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Vertical fixed-field accelerators (vFFAs) feature a magnetic field that increases exponentially in the
vertical direction, resulting in vertically stacked nonplanar orbits. Their magnetic field is highly
nonlinear, and their solenoid and quadrupolar components induce strongly coupled optics. The detailed
study of their beam dynamics must account for the transverse motion linear and nonlinear coupling.
Specifically, the study of linear beam dynamics requires adequate coupling parametrizations, and the
study of nonlinear beam dynamics, including the characterization of the dynamic aperture (DA), must be
performed in the full 4D phase space. The ZGOUBI ray-tracing code is ideally suited to study the vFFA
transverse dynamics, as it can perform step-by-step particle tracking in vFFA complex geometry and
magnetic fields. This paper provides an in-depth study of the vFFA prototype ring designed under the
ISIS-II proton driver prototype project to accelerate proton beams from 3 to 12 MeV. The magnets of this
vFFA ring exhibit slow magnetic field falloffs, resulting in a significant influence of the neighboring cells
on the optical lattice parameters. The determination of stable orbits and tunes requires superimposing 3D
magnetic field maps in ZGOUBI to account for the neighboring cell residual fields. The study of nonlinear
beam dynamics revealed the appearance of fourth-order stability islands. A complete characterization of
the DA in the 4D phase space was conducted to give a measure of the stability domain and characterize
the performance and limitations of this lattice. This study paves the way for further validation studies
with experimental data and field maps.
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I. INTRODUCTION

Vertical fixed-field accelerators (vFFAs) [1–4] exhibit
highly nonlinear magnetic fields that exponentially
increase in the vertical direction. To maintain constant
tunes during acceleration, the vFFA magnetic field satisfies
the scaling condition B ¼ B0 exp½kðZ − Z0Þ�, where k ¼
ð1=BÞð∂B=∂ZÞ is the normalized field gradient, Z is the
vertical coordinate in the Cartesian frame, Z0 is a vertical
reference position, and B0 is the magnetic field strength at
that reference position. Contrary to conventional horizontal
excursion FFAs (hFFAs1), the vertical scaling condition
does not determine the horizontal shape of the ring. The

machine footprint can be smaller compared to hFFAs and
uses taller magnets with simpler configurations. As the
magnetic field increases in the vertical direction, the vFFAs
present finite vertical dispersion but zero horizontal
dispersion leading to a momentum compaction factor αc
strictly equal to zero. This is interesting for ultrarelativistic
beams, as the independence of path length with the beam
momentum allows for delivering continuous beams. Due to
these many advantages, vFFAs have been considered for
various applications, from nuclear waste transmutation to
energy-recovery electron accelerators and synchrotron
radiation sources [4,8]. As part of the ISIS Neutron and
Muon Source Facility upgrade (“ISIS-II”) [9–11], hori-
zontal and vertical FFAs are considered for the 1.2 GeV
proton driver of the neutron and muon source [12]. The
construction of a prototype ring, where the ISIS Front End
Test Stand (FETS) [13] serves as an injector,2 is envisaged
to demonstrate the viability of an FFA solution and
validate the beam dynamics experimentally. In this con-
text, a complete procedure to design such vFFA lattices
has been proposed in Ref. [8], and a vFFA prototype ring
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has been designed to accelerate proton beams from 3 to
12 MeV [8,14].
The vFFA magnetic field presents a nonzero longitudinal

field due to the fringe fields at the vFFA element ends and
skew quadrupolar components in the magnet body [8].
These components induce strongly coupled optics, and the
linear beam dynamics must be studied with an adequate
parametrization of the linear optics [15]. The generalized
lattice functions can be obtained from two parametrization
categories that allow either to find the linear invariants in
the linearly decoupled phase spaces (Edwards and Teng
parametrization) or to link them to measurable quantities,
such as the beam sizes (Mais and Ripken parametrization).
The vFFA magnetic field can be modeled using different
fringe field functions. While the hyperbolic tangent func-
tion is often used to describe the field falloff in vFFA
magnets [4,8,16], it has been shown that an arctangent
function better describes the field falloff of realistic coil-
dominated magnets [17]. It is thus essential to study vFFA
lattices with this fringe field function to obtain simulation
results that could predict experimental results. In the FETS-
vFFA prototype ring, the magnet fringe fields have a
predominant role as the prototype is a compact machine
with small vFFA magnets, a large bending angle per cell,
and an average radius of about 4.5 m. The arctangent fringe
fields drop slowly to zero and impact the focusing strength
experienced by the particles so that the residual fields of
neighboring cells influence the cell optical parameters.
In addition to the linear transverse coupling and pecu-

liarities of fringe fields, the magnetic field of vFFAs is
also highly nonlinear, which induces nonlinear coupling
between linearly decoupled planes. The detailed study of
their nonlinear beam dynamics must thus consider linear
and nonlinear coupling. In particular, the dynamic aper-
ture (DA) corresponds to the stability domain in the 4D
phase space. Although a measure of this stability domain
can be helpful when comparing several machines, it does
not characterize the phase space complexity and lacks a
clear interpretable meaning in terms of beam injection, as
it can significantly deviate from the acceptance hyper-
sphere of the machine. Further analysis is thus required
to have insights into the global system dynamics, its
operating performances, and limitations in the coupled
physical space [18].
Studying vFFA lattices analytically proves difficult

[19,20], especially in the case of compact rings where
the fringe fields and curvature play a significant role,
leading to a closed orbit independent of the magnet
geometry. The detailed transverse beam dynamics study
thus requires numerical simulation codes that allow long-
term particle tracking in 3D complex highly nonlinear
magnetic fields, which are equipped with advanced
analysis tools to consider linear and nonlinear coupling.
The ZGOUBI ray-tracing code [21–23] is ideally suited for
this purpose as it performs step-by-step particle tracking

in complex, realistic magnetic field models and field
maps, including the field nonlinearities, the fringe fields,
and possible magnet misalignments [16]. It also offers
the possibility to linearly superimpose 3D field maps to
characterize the influence of neighboring cells on the
lattice parameters. Tracking in field maps allows for
using ZGOUBI for experimental validation at later stages
of the study with measured magnetic field maps.
In addition, ZGOUBIDOO [24]—a modern Python 3 inter-
face for ZGOUBI—can perform advanced analyses of
tracking results for linear and nonlinear beam dynamics
studies [25]. Specifically, the generalized lattice functions
from linear coupling parametrizations that we recently
implemented in ZGOUBIDOO can be computed inside the
vFFA elements, as described in Ref. [15].
This paper studies in detail the linear and nonlinear beam

dynamics of the FETS-vFFA prototype with the vFFA
elements field falloff modeled by an arctangent function.
This vFFA prototype has been designed with codes
dedicated to fixed-field accelerators (SCODE [26] and
FIXFIELD [27]). Studying this lattice with ZGOUBI and
ZGOUBIDOO allows for cross-validation of these design
studies and for exploring this lattice beam dynamics with
advanced analysis tools and methods. This detailed study
includes a thorough analysis of the neighboring cell
residual field influence, the investigation of the lattice
linear coupling, and the characterization of the DA in the
4D phase space.
The structure of this paper is as follows. Section II

describes the FETS-vFFA prototype lattice and the methods
used in ZGOUBI to track particles in this lattice. Section III
explores the linear beam dynamics of the lattice, from the
search of closed orbits accounting for neighboring cell
residual fields to the computation of the eigentunes and
lattice functions with different coupling parametrizations.
The linear beam dynamics results are compared with those
obtained with other codes, validating the design studies of
the lattice. Section IV studies in detail the nonlinear beam
dynamics, including the characterization of the DA in terms
of the stability domain volume and complexity, and the
computation of the acceptance hypersphere. Finally, con-
clusions on this first detailed study of such strongly coupled
and nonlinear lattice are provided in Sec. V.

II. LATTICE AND METHODS

A. The FETS-vFFA lattice

In this work, Y is the horizontal coordinate, Z is the
vertical coordinate, and X is the longitudinal coordinate in
the Cartesian frame, while (y, z, s) are the coordinates in
the moving Frenet-Serret reference frame attached to the
reference trajectory. The vFFA field components in the
median plane—the vertical plane at Y ¼ 0—are as follows:

BYðY ¼ 0; Z; XÞ ¼ 0; ð1Þ
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BZðY ¼ 0; Z; XÞ ¼ B0ekZgðXÞ; ð2Þ

BXðY ¼ 0; Z; XÞ ¼ B0

k
ekZ

dg
dX

; ð3Þ

where gðXÞ represents the fringe fields of the magnet
and describes the longitudinal dependence of the field. The
vFFA magnetic field can be expressed at any position
ðY; Z; XÞ, assuming Z0 ¼ 0, with an out-of-plane poly-
nomial expansion of order N [8]:

BYðY; Z; XÞ ¼ B0ekZ
XN
i¼0

bYiðXÞYi; ð4Þ

BZðY; Z; XÞ ¼ B0ekZ
XN
i¼0

bZiðXÞYi; ð5Þ

BXðY; Z; XÞ ¼ B0ekZ
XN
i¼0

bXiðXÞYi; ð6Þ

where the coefficients in these expressions are given by
recurrence relations and ensure the magnetic field respects
Maxwell’s equations [8]:

bY0ðXÞ ¼ 0; bY;iþ1ðXÞ ¼ −
1

iþ 1

�
kbZi þ

dbXi
dX

�
;

bZ0ðXÞ ¼ gðXÞ; bZ;iþ2ðXÞ ¼
k

iþ 2
bY;iþ1;

bX0ðXÞ ¼
1

k
dg
dX

; bX;iþ2ðXÞ ¼
1

iþ 2

dbY;iþ1

dX
:

To compute the magnetic field outside the median plane,
all the field maps used in this work contain magnetic fields
computed with the series of Eqs. (4)–(6) truncated at the
tenth order. This truncation order has been shown to be
adequate in the case of hyperbolic tangent fringe field
function, with a convergence of the eigentunes and transfer
matrix coefficients from the tenth order onward [8,16].
The magnetic field of vFFAs can be modeled using

various fringe field functions gðXÞ. Given the importance
of fringe fields in the compact FETS-vFFA machine, it is
essential to accurately model these fringe fields to allow for
predicting experimental results with simulations. Although
the hyperbolic tangent function is the most commonly used
function to model vFFA fringe fields [4,8], and is, for
example, used in the newly implemented ZGOUBI VFFA
keyword [16], recent research has highlighted its limita-
tions in accurately describing the fringe field falloff of
realistic vFFA magnets [17]. The design of a realistic coil-
dominated vFFA magnet prototype has been performed
and has shown that an arctangent function better describes
the vFFA magnetic fields, allowing for obtaining similar
tunes and closed orbits to the ones obtained with the coil

configuration field map generated with a 3D magnet
computation code [17]. The fringe field function gðXÞ of
the FETS-vFFA prototype is thus currently modeled by an
arctangent function:

gðXÞ ¼
�
arctan

�
X
hg

�
− arctan

�
X − Lmag

hg

��
=π; ð7Þ

where hg represents the fringe field extent, and Lmag is
the length of the magnet. The fringe fields at the magnet
entrance and exit are supposed to be identical. The
arctangent fringe fields drop slower to zero than the
hyperbolic tangent fringe fields for an equivalent fringe
field extent, as shown in Fig. 1. Hence, the residual fields
are more significant at large distance, which results in a
greater impact on the neighboring cells on the main cell
closed orbit and optical parameters. Consequently, the
methods used to study such lattices cannot assume that
the closed orbit deviation due to these residual fields is
negligible. It is necessary to superimpose field maps from
neighboring cells in ZGOUBI to accurately account for the
fringe field effects in this lattice.
The FETS-vFFA lattice is the 10-cell vFFA prototype

lattice described in Ref. [14], designed to accelerate protons
from 3 to 12 MeV. Most of the results presented in this
work are obtained for the nominal energy of 3 MeV. Table I
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FIG. 1. Fringe field falloff modeled by the hyperbolic tangent
and arctangent functions for B0 ¼ 1.0 kG, hg ¼ 0.2 m, and
L ¼ 0.4 m. The magnetic field is normalized so that both
integrated fields are the same. The arctangent fringe fields drop
slower to zero than the hyperbolic tangent fringe fields, leading
to the necessary consideration of the neighboring cell residual
fields. These large residual fields significantly impact the cell
parameters and need to be accurately considered to obtain correct
closed orbit and linear optics.
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shows the main design parameters of the FETS-vFFA
prototype with the vFFA elements field falloff modeled
by an arctangent function, including the details of the
periodic cell. A section of the 3D magnetic field map
associated with this periodic cell is shown in Fig. 2, along
with the periodic nominal energy orbit inside the cell. It is a
focusing-defocusing-focusing (FDF) triplet lattice with the
three vFFA magnets (Bf, Bd, and Bf magnets) aligned on a
straight line. Each cell has a length of 2.8 m and a bending
angle of 36°. The complete ring forms a polygon with
each side consisting of a cell, as illustrated in Fig. 3. In
addition to the strong focusing provided by the cell
structure (radial focusing due to the sector-alternating
field), the focusing is also influenced by the fringe fields
and edge focusing as the particle does not enter the cell
perpendicularly to the magnet faces.
Figure 4 shows the vertical particle trajectories found on

a single cell for different energies, along with the magnetic
field components along these trajectories. The orbits are
stacked vertically on top of each other, and the magnetic

field components scale with the particle energy, as expected
in vFFAs. The vertical orbit excursion for the energy range
3–12 MeV corresponds to 53 cm, which is equivalent
to the orbit excursion obtained using SCODE [14]. The
significant residual fields (∼0.1 kG) remaining in all
directions at the cell ends, as depicted in Fig. 5, show
the necessity to consider the neighboring cell influence to
study the closed orbit shape and transverse beam dynam-
ics of this lattice accurately.

B. Tracking with ZGOUBI

As the residual fields are significant at the cell ends in
the FETS-vFFA lattice and greatly impact the particle
trajectory, it is crucial to superimpose the fields from
neighboring elements. It can be achieved by superposing
field maps using the TOSCA keyword in ZGOUBI [28].
Since the field maps of the FETS-vFFA cells are rec-
tangular, it is important to define appropriate integration
limits in order to integrate within polar sectors and prevent
overlap between consecutive cells’ field maps. This
ensures trajectory continuity between neighboring cells,
as detailed in Appendix.

III. LINEAR BEAM DYNAMICS

A. Closed orbit and eigentunes

The significant residual fields from neighboring cells,
particularly the longitudinal field BX, substantially impact
the optical lattice parameters. Accurately determining the
stable closed orbit and eigentunes requires proper field

TABLE I. Design parameters of the FETS-vFFA prototype
from Ref. [14].

Parameters

Energy 3 to 12 MeV
Number of cells 10
Cell length 2.8 m
Bd magnet length 0.5 m
Bf magnet length 0.5 m
Straight length 1.24 m
Distance between Bd center and Bf center 0.53 m
Fringe field extent (hg) 0.15 m
Bd/Bf ratio 1.15
Normalized field gradient (k) 1.31 m−1

0 0.5 1 1.5 2 2.5

−0.4

−0.2

0

0.2

0.4

−2

0

2

4

X(m)

Y(
m

)

FIG. 2. Section of the 3D magnetic field map constructed with
ZGOUBIDOO for one cell of the FETS-vFFA prototype. The field
map shows the vertical component of the magnetic field. The cell
comprises three magnets aligned on a straight line, with an FDF
triplet focusing structure; the central magnet has a reverse bending
field, while the two outer magnets have a normal bending field.
The magnet normalized field gradient is 1.31 m−1. The cell has a
length of 2.8 m and a bending angle of 36°. The periodic nominal
energy orbit inside the cell is shown in black.
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FIG. 3. Magnetic field map of the entire FETS-vFFA ring. The
3 MeV closed orbit is shown in black. The lattice consists of 10
FDF cells and is designed to accelerate protons from 3 to 12 MeV.
The complete ring forms a polygon with each side consisting of a
cell with a length of 2.8 m, a bending angle of 36°, and the three
vFFA magnets aligned on a straight line.
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modeling, including these residual fields. Appendix details
the procedures for constructing field maps and considering
different extents for neighboring cells. It further explores
the linear beam dynamics of the lattice under varying
influences from neighboring cells. The results reveal that
additional residual fields significantly affect the closed
orbit shape and eigentunes, impact the closed orbit vertical
extension, and lead to a vertical orbit excursion. By
adequately considering the residual fields, we obtained a
closed orbit with zero vertical divergence at both ends,
similar to the closed orbit obtained using SCODE during the
design stage [14]. We also computed the cell eigentunes,
which are the tunes of the linearly decoupled motions.
These eigentunes correspond to the arguments of each

conjugate pair of eigenvalues of the one-cell 4 × 4 periodic
transfer matrix.3 We obtained ð1 − ν1; ν2Þ ¼ ð0.24362;
0.119732Þ, which are similar to the eigentunes computed
with SCODE (0.243445, 0.12002) [14]. One eigentune is
larger than 0.5, indicating that the cell phase advance
exceeds 180°. The differences in tunes between SCODE and
ZGOUBI are smaller than 10−3, which is acceptable as it can
be explained by the influence of other simulation param-
eters (including the field map mesh size).

B. Lattice functions with coupling parametrizations

Due to their magnetic field’s longitudinal and skew
quadrupolar components, vFFAs exhibit linear transverse
motion coupling originating by design. The one-cell 4 × 4
periodic transfer matrix

M̂ ¼
�
A B

C D

�
ð8Þ

features nonzero off-diagonal elements; an adequate para-
metrization of the linear optics is required to explore their
linear beam dynamics in detail. Two main parametrizations
are generally put forth to describe the coupled optics: the
parametrization of Edwards and Teng (ET) [29] and the one
of Mais and Ripken (MR) [30]. The ET and MR
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FIG. 4. Vertical particle trajectories and magnetic field components along these trajectories for energies ranging from 3 to 12MeV. The
vertical orbit excursion with energy is observable, as expected in vFFAs. The magnetic field scales with energy as all its components
satisfy the exponential scaling condition. The particle trajectory is found on a single cell without considering the influence of
neighboring cells. This single-cell trajectory does not correspond to the closed orbit as the vertical divergence does not cancel out at the
cell ends. Finding an orbit satisfying the periodic conditions on all initial particle coordinates is not possible without considering
neighboring cells.

FIG. 5. Magnetic field components along the single-cell tra-
jectory for a particle at 3 MeV. The residual fields at the cell ends
are significant in all directions, leading to a great influence of the
neighboring cells on the closed orbit and cell linear parameters.

3The one-cell periodic transfer matrix is obtained by tracking
several particles with small offsets from the reference particle in
each direction.
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parametrizations were extended and revisited in several
works, and other variants can be linked to these two
parametrization categories. An in-depth review of the
coupled betatron motion parametrizations with their param-
eter interpretation can be found in Ref. [15].
The ET parametrization allows computing the linear

invariants and studying the motion in the linearly
decoupled planes, which is especially helpful when study-
ing the DA. The ET generalized Twiss parameters describe
the two oscillation eigenmodes in the decoupled space but
are not easily interpretable in the coupled physical space.
By contrast, the MR parametrization offers more interpret-
able lattice functions that can be linked to measurable beam
parameters, such as beam sizes. These functions represent
the effect of the two oscillation eigenmodes on each
physical transverse direction, providing insight into the
focusing properties of the lattice. A variant of the MR
parametrization is the parametrization of Lebedev and
Bogacz (LB) [31], which provides interesting additional
parameters, including the parameter U that characterizes
the coupling strength. This parameter is directly linked to
the rotation angle of the decoupling matrix R̃ in the ET
parametrization.
Since the ET and MR parametrizations provide comple-

mentary information, it is essential to compute both sets of
parameters. The ET and LB parametrizations have been
implemented in ZGOUBIDOO [15]. With the ZGOUBI capa-
bilities of step-by-step tracking inside the elements,
ZGOUBIDOO can compute the transfer matrices and the
ET and LB parameters at each integration step [25].
Figure 6 shows the β functions from the ET parametrization
computed on one cell of the FETS-vFFA lattice. The
significant difference between both β functions indicates
that one of the cell phase advances is bigger than 180°.
Figure 7 shows the β functions from the LB parametriza-
tion, indicating the evolution of the beam envelope in the
laboratory axes along the lattice. The phase advances are
shown in Fig. 8 and are identical for the ET and LB
parametrizations.
In addition to the generalized Twiss parameters, the ET

parametrization provides the decoupling matrix R̃ that
allows switching easily between the coupled and decoupled
spaces. For the FETS-vFFA cell, the decoupling matrix is

R̃ ¼

0
BBB@

1.04 0.0 0.203 0.0341

0.0 1.04 −0.00523 −0.396
0.390 0.0315 1.04 0.0

−0.0675 −0.201 0.0 1.04

1
CCCA: ð9Þ

As highlighted in Ref. [15], only one solution exists
for the decoupling matrix at specific locations of the
lattice (jBþ C̄j < 0), forcing the mode identification.
When the mode identification is incorrect, a “forced mode
flip” occurs. The condition jBþ C̄j < 0 corresponds to

U < 0 in the LB parametrization, as shown in Fig. 9(a). For
the FETS-vFFA lattice, the parameter U was computed by
imposing periodic conditions. This parameter is negative at
some places of the cell, as shown in Fig. 9(a). It varies in
sections where coupling fields are present and reflects how
the section couples the motion compared to the average
coupling in the cell. In the FETS-vFFA, a mix of skew
quadrupoles and longitudinal field components impact the

FIG. 6. β functions from the ET parametrization computed on
one cell of the FETS-vFFA lattice. These lattice functions are
used to compute the linear invariants of motion.

FIG. 7. β functions from the LB parametrization computed on
one cell of the FETS-vFFA lattice. These lattice functions
indicate the evolution of the beam envelope in the laboratory
axes along the lattice.
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parameter U throughout the cell. The β functions of the ET
parametrization computed on the FETS-vFFA cell by
considering the wrong mode identification are shown in
Fig. 9(b) and become infinite when jBþ C̄j ¼ 0, confirm-
ing that only one mode identification is correct in this case.
The LB parametrization imposes U < 1 so that the deriv-
atives of the phase advances dμ1=ds and dμ2=ds are always
positive (phase advances monotonously increasing).
Finally, it is interesting to note that if the parameter U is
negative, the corresponding ET rotation angle ϕ is com-
plex. It corresponds to a rotation of the plane ðu; puÞ
compared to the plane ðy; pyÞ.
To summarize, transverse betatron motion coupling is

generally observed in lattices featuring separated sole-
noids and skew quadrupoles, which are the main sources
of linear coupling. In vFFAs, principal focusing elements
consist of longitudinal and skew quadrupolar compo-
nents. Both coupling fields are present simultaneously,
which lead to complex coupled linear optics; peculiar
phenomena like forced mode flip appear more likely than
in other types of accelerators. If the mode identification
becomes incorrect throughout the lattice when forced
mode flip conditions occur, the ET β functions can
diverge completely and become infinite, as we have
observed in Fig. 9(b). The ET and LB parametrizations,
which we have computed, provide complementary infor-
mation, with their respective generalized Twiss param-
eters serving different purposes. On the one hand, the ET
lattice functions, including the β functions presented in
Fig. 6, give information on the oscillation eigenmodes
and are particularly useful for computing the linear
invariants. Moreover, the decoupling matrix of Eq. (9)
allows for studying the motion in the linearly decoupled
planes. On the other hand, the LB lattice functions,
including the β functions presented in Fig. 7, characterize
the amplitude of the betatron oscillations and allow
computing the beam sizes when invariants in the linearly
decoupled planes are provided, as explained in detail in
Sec. IV D.

IV. NONLINEAR BEAM DYNAMICS

A. Computation of the linear invariants
in the linearly decoupled planes

To study the FETS-vFFA nonlinear beam dynamics, the
normalized linear invariants in the decoupled phase spaces
ðu; puÞ and ðv; pvÞ were computed. To that end, we
searched for the maximum amplitudes in the u and v
directions (with pu ¼ 0 and pv ¼ 0) for which the particle
survives 1000 turns. From the maximum amplitude particle

FIG. 8. Phase advances on one cell of the FETS-vFFA lattice.
The phase advances obtained with the ET and LB parametriza-
tions are the same by definition.

FIG. 9. Forced mode flip illustrated on the FETS-vFFA
lattice. (a) Periodic U of the LB parametrization, and jBþ C̄j
of the one-cell periodic coupled transfer matrix M̂. The condition
jBþ C̄j < 0 reflects the existence of only one solution for the
decoupling matrix and corresponds to a negative LB parameterU.
This parameter varies all along the cell, indicating the influence
of coupling fields throughout cell. When U < 0, the ET rotation
angle of the symplectic rotation matrix is complex, indicating an
exchange between the position and momentum coordinates.
(b) β-functions of the FETS-vFFA cell using the ET para-
metrization by imposing the wrong mode identification.
The β-functions cannot be defined (or become infinite) when
jBþ C̄j ¼ 0, indicated by the dashed black lines. In this case,
only one solution for the decoupling matrix exists with only one
mode identification.

LINEAR AND NONLINEAR BEAM DYNAMICS … PHYS. REV. ACCEL. BEAMS 27, 024003 (2024)

024003-7



coordinates in each linearly decoupled plane, the linear
invariants eu and ev were computed with the Courant-
Snyder formula γðsÞy2 þ 2αðsÞyy0 þ βðsÞy02 ¼ ϵ (where y
represents both linearly decoupled coordinates) [32]. We
obtained eu¼43.47 πmmmrad and ev¼41.21 πmmmrad.
By tracking several particles with different initial ampli-
tudes in the u and v directions, we observed the appearance
of stability islands, corresponding to fixed points of the
fourth order, as shown in Fig. 10. When particles are
initially launched in the islands (red points in Fig. 10),
they remain in the islands and exhibit a fractional cell
tune of 0.25.
As vFFAs are strongly coupled and nonlinear machines,

the study of their nonlinear beam dynamics must account
for linear and nonlinear coupling. The particle motion
explores the full 4D phase space, and particle oscillation
amplitude exists in both linearly decoupled planes [33]:

u ¼ r cosðαÞ cosðθ1Þ; pu ¼ r cosðαÞ sinðθ1Þ; ð10Þ

v ¼ r sinðαÞ cosðθ2Þ; pv ¼ r sinðαÞ sinðθ2Þ; ð11Þ

where r is the amplitude in the 4D phase space, θ1, θ2 are
the angles in each decoupled plane, and α characterizes the
ratio between the amplitudes in both linearly decoupled
planes [34]. The 4D motion is reflected in the 2D linearly
decoupled subspaces as diffuse layers where stable and
weakly chaotic motion coexist [34–36], as shown in
Fig. 10, where a small stable inner core and a more diffuse
region clearly appear. Particles can be transported between
both linearly decoupled planes; a particle may be trans-
ported from the chaotic layer in one plane to a high-
amplitude region in the other plane, potentially leading to
beam losses.

A first characterization of the lattice’s nonlinear nature
consists in computing the linear invariants for several
ratios of amplitudes in both linearly decoupled planes.
In the FETS-vFFA lattice, the maximum amplitude that
survives 1000 turns is not constant with α, as shown in
Fig. 11, highlighting the impact of nonlinearities on the
phase space stability domain and the resulting phase space
distortion. While this representation offers initial insights
into the phase space distortion and nonlinear coupling, it
should be interpreted with caution for lattices with high
nonlinearity since it is based on linear optics, meaning that
the linear invariants are computed assuming elliptical
shapes in the 2D linearly decoupled phase spaces. This
assumption is no longer valid when dealing with large
nonlinearities. In this case, the proper distribution shape
must be computed to obtain 2D invariants that can be
related to the beam sizes in the coupled space using the LB
lattice functions. Furthermore, these 2D invariants depend
on the ratio of amplitudes in both linearly decoupled
planes. Characterization of the stability domain in the full
4D phase space is thus required to capture the motion
complexity and have a comprehensive understanding of
beam dynamics and DA.
The DA is defined as the phase space region where the

motion remains bounded for a given number of turns. In
this work, we fully characterize the DA on 1000 turns, as it
has been shown that the 2D DAs converge for 1000 turns
on similar lattices [8]. When linear and nonlinear coupling
occurs, the stability domain is a 4D volume without a
well-defined boundary between stable and unstable
motion [34,35]. To characterize the DA in highly nonlinear
and strongly coupled machines, it is necessary to compute

(a) (b)

FIG. 10. Linearly decoupled phase spaces (u; pu) and (v; pv)
obtained by tracking particles with several initial amplitudes in
[0; umax] (with pu ¼ 0) (a) and in [0, vmax] (with pv ¼ 0) (b) and
sampling the particle’s position at each turn. The linear invariants
(eu ¼ 43.47 πmmmrad and ev ¼ 41.21 πmmmrad) are com-
puted with the coordinates of the particles with the maximum
amplitudes in the u and v directions (umax; pu ¼ 0 and
vmax; pv ¼ 0) and the ET lattice functions. Particles initially
launched in the islands, represented by red points, remain in the
islands and exhibit a fractional cell tune of 0.25.
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FIG. 11. Maximum amplitude in the 4D phase space for several
α with θ1 ¼ θ2 ¼ 0. The maximum amplitude does depend on α
because the machine is highly nonlinear, leading to an irregular
phase space stability domain.
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not only a measure of this 4D stability domain but also the
effective radius of the acceptance hypersphere of the
machine to evaluate the machine’s operating performance
in the coupled physical space [18]. Furthermore, an evalu-
ation of the quality of the stability domain is needed to assess
the phase space topology and spectral behavior of stable
initial conditions and identify possible limitations of the DA.
We thoroughly investigated the DA of the FETS-vFFA
prototype by computing 4D estimates of the stability domain
volume, metrics for evaluating the stability domain quality,
and the largest 4D hypersphere inscribed to the stability
domain to obtain the effective acceptance radius [18].

B. Estimates of the 4D stability domain volume

To estimate the stability domain volume, we have
used three methods: the two methods established in
Refs. [33,34] and referred to as “Direct integration with
scan over phase space variables” and “Integration over the
dynamics” to obtain the volume of the connected stability
domain, and a random sampling method to obtain the total
stability domain including points that may be disconnected

from the main stability zone [18]. These three methods are
summarized in Table II, along with the resulting DA
volume and equivalent radius for the FETS-vFFA lattice
with arctangent magnetic fringe fields.
The phase space variable scan method and the random

sampling method consist in scanning a large number of
orbits (either by searching the maximum amplitude particle
that survives 1000 turns for each (α; θ1; θ2) in the integra-
tion mesh or by randomly scanning the phase space and
retaining the coordinate with the largest radius in each bin
of the integration mesh), then performing a “direct inte-
gration” over the phase space variables [33]:

V¼1

8

Z
2π

0

Z
2π

0

Z π
2

0

½rðα;θ1;θ2Þ�4 sinð2αÞdαdθ1dθ2: ð12Þ

Each orbit evaluation requires a full ZGOUBI simulation that
tracks the particle over 1000 turns. Tracking multiple
particles on 1000 turns over a 28 m circumference ring
with small integration steps for accurate tracking requires
significant CPU resources and time. On the contrary, the

TABLE II. Parameters and results for the methods to estimate the stability domain [18]. The 4D volumes are normalized by the
relativistic factor ðβγÞ2 and the equivalent radii are computed with these normalized volumes.

Direct integration

(A) Scan over phase space variables (B) Random sampling (C) Integration over the dynamics

Description (i) Create a mesh ðα; θ1; θ2Þ. (i) Launch many particles with
uniformly distributed coordinates.

(i) Find the maximum radius for
several α with θ̄1 ¼ θ̄2 ¼ 0.

(ii) For each ðα; θ1; θ2Þ, find the
maximum radius particle that
survives 1000 turns.

(ii) Keep the particles that survive
1000 turns.

(ii) Track the particles with the
maximum amplitudes and keep the
1000 iterations.

(iii) Integrate over phase space
variables with Eq. (12).

(iii) Divide the phase space into a
mesh ðα; θ1; θ2Þ, with at least one
initial coordinate in each bin.

(iii) Divide the phase space into a
mesh with at least one iteration per
bin.

(iv) Retain the maximum amplitude
particle for each bin and integrate
with Eq. (12).

(iv) Compute the DA by averaging
over the iterates.

Initial conditions ∼3 million orbits scanned to find the
maximum amplitude in r ¼ ½0; 0.06�
surviving 1000 turns for each point
of the integration mesh. It gives 157
339 particles with maximum
amplitude.

28 million initial conditions
uniformly distributed in a 4D
hypersphere with r ¼ 0.06 m,
resulting in 1 164 518 initial
conditions stable on 1000 turns.

1800 orbits evaluated to find 90
particles with maximum amplitude
that survives 1000 turns for each α
in [0°, 90°] with θ1 ¼ θ2 ¼ 0.

Integration mesh ðΔα;Δθ1;Δθ2Þ ¼ ð5°; 4°; 4°Þ ðΔα;Δθ1;Δθ2Þ ¼ ð9°; 8.4°; 8.4°Þ ðΔα;Δθ1;Δθ2Þ ¼ ð10°; 30°; 30°Þ
DA (volume) 1408.86 π2 mm2 mrad2 3395.62 π2 mm2 mrad2 1467.09 π2 mm2 mrad2

DA (equivalent
radius)

7.286 mm 9.078 mm 7.36 mm

Pros and cons (i) Find simply connected stability
domain.

(i) Outliers increase the volume. (i) Nonuniform phase distribution.

(ii) CPU-intensive. (ii) CPU-intensive. (ii) Less computationally
demanding.

(iii) Excellent DA estimate. (iii) Poor DA estimate. (iii) Good DA estimate.
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integration over the dynamics method allows for a
reduction in CPU time by removing the scan over the
phase plane angles θ1 and θ2. This method finds the
particles with the maximum amplitudes for each α with
fixed θ1 and θ2 and then performs an average over the
iterations from the tracking of these maximum amplitude
particles to compute the stability domain volume. As the
phases of the iterations may not be uniformly distributed,
this method requires dividing the angle space into a mesh
that contains at least one initial condition per bin before
performing the average [33,34].
Figure 12 shows the distributions of the surviving initial

conditions for the scan and random sampling methods and
the maximum amplitude particle iterates for the integration
over the dynamics method. The distributions are repre-
sented in the 2D linearly decoupled phase planes (u − pu)
and (v − pv) for an amplitude ratio corresponding to
α ¼ 60°� 2.5°. The phase space variable scan method is
the more reliable method and provides an accurate estimate
of the volume of the simply connected stability domain; the
random scanning method provides a poor DA estimate
(relative error of 141% on the DA volume compared to the
volume computed with the phase space variable scan
method) as it retains stable outlier points in regions
disconnected from the main stability domain. Figure 13

compares the stable initial condition distributions obtained
with the scan and random sampling methods in the linearly
decoupled planes for all α. It clearly highlights that both
DA volumes differ from the outlier points. The integration
over the dynamics method provides a suitable DA estimate
(relative error of 4.13% on the DA volume compared to
the estimate obtained with the phase space variable scan
method) while saving considerable CPU time, as already
observed in [18].

FIG. 12. Distributions of the surviving initial conditions for the scan and random sampling methods (left and center) and maximum
amplitude particle iterates obtained with the integration over the dynamics method (right). All distributions are represented in the 2D
linearly decoupled phase planes (u − pu) and (v − pv) for an amplitude ratio corresponding to α ¼ 60°� 2.5°. The outliers appearing in
the random sampling distribution considerably increase the computed DA volume.
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FIG. 13. Comparison of the stable initial condition distributions
obtained with the scan and random sampling methods in the
linearly decoupled planes for all α. The distributions are similar
except for the outlier points at large amplitude, which leads to an
increased DA volume for the random sampling method.
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The 4D volumes computed with the three methods
include the fourth-order stability islands; the initial con-
ditions sampled in the islands result in bounded motion
over 1000 turns even if they present a different dynamic.
Detecting these stability islands can be achieved with
detailed frequency analysis, as explained in Sec. IV E.

C. Practical definition of the DA in the coupled
physical space

Due to the lattice nonlinearity, the stability domain
can deviate significantly from a hypersphere. To obtain
the effective radius of the acceptance hypersphere, cor-
responding to the maximal DA that ensures all particles
injected in the coupled space survive 1000 turns, we have
developed a method to determine the maximum hyper-
sphere inscribed into the stability domain [18]. This DA
definition has a more practical interpretable meaning as
it can be directly linked to the beam injection into the
machine if proper matching sections are designed. The
radius of the maximum inscribed hypersphere centered on
the closed orbit is 15.3 mm, which corresponds to a
normalized volume of 175.48 π2 mm2 mrad2, and a cor-
responding normalized radius r ¼ 4.328 mm. It is sig-
nificantly lower than the stability domain volume and
equivalent radius (volume corresponding to 12.46% of the
4D stability domain volume).

As the stability domain center is slightly shifted from
the closed orbit, especially in the v plane (see Fig. 13),
the largest hypersphere that completely enters into the
stability domain is also off-centered from the closed orbit.
This off-centered hypersphere has a normalized volume of
258.58 π2mm2mrad2 corresponding to an effective radius
of 4.769 mm. This volume is slightly larger than the volume
of the centered hypersphere. It corresponds to 18.35% of
the stability domain volume, indicating that the phase space
is significantly distorted due to vFFA nonlinearities. In
practical applications, the DA can further be limited by
magnet design and collimation system as the closed orbit
may not align with the magnet centers.

D. Normalized 2D DAs and beam sizes

To compute the horizontal and vertical beam sizes using
the LB parametrization, it is necessary to have normalized
2D DAs in linearly decoupled planes εI , εII:

σy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1yεI þ β2yεII

q
; ð13Þ

σz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1zεI þ β2zεII

p
: ð14Þ

A first approach defines these 2D DAs as the area of the
stable initial condition distributions in the 2D linearly
decoupled planes for all α (see Fig. 13). In this case, the
2D DAs are, respectively, 72.04 and 104.53 πmmmrad.
Assuming a beam core emittance of one-third of the
normalized DA (24.01 and 34.84 πmmmrad), the maxi-
mum beam sizes are 21.13 and 46.09 mm, as shown in
Fig. 14. As vFFAs nonlinearities lead to significant phase
space distortions, a second approach defines the normalized
2D DAs based on the acceptance hypersphere. The nor-
malized DAs are then equal in both linearly decoupled
planes and are 18.73 πmmmrad, leading to significantly
reduced beam sizes (σy ¼ 10.54 mm and σz ¼ 19.6 mm).
The values of 2D DAs, beam core, and beam sizes are
summarized in Table III for both approaches.

FIG. 14. Beam sizes (σy, σz) along the FETS-vFFA cell by
defining the normalized 2D DAs with the area of the stable initial
condition distributions for all α or with the acceptance hyper-
sphere distributions in the linearly decoupled planes.

TABLE III. 2D normalized DAs, beam core emittances, and beam sizes computed either with the distributions of
stable initial conditions for all α or with the acceptance hypersphere distribution in the linearly decoupled planes.

Stable initial conditions
distribution in ðu; puÞ and ðv; pvÞ

Acceptance hypersphere
distribution in ðu; puÞ and ðv; pvÞ

Normalized 2D DAs (πmmmrad) (72.04, 104.53) (18.73, 18.73)
Normalized beam core (πmmmrad) (24.01, 33.83) (6.24, 6.24)
Unnormalized beam core (πmmmrad) (301.97, 438.16) (78.51, 78.51)
β functions β1y;max ¼ 1.27 m β2y;max ¼ 0.18 m,

β1z;max ¼ 0.37 m β2z;max ¼ 4.75 m
Beam size in y (mm) 21.13 10.54
Beam size in z (mm) 46.09 19.6
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E. DA quality factors characterizing the complexity
of the phase space stability domain

To have a more in-depth understanding of the nonlinear
beam dynamics, we have used different analysis tools, such
as detailed frequency analysis and clustering methods
to highlight regions with different dynamics (such as
stability islands). These analysis tools and corresponding
metrics [18] are summarized in Table IV. They allow for
rationalizing the relevant information contained within the
phase space.
The first step to evaluate the phase space complexity

is determining whether stability islands exist within the
stability domain. In Fig. 10, we have observed the
appearance of fourth-order stability islands by tracking
several particles with different initial amplitudes in the u
direction (pu ¼ 0, v ¼ 0). These stability islands are
manifested by characteristic holes in the iterates distribu-
tion. These “holes” are characterized by a reduced density
in the phase space. They can be highlighted using a
clustering method as illustrated in Fig. 15. The clustering

TABLE IV. Metrics and analysis tools to characterize the complexity of the phase space stability domain.

Frequency analysis

Main frequencies and nonlinearities Diffusion coefficient and FMA Clustering metric

Goals (i) Detection of stability islands. (i) Characterization of the system
global dynamics.

(i) Characterization of the phase
space distribution with different
dynamics zones.

(ii) Characterization of the lattice
nonlinearity.

(ii) Identification of harmful
resonances.

Description (i) Compute the frequency spectrum
for each stable particle and detect
stability islands from the main
frequency histograms.

(i) Compute the diffusion coefficient
for each point:
D ¼ log10ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔQ2

u þ ΔQ2
vÞ

p
Þ [37],

where ΔQu and ΔQv are the
eigentunes difference on the turn
data halves.

(i) Use the scikit-learn DBSCAN
function [38] to divide the points into
clusters of similar density and noise.

(ii) The metrics fu and fv are the
medians of the frequency amplitude
ratio distributions.

(ii) Analyze the tune diffusion map. (ii) Compute the metric
h ¼ number of points in clusters

total number of points .

(iii) Use the clustering to better
visualize the different dynamics
zones.

Results (i) Fourth-order stability islands. (i) Resonances: −2ν1 þ 3ν2 ¼ 2,
2ν1 þ 5ν2 ¼ 4, and 2ν1 þ ν2 ¼ 1.

(i) Island characteristic zones and
separation between stable inner core
and chaotic layer.

(ii) fu ¼ 0.627, fv ¼ 0.625. (ii) hu ¼ 0.842, hv ¼ 0.84.

Observations (i) Only characterizes the u or the v
motion at a time.

(i) Many particles inside the stability
domain have slightly chaotic
dynamics.

(i) The outliers influence the initial
parameters.

(ii) Complex dynamics underlying the
importance of vFFA nonlinearities
and nonlinear coupling.

(ii) High-order resonances impacting
the DA.

(ii) Depends on the number of stable
particles.

(iii) Qualitative analysis tool that
allows better visualization.
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FIG. 15. The clustering method applied to the distribution of
the iterates obtained with the tracking of 30 particles launched for
θ1 ¼ 0 and α ¼ 0 in the FETS-vFFA lattice. The clustering
method is applied to 2D coordinates in the linearly decoupled
phase planes. The characteristic holes from the fourth-order
stability islands are highlighted, as well as the zone that separates
the phase space macroscopic regions with different dynamics
(small stable inner core and weakly chaotic layer).

VANWELDE, HERNALSTEENS, and PAULY PHYS. REV. ACCEL. BEAMS 27, 024003 (2024)

024003-12



also highlights the zone that separates the stable inner core
and the diffuse weakly chaotic region.
While the distribution of iterates may exhibit character-

istic island holes, the distribution of the stable initial
conditions in the stability domain will not; the direct
integration methods scan the entire phase space, such that
initial conditions are launched within the stability islands
and remain inside these islands. The DA volume estimates
thus include the stability islands, and a frequency analysis
method is necessary to distinguish the initial conditions
within the islands from their main frequencies. To that
end, we computed the frequency spectrum for each stable
initial condition by performing a turn-by-turn frequency
analysis of the particle motions in the u and v directions on

1024 cells with pyNAFF [39]—a Python library that
implements the NAFF algorithm [40]. The presence of
stability islands in the stability domain is detected by
analyzing the histograms of the main frequencies of
stable particles, shown in Fig. 16. A peak at the 0.25
frequency appears and indicates that 16.8% of particles are
inside the islands.
We have evaluated the dynamics complexity of the

particles whose main frequencies are close to the design
tunes but outside of the stability islands by computing the
ratio between the amplitude of the main peak in their
frequency spectrum and the total amplitude in the spec-
trum. It provides indications on the nonlinear nature of
the lattice. A small ratio indicates chaotic behavior with

(a)

(b)

FIG. 16. Histograms of the main frequencies of all stable initial
conditions. The main frequencies are retrieved for the motion in
the u direction (a) and v direction (b). The main peaks correspond
to the machine cell tunes, while the peak at the frequency 0.25
indicates the presence of fourth-order stability islands in the
stability domain. The detuning with the amplitude is visible as the
main peaks have finite widths.

(a)

(b)

FIG. 17. Cumulative histograms of the ratio between the
amplitude in the main peak and the total amplitude in the
spectrum for each particle whose main frequencies are close to
the machine cell tunes and do not stand in stability islands. These
histograms correspond to the motion in the u direction (a) and the
v direction (b). The medians are fu ¼ 0.627 and fv ¼ 0.625,
indicating that many particles exhibit very complex dynamics
with significant secondary peaks.
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numerous significant secondary peaks, while a ratio of one
indicates a linear motion with a single peak at the machine
cell tune. The cumulative histograms of the frequency
spectrum amplitude ratios for the u and v motions in the
FETS-vFFA lattice, shown in Fig. 17, reveal a complex
dynamics, which is significantly impacted by nonlinear-
ities. Many particles have a very small amplitude ratio (the
medians of the distributions are close to 0.6), indicating the
presence of multiple secondary peaks in their frequency
spectrum and the predominant role of nonlinear coupling.
Finally, we performed a frequency map analysis (FMA)

[41,42] to gain insight into the phase space structure and
highlight the resonances that could limit the DA, and hence,
the performance of the machine. We have computed the
diffusion of tunes on 1024 cells for each stable initial
condition in the stability domain to better understand the
global dynamics of the system. The tune diffusion map,
shown in Fig. 18, indicates that the resonances that might
affect the DA are the difference resonance −2ν1 þ 3ν2 ¼ 2
and the sum resonances 2ν1 þ 5ν2 ¼ 4 and 2ν1 þ ν2 ¼ 1.
As already pointed out in [18], the importance of high-
order resonances in vFFAs is not yet fully understood.
Further studies are needed to mitigate them and increase
the DA of such lattices. Finally, the tune diffusion map
indicates that the tunes cross the resonance 4ν2 ¼ 3, which
corresponds to the fourth-order stability islands and does
not affect the particle motion.

V. SUMMARY AND CONCLUSIONS

We performed a detailed study of the FETS-vFFA
prototype ring designed under the ISIS-II proton driver

prototype project to accelerate proton beams from 3 to
12 MeV. To the best of our knowledge, this is the first
comprehensive analysis of such a strongly coupled and
highly nonlinear machine. Linear coupling that arises from
the longitudinal and skew quadrupolar field components
requires appropriate parametrization to study the linear
beam dynamics, while nonlinear coupling requires study-
ing the DA in the 4D phase space. In the FETS-vFFA
compact ring, the fringe fields significantly impact the
linear and nonlinear beam dynamics. We used the arctan-
gent function to model the fringe fields of the vFFA
magnets realistically, allowing for accurate validation
against future experimental results. To accurately account
for the significant influence of neighboring cells, we have
superimposed the fields from neighboring elements by
superposing field maps with ZGOUBI.
We explored linear beam dynamics and observed that the

neighboring cell fields significantly affect the cell closed
orbit and eigentunes. No closed orbit and stable optics can
be found without accounting for these residual fields. The
linear optics results found with ZGOUBI show excellent
agreement with results from previous design studies
obtained with SCODE. We investigated the FETS-vFFA
linear optics with the two principal coupled betatron motion
parametrizations (ET and MR). A thorough analysis of the
ET decoupling matrix and LB parameter U revealed the
occurrence of forced mode flip conditions (only one mode
identification) when U < 0, leading to locally undefined or
infinite ET β functions. On the one hand, the ET lattice
functions were used to compute the linear invariants in the
linearly decoupled planes (eu ¼ 43.47 πmmmrad and
ev ¼ 41.21 πmmmrad). On the other hand, the LB lattice
functions were used to compute the horizontal and vertical
beam sizes. Specifically, we obtained σy ¼ 21.1 mm and
σz ¼ 46 mm by defining the 2D DAs based on the stability
domain distribution in the linearly decoupled planes, and
σy ¼ 10.5 mm and σz ¼ 19.6 mm using the acceptance
hypersphere instead.
We estimated the 4D stability domain volume to be

1408.86 π2 mm2 mrad2, and the volume of the acceptance
hypersphere to be 258.58 π2mm2mrad2. The large differ-
ence in volumes shows the substantial phase space
distortion resulting from vFFA nonlinearities. This phase
space distortion results in a significant reduction of
the achievable beam sizes when injecting an ellipsoidal
bunch into the machine. From a practical perspective,
defining the DA in terms of the acceptance hypersphere is
more intuitive and easier to operate because it represents
the volume of an ellipsoidal bunch that could remain
stable during acceleration. Nevertheless, computing
this acceptance hypersphere necessitates the knowledge
of the 4D stability domain’s delimitations, requiring
more computational resources than determining the
stability domain volume with fast integration over the
dynamics method.

FIG. 18. Stable initial conditions for the random sampling
method in the tune space with the points colored with their
diffusion coefficient. The DA seems to be affected by the
difference resonance −2ν1 þ 3ν2 ¼ 2 and by the sum resonances
2ν1 þ 5ν2 ¼ 4 and 2ν1 þ ν2 ¼ 1.
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In addition to deforming the stability domain, vFFA
nonlinearities also give rise to more complex particle
dynamics within this stability domain, which has been
highlighted by in-depth frequency analysis. The main
frequency histograms revealed the presence of fourth-order
stability islands, while the frequency spectrum amplitude
ratio distributions emphasized that many particles have
intricate frequency spectra with numerous significant
secondary peaks. Finally, using the FMA method, we
identified the difference resonance −2ν1 þ 3ν2 ¼ 2 and
the sum resonances 2ν1 þ 5ν2 ¼ 4 and 2ν1 þ ν2 ¼ 1 as the
high-order resonances that might limit the DA. Further
studies are needed to better understand and mitigate these
resonances and thus improve the performance of vFFA
lattices. The simulation codes and advanced analysis tools
used in this detailed study can be applied to completely
model and analyze arbitrary vFFA lattices, from design
studies to field map-based simulations with realistic fields.
This paves the way for further experimental validation with
3D field maps, including possible magnetic field errors.
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APPENDIX: STUDY OF THE LINEAR OPTICS
CONVERGENCE WITH THE NEIGHBORING

CELL RESIDUAL FIELDS

Several methods exist in ZGOUBI to account for the
possible influence of neighboring cells. The method
generally used when working with ZGOUBI Cartesian
elements—rectangular elements in ZGOUBI defined in local
Cartesian coordinates—involves defining an integration
zone greater than the cell extents to linearly superpose
the neighboring cell residual fields [16,28]. By increasing
the integration limits, ZGOUBI tracks the particles twice
in the same spatial area, resulting in the superposition at the
first order of the fields seen by the particle in neighboring
elements, as illustrated in Fig. 19. This method is per-
formed using the ZGOUBI parameters XE and XS for the
Cartesian analytical model elements or by explicitly adding
negative drifts at both cell ends and increasing field map
extents in the case of field map elements. In both cases,
the method is valid only for sufficiently small residual
fields to ensure that the particle trajectory deviation due to
these residual fields is limited. This is not the case in the
arctangent FETS-vFFA lattice where residual fields are
significant at the cell ends and greatly impact the particle
trajectory. The only way to consider the neighboring cell
influence accurately is to perform a proper superposition of
neighboring fields. As obtaining this neighboring field

superposition with ZGOUBI analytical model elements
proves difficult, all the following results use explicit field
maps. We overlaid neighboring cell field maps in ZGOUBI,
which is equivalent to tracking in a field map where the
magnetic fields from neighboring elements are added.

1. Field maps construction

To build the field map of a single cell, we used
ZGOUBIDOO together with an external code using the
Python library Sympy [43] that allows for obtaining the
analytical expressions of the vFFA magnetic field with
the arctangent fringe fields. Since each cell of the ring is
defined as rectangular patches defined in Cartesian coor-
dinates, a frame rotation is necessary between the cells to
account for the particle rotation and correctly place the
element in the global reference frame. ZGOUBI can super-
impose field maps with the “MOD” option of the TOSCA
keyword, if these field maps have the same meshes [28].
The field maps of the rotated neighboring cells must thus
have the same mesh as the main cell field map. Two
methods, which will be discussed in detail subsequently,
can be used to construct the field maps of the neighboring
cells: one method involves particle tracking in ZGOUBI to
construct field maps with finite extents from numerical
simulations, while the other derives the analytical expres-
sions of the rotated neighboring cell fields before creating
the field maps. The former method creates field maps with
explicit borders, while the latter provides the analytical
expressions of the rotated fields for all points of the main
cell mesh and hence is not limited by borders. Using and
comparing both methods allow for validating them and
studying the convergence of the cell linear parameters with
the neighboring cell field map extension.
The first method (“numerical method”), which uses

particle tracking in ZGOUBI, is illustrated in Fig. 20. The
method consists in tracking particles of high rigidity (one
particle per point in the transverse mesh) in a lattice
composed of a drift and the rotated neighboring cell field

FIG. 19. Illustration of the commonly employed method to
account for the influence of neighboring cells when working with
Cartesian elements in ZGOUBI. The integration zone is extended,
so that the field maps overlap. For the same region (blue boxes),
ZGOUBI integrates inside the main cell and the neighboring
element, hence superposing the fields seen by the particle in
these neighboring elements. This method is only valid if the
residual fields are small enough to ensure that the particle
trajectory deviation due to these residual fields is limited, which
is not the case in the arctangent FETS-vFFA lattice.
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map with finite longitudinal and horizontal extensions.4

The explicit borders of the neighboring cell field maps
lead to a variation of the residual fields taken into account
with the extension of these field maps. The high-rigidity
particles are not impacted by the magnetic field and follow
a straight trajectory in the lattice. ZGOUBI then provides the
magnetic field components along these straight trajectories
in the particle reference frame. Due to the rotation between
consecutive elements, a rotation must be applied to the field
components to obtain the fields in the main cell reference
frame. The field maps of the neighboring cells can then be
created by correctly interpolating the field on the longi-
tudinal mesh.
The second method (“analytical method”), which is

based on analytical field expressions, is illustrated in
Fig. 21. It consists in deriving the rotated fields’ analytical
expressions for the neighboring cells and performing
several reference changes for the coordinates and fields.
The neighboring field maps computed in this way

automatically cover the entire closed orbit region, as the
neighboring fields are obtained for each point of the mesh.
It gives the most robust results as there is no more influence
of the field map extents on the cell optics.
The numerical method requires considerable time and

resources to have a fine mesh, as each transverse mesh
point requires tracking one particle. On the contrary,
the analytical method produces a field map with arbitrary
mesh size without particle tracking. While the analytical
method is the more robust method, the numerical method
highlights the convergence of the cell optics results toward
those obtained with the analytical method, thus validating
both methods. Figure 22 compares the field components
obtained with the analytical and numerical methods for
different neighboring field map horizontal extensions. The
magnetic fields from both methods are similar except for
the field truncation in the numerical method due to the
finite field map extents. Both methods should give the same
results for numerical field maps with extents large enough
to cover the entire closed orbit in the main cell.
Figure 23 shows the field components for the main cell

and the neighboring cells. All field maps have the same
mesh, allowing their superposition with the adequate
ZGOUBI option (TOSCA keyword with MOD ¼ 15 and
MOD2 ¼ 3 [28]). The additional fields due to the neigh-
boring cells are significant, leading to a significant

FIG. 20. Illustration of the method that uses particle tracking in
ZGOUBI to construct the neighboring cell field maps with the main
cell mesh. This method allows for constructing truncated field
maps with finite longitudinal and horizontal extents to observe
the influence of these extents on the optical parameters of the
main cell. This method is CPU-intensive and produces coarse
mesh field maps but is useful to perform convergence studies of
the closed orbit and eigentunes with the increasing influence of
the neighboring cells. The convergence should be obtained for
neighboring field maps covering the entire orbit region.

FIG. 21. Illustration of the method that uses the analytical
expressions of the rotated neighboring fields to construct the
neighboring cell field maps in the correct mesh. The resulting
neighboring field maps cover the entire closed orbit region,
leading to robust optics results. This method can produce field
maps with arbitrary mesh sizes without too much increasing the
computational resources.

4In order to have well-defined field map edges, we have
artificially imposed that the magnetic field is zero outside the
rotated field map, preventing the extrapolation performed by
ZGOUBI for the points outside the field map mesh.
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influence of these neighboring cells on the main cell optics
properties. Tracking particles in the resulting field map that
sums all magnetic fields allows for finding an adequate
closed orbit with zero vertical divergence at both ends.

2. Tracking in one cell of the FETS-vFFA with ZGOUBI

Once the field maps of the neighboring elements are
computed, ZGOUBI can track particles using the TOSCA
keyword. The FETS-vFFA cells are rectangular, leading to
a partial overlap of the corresponding rectangular field
maps because of the rotation between consecutive cells.
To account for the polar character of the machine, it is
essential to integrate in polar sectors defined by appropriate

integration limits. The ZGOUBI TOSCA keyword offers the
possibility to fix integration limits. To correctly track
particles into the FETS-vFFA cell, we imposed integration
limits to avoid overlaps between consecutive cells, as
shown in Fig. 24, and ensure the trajectory continuity
between neighboring cells.

3. Closed orbit and eigentunes convergence
with the neighboring cell field map extensions

We performed a convergence study to see how neigh-
boring cells affect the optical properties of the main cell
when the neighboring field maps are extended. For this
study, we used truncated field maps created with the
numerical method with steps size mesh of (dX ¼ 0.5 cm,
dY ¼ 0.5 cm, and dZ ¼ 0.5 cm) and an integration step of
0.2 cm. The neighboring field maps with longitudinal and
horizontal extensions of 220 and 180 cm completely cover
the closed orbit of the main cell, as shown in Fig. 25. The
optical parameters obtained for these field map extensions
should be the convergence values, as increasing the field
map extensions further should not influence the cell optics.
We have computed the optical parameters using field maps
with a longitudinal extension of 220 cm but different
horizontal extensions to variate the neighboring cell influ-
ence.5 If the neighboring field map horizontal extensions
are smaller than 180 cm, the closed orbit will cross its
borders at different places, as shown in Fig. 25. As we

FIG. 22. Dependence of the field components on the longi-
tudinal coordinate for fixed horizontal and vertical coordinates
(Y ¼ −40 cm, Z ¼ 20 cm). The magnetic field components are
obtained either with the analytical method (lines) or the numerical
method (markers) for different neighboring field map horizontal
extensions (90 cm left and 150 cm right). The magnetic field
components are similar for both methods, except for the trunca-
tion in the numerical method because the neighboring cell field
maps have finite extensions.

FIG. 23. Magnetic field components for the field maps of
the main cell and the neighboring cells. The field maps are
represented for Z ¼ 34 cm. The additional fields due to the
neighboring cells are significant, impacting the main cell optics
and closed orbit.

FIG. 24. Representation of two consecutive cells with the
integration limits used to track in polar sectors inside the main
cell. ZGOUBI tracks particles between the entry integration limit
(tanh θX þ Y ¼ 0) shown in red and the exit integration limit
shown in blue, allowing no integration overlap between con-
secutive elements. The start and end of integration are defined
similarly in SCODE.

5Caution should be exercised when considering the magnetic
field far from the median plane, as the field is slightly altered
because of the truncation of the out-of-plane expansion at the
tenth order [16]. While the residual fields may not be completely
accurate, we assume that the possible error introduced due to the
field truncation is not too significant since the effect of these
residual fields becomes increasingly smaller.
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increase the horizontal size of the neighboring field map,
the residual fields considered become more significant,
with an increasing impact on the main cell closed orbit and
linear parameters. In addition, we also computed the cell
closed orbit and linear parameters for the field map
obtained with the analytical method; the cell optics should
converge toward these values.
We obtained closed orbits that converge with the

neighboring field map extensions toward the orbit found
with the analytical field map, as shown in Fig. 26. The
closed orbits obtained for horizontal extensions from
180 cm onward are superimposed with the orbit found
for the analytical field map, as expected (the neighboring
numerical field maps then entirely cover the closed orbit
region). This closed orbit is similar to the one obtained with
SCODE during the design stage [14]. The SCODE closed orbit
is represented with solid lines in Fig. 26 and is replicated at
various vertical coordinates to facilitate comparison of its
shape and vertical extension. The closed orbit shape is
significantly affected by the additional residual fields,
highlighting the importance of accurately modeling the
magnet fringe fields. Considering additional neighboring
cell fields impacts the closed orbit vertical extension and
leads to a vertical orbit excursion.
We performed a similar convergence study for the cell

eigentunes, which correspond to the arguments of each

FIG. 25. Illustration of the procedure to study the convergence
of the main cell closed orbit and optical parameters with the
increasing influence of the neighboring cells. It involves tracking
particles in the main cell field map superimposed with neighbor-
ing cell field maps with different horizontal extensions. The
closed orbit is entirely covered for longitudinal and horizontal
extensions of 220 and 180 cm.
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FIG. 26. Closed orbits for different horizontal extensions of the
neighboring cell field maps. The colored dashed lines represent
the closed orbit found using the field map with finite extents
constructed with the numerical method, while the black dashed
line indicates the closed orbit found with the analytically
computed field maps. The closed orbit found with SCODE in
the design stage is represented with solid lines and replicated at
several vertical positions to compare its shape and vertical
extension with those of the orbits found with ZGOUBI. The closed
orbits converge with the neighboring cell field map horizontal
extensions toward the analytical field map closed orbit, similar to
the SCODE orbit.
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FIG. 27. Dependence of the eigentunes on the horizontal
extension of the neighboring cell field maps, hence on the
increasing influence of neighboring cells. The tunes are com-
puted from the eigenvalues of the one-cell 4 × 4 periodic transfer
matrix. Convergence is obtained for sufficiently large neighbor-
ing cell field map horizontal sizes; the eigentunes converge
toward the values obtained with analytically computed field maps
(0.24362, 0.119732), indicated by the black lines. These values
are similar to those obtained with SCODE (0.243445, 0.12002) in
the design stage.
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conjugate pair of eigenvalues of the one-cell 4 × 4 periodic
transfer matrix. In Fig. 27, we observe the dependence
of the cell eigentunes on the neighboring cell field map
horizontal extensions. The eigentunes converge toward
those obtained with the analytically constructed field maps
(indicated by black lines in Fig. 27), corresponding
to ð1 − ν1; ν2Þ ¼ ð0.24362; 0.119732Þ. These values are
similar to those computed with SCODE (0.243445,
0.12002) [14]. The tune differences between SCODE and
ZGOUBI are smaller than 10−3, which is acceptable as it
could be explained by the influence of other simulation
parameters (including the field map mesh size).
The neighboring cell residual field influence on linear

parameters, such as the tunes has already been observed in
vFFA lattices with the fringe fields modeled by hyperbolic
tangent functions [16]. It is even more significant in the
case of the arctangent fringe fields as it also greatly impacts
the closed orbit. The convergence of the closed orbit and
eigentunes with the neighboring cell field map extension to
the results obtained with the analytically computed field
maps validates the capacity of the analytical method to
model the FETS-vFFA cell accurately. Moreover, the
converged values agree with SCODE results. All results in
this work are obtained with the analytical method to
construct field maps, using ZGOUBI for particle tracking
and ZGOUBIDOO to analyze the resulting tracking data.
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and R. Tesse, Modeling and implementation of vertical
excursion FFA in the Zgoubi ray-tracing code, Nucl.
Instrum. Methods Phys. Res., Sect. A 1047, 167829
(2023).

[17] J.-B. Lagrange, VFFA magnet prototype, International
Workshop on Fixed Field alternating gradient Accel-
erators (FFA’21), Kyoto, Japan (2021).

[18] M. Vanwelde, C. Hernalsteens, E. Gnacadja, E.
Ramoisiaux, N. Pauly, and R. Tesse, 4D Dynamic aperture
studies for vertical fixed field accelerators, in Proceedings
of 14th International Particle Accelerator Conference,
IPAC-2023, Venice, Italy (JACoW Publishing, Geneva,
Switzerland, 2023).

[19] M. Topp-Mugglestone, J.-B. Lagrange, S. Machida, and
S. L. Sheehy, Studies of the vertical excursion fixed
field alternating gradient accelerator, in Proceedings of
the 13th International Particle Accelerator Conference,
IPAC-2022, Bangkok, Thailand (JACoW Publishing,
Geneva, Switzerland, 2022), pp. 535–538.

[20] M. Topp-Mugglestone, Analytic modelling of the VFFA,
International Workshop on Fixed Field alternating gra-
dient Accelerators (FFA’21), Kyoto, Japan (2021).
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[22] F. Méot, The ray-tracing code Zgoubi–status, Nucl. Ins-
trum. Methods Phys. Res., Sect. A 767, 112 (2014).
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