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In this work, the process of scattering of high-energy positively charged particles in the field of atomic
planes of an ultrashort silicon crystal was studied. In the parabolic potential approximation of atomic planes,
analytical expressions are found for the dependence of the coordinates and velocities of particles in a crystal on
time and initial conditions. The relationship between the particle incidence angle on the crystal and its
deflection angle has also been determined. It is shown that, under certain conditions, a beam can be split by an
ultrashort crystal into two beams diverging at an angle equal to twice the angle of planar channeling.
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I. INTRODUCTION

The description of the scattering of accelerated charged
particles by crystals is a task that provides information
about the nature and structure of the crystal, particles, and is
interesting for its manifestations, such as, for example, the
phenomenon of channeling [1,2]. Also, the problem of the
efficiency of deflection of charged particles by the crystal is
important since in some cases such a deflection makes it
possible to change the direction of motion of charged
particle beams or split them. For this reason, it is important
to know exactly which features of the scattering process are
inherent to charged particles in thin crystals. In a thin
crystal, a particle does not have enough space to make a
large number of channeling oscillations or above-barrier
motion oscillations, so particles that initially have a small
difference in oscillation periods move almost coherently in
the crystal.
The problem of scattering on thin crystals became more

relevant in the 2010s when experiments on the scattering of
protons in the MeVenergy range on silicon crystals thinner
than 1=10 of a micron were performed [3,4]. In such
crystals, a particle of the appropriate energy, moving in the
channeling mode, has space to make only one or a small
number of oscillations. With such thicknesses and mode of
motion, incoherent scattering phenomena do not have time
to fully manifest themselves and to strongly affect the

motion of the particle, therefore, when studying scattering
in such crystals, the phenomenon of incoherent scattering
can be neglected so that more subtle scattering effects can
be investigated. The description based on the classical
theory of particle passage through crystals of the MeV and
GeV ranges is fundamentally the same (provided that we
always use relativistic formulas), only the numerical
characteristics of the studied effects are different, so we
consider the reference to the MeV range to be appropriate
although the research carried out in this article concerns
much higher energies.
The motion of fast charged particles in an oriented

crystal can be considered within the framework of classical
electrodynamics if condition [5]

RZq
ℏcalψ

≫ 1

is satisfied, where q is the charge of the particle, Z is
the charge of the atomic nucleus, al is the lattice constant,
R is the atomic potential screening radius, ψ is the angle
between the momentum of the particle and the crystal axis,
near which the particle moves in the crystal, or the crystal
planes if the particle moves in the field of these planes. This
condition is satisfied for particles whose motion in the
crystal is discussed in the article.
The analytical model developed in the current article

explained the experimental results presented in [6]. In the
experiment, the phenomenon of mirroring 400 GeV=c
protons by an ultrathin straight crystal was observed.

II. ANALYTICAL CONSIDERATION

For an analytical consideration of the problem of
positively charged particles scattering in the field of
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crystalline atomic planes of an ultrathin crystal, we chose
the potential of atomic planes in the form

UðxÞ ¼ 4U0

a2
X
n

ðx − naÞ2H ða − 2jx − najÞ; ð1Þ

where the x axis is orthogonal to the atomic planes in the
field of which the particle moves in the crystal, a is the
distance between adjacent atomic planes, the summation is
carried out over all the atomic planes of the crystal, HðxÞ is
the Heaviside step function, equal to 0 for negative values
of its argument, and equal to 1 for other values of its
argument. Such a parabolic approximation of the potential
of atomic planes is convenient because it allows one to
analytically find a solution to the equation of particle
motion or the deflection angles of particles in a crystal, as
was done in Refs. [7,8] for negatively charged particles.
The difference between the parabolic potential of the (110)
planes of a silicon crystal and the potential of these planes
in a more accurate Doyle-Turner approximation, obtained
in Ref. [9] based on the Hartree-Fock method, is shown in
Fig. 1. For atomic planes (110) of silicon a ≈ 1.92 Å and
U0 ≈ 21.36 V. In the figure, we see that the parabolic
potential makes it possible to take into account the main
properties of the potential of atomic planes, although it does
not fully coincide with the Doyle-Turner approximation.

A. Particle trajectory

In order to find the trajectories of positively charged
particles in the field of atomic planes of a crystal without
taking into account incoherent scattering, it is necessary to
solve the one-dimensional equation of motion

d2

dt2
xðtÞ ¼ −

c2q
E

d
dx

UðxÞ; ð2Þ

where q and E are the charge and energy of the particle
passing through the crystal, respectively. Substituting
potential (1) into Eq. (2), we obtain

d2

dt2
xðtÞ ¼ −A2

X
n

ðxðtÞ − naÞHða − 2jxðtÞ − najÞ; ð3Þ

where A2 ¼ 8qU0c2=Ea2. Let us find the trajectory of a
particle that impinges on a crystal with −a=2 < x ≤ a=2.
To do this, we divide its trajectory into several parts.

1. Interval − a=2 < x ≤ a=2

On this interval, the particle motion equation can be
rewritten in the form

ẍðtÞ þ A2xðtÞ ¼ 0; ð4Þ

so the trajectory can be written as

xðtÞ ¼ x0 cosðAtÞ þ v0
A
sinðAtÞ; ð5Þ

where x0 is the value of the x coordinate of the particle
when the particle impinges on the crystal and v0 is its
velocity along the x axis at the same moment in time. We
choose the direction of the x axis in such a way that v0 ≥ 0.
It follows from the form of solution of the equation of

motion that if

E⊥
U0

≜
�
2x0
a

�
2

þ
�
θ0
θc

�
2

< 1; ð6Þ

where E⊥ is called the transverse energy of the particle,
θ0 ¼ v0=v is the angle between the momentum of the
particle incident on the crystal and the atomic planes, θc ¼
Aa=2v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qU0=pv
p

is the critical angle of planar chan-
neling (v and p are the velocity and momentum of the
particle passing through the crystal, respectively), then
particle moving in a crystal will not leave potential well
−a=2 < x ≤ a=2. Such particles will be referred to below
as underbarrier or channeled particles.
However, if E⊥=U0 ≥ 1, then the particle will leave the

interval −a=2 < x ≤ a=2, reaching the point x ¼ a=2, at
time t1 (we count time from the moment at which the
particle impinges on the crystal), which can be found as

t1 ¼
1

A

2
64arctan

0
B@− 2x0

a
θ0
θc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2x0a Þ2 þ ðθ0θcÞ

2 − 1
q
ðθ0θcÞ

2 − 1

1
CA

þ πH

�
1 −

θ0
θc

�
Hð−x0Þ

3
75: ð7Þ

Such particles will be referred to below as above-barrier
particles.

FIG. 1. Potential of atomic planes (110) of a silicon crystal in
the Doyle-Turner approximation, Eq. (16), and in the parabolic
approximation, Eq. (1). Here e is the charge of a positron.
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2. Interval a=2 ≤ x ≤ 3a=2

On the interval a=2 ≤ x ≤ 3a=2, the particle motion
equation can be rewritten in the form

ẍðtÞ þ A2xðtÞ ¼ A2a; ð8Þ

so the trajectory on this interval can be written as

xðtÞ ¼ C1 cosðAtÞ þ C2 sinðAtÞ þ a; ð9Þ

where

C1 ¼ −
a
2
cosðAt1Þ −

v1
A
sinðAt1Þ;

C2 ¼ −
a
2
sinðAt1Þ þ

v1
A
cosðAt1Þ;

v1 ¼ −x0A sinðAt1Þ þ v0 cosðAt1Þ: ð10Þ

The particle will reach the point x ¼ 3a=2 and move to
the next interval of the trajectory at time t1, which can be
found as

t2 ¼ −t1 þ
2

A

�
πHð−C2Þ − arctan

�
C1

C2

��
: ð11Þ

3. Case x ≥ 3a=2

In subsequent intervals, the particle trajectories will
closely resemble those observed in the interval
a=2 ≤ x ≤ 3a=2. Introducing the function ceilðxÞ ¼ ⌈x⌉,
which rounds its argument x to the smallest integer, that is
not less than x, and the function

kðtÞ ¼ ⌈ t − t1
t2 − t1

⌉; ð12Þ

one can find the particle trajectory in the next intervals (i.e.,
for t > t2) as

xðtÞ ¼ kðtÞaþ C1 cos fA½t − ðkðtÞ − 1Þðt2 − t1Þ�g
þ C2 sin fA½t − ðkðtÞ − 1Þðt2 − t1Þ�g

¼ kðtÞaþ x0 cos fA½t − kðtÞðt2 − t1Þ�g
þ v0

A
sin fA½t − kðtÞðt2 − t1Þ�g: ð13Þ

To illustrate the form of the trajectories described by
(13), in Fig. 2, we have shown the trajectories of protons
with a momentum of 400 GeV=c, incident on a silicon
crystal at a small angle θ0 ¼ 9 μrad to the (110) atomic
planes. The dashed horizontal lines in the figure show the
spatial arrangement of the atomic planes. The critical angle
of planar channeling for the specified conditions is
≈10.33 μrad, therefore, condition (6) is satisfied for part

of the particles and they are captured in the underbarrier
motion mode. The rest of the particles move in the above-
barrier mode. Below in the text, the results presented in the
figures will correspond to protons with a momentum of
400 GeV=c since most of the recent experiments on
studying the process of particle channeling in crystals have
been carried out with the use of just such particles.

B. Particle deflection angle

The particle velocity along the x axis vxðtÞ can be found
on each of the intervals of the trajectory as the time
derivative of the particle coordinate xðtÞ. In particular,
for underbarrier particles

vxðtÞ ¼ v0 cosðAtÞ − Ax0 sinðAtÞ; ð14Þ

while for above-barrier particles

vxðtÞ ¼ v0 cos fA½t − kðtÞðt2 − t1Þ�g
− Ax0 sin fA½t − kðtÞðt2 − t1Þ�g: ð15Þ

The instantaneous angle θ between the particle momen-
tum and the crystalline atomic planes (110) is approxi-
mately equal to particle velocity along the x axis divided by
v (since θ ≪ 1). This dependence is shown in Fig. 3 for the
trajectories shown in Fig. 2. From Fig. 3, we can see that at

FIG. 2. Trajectories of protons with a momentum of
400 GeV=c, incident on a silicon crystal at a small angle
θ0 ¼ 9 μrad to the (110) atomic planes, found in the parabolic
approximation of the potential of atomic planes. Different colors
correspond to trajectories with different entry points x0 of the
particle into the crystal.
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a certain moment in time, corresponding to the particle
passage of approximately 30 μm in the crystal, the differ-
ence in the direction of motion between underbarrier and
above-barrier particles reaches its maximum. This differ-
ence can be used to separate the beam into two parts when
the beam passes through an ultrathin crystal.
Equations (14) and (15) allow to determine the depend-

ence of the deflection angle of the protons ϑ ¼ θ − θ0 on
the initial angle between the particle momentum and the
atomic plane (110). This dependence for a silicon crystal
with a thickness of 30 μm is shown in Fig. 4, where the
color represents the number of particles scattered at a given
angle. This particular crystal thickness is roughly half the
spatial period λ ¼ 2πc=A ≈ 58.4 μm of the channeling
oscillations. It was chosen since, as depicted in Fig. 3, it
results in the maximum deflection angle for most under-
barrier protons. For each value of the initial angle between
the proton momentum and the (110) plane (to obtain the
results shown in the figure, this angle was varied in steps of
0.1 μrad), the number of protons incident on the crystal
was 106.
In Fig. 4, one can see two different regions, one of which,

located along the straight line ϑ ¼ −θ0, corresponds to
underbarrier particles, and the second, located around the
horizontal line ϑ ¼ 0, corresponds to above-barrier ones.
The region corresponding to underbarrier particles is
narrower and the density of particles in it is greater than
in the region of above-barrier particles. This happens
because, in the parabolic potential, all underbarrier particles

have the same oscillation spatial period λ and a path λ=2
just reverses both xðtÞ and vxðtÞ.
The dependence of the deflection angle of above-barrier

protons on the initial angle θ0 can be understood as follows:
Approaching the atomic planes, the above-barrier particles
are decelerated, and immediately after passing through
these planes, they are accelerated. This leads to the
formation of densely populated and sparse regions in the
angular distribution of particles. Areas of high density of
deflection angles correspond to the focusing of the beam
(here and below, by focusing we mean focusing by angle ϑ,
when for most particles, the momentum after passing
through the crystal is parallel to their initial momentum,
and not focusing along the coordinate x). According to
Eqs. (7) and (11), t1 and t2 decrease monotonically as the
initial angle increases. This implies that as θ0 increases, the
range of possible deflection angles decreases. The values of
the angle θ0 at which for most above-barrier particles ϑ ¼ 0
(focusing) can be roughly estimated as follows: the angle θ
when the particle exits the crystal will be equal to the angle
θ0 if at the same time x − x0 ¼ n1a, where n1 ¼ 2; 3; 4;….
Considering that the thickness of the crystal is equal to λ=2,
we obtain θ0 ≈ arctan ð2n1a=λÞ ¼ arctan ð2θcn1=πÞ.

III. SIMULATION RESULTS

To validate the analytical results from the parabolic
potential model, we present a numerical simulation of
400 GeV=c protons scattering in the field of (110) atomic
planes of a silicon crystal, using the more realistic Doyle-
Turner atomic potential [9]. In this approximation, the
potential of the (110) atomic planes of silicon can be found
in the form [10]

FIG. 4. The dependence of the deflection angle of 400 GeV=c
protons on the initial angle between the particle momentum and
the atomic plane (110) of a 30-μm silicon crystal in the parabolic
approximation of the potential of atomic planes.

FIG. 3. The time dependence of the angle between the
400 GeV=c protons momentum and the crystalline atomic planes
(110) of a silicon crystal in the parabolic approximation of the
potential of atomic planes.
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UDTðxÞ¼
2πℏ2

emadds

X4
k¼1

αkθ3

�
π
x
a
;exp

�
−
βkþB
4d2p

��
; ð16Þ

where m is an electron mass, d is the distance between
neighboring atoms in the atomic strings that make
up the atomic plane, ds is the distance between neighbor-
ing atomic strings in the atomic plane, θ3ðu; qÞ ¼P∞

n¼−∞ qn
2

expð2nuiÞ is the Jacobi theta function of
the third kind [11], i2 ¼ −1, αk, and βk are coefficients
found in [9], B ¼ 8π2r2T and rT is the rms atomic thermal
vibration amplitude in one direction (rT ≈ 0.075 Å for Si
at 293 K).
The simulation was carried out taking into account the

incoherent scattering of protons on thermal vibrations of
crystal atoms and on the crystal electronic subsystem, as
described in [12,13]. Other kinds of incoherent scattering as
well as the energy losses of particles due to radiation and
ionization of crystal atoms were not taken into account
considering the small crystal thickness.
The simulation results are shown in Figs. 5 and 6 which

show the dependence of the deflection angle of 400 GeV=c
protons on the initial angle between the particle momentum
and the atomic plane (110) of a silicon crystal without
taking into account incoherent scattering (Fig. 5) and taking
into account incoherent scattering (Fig. 6).
Comparison of Fig. 5 with Fig. 4 shows that a more

accurate approximation of the intracrystalline potential
does not change the main features of the process of
positively charged particle scattering in an ultrathin
oriented crystal. In Fig. 5, we see both the focusing of

above-barrier particles and the deflection by an angle of up
to 2θc (in absolute value) of the channeled particles when
θ0 ¼ θc. However, the deviation of planar potential from
the parabolic one leads to the fact that the region corre-
sponding to underbarrier protons in Fig. 5 is no longer a
narrow distribution, but a wide rhombus located between
points θ0 ¼ 0, ϑ ¼ −θc; θ0 ¼ 0, ϑ ¼ θc; θ0 ¼ θc, ϑ ¼ 0;
and θ0 ¼ θc, ϑ ¼ −2θc. This rhombus appears because,
unlike in the parabolic potential, the oscillation period of
underbarrier particles in a planar channel within the Doyle-
Turner potential depends on the particles’ initial coordi-
nates (points of entry into the crystal). Such a difference in
oscillation period is most evident in those narrow regions
where the potential is most different from the parabolic one,
that is, in the immediate vicinity of the atomic planes (see
Fig. 1). This leads to the fact that at the considered
thickness of 30 μm, a small fraction of channeled particles
for any θ0 < θc is distributed over a wide range of the angle
θ from −θc to θc. So the deflection angle ϑ for these
particles accepts values from −θc − θ0 to θc − θ0.
Accounting for incoherent scattering, as shown in Fig. 6,

does not significantly change the nature of the dependence
of the particle deflection angle on the initial angle θ0, due to
the smallness of the crystal thickness. In this case, the
angular distributions become slightly wider and blurred,
which is especially noticeable at the focusing points of the
above-barrier particle beam (θ0 > θc). Note that the frac-
tion of beam particles that, when passing through the
crystal, were deflected by an angle exceeding the critical
angle of planar channeling (i.e., particles with ϑ=θc < −1)
in Fig. 6 is 70.6% for θ0=θc ¼ 0.6, 71.6% for θ0=θc ¼ 0.7,
64.7% for θ0=θc ¼ 0.8, and 48.7% for θ0=θc ¼ 0.9.

FIG. 5. The dependence of the deflection angle of 400 GeV=c
protons on the initial angle between the particle momentum and
the atomic plane (110) of a 30-μm silicon crystal without taking
into account incoherent scattering.

FIG. 6. The dependence of the deflection angle of 400 GeV=c
protons on the initial angle between the particle momentum and
the atomic plane (110) of a 30-μm silicon crystal taking into
account incoherent scattering.
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With a further increase in angle θ0, the number of particles
deflected by the specified angle decreases sharply.

IV. DISCUSSION AND CONCLUSIONS

Our results show that the passage of high-energy
positively charged particles through an ultrathin crystal
at a small angle to densely packed atomic planes may result
in a partial deflection of the beam in the direction
perpendicular to these planes. Significantly, even with
the maximum deflection angle of particles being small—
equal to two critical angles of planar channeling when the
crystal thickness is ðnþ 1=2Þλ, where n ¼ 0; 1; 2;…—the
deflected portion of the beam can still be clearly distin-
guished from its primary component. The effect is caused
by the peculiarities of the channeling process in the crystal
when the particle undergoes one or several oscillations
while passing through the crystal. In this case (for small
crystal thickness), there is insufficient space for particle
incoherent scattering on crystal atoms and their electronic
subsystems to significantly perturb the particle motion in
the continuous potential field of atomic planes. This
presents novel opportunities for both controlling beam
parameters using ultrathin crystals and initiating new
experiments in the physics of high-energy particle inter-
actions with crystals. Among these experiments can be
ones focusing on the discovery of new quantum manifes-
tations in particle-crystal interactions. In this regard, we
should note that as a result of the small number of
channeling oscillations in ultrathin crystal, the quantum
levels of its transverse motion are not formed, but the
possibility of quantum interference effects is not affected.
The above analysis of particle motion in a crystal is

based on classical mechanics, which is valid if the motion
of particles in different planar channels is independent.
However, from a quantum perspective, a particle entering
the field of crystal planes is considered as a plane wave. The
possibility of using geometric optics methods in the physics
of high-energy particle interactions with crystals was
highlighted in [14]. The motion of the wavefront in the
geometric optics approximation [15] is determined by the
motion of a set of rays orthogonal to the wavefront. The
trajectories of particles in an external field serve as analogs
of these rays. In wave mechanics, however, each ray is
associated with a corresponding phase of the wavefront,
leading to interference effects. In the problem under
consideration, based on this analogy (each trajectory is
associated with a wave phase), one can expect manifes-
tations of similar interference effects in the interaction of
particles with the crystal field. We should also note that
quantum effects become significantly noticeable at particle
energies much lower than those discussed in this paper.
However, in this case, a detailed analysis of quantum
effects at particle scattering in crystal requires special
consideration, which goes beyond the scope of this work.
We only note that in the problem of particle scattering in an

ultrashort crystal under consideration, the energy levels of
particle motion in the field of crystalline atomic planes have
not yet had time to form since the number of particle
oscillations in the planar channel is small. At the same time,
in this case, the possibility of manifestation of various
interference phenomena associated with the restructuring of
the wave function of a particle (plane wave) after its entry
into the crystal at different angles to the crystal planes,
remains (see section 7.4 of [16]).
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