1lQ ¼ B0

3lQ, −B0
2lQ ð−3; 3Þ T L1 ¼ L2 4.013 m

lQ 8.4 cm λu, nλu 2.6 cm, 130

Experiment I

Ee− 10.79 GeV Eλr 10.14 keV
ϵx;norm 0.4 × 10−6 m rada Icore 4.4 kA
ΔtFWHM 33 fs ΔEslice 5.0 MeV

o1;10 μrad 366 μm o2;10 μrad 489 μm o3;10 μrad 323 μm
o1;20 μrad 733 μm o2;20 μrad 978 μm o3;20 μrad 646 μm

Experiment II

Ee− 11.42 GeV Eλr 11.3 keV
ϵx;norm 0.4 × 10−6 m rada Icore 3.4 kA
ΔtFWHM 45 fs ΔEslice <13.2 MeVb

o1;10 μrad 410 μm o2;10 μrad 563 μm o3;10 μrad 367 μm
aTypical LCLS value.
bMeasured while lasing not fully suppressed.

µ

µ

µ

µ

µ

µ

GENESIS

GENESIS

GENESIS

(a)

(b)

(c)

(d)

(e)

FIG. 4. Microbunch recovery as a function of (a) photon
energy, (b) electron beam energy spread, (c) electron beam
energy, (d) quadrupole strength, and (e) the drift distance
between quadrupoles. Parameters in Table I, experiment I,
were used.
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Microbunch recovery is highest for long-wavelength
microbunches (low photon energies) and low energy
spread, which minimize the impact of the R56. The other
three parameters are optimized by minimizing the R56.
The electron beam energy and quadrupole strength both
determine the quadrupole focal length (for thin quadru-
poles, f ¼ p

B0lQe
). Higher electron energy increases the

quadrupole focal length but reduces the drift R56, leading
to an optimum which can be approximated numerically
from Eq. (17).
For the quadrupole strength, one can derive Eq. (17) to

find the minimum R56 occurs around f1 ¼ − L
4
, giving an

optimal quadrupole strength of B0
1lQ ¼ − 4p

Le, which pre-
dicts an optimal value of B0

1lQ ¼ −36 T. Thus to first order,
stronger quadrupoles provide better microbunch recovery.
Deriving Eq. (17) with respect to L, we find the optimal

quadrupole separation is approximately L ¼ jαf1γj, which
for a 10 μrad rotation is approximately 2.5 m. This
represents a trade-off between a stronger second quadru-
pole kick in the dispersive region for a shorter drift distance
and a longer drift distance causing the drift R56 to degrade
the microbunching.
Second-order effects can reduce the actual microbunch

recovery from these analytical estimates, particularly in
the regime of strong quadrupole focusing, thus Eq. (20) is
only approximate. Equation (20) and the simulations
shown here also only consider a Gaussian microbunch
with no initial zδ correlation. Microbunches in an FEL, by
contrast, have zδ correlation, and this can cause bunching
factor enhancement for a small R56. Thus we can improve
the microbunch recovery by performing microbunch
rotation before FEL saturation.

IV. EXPERIMENTAL DEMONSTRATION OF
MICROBUNCH ROTATION

A. Setup

We performed two microbunch rotation experiments
using the Cu LCLS linac with the upgraded LCLS-II hard
x-ray undulator (HXU) line [17] between April and June
2021. Figure 5 shows the experimental setup. Each HXU
undulator and its associated quadrupole can be moved
transversely �1 mm. We used this girder motion in y to
form our offset quadrupole triplet and open-gapped the two

undulators in the center of our triplet. We lased in 21 on-
axis undulators, performed microbunch rotation, then
repointed the remaining 9 undulators by 10 or 20 μrad.
In doing so, we note that the electron beam does not return
on axis in the third quadrupole but returns to a position
of approximately αL. An example trajectory is shown
in Fig. 21.
Experimental parameters are given in Table I. B0

1lQ,
B0
1lQ, and B0

1lQ are the integrated quadrupole gradients, lQ
is the effective quadrupole length, λu is the undulator
period, and nλu is the number of periods per undulator.
Ee− and Eλr define the energy of the electron and x-ray
beams. ϵx;norm is a typical LCLS Cu linac normalized
emittance in the undulator line. ΔtFWHM, Icore, and ΔEslice
define the FWHM electron beam pulse duration, the
average current, and the average rms slice energy spread
within the central FWHM pulse duration. These last three
quantities were calculated from measured time-resolved
energy distribution of the electron bunch downstream of
the undulator line. Time dependent horizontal streaking
is provided by an XTCAV [18]. For experiment I, these
quantities were measured without undulator lasing, giv-
ing a reliable measurement of the energy spread, while
for experiment II, FEL lasing was only partially sup-
pressed, and thus we can only set an upper limit on the
energy spread. The XTCAV measurements are shown in
detail in Appendix F.

B. Example images

Figure 6 shows averaged single-shot images on the
downstream screen. Screen coordinates have been con-
verted into the angular separation between the two beams to
clearly show multiplexing at 10 and 20 μrad. For experi-
ment I, mean angular separations between the two rotated
spots were ð9.9� 0.1Þ μrad and ð20.1� 0.1Þ μrad, respec-
tively. For experiment II, the mean angular separation
between the two rotated spots was ð9.5� 0.1Þ μrad. The
uncertainty is given by the precision of the screen pixel
size calibration. These measurements may show a slightly
smaller spot separation than expected. Figure 14 shows that
even in experiment I, the initial spot separation in early
undulators suggests less than 10 μrad rotation, and the
good agreement only arises after gain guiding. Figure 11
shows that choosing quadrupole offsets using a thick

FIG. 5. Side view of experimental setup in LCLS-II hard x-ray undulator hall.
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quadrupole with instantaneous kick (over a full integrated
function magnet) might explain the angular separation
being 0.1 μrad less than predicted. Additionally, if the
electron beam might have been injected off-axis on the 10s
of μm scale, Fig. 15 shows that a 0.5–1 μrad deviation from
the ideal angular separation may not be too surprising.
To accommodate large quadrupole offsets within the

range of the undulator girder movers, the on-axis beam was
repointed between the 10 and 20 μrad datasets. Without
additional tuning, this caused lower power in the on-axis
spot in the 20 μrad case. This repointing was additionally
important to allow the 20 μrad repointed spot to pass
through the aperture on the gas detector. Further repointing
could have prevented the rotated spot in Fig. 6(b) from
being clipped by this aperture.

C. K Optimization

We maximized x-ray power by scanning K in the rotated
undulator section, as shown in Fig. 7. As the electron beam
transits down the undulator line, it loses energy to resistive
wall wakefields. The average energy loss is compensated
for by a typical LCLS early stage linear taper of ΔK ¼
−0.000185 per undulator. In later undulators, a quadratic
taper can be added to match energy loss due to the FEL
process [19]. During normal LCLS operation, both linear
and quadratic terms of the taper are scanned. To optimize
power in the rotated section, we scanned a constant offset of
the undulator K for a linear (A,D) or quadratic (B,C) taper
(see Appendix C for full taper plots). These simple, single-
parameter scans increased the power in the rotated spot
significantly, and future studies could further optimize
linear, quadratic, and higher order terms for further power
extraction.
For Fig. 7(a), the average K in the undulator directly

upstream of the microbunch rotation triplet was 2.5439,
and the K following the linear taper for the first repointed
undulator would be 2.5431. However, when we scan the
repointed undulator section, while keeping the linear taper,
we find the optimal K of the first repointed undulator is
2.5396, a detune of ð−0.139� 0.002Þ%.

One possible explanation for this K detune is that the
tail of the electron beam was predominantly lasing in this
experiment. While the linear taper matches the mean
energy loss due to wakefields, the energy loss from
resistive-wall wakefields is higher in the tail of the beam
relative to the head. When our microbunched beam enters
the rotated undulator section, the resonant bunching wave-
length λr ¼ λu

2γ2
ð1þ K2

2
Þ is fixed. However, in the second

stage, the resonantK can change with electron beam energy
loss. If the bunching is strongest in the beam tail, which
loses more energy due to resistive wall wakefields than the
linear taper compensates for, then a lower K will be more
strongly resonant.
There are many ways that preferential lasing on the

beam tail can occur during LCLS operation. One sce-
nario is that the z-x phase space of the electron beam is
tilted, which can occur due to uncorrected kicks, such as
from coherent synchrotron radiation, in a dispersive
region. An electron beam with a large tilt will only lase
in one part of the beam, as the rest of the beam undergoes
an orbit in the undulator. The z-x tilt is flattened during
accelerator operation by adjusting quadrupoles in the
dispersive BC2 region, however, it is not always opti-
mized properly. For the GENESIS simulations shown in
Fig. 7, we performed start-to-end ELEGANT simulations
to produce the initial electron beam at the start of the
undulator, in which we adjusted the quadrupoles in the
BC2 region to add a tilt to the beam. We then injected
the electron beam into the undulator with the tail of the
beam on axis and matched to the quadrupole focusing
lattice. The K detune can be freely adjusted in simulation
by changing which part of the electron beam is matched.
Figure 19 provides a demonstration of this effect. We
found good agreement in the K detune by dividing the
beam into 100 bins, then matching the 67th bin from the
beam head for Figs. 7(a)–7(c) and the 73rd bin from
the beam head for Fig. 7(d).
Comparing Figs. 7(a) and 7(b), the quadratic taper

causes the detune in the first undulator to be slightly less
negative, as the average K in the repointed section is lower.

(a) (b) (c)

FIG. 6. Averaged images showing the on axis (top) and rotated (bottom) spots. (a) Experiment I, 10 μrad, (b) experiment I, 20 μrad,
and (c) experiment II, 10 μrad. Approximate spot pulse energies are given next to each spot.
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The K detune, however, is not strongly affected by the
microbunch rotation angle, as can be seen by comparing
Figs. 7(b) and 7(c). This suggests that theK detune is due to
energy loss in the undulator line and is not caused by the
microbunch rotation process.

D. Gain curve

We examined the gain in the repointed undulator
section by inserting a kick after each repointed undulator,
as shown in Fig. 8, with a polynomial fit. We predicted the
gain curve would be quadratic, consistent with superradiant
emission [20], and our simulation results. The experimental
gain appears to be primarily linear with a quadratic
component. We suspect that the seventh repointed undu-
lator was behaving poorly during the experiment, as shown
in Fig. 13, and thus further experiments might show a more
quadratic gain curve.

E. Phaseshifter scan

To demonstrate that the gain in the repointed undulator
section comes from the microbunching in the electron
beam, and not from interaction with the on-axis x-ray seed,
we performed a phaseshifter scan, as shown in Fig. 9.
In a typical on-axis undulator, using a phaseshifter to delay

(a) (b)

(c) (d)

FIG. 7. Scans of the K in the repointed undulator line for (a) experiment I, 10 μrad, linear taper; (b) experiment I, 10 μrad,
quadratic taper; (c) experiment I, 20 μrad, quadratic taper; and (d) experiment II, 10 μrad, linear taper. Overlaid text gives the
Gaussian-fitted K detune as a percentage of nominal K. Error bars give the standard error of the mean. Errors in fit centers give the
error on the Gaussian fit.

FIG. 8. Gain in rotated undulator section for the 10 μrad,
experiment I, quadratic taper case. In this run, the power in
the on-axis spot was 120 μJ. Error bars give the standard error of
the mean.
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the electron bunch by 180° relative to the x-ray pulse
suppresses lasing. However, we find that in the microbunch
rotation case, the power in the repointed undulator section
does not change. This suggests that there is a negligible
interaction between the on-axis x-ray beam and the
repointed electron beam.

V. CONCLUSIONS AND PROPOSED
APPLICATIONS

These results demonstrate that the microbunch rotation is
possible with hard x-ray wavelengths. To our knowledge,
our demonstration is the first time microbunch rotation has
been demonstrated with the hard x-ray microbunches in the
literature. Furthermore, demonstrating the microbunch
rotation with hard x-ray spacing at >10 μrad is significant
for the application of microbunch rotation to a cavity-
based XFEL.
Proposed cavity-based CBXFELs [11,12,21] use

Bragg-reflecting mirrors to circulate x-ray pulses which
interact with a series of electron bunches. The CBXFEL
project [11,12] will test a rectangular cavity of diamond

(400) Bragg-reflecting mirrors at 9.832 keV, which have an
angular reflectivity bandwidth (FWHM) of 8.8 μrad.
A microbunch rotation out-coupling scheme for a cavity-

based XFEL is depicted in Fig. 10. X rays produced by on-
axis undulators remain inside the cavity, while repointed
x rays miss the rocking curve of the Bragg reflection and
are transmitted out of the cavity.
A 10 μrad microbunch rotation is sufficient to miss the

Bragg rocking curve of the diamond 400 reflection used
by the CBXFEL project. Thus our demonstration of 10 and
20 μrad rotation of 10.14 keV microbunches supports the
feasibility of microbunch rotation for out-coupling a hard
x-ray cavity.
In certain regimes, one could also preserve microbunch-

ing as the electron beam is sent around the cavity mirror,
as discussed further in Appendix G.
The ability to multiplex an XFEL beam may additionally

be useful for stereo imaging, in which two photon beams
strike a sample simultaneously at different angles [22,23].
Upcoming LCLS-II upgrades will install a tender x-ray
imaging hutch with the ability to cross x-ray beams from
two separate undulator lines [17]. The two angularly

FIG. 9. Phaseshifter scan demonstration for experiment I, 10 μrad case. With all 32 undulators aligned on axis, a phaseshifter was
scanned (blue circles). With the microbunch rotation triplet and repointed undulator line installed, the phaseshifter just upstream of the
microbunch rotation triplet was scanned (orange squares). Error bars give the standard error of the mean.

FIG. 10. Microbunch rotation as an outcoupling scheme for a cavity-based XFEL.
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separated hard x-ray beams from microbunch rotation-
based multiplexing could be crossed using Bragg-reflecting
mirrors, potentially enabling stereo imaging with a single
undulator line. Additionally, because x-rays are produced
from the same microbunches, future studies could pursue
producing phase-locked pulses using this method.
Our results demonstrate a simple scheme for implement-

ing microbunch rotation for hard x-ray multiplexing in
existing FEL facilities and have exciting applications for
CBXFEL outcoupling and other experiments. We expect
the ability to perform multiplexing with little additional
hardware may be useful to existing XFEL facilities to
design new operational modes and utilize the full potential
of these very flexible machines.
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APPENDIX A: THIN, THICK, AND SEMITHICK
OFFSET QUADRUPOLES

For determining the matrix to use an offset quadrupole,
we can consider: (i) an integrated function magnet with
both dipole and quadrupole moments, (ii) a thin offset
quadrupole of infinitesimal length, or (iii) a thick quadru-
pole that provides an instantaneous kick. While (i) is the
most accurate, (ii) and (iii) can be more tractable and
provide good approximations within the appropriate limits.

1. Integrated function magnet

To properly account for a bend with focusing, we could
use something akin to the wedge bend in Chao, Sec. 2.2,
Eq. 15 [24] [reproduced for four-dimensional phase space
ðy; y0; z; δÞ, with the sign convention þz ¼ beam head,
−z ¼ beam tail, in Eq. (A1)]. This matrix describes a
combined (integrated) function magnet applicable to an
offset quadrupole, which is focusing in y. These matrices

neglect the vacuum R56,
lQ
γ2
, but one could also add it in for

completeness.

Roffset focusing quad ¼

2
6666664

cosðkylQÞ 1
ky
sinðkylQÞ 0 h

k2y
ð1 − cosðkylQÞÞ

−ky sinðkylQÞ cosðkylQÞ 0 h
ky
sinðkylQÞ

− h
ky
sinðkylQÞ − h

k2y
ð1 − cosðkylQÞÞ 1 − h2

k3y
ðkylQ − sinðkylQÞÞ

0 0 0 1

3
7777775
: ðA1Þ

In this formalism, h ¼ 1
ρ, ρ ¼ lQ

θ , k2y ¼ ð1 − nÞh2, and n ¼ − ∂B
∂y

ρ
B. Since k2y;quad ¼ B0

Bρ, n ¼ −k2y;quadρ2, and

ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρ2
þ k2y;quad

q
. Thus this matrix can be used for a thick offset quadrupole kick, if we know the kick angle θ and

ky is real, as in the case of a focusing quadrupole. If ky is imaginary, as in the case of a defocusing quadrupole (B0 < 0) and a
weak bend ( 1

ρ2
< jk2y;quadj), then we can transform Eq. (A1) using ky → iky and the identities sinhðuÞ ¼ −i sinðiuÞ and

coshðuÞ ¼ cosðiuÞ:

Roffset defocusing quad ¼

2
6666664

coshðkylQÞ 1
ky
sinhðkylQÞ 0 − h

k2y
ð1− coshðkylQÞÞ

ky sinhðkylQÞ coshðkylQÞ 0 h
ky
sinhðkylQÞ

− h
ky sinhðkylQÞ

h
k2y
ð1− coshðkylQÞÞ 1 h2

k3y
ðkylQ − sinhðkylQÞÞ

0 0 0 1

3
7777775
: ðA2Þ

Using Eq. (A2), we then use ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j 1
ρ2
− jk2y;quadjj

q
.

2. Thin offset quadrupole

Let us now consider how to approximate a thin offset quadrupole. Unfortunately, neither Eq. (A1) or Eq. (A2) can be
cleanly reduced to a thin bend. Consider the case with no focusing, e.g., ky ¼ h, n ¼ 0:
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Runiform bend

¼

2
6664

cosðθÞ 1
h sinðθÞ 0 1

h ð1− cosðθÞÞ
−h sinðθÞ cosðθÞ 0 sinðθÞ
− sinðθÞ − 1

h ð1− cosðθÞÞ 1 − 1
h ðθ − sinðθÞÞ

0 0 0 1

3
7775:

ðA3Þ

Consider small kicks, cosðθÞ ≈ 1 − θ2, sinðθÞ ≈ θ, and
substitute h ¼ θ

lQ
:

Runiform bend ¼

2
66664

1 − θ2 lQ 0 lQ

− θ2

lQ
1 − θ2 0 θ

−θ −lQθ 1 0

0 0 0 1

3
77775: ðA4Þ

We run into trouble when we want to set lQ ¼ 0, where R43

becomes infinite. Thus we cannot reduce this expression to
a matrix for an instantaneous kick.
Instead, we turn to a different method. We use a rotation

matrix as a proxy for the instantaneous kick. A rotation in
y-z can be expressed as



y1
z1

�
¼



cosðθÞ sinðθÞ
− sinðθÞ cosðθÞ

�

y0
z0

�
: ðA5Þ

Thus

y1 ¼ cosðθÞy0 þ sinðθÞz0;
z1 ¼ − sinðθÞy0 þ cosðθÞz0: ðA6Þ

Identifying y0 ¼ ∂y
∂s, z

0 ¼ ∂z
∂s, we also get

y01 ¼ cosðθÞy00 þ sinðθÞz00;
z01 ¼ − sinðθÞy00 þ cosðθÞz00: ðA7Þ

2
6664
y1
y01
z1
z01

3
7775 ¼

2
6664

cosðθÞ 0 sinðθÞ 0

0 cosðθÞ 0 sinðθÞ
− sinðθÞ 0 cosðθÞ 0

0 − sinðθÞ 0 cosðθÞ

3
7775

2
6664
y0
y00
z0
z00

3
7775:

ðA8Þ

To put this into ðy; y0; z; δÞ phase space, we use con-

servation of momentum to require p1 ¼ p0,
p2
0

m2 ¼ y020 þ z020 ,

and p2
1

m2 ¼ y021 þ z021 . Then we find z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0

m2 − y020

q
and solve

for y01 in terms of p0 and y00:

y01 ¼ cosðθÞy00 þ sinðθÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0

m2
− y020

r

≈ cosðθÞy00 þ sinðθÞp0

m
: ðA9Þ

The second approximation is made assuming y00 ≪
p0

m .
Using this, we can now write the rotation matrix in
ðy; y0; z; δÞ phase space:

2
6664
y1
y01
z1
δ1

3
7775 ¼

2
6664

cosðθÞ 0 sinðθÞ 0

0 cosðθÞ 0 sinðθÞ
− sinðθÞ 0 cosðθÞ 0

0 0 0 1

3
7775

2
6664
y0
y00
z0
δ0

3
7775:

ðA10Þ
For very small kick angles, cosðθÞ ≈ 1, sinðθÞ ≈ θ, this is

approximately

2
6664
y1
y01
z1
δ1

3
7775 ¼

2
6664

1 0 θ 0

0 1 0 θ

−θ 0 1 0

0 0 0 1

3
7775

2
6664
y0
y00
z0
δ0

3
7775. ðA11Þ

Then we consider microbunches that are much smaller
in z than y and neglect the R35 term. Thus we obtain an
approximate expression for a thin bend:

Rθ ¼

2
6664

1 0 0 0

0 1 0 θ

−θ 0 1 0

0 0 0 1

3
7775: ðA12Þ

To get a thin offset quadrupole, we then just multiply the
kick by a thin quadrupole matrix:

RQθ ¼ RθRQ

¼

2
6664

1 0 0 0

0 1 0 θ

−θ 0 1 0

0 0 0 1

3
7775

2
6664

1 0 0 0
−1
f 1 0 0

0 0 1 0

0 0 0 1

3
7775

¼

2
6664

1 0 0 0

−1
f 1 0 θ

−θ 0 1 0

0 0 0 1

3
7775: ðA13Þ

3. Thick quad with instantaneous kick

We can also construct a matrix that treats the motion in
the transverse plane as a thick quadrupole but treats the
dipole kick as instantaneous. We repeat the procedure as
done for Eq. (A13) but replace RQ with two half-length
thick quadrupoles. For angstrom-scale microbunches, it is
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also important to consider the vacuum R56,
lQ
γ2
. For the

focusing case, a half-quadrupole can be defined as

RQF=2 ¼

2
66664

cosðklQ=2Þ 1
k sinðklQ=2Þ 0 0

−k sinðklQ=2Þ cosðklQ=2Þ 0 0

0 0 1
lQ
2γ2

0 0 0 1

3
77775: ðA14Þ

We obtain

RQFθ ¼RQF=2RθRQF=2

¼

2
66664

cosðklQÞ 1
ksinðklQÞ 0 θ sinðklQ=2Þ

−ksinðklQÞ cosðklQÞ 0 θcosðklQ=2Þ
−θcosðklQ=2Þ −θ

k sinðklQ=2Þ 1
lQ
γ2

0 0 0 1

3
77775:

ðA15Þ
We then consider a case where the kick angle is small,
and the quadrupole is somewhat short, such that we can
neglect terms of order θlQ and higher. Applying the small
angle approximation only to terms that contain θ
(sinðklQ=2Þ ≈ klQ=2, cosðklQ=2Þ ≈ 1), we then obtain a
matrix for a thick quadrupole with an instantaneous kick.
A similar process gives us the matrix for a defocusing
quadrupole as well:

RQFθ ¼

2
66664

cosðklQÞ 1
k sinðklQÞ 0 0

−k sinðklQÞ cosðklQÞ 0 θ

−θ 0 1
lQ
γ2

0 0 0 1

3
77775

RQDθ ¼

2
66664

coshðklQÞ 1
k sinhðklQÞ 0 0

k sinhðklQÞ coshðklQÞ 0 θ

−θ 0 1
lQ
γ2

0 0 0 1

3
77775: ðA16Þ

4. Comparison

In this study, the quadrupole offsets used in the experi-
ment were determined using the thick quad with instanta-
neous kick matrices. These matrices were simple enough
that the quadrupole offsets could be solved analytically in
MATLAB. While in principle, one could also solve for the
quadrupole offsets analytically or numerically using the
integrated function magnet, this is more computationally
challenging.
Figure 11 shows that using the thick quad with instanta-

neous kick matrices may introduce a 1% error in the
microbunch rotation tilt angle, compared with using the full
integrated function magnet solution. The dashed lines show

the microbunch tilt angle determined by the thick quad
with instantaneous kick matrices (−10.0 μrad) and the
integrated function magnet matrices (−9.9 μrad), using
the experiment I offsets. Single Gaussian microbunch
simulations were then performed in ELEGANT for both first
and second-order matrices, and for GENESIS, using the
experiment I offsets and parameters given in Table I. Then
the microbunch tilt was determined by calculating the
bunching factor at different angles and performing a
Gaussian fit. Here we note that the “CSBEND” elements
used for offset quadrupoles in ELEGANT produce a micro-
bunch tilt angle that agrees well with integrated function
magnet calculation, while the offset quadrupole elements
in GENESIS agree with the thick quad with instantaneous
kick calculation.

APPENDIX B: CALCULATION
OF TRAJECTORY ANGLES

For the matrices in the main text theory section, the
particle coordinates ðy; y0; z; δÞ rotate with the central
particle trajectory as the beam experiences kicks such that
z remains parallel and y remains normal to the particle
trajectory. Thus before we can calculate the matrices that
define our microbunch, we need to calculate the kick
angles, θ1, θ2, θ3, provided by each offset quadrupole. We
do this with a separate set of matrices where the particle
coordinates in y, y⃗ ¼ ðy; y0; 1Þ, do not rotate as the particle
passes through a bend. As such, the quadrupole offsets,
o1, o2, and o3 are defined as distances from the initial
y axis and are not relative to the actual electron beam
trajectory.

FIG. 11. Comparison of the optimal microbunch recovery angle
determined using thick quad with instantaneous kick matrices,
integrated function magnet matrices, ELEGANT, and GENESIS.
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We consider a quadrupole with focal length f1, which is
offset in y by a distance o1. The kick provided by a thin
offset quadrupole is θ ¼ − 1

f ðy0 − o1Þ. When considering
several kicks, it is convenient to use matrices to perform
this calculation. To create a matrixMQθ1 that can be used to
find the trajectory following a thin offset quadrupole in
ðy; y0; 1Þ phase space, we offset our incoming particle
relative to the quadrupole center in y by −o1 using a
matrixM−o1 , perform quadrupole focusing usingMQ1, then
undo the offset using Mo1 :

MQθ1 ¼ Mo1MQ1M−o1

¼

2
64
1 0 o1
0 1 0

0 0 1

3
75
2
64
1 0 0

−1
f1

1 0

0 0 1

3
75
2
64
1 0 −o1
0 1 0

0 0 1

3
75

¼

2
64
1 0 0

−1
f1

1 o1
f1

0 0 1

3
75: ðB1Þ

This matrix produces the trajectory angle kick θ1 for an
on-axis particle (y0 ¼ 0, y00 ¼ 0), through the first offset
quadrupole in our triplet:

M1 ¼ MQθ1;

y⃗1 ¼ M1y⃗0;2
64
y1
y01
1

3
75 ¼

2
64
1 0 0

−1
f1

1 o1
f1

0 0 1

3
75
2
64
0

0

1

3
75;

θ1 ¼ y01 ¼
o1
f1

: ðB2Þ

We can then find the trajectory angle following the second
offset quadrupole by constructing a matrix of two offset
quadrupoles and a drift, finding the angle after the second
quadrupole, and then subtracting off the trajectory angle
after the first quadrupole to find the kick angle of the
second quadrupole:

M2 ¼ MQθ2ML1
MQθ1

¼

2
64
1 0 0

−1
f2

1 o2
f

0 0 1

3
75
2
64
1 L1 0

0 1 0

0 0 1

3
75
2
64
1 0 0

−1
f1

1 o1
f1

0 0 1

3
75

θ2 ¼ y02 − y01 ¼
1

f1f2
ðf1o2 − L1o1Þ: ðB3Þ

We repeat this procedure one more time to find the kick
angle of the third quadrupole:

M3 ¼ MQθ3ML2
MQθ2ML1

MQθ1;

θ3 ¼ y03 − y02

¼ −
1

f1f2f3
ð−f1f2o3 þ f1L2o2 þ f2L2o1

þ f2L1o1 − L1L2o1Þ: ðB4Þ

For the thick quadrupole case, we replace MQ1, MQ2, and
MQ3 with their thick quadrupole equivalents, e.g.,

MQD
¼

2
64

coshðklQÞ 1
k sinhðklQÞ 0

k sinhðklQÞ coshðklQÞ 0

0 0 1

3
75;

MQF
¼

2
64

cosðklQÞ 1
k sinðklQÞ 0

−k sinðklQÞ cosðklQÞ 0

0 0 1

3
75; ðB5Þ

and repeat the thin quadrupole procedure to find the
trajectory kicks produced by thick quadrupoles.

APPENDIX C: TAPER

Figure 12 shows the optimized undulator taper profiles
following the K scans depicted in the main text. The 21
upstream undulators had a constant linear taper of ΔK ¼
−0.000185 per undulator to compensate forwakefield energy
losses. The nine repointed undulators either continued this
taper after an initial K detune or used a mild quadratic taper.

APPENDIX D: ADDITIONAL GAIN CURVE
MEASUREMENT

Figure 13 shows a gain curve of the final eight
undulators, measured immediately before experiment I,
with all 32 undulators lasing on-axis. We notice that the
third to last undulator was performing suboptimally in that
measurement, similar to its suboptimal performance in the
gain curve in the microbunch rotation case.

FIG. 12. Optimized undulator tapers for the fourK scans shown
in Fig. 7.
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APPENDIX E: ANGULAR SPOT SEPARATION

Figure 14 shows the angle between the two spots during
the gain curve taken in experiment I. Interestingly, the spot
separation at the screen initially suggests microbunch
lasing at 9 μrad, which gain-guiding corrects to 10 μrad
after several undulators. This lower than expected initial
angular separation may be due to suboptimal quadrupole
offsets, which may have arisen due to an imprecise
knowledge of beam parameters or the flattening of the
orbit performed after the microbunch rotation triplet.
Figure 15 shows the impact of the experimental electron
beam energy differing from that which was used to
determine the offset, and the impact of errors in the
quadrupole offsets, using thick quad with instantaneous
kick matrices and experiment I parameters.
Figure 15(a) indicates that using the wrong electron beam

energy to determine the quadrupole offsets has a negligible
effect on the electron beam trajectory and would require a
> 400 MeV (3.7%) error to produce a 1 μrad error in the
microbunch tilt angle. We expect the energy of the LCLS Cu
linac at this energy is known to be at least 1%–2%, so an
error in electron beam energy should not, on its own, explain
the 1 μrad error in separation which we observe.

Figure 15(b) shows that a few μm alternating errors in
quadrupole offset (o1 þ err, o2 − err, o3 þ err) can cause
microradian-scale errors in the trajectory angle. However,
typically the quadrupole centers are known to better than
1 μm, so this effect also should not, on its own, explain the
1 μrad error in separation which we observe.
Figure 15(c) indicates that a few 10s of μm uniform error

in quadrupole offset (o1 þ err, o2 þ err, o3 þ err), such as
may occur if the electron beam enters the triplet off-axis,
can produce microradian-scale errors in both the micro-
bunch tilt angle and trajectory angle. We used corrector
magnets located between each of the nine downstream
undulators to flatten the average trajectory to 10 μrad,

FIG. 14. Angular separation between the on-axis and rotated
beams in Fig. 8. Error bars give the standard error of the mean,
plus the error in screen calibration.

(a)

(b)

(c)

FIG. 15. Analytical calculation of the impact of errors in
(a) electron beam energy, (b) alternating quadrupole offsets
(o1 þ err, o2 − err, o3 þ err), and (c) uniform quadrupole offsets
(o1 þ err, o2 þ err, o3 þ err) for experiment 1 parameters.

FIG. 13. Gain curve plotting the x-ray pulse energy in the last
eight undulators with 32 LCLS HXU undulators lasing. Error
bars give the standard error of the mean.
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however, it is possible that the part of the beam that was
lasing was offset with respect to the average beam, or it took
a few correctors to fully correct to 10 μrad. These scenarios
may lead to the beam initially lasing with a trajectory or
microbunch tilt angle 1 μrad lower than expected.

APPENDIX F: XTCAV MEASUREMENTS AND
GENESIS SIMULATION DETAILS

Figure 16 shows x-ray transverse deflecting cavity
(XTCAV) measurements that were taken prior to experi-
ment I (a),(c) and experiment II (b),(d). Figure 16(a) has no
undulators inserted, (b) is lasing at half power, and (c) and
(d) are lasing at full power with 32 undulators inserted. The
XTCAV measurements were used to determine the bunch
length, current, and energy spread for comparison with
simulation, as shown in (e)–(g). Slice central energy and
RMS energy spread were determined by a Gaussian fit to
each time bin in the XTCAV image. XTCAV voltage
was 80 MV.
The electron beam distribution at the beginning of the

undulator line was produced by ELEGANT. Figure 17 shows

the electron beam as input into GENESIS at the beginning
of the undulator line for experiment I (a), (c) and experi-
ment II (b), (d). The beam has been truncated in experi-
ment II to have the same number of radiation wavelength
slices as experiment I. To approximately match the electron
beam lengths measured by XTCAV, we adjusted the bunch
compression in the LCLS BC2 chicane [25] by making
small modifications to the L2 phase, resulting in the
energy-z phase space shown in Figs. 17(a) and 17(b). To
replicate the K detune we see in the experiment, we forced
lasing on the tail by intentionally causing a tilt in the x-z
phase space. This was done by tweaking quadrupoles in a
dispersive section of the LCLS BC2 chicane. These
quadrupoles, which have a maximum integrated field
gradient of �2.1 kG [26], are routinely used during the
LCLS operations to flatten the x-z phase space. Setting
these quadrupoles to an integrated field of 0.27 kG, we
can use them to intentionally tilt the x-z phase space, as
seen in Figs. 17(c) and 17(d). Figures 17(e)–17(g) show the
current, slice central energy, and rms energy spread. These
quantities were determined using GENESIS and represent the
mean and standard deviation of each slice. Each GENESIS

(a) (b)

(c)

(e) (f) (g)

(d)

FIG. 16. XTCAV measurements at the end of LCLS-HXU. (a) Experiment I, no undulators inserted; (b) experiment II, lasing at half
power; (c) experiment I, full power 32 on-axis undulator lasing; and (d) experiment II, full power 32 on-axis undulator lasing.
(e)–(g) give the slice current, energy, and energy spread for the measurements in (a)–(d). Sign convention is head on left and tail
on right.
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simulation simulates every 30th radiation wavelength
with 16 000 macroparticles per slice. We found a large
number of macroparticles was necessary to suppress
lasing off-axis [13].
We binned the electron beam into 100 bins and selected

the appropriate electron bin to match theK detune observed
in the experiment, which was the 67th bin from the head
(experiment I) or 73rd bin from the head (experiment II).
This bin was injected on axis, and the entire beam’s Twiss
parameters ðβx; αx; βy; αyÞ were scaled to match this bin
perfectly into the beam focusing lattice in GENESIS.
Figure 18(a) shows the transverse profile of the electron
beam and highlights how the tail of the beam was injected
on axis.
We then scaled the electron beam emittance by a

multiplicative factor to match the on-axis x-ray power.
Figure 18(b) gives the slice emittance for experiment I
(10 μrad, linear taper) and experiment II. Table II gives
the on-axis and repointed spot powers measured in
experiment and the corresponding powers in GENESIS

for the four K scans shown in Fig. 7 (measured pulse
energies are known to be within ∼5% error), as well as the
emittance scaling factors.

Figures 18(c) and 18(d) show the x-ray power in the
repointed spot and electron beam bunching factor at the
optimal K, showing that lasing in the electron beam head is
suppressed. This is important, as Fig. 18(e) shows that the
electron beam energy loss is larger in the tail than in the
head. The electron beam energy loss simulated here comes
from three factors: (i) spontaneous energy loss, (ii) resistive
wall wakefields, and (iii) FEL lasing. Spontaneous energy
loss occurs uniformly across the beam, but resistive wall
wakefields cause increased energy loss in the electron beam
tail, leading to the large, smooth features in Fig. 18(e).
The high-frequency, sharp features in Fig. 18(e) show
energy loss from FEL lasing. Wakefields used in GENESIS

were externally calculated by a Green’s function method
[27] using a function identical to that used for resistive-wall
wakefields in LITRACK [28].
We can use this energy loss to predict the optimal K

detune for lasing in each slice, after subtracting off a linear
taper of 0.000185/undulator. Figure 18(f) shows this for the
two K scans with linear taper. The dashed lines show the K
detune found in the associated simulated K scan. We see
that the optimal K detune is weighted toward the K detune
of slices that undergo FEL lasing, while not aligning

(a) (b)

(c)

(e) (f) (g)

(d)

FIG. 17. Simulated beam from ELEGANT, as inserted into GENESIS at the beginning of the undulator line. (a) γ − t phase space for
experiment I, (b) γ − t phase space for experiment II, (c) x − t phase space for experiment I, and (d) x − t phase space for experiment II.
(e)–(g) give the slice current, energy, and energy spread for each simulation. Sign convention is head on left, tail on right.
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(a) (b)

(c) (d)

(e) (f)

FIG. 18. Longitudinal profiles of simulations in Fig. 7. (a) Transverse position of beam at beginning of undulator line, (b) slice
emittance at the beginning of the undulator line, (c) power after nine repointed undulators at optimal K, (d) bunching factor at the
beginning of nine repointed undulators at optimal K, (e) electron energy loss comparing the beginning of the undulator line to the
beginning of the repointed undulator line, and (f) predicted K detune based on energy loss, after subtracting a linear taper of 0.000185/
undulator. Dashed lines give the K detunes found from the associated K scans. Sign convention is head on left and tail on right.

TABLE II. Pulse energy and scaling factors.

Exp I, 10 μrad,
linear taper

Exp I, 10 μrad,
quadratic taper Exp I, 20 μrad Exp II

Pulse energy, on-axis spot, Exp 120 μJ 116 μJ 31 μJ 168 μJ
Pulse energy, rotated spot, Exp 47 μJ 69 μJ 37 μJ 349 μJ
Pulse energy, on-axis spot, GENESIS 115 μJ 116 μJ 33 μJ 170 μJ
Pulse energy, rotated spot, GENESIS 109 μJ 140 μJ 69 μJ 94 μJ
Emittance scaling factor 1.223 1.215 1.695 1.065
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perfectly with the center of the FEL lasing region due to a
small amount of lasing in the head of the beam. This makes
us confident that the increased energy loss due to lasing in
the tail of the beam is what is causing the K detune in our
GENESIS simulations.
Figure 19 serves to further reinforce the idea that lasing

further on the tail of the beam makes the K detune more
negative. Using an ELEGANT beam with experiment I
parameters and a linear taper, we repeated the procedure

described above of selecting a longitudinal bin of the
electron beam, placing that bin on axis and matching that
bin to the undulator focusing lattice, then scanning the
emittance to ensure 115 μJ in the on-axis spot. Figure 19(a)
shows that performing this procedure with the 50th, 60th,
and 70th bin of the beam changes the optimal K detune, as
the beam lases progressively more on the tail of the beam,
as evidenced by Figs. 19(b)–(e). Figure 19(f) shows that
again, we can use the energy loss to predict the K detune of

(a) (b)

(c) (d)

(e) (f)

FIG. 19. Simulated demonstration of increased negative K detune on beam tail. The electron beam is divided into 100 bins, then
simulations matching the 50th (red), 60th (green), and 70th (blue) bins are compared. (a) K scans with Gaussian fits, (b) transverse
position of beam at beginning of undulator line, (c) power after nine repointed undulators at optimal K, (d) bunching factor at beginning
of nine repointed undulators at optimal K, (e) electron energy loss comparing the beginning of the undulator line to the beginning of the
repointed undulator line, and (f) predicted K detune based on energy loss, after subtracting a linear taper of 0.000185/undulator. Dashed
lines give the K detunes found from the associated K scans. Sign convention is head on left and tail on right. Errors in fit centers give the
error of the Gaussian fit.
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each slice of the beam and find that the K detune of regions
of the beam which lase approximately match the optimal K
detune found in the K scan.

APPENDIX G: CBXFEL OUT-COUPLING
AROUND A MIRROR

In addition to the CBXFEL out-coupling method
described in the text, where all undulators are enclosed
within the cavity and x rays are outcoupled through a
Bragg-reflecting mirror, one could also consider sending
the electron beam around the cavity mirror, as depicted in
Fig. 20. The microbunched electron beam could then be
lased in undulators downstream of the cavity. The benefit
of this scheme is that it allows for a smaller cavity with
more relaxed alignment tolerances. The challenge of this
scheme is achieving sufficient clearance between the
cavity mirror and electron beam while still preserving
microbunch rotation.
Figure 21 shows an example electron beam trajectory

(using the parameters in Table I, experiment I, 10 μrad
rotation). Relative to the initial z axis, the electron beam y
trajectory is − αf1L

4
in quadrupole 2, and αL in quadrupole

3. The maximum orbit in the microbunch rotation triplet is

directly proportional to the microbunch rotation angle. For
a 40 μrad rotation, f1 ¼ −12 m and L ¼ 4.013 m, this
gives an orbit of 482 μm in quadrupole 2, and 160 μm in
quadrupole 3. For a beam size of σy ≈ 20–30 μm, this
should provide sufficient clearance to send the electron
beam around a cavity mirror. However, this is closer than
thick diamond optics are typically brought to the electron
beam at LCLS, and additional machine protection studies
may be required. Additionally, as shown in the parameter
scan in Fig. 4, a high microbunch rotation angle can reduce
microbunching recovery significantly. One may either have
to reduce the microbunch rotation angle, or out-couple the
beam earlier in FEL gain, such that the electron beam
energy spread is lower. One could also increase quadrupole
strength, although this will also decrease the electron orbit
in the microbunch rotation triplet.
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