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A recently emerging approach adopts a directionally time-varying (rotating) magnetic field to drive a
pinch load, aiming to mitigate the inherent magneto-Rayleigh-Taylor instability in dynamic Z pinches.
A helical return current post (RCP) serves as a functional structural element capable of generating the
requisite driving magnetic field for this purpose in the load region. This paper first calculates the current
azimuthally induced on the outer surface of a magnetically pinched load within this type of RCP using a
zero-dimensional lumped-parameter circuit model. The results show that the induced current deviates
significantly from the presumed “perfect” induced current (100% amplitude) as reported in the literature
[S. A. Sorokin, Plasma Phys. Rep. 39, 139 (2013); P. F. Schmit et al., Phys. Rev. Lett. 117, 205001 (2016);
G. A. Shipley et al., Phys. Plasmas 26, 102702 (2019); and P. C. Campbell et al., Phys. Rev. Lett. 125,
035001 (2020)], with an effective coefficient of current induction considerably less than 1. However, even
when the load is fully compressed to the axis, the effective coefficient does not approach zero but rather
converges to a finite value that solely depends on the aspect ratio of the RCP. This is quite favorable for the
suppression of magneto-Rayleigh-Taylor instability in the Z pinch. As for the pointlike X pinch, the axial
magnetic field does not tend to zero but a finite value, though the effective coefficient tends to zero, and this
result may be used to suppress the instability in X pinch and improve the time stability and spatiotemporal
unity of hot spots. In addition, the anode and cathode plates have the potential to enhance the current
induced in the load. This paper then analyzes the axial distribution and time behavior of the induced current
adopting an approximate analytical method and numerical integration and finds an approximate invariance
that can be well characterized by δt, the product of the normalized skin depth and time. Similar values of δt
indicate similar axial distribution characteristics. When δt is lower than, at, or higher than the critical region
(∼0.1–0.3), the axial distribution appears dumbbell shaped, nearly flat, and arched, respectively. These
distributively induced currents can be exploited to achieve quasispherical, near flat, and dumbbell-shaped
implosions, respectively.
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I. INTRODUCTION

Dynamic Z pinches [1–3] can be used to inertially
confine fusion plasmas and to generate x-ray radiation
of the highest intensity in laboratories. Their applications in
fusion energy, high-tech national defense, and economic
industries hold immense value. However, they face a
critical obstacle in the form of magneto-Rayleigh-Taylor
(MRT) instability [4–7].
It is widely known that a magnetic field has an inhibitory

effect on instability modes having wave vectors that are not
perpendicular to the field (i.e., wave vectors that have

nonzero parallel components). Conversely, a magnetic field
does not inhibit modes that are perpendicular to it. In the
standard Z-pinch configuration, the MRT instability fea-
tures a mode perpendicular to the driving magnetic field.
The growth rate of the MRT instability thus remains
completely unaffected by the magnetic field, with a formula
identical to that for the classical fluid Rayleigh-Taylor
instability. In addition, magnetic shear reduces the growth
rate of the MRT instability. Both the inhibitory effect of a
magnetic field on nonperpendicular modes and that of
magnetic shear are realized through the component of the
magnetic field parallel to the wave vector, suggesting that
work is required to bend magnetic field lines. The second-
order differential equation for eigenvalues [1] derived from
normal mode analysis includes a F2 ¼ ðk · BÞ2 ¼ k2B2

==

term, where k · B is the result of the action of B · ∇ on the
perturbation quantity and represents the bending of mag-
netic field lines by perturbations in the direction of the
magnetic field. Therefore, the F term generally has a
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stabilizing effect. It is anticipated that the magnetic field
exerts an inhibitory effect on any mode (with wave vector k)
for which the time-averaged F2 is positive.
It is thus worth considering the use of a directionally

time-varying (rotating) driving magnetic field to suppress
MRT instability in dynamic Z pinches [8–12]. In this
scheme, the direction of the driving magnetic field rotates
over time and, on a time average basis, meets the condition
that F2 > 0 for all modes, and it is thus expected that this
driving method suppresses the instability of all modes. If an
axial magnetic field is added on the inner side of the liner, it
will be enhanced through the conservation of magnetic flux
during the implosion process. Such an axial magnetic field
can also suppress MRT instability through the mechanisms
of magnetic shear and reduced implosion acceleration.
These two strategies are mutually complementary and can
be applied individually or in combination. A comprehen-
sive review of many other possible methods of inhibiting
MRT instability can be found in Ref. [2].
The technique using a helical return current post (RCP)

to generate an axial magnetic field through electromagnetic
induction on the outer surface of the magnetic pinch load
was originally proposed in [13–15]. Subsequent literature
related to this configuration includes [10,16–19]. Taking
a slightly different approach, some studies, including
[20–24], have proposed the technique using the spiral
current channel on the load to generate an axial magnetic
field. The first technique is the most relevant to this article,
which involves a helical RCP whose structure is shown in
Fig. 1. The helical structure generates an azimuthal (Θ)
component of the loading current flowing through the RCP.
This current component induces an azimuthal current on
the outer surface of the magnetic pinch load, corresponding

to an axial magnetic-field component. Naturally, there also
exists an azimuthal magnetic-field component (provided by
the axial current) on the outer surface of the magnetic pinch
load. These two magnetic-field components do not evolve
synchronously, leading to dynamic variations in the direc-
tion of the overall driving magnetic field on the outer
surface of the load.
This study adopts a zero-dimensional lumped-parameter

circuit (LPC) model to calculate the current azimuthally
induced on the outer surface of the load in such a
configuration and analyzes the axial distribution and time
behavior of the induced current adopting an approximate
analytical method and numerical integration. Once the
azimuthal current is determined, the axial magnetic field
and overall driving magnetic field are straightforward to
calculate. Accurately calculating currents, particularly, the
azimuthally induced current, is important to the dynamic
analysis and instability assessment of magnetic pinches. In
this paper, it is found that the induced current is far different
from the “ideal” induction assumed in the literature. The
nonideal induced current reduces the effective convergence
ratio from both dynamics and integrity aspects. The
effective convergence ratio refers to the convergence ratio
under the condition that the integrity of the liner is
maintained. Compared with the ideal case, the discounted
nonideal induced current first reduces the implosion power
and thus the degree of compression and second reduces the
suppression of the instability, resulting in the integrity of
the liner being reduced earlier or destroyed more easily.
A reduction in the effective convergence ratio in turn
naturally reduces the fusion gain. The reduction mentioned
here is relative to ideal induction. Fortunately, the discount
of the nonideal induction does not reach zero. In this way,
relative to the traditional standard Z pinch, there are
improvements in the implosion dynamics, liner integrity,
instability suppression, and fusion gain. In terms of the
instability, the accuracy of the induced current is very
important as it relates to both the acceleration and speed of
the implosion and the direction of the driving magnetic
field. It is known from elementary RT instability theory that
the implosion acceleration directly affects the growth of
MRT instability. In the case that the radial convergence
effect, namely the Bell-Plesset effect [25], is considered for
a cylindrical or spherical configuration, the implosion
speed also affects the growth of instability; i.e., the
perturbation equation contains a term proportional to
Ṙ=R, where R is the liner radius and the dot stands for
the differential with respect to time. The speed and degree
of change in the direction of the driving magnetic field
directly and significantly affect the suppression of the MRT
instability [11,12].

II. LPC MODEL

In electromagnetic loading with a helical RCP structure,
a Z pinch, in fact, entails a combination of an azimuthal

FIG. 1. Schematic of a helical RCP configuration. The white
arrows indicate the direction of current; i.e., the direction opposite
the electron flow.
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pinch (Θ pinch) and an axial pinch (Z pinch). In the
preliminary stage of the present study, the analysis is
simplified by decoupling the Z pinch and focusing solely
on the azimuthal pinch. In addition, it is assumed that the
load experiences minimal motion, allowing for isolation
and examination of its electromagnetic behavior. This
approach is particularly applicable to the early and inter-
mediate stages of a magnetic pinch. In the later stages, the Z
pinch undergoes substantial motion, necessitating the
coupling of electromagnetic and dynamic behaviors.
The azimuthal current component in the helical RCP

structure provides an azimuthal pinch, which is essentially
an electromagnetic induction process. This process is
approximately described by adopting an LPC model:

dΦ
dt

¼ −RIΘ;
Φ ¼ LIΘ þMIP; ð1Þ

where IP is the azimuthal current component in the helical
RCP, which is treated as a known quantity determined by
partitioning a fraction of the total driving current based on
the tilt ratio of the helical RCP. In practice, the total driving
current is typically obtained through diagnostics. M is the
mutual inductance of the load and RCP, which is associated
with the azimuthal current. Φ is the axial magnetic flux on
the load, namely the integral of the axial magnetic field Bz
in the r − θ section (a circular area) on the magnetic
pinch load. IΘ is the azimuthal induced current on the load,
and its positive direction is specified here to be the same as
that of IP This treatment is in contrast with that reported in
a previous study [26]. R and L are the resistance and
inductance associated with the azimuthal induced current.
The electromagnetic induction is the predominant factor
considered, whereas the effect of resistance can be fur-
ther neglected without appreciably affecting the primary
conclusions.

III. CALCULATION OF INDUCTANCE
AND MUTUAL INDUCTANCE

It is difficult to strictly consider the helicity (i.e.,
inclination angle and pitch) of the coils when calculating
the inductance of a solenoid. Therefore, the helicity of the
coils is generally ignored in calculation; i.e., the inclination
angle and pitch are assumed to be zero, as in the case of this
paper. Therefore, the inclination angle and pitch are not
included in the inductance formula. However, the effect of
the inclination angle can be approximated; i.e., the current
in a solenoid with a nonzero inclination angle is decom-
posed into axial and azimuthal components, and the latter is
regarded as flowing through a solenoid with a zero
inclination angle, while the effect of the inclination angle
is introduced through the split proportion of the azimuthal
current in the total current. This section involves the
inductance and mutual inductance relating only to the

azimuthal current. The inclination angle is reintroduced in
Sec. VII.
Suppose there are two coaxial cylindrical solenoids

having radii R1 and R2 and m and n coil turns in their
respective axial unit lengths. The axial length of the first
solenoid is h, the proximal ends are axially separated by b
(b > 0 when there is no nesting and b < 0 when there is
nesting), and the distal ends are separated by c, as shown
in Fig. 2.
We take one coil element for each of the two solenoids,

with the axial coordinates being z1 and z2, respectively. The
mutual inductance of the two coil elements is

M̄ ¼ μ
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p ��
2

k0
− k0

�
K½k20� − 2

k0
E½k20�

�
; ð2Þ

where K and E are the first and second types of the elliptic
integral function, respectively, and k20 ¼ 4R1R2

ðz1−z2Þ2þðR1þR2Þ2.
The mutual inductance of the two solenoids is

M ¼ 1RR
dz1dz2

ZZ
M̄dz1dz2: ð3Þ

After some transformations, the mutual inductance is
expressed as [27]

M ¼
X4
i¼1

Mi ¼
X4
i¼1

ð−1Þi
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
Dk2

2ki
Si

¼
X4
i¼1

ð−1Þi
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
Dk2

2ki

Z
π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2i sin

2θ
p
1 − k2sin2θ

sin22θdθ;

ð4Þ

where

FIG. 2. Schematic of two coaxial solenoids. See the main text
for the descriptions of the variables.
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D ¼ 2μR1R2mn;

k2 ¼ 4R1R2

ðR1 þ R2Þ2
;

k21 ¼
4R1R2

ðR1 þ R2Þ2 þ ðh − cÞ2 ;

k22 ¼
4R1R2

ðR1 þ R2Þ2 þ c2
;

k23 ¼
4R1R2

ðR1 þ R2Þ2 þ ðhþ bÞ2 ;

k24 ¼
4R1R2

ðR1 þ R2Þ2 þ b2
: ð5Þ

The integral part of Eq. (4) is expressed using a general
special function as

Si ¼
Z

π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− k2i sin

2 θ
p
1− k2 sin2 θ

sin2 2θdθ

¼ 4ffiffiffiffiffiffiffiffiffiffiffiffi
1− k2i

3
p

k2i k
6

�
½k4ð1− k2i Þ− 3k4i ð1− k2Þ�K

�
k2i

−1þ k2i

�

þ ð1− k2i Þk2ðk2i ð3− k2Þ− k2ÞE
�

k2i
−1þ k2i

�

þ 3k2i ðk2i − k2ÞPi
�

k2

−1þ k2
;

k2i
−1þ k2i

��
; ð6Þ

where Pi denotes elliptic integral functions of the third
kind. Using the identities

E
h
− x
1 − x

i
¼ E½x�=

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

K
h
− x
1 − x

i
¼ K½x�

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

Pi
h
− x
1 − x

;− y
1 − y

i
¼ Pi½x; y�ð1 − xÞ

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
; ð7Þ

Equation (6) is rewritten as

Si ¼
4

3k2i k
6
½½k4ð1 − k2i Þ − 3k4i ð1 − k2Þ�K½k2i �

þ k2ðk2i ð3 − k2Þ − k2ÞE½k2i �
þ 3k2i ðk2i − k2Þð1 − k2ÞPi½k2; k2i ��: ð8Þ

The mutual inductance is thus expressed as

M ¼
X4
i¼1

ð−1Þi 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2D

p
3k3i k

4
ð½k4ð1− k2i Þ− 3k4i ð1− k2Þ�K½k2i �

þ k2ðk2i ð3− k2Þ− k2ÞE½k2i �
þ 3k2i ðk2i − k2Þð1− k2ÞPi½k2; k2i �Þ: ð9Þ

The parameters are taken as R1 ¼ R2 ¼ R, −b ¼ c ¼ h,
such that the two solenoids degenerate into the same
solenoid. The mutual inductance formula in Eq. (9) then
degenerates into an inductance (self-inductance) formula
(as described in Eq. (15) in Ref. [27]):

L ¼ 2μRN2

3

 
K½ 4R2

4R2þh2� þ 4R2−h2
h2 E½ 4R2

4R2þh2�ffiffiffiffiffiffiffiffiffiffiffiffi
4R2

4R2þh2

q − 4R2

h2

!
; ð10Þ

where N is the number of turns in the solenoid. Commonly
used software allows for the convenient use of general
special functions. Equations (9) and (10) can thus be
directly used in calculation. However, to facilitate com-
parison with the existing literature and address errors and
flaws, approximations for the aforementioned expressions
are provided below.
With a long solenoid approximation for the inductance

equation ðh > R1; R2Þ, expanding the exact expression of
inductance in Eq. (10) in a series with a large h yields a
highly accurate approximate expression:

L ¼ μRN2

�
πR
h

− 8R2

3h2
þ πR3

2h3
− πR5

4h5
þO

�
1

h

�
6
�
: ð11Þ

Equation (16) in Ref. [27] is consistent with Eq. (11), as
the former corresponds to considering only the first two
terms of the latter.
With a short solenoid approximation for the inductance

equation ðh < R1; R2Þ, expanding the exact expression of
inductance in Eq. (10) in a series with a small h yields

L¼ μRN2

�
ln

�
8R
h

�
−1

2
þ h2

32R2

�
1

4
þ ln

�
8R
h

��
þO½h�4

�
:

ð12Þ

Equation (17) in Ref. [27], which corresponds to con-
sider only the first two terms of Eq. (12), contains an error
in its overall coefficient. The coefficient of 2=3 should be
corrected to 1. An alternative expression is presented in
Ref. [26] and aligns with the expression provided here. By
introducing the definition q ¼ h

4R, Eq. (12) is rewritten as

L ¼ μRN2

�
lnð2Þ − 1

2
− lnðqÞ

þ q2
�
1þ 4 lnð2Þ

8
− 1

2
lnðqÞ

�
þO½q�4

�
≈ μRN2ð0.193147þ 0.471574q2

− lnðqÞ − 0.5q2 lnðqÞÞ: ð13Þ

Equation (B.1) in Ref. [26], which has a form similar to
that of the expansion in Eq. (13) presented here, has
differences in terms of its coefficients. Figure 3 compares
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these approximate expressions. The gray line represents the
exact expression given in Eq. (10) for inductance. The red
line represents the expansion in Eq. (13), and the green

dashed line represents the same expansion but with
coefficients truncated to a certain number of significant
digits. It is evident that the number of significant digits in
the coefficients of the expansion is sufficient. The accuracy
of this expansion is high in the region where h=R < 5. The
blue line represents Eq. (B.1) in Ref. [26], which has a form
similar to that of the expansion presented here. However, its
coefficients are not accurate, leading to notable deviations
from the exact values in the region, where h=R > 0.5.
The approximate expressions for the inductance of the

long and short solenoids presented here have a remarkably
high level of accuracy, and their usable ranges can be
connected. As depicted in Fig. 4, if the approximate
expression (12) or (13) for a short solenoid (red line) is
used in the h=R∈ ð0; 1.88� area and the approximate
expression (11) (green line) for the long solenoid is
used in the h=R∈ ½1.88;∞Þ area, then the error of this
piecewise approximate expression relative to the exact
expression (10) is less than 0.7% throughout the range
of h=R∈ ð0;∞Þ.
A series expansion of the mutual inductance in Eq. (9)

(ki ≤ k ≤ 1 as a small parameter) is further presented

M ¼
X4
i¼1

ð−1Þi
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
Dk2

2ki
Si

¼
X4
i¼1

ð−1Þi
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
Dk2

2ki
π

��
1

4
þ k2

8
þ 5k4

64
þ 7k6

128
þO½k�8

�
þ
�
− 1

16
− 5k2

128
− 7k4

256
− 21k6

1024
þO½k�8

�
k2i

þ
�
− 5

512
− 7k2

1024
− 21k4

4096
− 33k6

8192
þO½k�8

�
k4i þ

�
− 7

2048
− 21k2

8192
− 33k4

16384
− 429k6

262144
þO½k�8

�
k6i þO½ki�8

�
: ð14Þ

Equation (32) in Ref. [27] is similar to Eq. (14), but its
coefficients are not as precise as those in Eq. (14), even
within the given range of significant digits.

The above discussion focuses on the calculation of
the mutual inductance (self-inductance) between two
coaxial cylindrical solenoids with a small pitch (approach-
ing zero). These calculations can be applied to the
calculation of mutual inductance (self-inductance) in
the context of the current induced by a helical RCP
structure on the outer surface of a magnetic pinch load,
which is of interest in this paper. For the specific
problem in question, the anode and cathode plates, the
end-feeding structure of the magnetic insulated trans-
mission line (MITL), and the coupling of the axial
currents are temporarily excluded from consideration.
Furthermore, the axial distribution and radial penetra-
tion of the current are ignored. Thus the remaining
system, comprising a pinch load and RCP, can be regarded
as two coaxial solenoids with closely spaced turns (i.e.,
a small pitch). These solenoids have the same height h
and the radii R1 and R2. Therefore, b ¼ −h, c ¼ h,
m ¼ n ¼ 1=h. We then have k21 ¼ k23 ¼ k2 ¼ 4R1R2

ðR1þR2Þ2,

k22 ¼ k24 ¼ 4R1R2

ðR1þR2Þ2þh2, M1 ¼ M3, and M2 ¼ M4. Hence,

M ¼ 2ðM1 þM2Þ; i.e.,
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FIG. 3. Comparison of the approximate and exact expressions
of inductance. Gray line: exact expression in Eq. (10). Red line:
expansion in Eq. (13). Green dashed line: expansion in Eq. (13)
(with truncated coefficients). Blue line: Eq. (B.1) in Ref. [26].
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FIG. 4. Comparison of the approximate expressions for the
inductance of the long and short solenoids with the exact
expressions. Gray line: exact expression in Eq. (10). Red line:
approximation for the short solenoid in Eq. (12) or (13). Green
line: approximation for the long solenoid in Eq. (11).
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M ¼ 2
X2
i¼1

Mi

¼ 2μðR1 þ R2Þ
3h2

ððR1 − R2Þ2K½k21� − ðR2
1 þ R2

2ÞE½k21�Þ þ
μ

3h2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ðR1 þ R2Þ2

p ððh4 − 2ðR2
1 − R2

2Þ2

þ 2h2ðR2
1 þ R2

2ÞÞK½k22� − ðh2 þ ðR1 þ R2Þ2Þ½h2 − 2ðR2
1 þ R2

2Þ�E½k22� − 3h2ðR1 − R2Þ2Pi½k21; k22�Þ: ð15Þ

We consider one approximation of Eq. (15), namely
axial infinity (h ≫ R1; R2) and have k22 ¼ k24 →

4R1R2

h2 → 0
and M1 ≪ M2. Then

M ≈ 2M2 ≈
μR1R2k2

h

Z
π=2

0

sin22θ
1 − k2sin2θ

dθ

¼ μπðR1 þ R2Þ2
4h

	
2 − k2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p 


¼ μπ½minðR1; R2Þ�2
h

; ð16Þ

where
R π=2
0

sin22θ
1−k2sin2θ dθ ¼ 2−k2−2 ffiffiffiffiffiffiffiffi1−k2p

k4 π is just limki→0Si.
This is the approximate expression (34) of inductance
and mutual inductance mentioned in the literature [26].
Equation (16) calculates inductance (self-inductance) and
mutual inductance when R1 ¼ R2 and R1 ≠ R2, respec-
tively. According to this equation, it is always true that
M ¼ L and IΘ ¼ −IP. This is the fundamental assumption
made in Ref. [10] to estimate the growth of the MRT
instability, which is equivalent to an assumption of
“perfect” current induction (with 100% amplitude). In this
idealized situation, the two solenoids are “tightly”matched,
representing optimal coupling with maximum efficiency.
However, this equation introduces significant errors in the
case of a finite length.
In the case of a model with a finite axial length, both

inductance and mutual inductance are accurately calculated
using the exact expression for mutual inductance in
Eq. (15). There is no need to rely on the approximations.
However, in gaining a deeper understanding of the approxi-
mate expression in Eq. (16) for the case of an infinite axial
length, for the case of a finite axial length that exceeds the
radial length, which is referred to as the long solenoid
approximation (h > R1; R2), the exact expression in
Eq. (15) for mutual inductance is expanded in a series
with a large h to yield a highly accurate approximation:

M ¼ μðR1 þ R2Þ3
3h2

ð2ð1 − k2ÞK½k2� − ð2 − k2ÞE½k2�Þ

þ μπ½minðR1; R2Þ�2
h

þ μπR2
1R

2
2

2h3
− μπR2

1R
2
2ðR2

1 þ R2
2Þ

8h5

þO

�
1

h

�
6

: ð17Þ

The model with an infinite axial length in Eq. (16)
evidently captures only the first-order term, resulting in
considerable inaccuracies when dealing with finite lengths.
When R1 ¼ R2 ¼ R, Eq. (17) degenerates into the induct-
ance equation given as Eq. (11), which aligns with Eq. (16)
in Ref. [27].

IV. EFFECTIVE COEFFICIENT
OF CURRENT INDUCTION

As mentioned before, if “we assume the helical return can
act as an infinite, ideal solenoid” [18], then the current
induced on the load differs from the current in the helical
RCPbyonly the sign; i.e., IΘ;ideal ¼ −IP.A current induction
effective coefficient can be defined to assess the difference
between the actual induced current IΘ and the “ideal”
induced current IΘ;ideal: CI ¼ IΘ=IΘ;ideal ¼ −IΘ=IP. When
neglecting the load resistance,

CI ¼ −IΘ=IP ¼ M=L: ð18Þ

In the experimental configuration, R2 ¼ ð1.5 ∼ 2ÞR1:R1

gradually decreases from an initial value of R0 to ∼0.1R0

over time. Figure 5 shows the dependence of CI on R1,
calculated using the exact equation in Eq. (15) and the
long solenoid approximation in Eq. (17). The solid lines
(red and black) correspond to the exact expression (15),
and the dashed lines (blue and green) correspond to the
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FIG. 5. Dependency ofCI on R1. The solid lines (red and black)
correspond to the exact expression (15), and the dashed lines
(blue, green) correspond to the approximate expression (17).

DUAN, HE, ZHOU, KAN, and WANG PHYS. REV. ACCEL. BEAMS 27, 030401 (2024)

030401-6



approximate expression (17). The respective upper bounds
correspond to R2 ¼ 1.5R1 and the lower bounds to
R2 ¼ 2R1. The values obtained from the approximation
closely align with those derived from the exact equation.
This stands in stark contrast to the substantial deviation
observed in the value obtained from the infinite length
model in Eq. (16), which consistently remains at 1. The
graph in Fig. 5 was generated using a fixed value of
h ¼ 5R1.
We examined the limiting case of pinching to the center

and found that even when the load is compressed to
R1 ¼ 0, CI does not approach zero but remains a precise

finite value CIðR1 → 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðR2

h Þ2
q

− R2

h , as shown in

Fig. 6. This value is solely determined by a structural
parameter of the RCP; i.e., the aspect ratio R2=h.
We also examined a special Z-pinch configuration in the

sense of electromagnetic loading, namely the X pinch,
though they are distinct in dynamics. The radial radius
and axial height of the X-pinch load (center point) are very
small, and we further idealize them as zero. In this case, we
findCIðR1; h1 → 0Þ ¼ 0, whichmeans that the total induced
current tends to zero. Despite this, the average current (line)
density is finite: jΘðR1; h1 → 0Þ ¼ CI

h1
ðR1; h1 → 0Þ > 0,

such as in the examples jΘðR1 ¼ h1 ¼ 0; R2 ¼ 1; h2 ¼ 1Þ≈
0.44, jΘðR1 ¼ h1 ¼ 0;R2 ¼ 2;h2 ¼ 1Þ≈ 0.24, and jΘðR1¼
h1¼0;R2¼1;h2¼2Þ≈0.35. jΘðR1; h1 → 0Þ is a decreasing
function of R2 and h2. The average current density being
nonzero indicates that the axial magnetic field still exists, for
BZ ≈ μjΘ, which further suggests that the helical RCP
structure can be used to suppress the instability in the X
pinch and improve the temporal stability and spatiotemporal
unity of hot spots. Although what exists in the X pinch may
not be MRT instability but rather MHD instability or the
strong coupling mode of the two, the inhibitory effect of
the direction-time-varying magnetic field still exists, and the
principle is that the time-averaged F2 is greater than zero as
mentioned in Sec. I. In fact, the radial radius and axial height

of the X-pinch load are not zero, and the actual situation is
thus better than that in the above analysis. In addition, the use
of special cathode and anode plates (e.g., spirally and
involutedly hollowed) may further enhance this induced
current and the corresponding axial magnetic field.

V. EFFECTS OF THE ANODE
AND CATHODE PLATES

The potential effects of the anode and cathode plates are
considered within the framework of the LPC model. As the
induced current has a pronounced nonuniform distribution
along the radial direction on the anode and cathode plates,
which is highly contingent on the radial position, it is
challenging to accurately define a lumped inductance/mutual
inductance parameter.We consider this lumped parameter an
average value, presuming its value rather than calculating it.
On this basis, the potential effects of the introduced factor
(anode and cathode plates) are investigated.
An LPC model that comprises three elements, namely

the anode and cathode plates, a helical RCP, and a magnetic
pinch load (five inductance/mutual inductance parameters),
is expressed as

�
L MAK

MAK LAK

��
İΘ
İAK

�
¼ −

�
M

MAKP

�
İP; ð19Þ

where LAK is the self-inductance of the anode and cathode
plates, MAK and MAKP are, respectively, the mutual
inductance of the plates and load and that of the plates
and RCP, and the remaining variables are consistent with
the previously defined notation. The solution to this
equation is given by

IΘ ¼ MAKMAKP − LAKM
LLAK −M2

AK
IP: ð20Þ

An effective coefficient of current induction in the
presence of anode and cathode plates is defined as CI;AK ¼
jIΘ=IPj. We then have

CI;AK ¼
����MAKMAKP − LAKM

LLAK −M2
AK

����
¼
����M=L −MAKMAKP=LLAK

1 −M2
AK=LLAK

����: ð21Þ

Let M2
AK=LLAK ¼ a and MAKMAKP=LLAK ¼ b.

Furthermore, we already have CI ¼ M=L, representing
the effective coefficient of current induction in the absence
of anode and cathode plates. On the basis of physical
interpretation, we infer that 0 ≤ a; b; CI ≤ 1. We then have
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FIG. 6. Dependence of the limit value of CI on the aspect ratio
of the RCP when the load is compressed to the axis.
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CI;AK ¼ jCI − bj
1 − a

: ð22Þ

A correction factor, CAK, is defined to represent the
effects of the anode and cathode plates according to
CAK ¼ CI;AK=CI. Let b=CI ¼ b̃. We then have

CAK ¼ j1 − b̃j
1 − a

: ð23Þ

According to the values of parameters a and b, CAK can
either be greater than 1 (enhancing effect) or less than 1
(weakening effect). Enhancing refers to an increase in the
absolute value of the induced current amplitude relative to
the case without cathode and anode plates. To maximize the
enhancing effect of the anode and cathode plates on the
induced current in the load, it is necessary to maximize a
while simultaneously minimizing or maximizing b. This
process gives rise to two optimization directions. Figure 7
shows the CAK ≥ 1 contour lines on the (a, b̃) plane. The
arrows represent the two optimization directions, the
colored blocks below indicate the enhancement areas in
the same direction (IΘIP < 0), and the colored blocks
above indicate the enhancement areas in the opposite
direction (IΘIP > 0). Here the terms “same direction”

and “opposite direction” are relative to the direction of
induced current in the absence of anode and cathode plates.
As the direction of the induced current without the cathode
and anode plates is opposite the direction of the RCP
current, the “same direction” here means the direction
opposite IP (IΘIP < 0) and vice versa.
This analysis reveals the potential of the anode and

cathode plates to enhance the current induced in the load
and identifies possible optimization directions, although
with some degree of uncertainty. Owing to the lack of
additional information with which to constrain the precise
value of a (i.e., the extent to which it approaches 1), it
appears that CAK may diverge. In practical configurations,
it is not feasible for a to reach 1, which prevents CAK from
diverging.

VI. AXIAL DISTRIBUTION OF THE
INDUCED CURRENT

In accounting for the axial distribution, the expression of
the induced current [i.e., IΘ ¼ −ðM=LÞIP] is formally
applicable if its scalar is converted to a matrix or vector,
and division is understood to be the inversion of the matrix.
Now that the axial distribution is considered, the axial
direction must be discretized. If we consider the ideal or
near-ideal situation (i.e., the resistance is zero or very
small), then the radial direction may be not discretized or
only one cell is taken, which physically means that the
radial skin depth is assumed to be zero or the radial scale of
one cell. Such a treatment is adopted to highlight the axial
distribution and temporarily ignore the radial distribution.
In this discrete case, the currents IΘ and IP are both column
vectors and the inductances/mutual inductances L and M
are both mutual inductance matrices, where the diagonal
elements of L are the inductances of different subsections
axially on the load. If the calculation continues like this, we
find that it is impossible to obtain a converging solution;
i.e., with grid refinement, the current (line) density does not
converge to a constant value, and especially the current
density at the endpoints is divergent. This reflects the
divergent skin effect of an ideal conductor. To obtain a
converged axial distribution independent of the grid, we
thus need to consider the resistive effect. The departure
equation for the following discussion is

L
dIΘ
dt

þ RIΘ ¼ −M dIP
dt

: ð24Þ

As mentioned before, L is the mutual inductance matrix
of the load, and its diagonal element is the inductance of
each unit in the axial direction; M is the mutual inductance
matrix of the load and RCP; R is the resistance matrix of the
load, which is a diagonal matrix whose elements are the
resistance of each axial unit on the load; and IΘ and IP
are the current column vectors of the load and RCP,
respectively.

FIG. 7. Contour lines of CAK in the enhancement regions and
two optimization directions. In the enhancement region, relative
to the case without cathode and anode plates, the absolute value
of the induced current amplitude increases. As IΘ is opposite IP
when there are no cathode and anode plates, IΘIP > 0means that
the induced current is opposite relative to the case that there are
no cathode and anode plates, and vice versa.

DUAN, HE, ZHOU, KAN, and WANG PHYS. REV. ACCEL. BEAMS 27, 030401 (2024)

030401-8



Equation (24) is a system of differential algebraic
equations, which can be solved numerically with software
or by manually writing code. Before doing so, however, we
discuss the characteristics of the solution using an approxi-
mate analytical method. The solution to Eq. (24) is written
analytically as

IΘ ¼ I0e−Rt=L − e−Rt=L
Z

t

0

eRλ=LL−1MI0pðλÞdλ; ð25Þ

where the prime represents differentiation over time, the
division or the −1 power is understood to be matrix
inversion, and the exponential function to be the matrix
exponent. Equation (25) can be used directly in calcula-
tions, but this is not as efficient as numerically solving
Eq. (24) owing to the matrix exponential operation. We
discuss two approximate expressions of Eq. (25) that have a
calculation efficiency comparable to that of the numerical
solution and facilitate our discussion on the characteristics
of the solution.

We derive these approximate expressions either through
integration by parts or adopting a perturbation-iteration
method. It is assumed here thatL−1M is not time dependent,
or that it changes very slowlywith time, especially relative to
the current function. Extending this method to handle the
time-dependent case more accurately would be more com-
plex, but there are no difficulties in principle. There are two
directions in which to apply the partial integration method
multiple times in a chain to

R
t
0 e

Rλ=LI0pðλÞdλ, which we refer
to as the integral and differential directions. The integral
direction refers to expressing the aforementioned integral by
Ip and its further integrals, whereas the differential direction
refers to expressing it by I0p and its further differentials. In the
integral notation, we follow the usual notation of differ-

entials using I·p; I··p; I
h3i
p ;… to represent the first-, second-,

third-, and higher-order integrals of Ip, respectively. The
expressions for the integral and differential directions are,
respectively:

Z
t

0

eRλ=LI0pðλÞdλ ¼ eRt=L
�
IpðtÞ − R

L
I·pðtÞ þ

�
R
L

�
2

I··pðtÞ −
�
R
L

�
3

Ih3ip ðtÞ þ…

�����t
0

; ð26Þ

Z
t

0

eRλ=LI0pðλÞdλ ¼ eRt=L
�
L
R
I0pðtÞ −

�
L
R

�
2

I00pðtÞ þ
�
L
R

�
3

Ið3Þp ðtÞ þ � � �
�����t

0

:

ð27Þ

Substituting these into Eq. (25), for I0 ¼ Ipð0Þ ¼
I·pð0Þ ¼ I··pð0Þ ¼ … ¼ 0, we obtain approximate expres-
sions that are suitable when Rt=L is small and large,
respectively:

IΘ ¼ −M
L

�
Ip − R

L
I·p þ

�
R
L

�
2

I··p −
�
R
L

�
3

Ih3ip þ � � �
�
;

ð28Þ

IΘ ¼ −M
R

��
I0p − L

R
I00p þ

�
L
R

�
2

Ið3Þp þ � � �
�

− e−Rt=L
�
I0pð0Þ − L

R
I00pð0Þ þ

�
L
R

�
2

Ið3Þp ð0Þ þ � � �
��

:

ð29Þ

The perturbation-iteration method can also be applied
into two directions, namely the integral and differential
directions, to obtain the above two equations. From
Eq. (24), we obtain

IΘ ¼ −M
L
Ip − R

L
I·Θ; ð30Þ

IΘ ¼ −M
R
I0p − L

R
dIΘ
dt

: ð31Þ

Taking the second term on the right side of these two
equations as the perturbation term and substituting the
previous iteration solution into the perturbation term, we
obtain Eqs. (28) and (29), respectively.
Equations (28) and (29) are, respectively, suitable for the

cases that Rt=L is small and large. In principle, if the
definition of the integral in Eq. (28) is modified by adding a
factor as the integral weight (i.e., I·p ¼ R t0 e−Rλ=LIpðλÞdλ),
then the applicable scope of Eq. (28) is expanded. This
is because the convergence of the originally defined

Ip; I·p; I··p; I
h3i
p ;… sequence is insufficient, and the conver-

gence of the modified sequence is greatly improved by the
modification. This treatment is not cost-effective in practice
as the matrix exponential operation is introduced and
placed in the integral.
Equations (28) and (29) can be used to describe early and

late behaviors, respectively. For early behaviors, only the
first two terms of Eq. (28) are taken, I·p ≈ ctIp, c∈ ð0; 1Þ
is assumed, and we then have IΘ ≈ −M

L ð1 − cRt
L ÞIp ≈

− M
LþcRt Ip ¼ − M

L� Ip; i.e., the axial distribution of the
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induced current may be approximated easily and simply by
replacing Lwith L� ¼ Lþ cRt. R is a diagonal matrix, and
therefore, only the diagonal elements of L need to be
corrected. The enhancement of diagonal elements in a
matrix corresponds to the enhancement of the solution
vector in the middle and the compression of its two ends.
However, as the modified solution is only a minor modi-
fication of the solution in the ideal case presented at the
beginning of this section, it largely preserves the character-
istics of the ideal solution. The most important character-
istic of the axial distribution corresponding to this solution
is “high at both ends and low in the middle,”which is called
the edge effect. The essence of the edge effect is the skin
effect. The edge effect emphasizes that the skin effect
manifests not only in the radial direction as a thin skin layer
but also in the axial direction. In addition, the edge effect is
regulated by the structural parameters of the load area, as
discussed in detail later. For the late-stage behaviors, taking
only the first term in Eq. (29), we have IΘ ¼ −M

R I0p. As the
resistance does not directly depend on the spatial position,
the characteristics of this solution are mainly determined by
the mutual inductance matrix. The mutual inductance of the
RCP and load is intuitively known to be “strong in the
middle and weak at both ends,” and the axial distribution of
the induced current corresponding to this solution is thus
characterized by “high in the middle and low at both ends.”
In addition to the early and late stages, we expect the
existence of an intermediate stage. These stages are inves-
tigated in detail later through numerical calculations.
We now require a resistance model without introducing

excessive complexity. We hope to use a simple but
reasonable resistance model that has physical connotations
to qualitatively or semiquantitatively discuss the axial
distribution of induced current. The results and conclusions
of the discussion may guide a more precise experimental
design. We use the skin depth characteristic quantity δ to
measure the resistance R. The skin depth relates to a
frequency or time interval. The peak moment τm of the
driving current waveform is used to determine a dominant
frequency as the frequency in the skin depth formula. In
this way, the resistance formula (Θ current) of the discrete
unit is obtained as

Rn ¼
μπ2rδ
2τmhn

; ð32Þ

where r is the radial position of the load unit, hn is the axial
height of the unit, Rn is the resistance of the unit, and the
other quantities are the same as mentioned previously.
This resistance model is substituted into Eq. (24) to

obtain a numerical solution. We first verify the convergence
of the numerical discrete solution when the grid is refined
and then evaluate the approximability of approximate
expressions (28) and (29) using this high-precision numeri-
cal solution. Both approximate expressions are taken to

fifth-order terms. The approximability is measured as the
maximum relative error and is obtained as less than 5%.
The error in the integral-direction approximate expression
(28) approximately scales as ε ∼ δt1.1n0.9

h0.5
, whereas that in the

differential-direction approximate expression (29) scales as
ε ∼ h2.2t2.0

δ6.3
, where n is the number of cells, and the other

quantities are the same as mentioned above. If we look only
at the scaling relative to δ, the error scaling of the differ-
ential-direction approximate expression is in-line with
expectations, because the approximations are all taken to
fifth-order terms and R is proportional to δ. However, the
scaling of the integral-direction approximate expression
does not reach the expectation, which may be due to the

insufficient convergence of the sequence Ip; I·p; I··p; I
h3i
p ;….

The scaling of the error with respect to inductance is
difficult to judge because the dependence of inductance on
radial and axial dimensions is not linear. In the aforemen-
tioned discussion on error scaling, the load radius r, RCP
radius rp, and peak moment τm of the drive current were
fixed, and no attention was paid to the scaling of these three
quantities. τm is the time normalized unit, and its scaling
has been included previously. The aforementioned two
scalings show that the dependence on h is weak relative to
that on δ, and it is thus speculated that the dependence on r,
rp, and h is also the same.
We finally discuss the characteristics of the solution,

namely the axial distribution and time behavior of the
induced current. Here τm ¼ r ¼ 1 is fixed, which is
equivalent to the use of normalized units of time and
length. There are then four remaining free parameters,
namely δ; t; h; rp, which affect the axial distribution of the
induced current. It is inconvenient to present a discussion
for a high-dimensional parameter space. Fortunately, we
find that there is an approximate invariance if we ignore
minor details and focus on the main characteristics. This
approximate invariance is summarized by the parameter
combination δt. The other two parameters only weakly
affect the critical values of this parameter combination and
the details of the axial distribution and not the main
characteristics of the axial distribution. When δt is small,
the axial distribution is dumbbell shaped; i.e., high at both
ends and low in the middle. When δt is large, the axial
distribution is arch-shaped; i.e., high in the middle and low
at both ends. When δt is an intermediate value, the axial
distribution has a near-flat standing-wave structure; i.e., an
oscillating structure with a small amplitude. These struc-
tures correspond to the early, late, and mid-term behaviors
mentioned before, but here we can be more quantitative.
The critical value of δt, the time at which a near-flat

standing-wave structure appears, is ∼0.2, which is between
0.1 and 0.3. Such a critical value weakly depends on h and
decreases slightly as h increases, whereas it is more
strongly an increasing function of rp. The details of this
structure presented in the axial distribution vary slightly

DUAN, HE, ZHOU, KAN, and WANG PHYS. REV. ACCEL. BEAMS 27, 030401 (2024)

030401-10



depending on the different configuration parameters
ðh; rpÞ. Figures 8 and 9 show the axial distributions of
the induced current for the configurations ðh; rpÞ ¼ ð1; 2.5Þ
and ðh; rpÞ ¼ ð2; 1.5Þ. These two configurations are
selected to maximize the difference in details of the
standing-wave structure and make the contrast most
obvious. δ corresponding to the former configuration is
selected as 0.17, whereas that corresponding to the latter
configuration is selected as 0.088. This treatment is con-
ducted to align the time at which the standing-wave
structure appears to t ¼ 1, which further eliminates the
effect of the current waveform. There is an effect of the load
on the driving pulse waveform. Only the unidirectional
effect of the driving pulse on the load is considered in our
model not the bidirectional coupling. For a fixed and
prescribed driving pulse waveform, the axial distribution
of current density is different at different moments in the
driving waveform, even for the same inductor. We chose to
examine the fixed moment t ¼ 1, i.e., t ¼ τm, to eliminate
this effect. The oscillatory structure in the two figures is a
visual effect observed after magnification. In fact, the

distribution is approximatively flat, and the amplitude
deviation does not exceed 5% of the median value.
The axial distribution has a dumbbell shape when δt is

less than the critical value and an arch shape when δt is
greater than the critical value. Two sets of parameter
combinations with sharp contrast, namely ðh; rp; δÞ ¼
ð1; 2.5; 0.17Þ and ðh; rp; δÞ ¼ ð2; 1.5; 1Þ, are selected and
their axial distributions at different times are compared in
Figs. 10 and 11. Different colors in the two figures denote
different times. From bottom to top, the first round (cycle)
of red, green, blue, purple, and black lines are results for
t ¼ 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, and the second
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FIG. 10. Time evolution of the axial distribution of induced
current for the parameter ðh; rp; δÞ ¼ ð1; 2.5; 0.17Þ. Different
colors represent different times t. From bottom to top, the first
round (cycle) of red, green, blue, purple, and black lines denotes
t ¼ 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, and the second round
denotes t ¼ 0.6, 0.7, 0.8, 0.9, and 1.
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FIG. 8. Axial distribution of the induced current for the
parameters ðh; rp; δ; tÞ ¼ ð1; 2.5; 0.17; 1Þ.
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FIG. 9. Axial distribution of induced current for the parameters
ðh; rp; δ; tÞ ¼ ð2; 1.5; 0.088; 1Þ.
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FIG. 11. Time evolution of the axial distribution of induced
current for the parameter ðh; rp; δÞ ¼ ð2; 1.5; 1Þ. Different colors
represent different times t. From bottom to top, the first round
(cycle) of red, green, blue, purple, and black lines denotes
t ¼ 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, and the second round
denotes t ¼ 0.6, 0.7, 0.8, 0.9, and 1, respectively.
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round of colored lines are results for t ¼ 0.6, 0.7, 0.8, 0.9,
and 1, respectively. In Fig. 10, the axial distribution is
dumbbell shaped almost throughout the process, whereas in
Fig. 11, it is arch-shaped almost throughout the process. We
qualitatively consider the effects of these axially distributed
characteristics on the dynamic driving. First, the axial
distribution of the induced current evolves dynamically
over time. Even if the initial driving force is designed to be
approximately flat in the axial direction, it is impossible to
maintain the driving force approximately flat upward on the
axis throughout the process. However, we can seek sub-
optimal near-flat driving; i.e., we let the near-flat drive
appear at a certain intermediate moment during the implo-
sion process, so that the overall shape of the load when
pinched to the center is close to being flat. Second, it is
possible to use the axial distributively induced current as
shown in Fig. 10 to achieve a quasispherical implosion and
further directly compress the target pellet to achieve inertial
fusion, whereas that shown in Fig. 11 can be used to achieve
a dumbbell-shaped implosion (if needed). The dumbbell-
shaped driving force can achieve a quasispherical implosion,
whereas the arch-shaped driving force can achieve a dumb-
bell-shaped implosion. Unlike the near-flat driving, which
does not maintain a near-flat state throughout the process,
these two types of drivingmaintain the desired shapemost of
the time through parameter design. In addition, the structure
and shape of the cathode and anode plates and the RCP can
be used to regulate the distribution and intensity of the
induced current, such as in the case of spiral involute
hollowed cathode and anode plates or an arc-shaped RCP.

VII. CALCULATION OF MAGNETIC FIELDS

The total current I on the RCP is obtained by diagnosis
in an experiment. The location of the diagnosis is usually a
certain distance upstream of the RCP. If the number of turns
of the helical RCP per axial length is nc, the axial height of
the RCP is h, and the inclination angle of the RCP is θ, then
the azimuthal current on the RCP is IP ¼ Ihnc cos θ. The
induced azimuthal current IΘ on the outer surface of the
load is calculated as a function of the current induction
effective coefficient CI adopting the method used previ-
ously as IΘ ¼ IpCI ¼ IhncCI cos θ. CI and cos θ reflect
the finite length effect and inclination effect, respectively.
The axial current on the load is a conduction current that is
directly loaded through the electrode plates and is equal to
the total current on the RCP; i.e., Iz ¼ I. The azimuthal and
axial magnetic fields corresponding to Iz and IΘ, respec-
tively, are approximately calculated using their linear
current densities, such that

Bðr1Þ ¼ Bϕϕ
⌒
þ Bzz

⌒ ≈ μ0I½1=2πr1ϕ
⌒
þ ncCI cos θz

⌒�; ð33Þ

where cos θ can be further expressed by nc. When the RCP
encircles one turn, it advances a distance in the axial

direction of 1=nc and a distance in the arc direction of 2πr2,
such that cos θ ¼ 2πr2ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð2πr2ncÞ2
p . Here r1 is the radius of the

load and r2 is the radius of the RCP. If the axial discrete
model is used to calculate the induced current, then the
second term in Eq. (33) can be directly substituted with its
linear current density, but it is noted that cos θ should be
considered when setting the current excitation source. If the
inclination angle is ignored (θ --> 0) and an infinite length
is assumed (CI --> 1), Eq. (33) becomes the formulas given
in the literature [10,15,18,19]. However, the following
comparisons show that the correction of the inclination
angle and finite length effect are necessary.
We conduct three comparisons taking data from the

literature [18,19]. In the first comparison, according to
Fig. 1(c) in [19], nc ≈

1=4
19.4, r1 ¼ 3.175, r2 ¼ 8.9 are taken.

The inclination angle of the magnetic field calculated as per
Eq. (33) is ϕB ¼ arctanðBz=BϕÞ ≈ 6.4°. The error is
approximately 9% relative to 7.0°� 0.7° given in the paper
based on image diagnosis in Fig. 3(c). If the formula given
in the literature [10,15,18,19] is used, where cos θ andCI ¼
0.74 are not considered, then ϕB ≈ 14.4°, which differs
greatly from the value of 7.0°.
The second comparison refers to Fig. 1 of Ref. [18]. In

this case, nc ¼ 0.8, r1 ¼ 0.3, r2 ¼ 0.8, CI ≈ 0.646. If cos θ
and CI are ignored, then the driving magnetic field ratio is
Ξ ¼ Bz=Bϕ ≈ 1.5. If cos θ and CI are considered, then
Ξ ≈ 0.94. If the peak value in Fig. 1(c) is used as the
benchmark, then the relative error is approximately 34%.
The third comparison is carried out using the data

presented in Figs. 9(b) and 10 of Ref. [18]. We extract
the Ξ data of the outer surface of the liner in Fig. 9(b) and
the Ξ data in Fig. 10 and present them in Fig. 12 as blue and
green lines, respectively. The Ξ data calculated as per
Eq. (33) and that calculated as per the formulas previously

Formula from Refs. 10,15,18 19
Equation 33

Simulations fromRef . 18
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FIG. 12. Comparison of the driving magnetic field ratio Ξ ¼
Bz=Bϕ given by simple formulas and advanced numerical simu-
lations. Blue line: extracted from Fig. 9(b) of [18], numerical
simulation; Green line: extracted from Fig. 10 of [18], numerical
simulation; Black line: calculated as per Eq. (33); Red line:
calculated as per the formulas in [10,15,18,19].
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given in the literature [10,15,18,19] (with cos θ and CI
ignored) are presented in Fig. 12 by black and red lines,
respectively. As intuitively shown in this figure, Eq. (33) is
closer to the advanced numerical simulation results of
Ref. [18], and the correction of the inclination angle and
finite length effect is very necessary. It is necessary to
update those theoretical evaluations of the dynamics,
instability, and driver-target coupling of dynamic screw
pinches based on old formulae. Results in this paper can
also be extended to improve the current circuit models
explained in the literature [28,29]. However, these contents
are beyond the scope of this paper.

VIII. CONCLUSION

The current azimuthally induced on the outer surface of a
load located in a helical RCP structure deviates signifi-
cantly from the “perfect” induced current (100% amplitude:
IΘ ¼ −IP). The effective coefficient of current induction,
CI , is notably less than 1. However, CI does not approach
zero even when the load is compressed to R1 ¼ 0. Instead,
it remains a finite value that is solely determined by the
aspect ratio of the RCP. For a point-like X pinch, the axial
magnetic field does not tend to zero but is a finite value,
though CI tends to zero. This result may be used to
suppress instability in an X pinch and improve the time
stability and spatiotemporal unity of hot spots.
A three-element LPC model was used to analyze the

possibility of anode and cathode plates enhancing azimu-
thal induced current on the load. Optimization involves
maximizing a while simultaneously minimizing or maxi-
mizing b.
There is an approximate invariance in the axial distri-

bution and time behavior of the induced current. The
parameter combination δt of skin depth δ and time t related
to magnetic diffusion can be used to well summarize this
approximate invariance. That is, when δt is near 0.2, or
between 0.1 and 0.3, the axial distribution presents a nearly
flat standing wave structure; when δt is less than this
critical value, the axial distribution is dumbbell shaped; and
when δt is larger than this critical value, the axial
distribution is arch shaped. Correspondingly, δt can be
designed to be at, below, or above the critical region during
most of the implosion process to obtain a nearly flat,
quasispherical, or dumbbell-shaped implosion, respec-
tively. A semiquantitative design criterion was provided
in this paper. More accurate design and optimization
require the combination of implosion dynamics and
dynamic material properties. That work and the exploration
of regulation through cathode and anode plates and the
RCP are left for future studies.
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