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Based on the technique of the discrete one-turn transfer maps, the problem of linear coupling between
horizontal and vertical betatron oscillations in an accelerator has been treated exactly and entirely in explicit
form. The stability region in the fractional part of the horizontal and the vertical betatron tune space as a
function of the linear coupling strength has been obtained, and the increment/decrement of the horizontal
and the vertical betatron oscillations in the case of the linear sum resonance has been shown to be
approximately equal to the half of the coupling strength. The normal form parameterization of the one-turn
linear map with horizontal-to-vertical coupling has been developed in detail in the spirit of Edwards and
Teng formalism. The motion in the normal mode in the new normal form coordinates is decoupled by
implying that two independent Courant-Snyder invariants exist, which have been found explicitly.
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I. INTRODUCTION

Linear optics in accelerator rings and transfer lines in the
case of uncoupled transverse directions are conventionally
described by means of the Twiss parameters. The Twiss
parameters or lattice functions are on one hand purely
determined by the magnetic structure of the machine or the
transfer line (a sort of device hardware). On the other hand,
they relate the beam distribution in phase space at any
point along the beam trajectory in an accelerator device to
conserved quantities that are properties of the traveling
bunch.
In some accelerator applications, the analysis of coupled

betatron motion is an important part of the machine design.
Initially, betatron coupling in the transverse plane was
perceived as an undesired effect, and corresponding
efforts were dedicated to suppress it. However, over the
recent two decades, it was realized that betatron coupling
possesses some interesting and useful features and has
become an indispensable part of many accelerator propos-
als. It was gradually realized that the coupling between the
two transverse directions can be of considerable practical
importance [1,2]. One of the most interesting and prom-
ising proposals in that direction is the so-called Möbius
scheme [3]. A lattice insert is constructed such that it

exchanges the horizontal and vertical betatron oscillations
according to the rule ðx→ z;px → pz;z→−x;pz →−pxÞ.
The effect of exchange between the transverse degrees of
freedom can be achieved by placing a solenoid with an
integrated solenoid rotation angle equal to π=2 [see Eqs. (6)
and (7)]. When such an insert is added to an ordinary
uncoupled accelerator lattice, horizontal betatron motion on
one turn becomes vertical on the next turn and vice versa.
In the current literature on accelerator physics, the most

frequently used and the best known are two different basic
representations. The first parameterization was proposed by
Edwards and Teng [4,5], while the second one by Mais and
Ripken [6–8].
The first approach introduced by Edwards and Teng

and further developed and worked out in more detail by
others [9–11] consists of defining a sort of a decoupling
transformation that puts the 4 × 4 transfer matrix into
block-diagonal form. Although this technique has some
disadvantages like the fact that the lattice functions are not
directly related to the beam sizes, and the procedure cannot
be easily generalized to more than two degrees of freedom,
in our opinion, it is the most elegant and intuitively direct
way to describe the coupled betatron motion in particle
accelerators and storage rings.
The basic idea of the second approach is to find a

transformation from the eigenvectors of the transfer matrix
that puts the transfermatrix into normal form. In otherwords,
the transfer matrix is transformed into a pure rotation. The
lattice functions are defined in terms of elements of the
normal transform [6,7,12]. The number of lattice functions
used to describe the beamoptics is usuallyminimized, and as
a result, the interpretation of some of these functions is not as
simple as one would like them to be.
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There exists yet another representation that is less known
than the above two, and that is the parameterization
proposed by Qin and Davidson [13,14]. Their generalized
Courant-Snyder theory [15] provides a new parameter-
ization for the 4D symplectic transfer matrix. In particular,
all of the quantities of physical importance in the original
one-degree-of-freedom Courant-Snyder theory, including
the envelope function, envelope equation, phase advance,
transfer matrix, and the Courant-Snyder invariant, are
generalized to the case of coupled transverse two-degree-
of-freedom dynamics. Thus the envelope function is gener-
alized to a 2 × 2 envelope matrix, and the envelope equation
is generalized to a matrix envelope equation.
The Courant-Snyder theory [15] for two-dimensional

coupled linear optics can be formulated on the basis of the
real representation of the Dirac matrices [16]. Any real 4 × 4
matrix can be expressed as a linear combination of the real
Dirac matrices, which allows symplectic transformations in
two dimensions to be conveniently represented in terms the
15 real Dirac matrices (plus the unit symplectic matrix).
In this article, we develop a description of coupled linear

transverse betatron motion that addresses issues inherent in
previous approaches, being in spirit closer to the Edwards
and Teng formalism. Here the problem of linear coupling
between horizontal and vertical betatron oscillations in an
accelerator is treated exactly and entirely in explicit form by
means of transfer maps. The subsequent two Secs. II and III
are devoted to the establishment of the main starting points
of our further analysis, as well as to the formal inference of
the linear transfer map. Since the dynamical effect of one of
the sources of linear coupling, the longitudinal solenoid
field, can be transformed away as a regular rotation with a
suitably chosen angle, we can consider that the most
general form of the linear coupling between transverse
degrees of freedom is set only by the quadrupoles (normal
and skew ones with effective strengths). The stability
properties of the linear map are analyzed in Sec. IV. A
new stability diagram of betatron motion with linear
coupling between the transverse degrees of freedom in
the fractional part of the tune ðνx; νzÞ space as a function of
the coupling strength has been presented. The normal form
parameterization of the one-turn map is worked out in
detail in Sec. V and Appendixes B and C. Since the motion
in the normal mode is decoupled, there exist two indepen-
dent Courant-Snyder invariants, which have been found
explicitly. The supporting numerical proofs of the analyti-
cal results concerning the normal form representation and
the existence of the two independent invariants are pre-
sented in Sec. VI. Finally, in Sec. VII, our conclusions and
outlook are sketched out.

II. THEORETICAL MODEL
AND BASIC EQUATIONS

Optimal performance of storage rings in contemporary
synchrotron light sources and circular colliders substantially

depends on the control and easymanipulation of the coupling
between the transverse degrees of freedom. Characterizing
the coupling in a straightforward fashion becomes particu-
larly important when the machine lattice includes regions
where betatron motion is coupled by design, as in the
solenoid field of the interaction region of a collider, for
instance. Let us begin by writing the Hamiltonian governing
the transverse betatron oscillations in the case, where
solenoidal fields and skew quadrupoles are present

Ĥ ¼ R
2

��
p̂x þ

Sẑ
2

�
2

þ
�
p̂z −

Sx̂
2

�
2
�

þ 1

2R
ðGxx̂2 þ Gzẑ2Þ þ

g0
R
x̂ ẑ; ð1Þ

where

SðθÞ ¼ qB0sðθÞ
p0s

; ð2Þ

and B0sðθÞ is the longitudinal component of the magnetic
field on the axis of the solenoid. The scaled canonical
momenta p̂x;z and their canonically conjugate coordinates
x̂ and ẑ are related to the actual coordinates x, z and the actual
momenta px, pz according to the expressions

x̂ ¼ x − ηD; ẑ ¼ z;

p̂x ¼
px

p0s
−
η

R
dD
dθ

; p̂z ¼
pz

p0s
;

where DðθÞ is the dispersion function of the machine.
In addition, the focusing strengths Gx;z are given by the
expressions

Gx ¼ gQ þ R2K2; Gz ¼ −gQ; ð3Þ

where K ¼ qðBðDÞ
z Þx;z¼0=p0s is the local machine curvature

in the dipole magnets, and

gQ ¼ qR2

p0s

�
∂BðQÞ

z

∂x

�
x;z¼0

; g0 ¼
qR2

p0s

�
∂BðSÞ

z

∂x

�
x;z¼0

ð4Þ

is the magnetic field gradient of the quadrupole and the skew
quadrupole magnets, respectively. Finally, the azimuthal
angle θ ¼ s=R along the machine circumference is used
as an independent variable instead of the path length s, where
R is the mean machine radius.
We wish to cancel the coupling between the transverse

coordinates and the corresponding canonical momenta
introduced by the terms in the square bracket of Eq. (1).
For that purpose, we apply an orthogonal canonical
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transformation at an angle σðθÞ explicitly depending on the
“time” θ, defined by the generating function

F2ðx̂; ẑ; P̂x; P̂z; θÞ ¼ P̂xðx̂ cos σ − ẑ sin σÞ
þ P̂zðx̂ sin σ þ ẑ cos σÞ: ð5Þ

The relation between the old and the new canonical
coordinates can be expressed as

x̂ ¼ X̂ cos σ þ Ẑ sin σ; ẑ ¼ −X̂ sin σ þ Ẑ cos σ; ð6Þ

p̂x ¼ P̂x cos σ þ P̂z sin σ; p̂z ¼ −P̂x sin σ þ P̂z cos σ:

ð7Þ

It can be easily verified that the new Hamiltonian acquires
the form

Ĥ ¼ R
2
ðP̂2

x þ P̂2
zÞ þ

1

2R
ðG̃xX̂

2 þ G̃zẐ
2Þ þ g̃0

R
X̂ Ẑ ð8Þ

provided the solenoid rotation angle σ satisfies the relation

dσ
dθ

¼ R
2
SðθÞ: ð9Þ

The new focusing and coupling strengths are

G̃x ¼ Gxcos2σ þGzsin2σ − g0 sin 2σ þ R2S2

4
; ð10Þ

G̃z ¼ Gxsin2σ þ Gzcos2σ þ g0 sin 2σ þ R2S2

4
; ð11Þ

g̃0 ¼
1

2
ðGx −GzÞ sin 2σ þ g0 cos 2σ: ð12Þ

Note that the last Eq. (12) provides an efficient tool to
correct linear coupling induced by skew quadrupoles using
solenoid fields and vice versa. It suffices to choose the
strength of the solenoid, such that the rotation angle
satisfies the relation

tan 2σ ¼ 2g0
Gz −Gx

: ð13Þ

Without loss of generality, we shall assume in what
follows that the Hamiltonian describing the linear coupling
between the transverse degrees of freedom in an accelerator
is of the form Eq. (8). For the sake of simplicity, the tilde
signs of the focusing strength and the coupling coefficients
will be omitted.

III. LINEAR MAP OF COUPLED BETATRON
OSCILLATIONS

One may argue that once the Hamiltonian Eq. (8)
governing the dynamics of a single particle is properly
defined,we can formallywrite the correspondingHamilton’s
equations of motion. The latter can be solved in principle
with specified initial conditions, which gives us complete
information about the beam. In the majority of cases of
practical interest, an analytical solution to the equations of
motion is a hopeless exercise, so the necessity of employing
numerical methods arises. Since all numerical methods for
solving differential equations involve discretization schemes
anyway, it is natural to pose the question about the possibility
of substitution of the Hamilton’s equations of motion with
mapping. For that purpose, we perform a second canonical
transformation specified by the generating function of the
second type (see, e.g., Eq. (2.37) on p. 25 of Ref. [17])

F2ðX̂; Px; Ẑ; Pz; θÞ ¼
X̂Pxffiffiffiffiffi
βx

p −
αxX̂
2βx

þ ẐPzffiffiffiffiffi
βz

p −
αzẐ
2βz

; ð14Þ

relating the old and the new canonical coordinates according
to the relations

Û ¼ U
ffiffiffiffiffi
βu

p
; P̂u ¼

1ffiffiffiffiffi
βu

p ðPu − αuUÞ; u¼ ðx; zÞ; ð15Þ

where αx;z and βx;z are the well-known Twiss parameters.
Alternatively, Eq. (15) is actually the definitionof normalized
coordinates used in conventional Courant-Snyder theory
[15]. Then the Hamiltonian Eq. (8) acquires the canonical
form

H ¼ χ̇x
2
ðP2

x þ X2Þ þ χ̇z
2
ðP2

z þ Z2Þ þ g̃0
R

ffiffiffiffiffiffiffiffiffi
βxβz

p
XZ; ð16Þ

where

χ̇x;z ¼
dχx;z
dθ

¼ R
βx;z

ð17Þ

is the derivative of the corresponding unperturbed phase
advances.
The problem of linear coupling between horizontal and

vertical betatron oscillations in an accelerator can be treated
exactly by means of an elegant technique involving transfer
maps. The equations for the linear coupling map can be
written in the form

Xnþ1 ¼ Xn cosω1 þ ðPx;n − CZnÞ sinω1; ð18Þ

Px;nþ1 ¼ −Xn sinω1 þ ðPx;n − CZnÞ cosω1; ð19Þ

Znþ1 ¼ Zn cosω2 þ ðPz;n − CXnÞ sinω2; ð20Þ

Pz;nþ1 ¼ −Zn sinω2 þ ðPz;n − CXnÞ cosω2; ð21Þ
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where

ω1;2 ¼ 2πν1;2; C ¼ lg̃0ðθ0Þ
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxðθ0Þβzðθ0Þ

p
ð22Þ

and the coupling source with strength g̃0 and length l is
concentrated in a single point θ0 along the machine circum-
ference. Moreover, ν1;2 are the betatron tunes associated
with the uncoupled part of the Hamiltonian Eq. (16). The
derivation of the linear map described by Eqs. (18)–(22) is
standard and can be found in well-available references. The
interested reader is referred to Chap. 6, pp. 124–129 of
Ref. [17], for example.

IV. STABILITY PROPERTIES
OF THE LINEAR MAP

From Eqs. (18) and (19), we readily obtain

Xnþ1 cosω1 − Px;nþ1 sinω1 ¼ Xn; ð23Þ

and a similar expression for Z and Pz from Eqs. (20)
and (21), which plugged back into Eqs. (18) and (20),
respectively, yield

Xnþ1 − 2Xn cosω1 þ Xn−1 ¼ −CZn sinω1; ð24Þ

Znþ1 − 2Zn cosω2 þ Zn−1 ¼ −CXn sinω2: ð25Þ

The last two second-order difference equations are easy to
solve by the ansatz

Xn ¼ AeiΩn; Zn ¼ BeiΩn; λ ¼ eiΩ; ð26Þ

which substituted into Eqs. (24) and (25) result in the linear
system of equations for the unknown amplitudes A and B

ðλ2 − 2λ cosω1 þ 1ÞAþ BCλ sinω1 ¼ 0; ð27Þ

ACλ sinω2 þ ðλ2 − 2λ cosω2 þ 1ÞB ¼ 0: ð28Þ

It has a nontrivial solution, if its determinant is equal to
zero, namely

λ4 − 2ðcosω1 þ cosω2Þλ3 þ ð2þ 4 cosω1 cosω2

− C2 sinω1 sinω2Þλ2 − 2ðcosω1 þ cosω2Þλþ 1 ¼ 0:

ð29Þ

It is clear that if λ1 is a certain root of the dispersion
equation (29), then 1=λ1 is also a root, which, in general, is
a basic property of the characteristic polynomial of a
symplectic matrix [17]. This observation allows us to write
the above Eq. (29) in alternative form

ðλ2 − μ1λþ 1Þðλ2 − μ2λþ 1Þ ¼ 0; μk ¼ λk þ
1

λk
; ð30Þ

where k ¼ 1, 2. Comparison of the left-hand sides of
Eqs. (29) and (30) yields

μ1 þ μ2 ¼ 2ðcosω1 þ cosω2Þ;
μ1μ2 ¼ 4 cosω1 cosω2 − C2 sinω1 sinω2:

This implies that μk are the roots of the quadratic equation

μ2 − 2ðcosω1 þ cosω2Þμþ 4 cosω1 cosω2

− C2 sinω1 sinω2 ¼ 0; ð31Þ

so that

μ1;2 ¼ cosω1 þ cosω2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcosω1 − cosω2Þ2 þ C2 sinω1 sinω2

q
: ð32Þ

The solutions of the dispersion equation (30) can be
represented in alternative form according to

λk ¼
μk
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2k
4
− 1

r
; k ¼ 1; 2; ð33Þ

so that, for the eigenfrequencies Ω1 and Ω2, we finally
obtain

Ωk ¼ arccos

�
μk
2

�
; k ¼ 1; 2: ð34Þ

The motion is stable if μ1;2 given by Eq. (32) simulta-
neously satisfies the conditions

−2 ≤ μ1;2 ≤ 2: ð35Þ

The stability region of betatron oscillations with linear
coupling between the transverse degrees of freedom in the
fractional part of the betatron tune ðνx; νzÞ-space is shown
in Fig. 1. Clearly visible are the instability regions in
the vicinity of the linear sum resonances of the form
FracðνxÞ þ FracðνzÞ ¼ 0 and FracðνxÞ þ FracðνzÞ ¼ �1,
where Fracðνx;zÞ are the fractional parts of the betatron
tunes. Details concerning the particular form of the boun-
daries of the stability diagram are presented in Appendix A.
In view of the fact that the sum resonances are signifi-

cantly more dangerous, let us examine them in more
detail. Suppose that the tunes ν1 and ν2 satisfy the relation
ν1 þ ν2 ¼ nþ ϵs, where n is an integer and ϵs is the
resonance detuning. At exact resonance ϵs ¼ 0, from
Eqs. (32) and (34), we obtain

μ1;2 ¼ 2 cosω1 � iC sinω1; ð36Þ
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Ω1;2 ¼ arccos

�
cosω1 �

iC
2
sinω1

�
: ð37Þ

For sufficiently small coupling coefficients C, one can
determine approximately the amplitude increment of beta-
tron oscillations at exact linear sum resonance. For the
eigentunes, we obtain a simple expression

Ω1;2 ≈ ω1 ∓ iC
2
: ð38Þ

The above equation shows that the increment of the
horizontal and the vertical betatron oscillations is approx-
imately equal to the half of the coupling strength.

V. NORMAL FORM PARAMETERIZATION

To compactify notations in what follows, let us introduce
the state vector

Zn ¼

0
BBB@

Xn

Px;n

Zn

Pz;n

1
CCCA ð39Þ

and write the linear map (18)–(21) as

Znþ1 ¼ ĜZn; ð40Þ

where

Ĝ ¼

0
BBB@

cosω1 sinω1 −C sinω1 0

− sinω1 cosω1 −C cosω1 0

−C sinω2 0 cosω2 sinω2

−C cosω2 0 − sinω2 cosω2

1
CCCA: ð41Þ

Consider now a linear canonical transformation specified
by a symplectic matrix R̂

Zn ¼ R̂Z0
n; ð42Þ

which converts the matrix Ĝ in a block-diagonal form.
Since

Z0
nþ1 ¼ R̂−1Znþ1 ¼ R̂−1ĜZn ¼ R̂−1Ĝ R̂Z0

n ¼ ÂZ0
n

by the requirement, the new symplectic matrix Â ¼
R̂−1Ĝ R̂ should be block diagonal

Â ¼
�
Â1 0̂

0̂ Â2

�
: ð43Þ

Here Â1;2 are yet unknown 2 × 2 matrices, and 0̂ is the
2 × 2 null matrix. Thus the basic equation to be analyzed in
what follows can be written as

Ĝ ¼ R̂ Â R̂−1: ð44Þ
Similar to the matrix Â, it is convenient to write the

matrices Ĝ and R̂ in a 2 × 2 block form

Ĝ ¼
�
Ĝ1 ĝ2

ĝ1 Ĝ2

�
R̂ ¼

�
R̂1 r̂2
r̂1 R̂2

�
ð45Þ

and rewrite Eq. (44) in explicit form�
Ĝ1 ĝ2

ĝ1 Ĝ2

�
¼
�
R̂1 r̂2
r̂1 R̂2

��
Â1 0̂

0̂ Â2

��
R̂c

1 r̂c1
r̂c2 R̂c

2

�
:

ð46Þ

Here Ẑc denotes the symplectic conjugate of the generic
matrix Ẑ defined in Appendix B. In addition, the property
(B5) of symplectic matrices has been used to explicitly
represent the above equation.
It can be shown that the stability properties of the

matrices Â1;2 depend only on the matrix elements of
the linear coupling matrix Ĝ and are independent of the
particular form chosen for the matrices R̂1;2. Details of the
derivation of their explicit form

Â1 ¼ R̂−1
1

�
Ĝ1 þ

1

UD
ĝ2ðĝ1 þ ĝc

2Þ
�
R̂1; ð47Þ

FIG. 1. Stability diagram (the shaded region) of betatron
motion with linear coupling between the transverse degrees of
freedom in the fractional part of the tune ðνx; νzÞ-space. For
demonstrativeness, the coupling strength is taken to be C ¼ 0.75.
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Â2 ¼ R̂−1
2

�
Ĝ2 −

1

UD
ðĝ1 þ ĝc

2Þĝ2

�
R̂2; ð48Þ

can be found inAppendixC. The quantitiesU andD entering
the right-hand sides of the above equations are given
according to the expressions in Eqs. (C3)–(C7). An impor-
tant comment is now in order. As it is known, the dynamic
properties described by the roots of the characteristic poly-
nomial of a 2 × 2 symplectic matrix are characterized solely
by its trace. Since the similarity transformation leaves the
trace of a generic matrix invariant, it follows that the stability
ofmotion depends only on thematrices in the square brackets
in the expressions above, which are expressed solely by the
elements of the matrix Ĝ. This means that there is some
freedom in the choice of matrices R̂1;2.
The relevant quantities for the specific case considered

here can be expressed as

T ¼ 2ðcosω1 − cosω2Þ;
2ðcosω1 þ cosω2Þ ¼ G1 þ G2

¼ A1 þ A2 ¼ 2ðcosΩ1 þ cosΩ2Þ: ð49Þ

Furthermore,

D ¼ 1

2

�
1þ cosω1 − cosω2

cosΩ1 − cosΩ2

sgnðcosω1 − cosω2Þ
�
;

U ¼ 2ðcosΩ1 − cosΩ2Þsgnðcosω1 − cosω2Þ; ð50Þ

C2 sinω1 sinω2 ¼ ðcosΩ1− cosΩ2þ cosω1− cosω2Þ
× ðcosΩ1− cosΩ2− cosω1þ cosω2Þ;

ð51Þ

where sgnðxÞ denotes the sign of the corresponding
variable x. According to the mentioned above, we have
a certain freedom in the choice of the matrices R̂1;2, so that
the simplest choice consists of the convention that they are
proportional to the unity matrix

R̂1;2 ¼
ffiffiffiffi
D

p
Î: ð52Þ

Consider first the case, where sgnðcosω1 − cosω2Þ ¼ 1.
Obviously Eqs. (47) and (48) can be rewritten as

Â1 ¼ Ĝ1 þ
1

UD
ĝ2ðĝ1 þ ĝc

2Þ ¼
�

cosω2 þ cosΩ1 − cosΩ2 sinω1

− sinω1 þ ðcosΩ1 − cosΩ2 − cosω1 þ cosω2Þ cotω1 cosω1

�
;

Â2 ¼ Ĝ2 −
1

UD
ðĝ1 þ ĝc

2Þĝ2 ¼
�

cosω1 − cosΩ1 þ cosΩ2 sinω2

− sinω2 − ðcosΩ1 − cosΩ2 − cosω1 þ cosω2Þ cotω2 cosω2

�
: ð53Þ

If sgnðcosω1 − cosω2Þ ¼ −1, we obtain expressions
for the normal form matrices Â1 and Â2 similar to the
above ones but with Ω1 and Ω2 interchanged. In what
follows, we shall consider in detail the case where
sgnðcosω1 − cosω2Þ ¼ 1—the opposite sign case can be
treated in analogous way. The other two blocks of the
transformation matrix R̂ can be determined according to
the chain of expressions in Eq. (C10). Thus we have

r̂1 ¼
ĝ1 þ ĝc

2

U
ffiffiffiffi
D

p ¼ C

U
ffiffiffiffi
D

p
�− sinω2 0

T=2 − sinω1

�
;

r̂2 ¼ −r̂c1 ¼
C

U
ffiffiffiffi
D

p
�
sinω1 0

T=2 sinω2

�
: ð54Þ

From the normal form matrices Â1 and Â2 given
explicitly by Eq. (53), the normal mode Twiss parameters
αi, βi, and γi for i ¼ 1, 2 can be determined using the
standard expression for the one-turn transfer matrix [17]

Âi ¼
�
cosΩi þ αi sinΩi βi sinΩi

−γi sinΩi cosΩi − αi sinΩi

�
: ð55Þ

The result is

α1 ¼
cosΩ1 − cosΩ2 − cosω1 þ cosω2

2 sinΩ1

; β1 ¼
sinω1

sinΩ1

;

ð56Þ

γ1 ¼ β1 −
cotω1

sinΩ1

ðcosΩ1 − cosΩ2 − cosω1 þ cosω2Þ;

ð57Þ

α2 ¼
cosΩ2 − cosΩ1 þ cosω1 − cosω2

2 sinΩ2

; β2 ¼
sinω2

sinΩ2

;

ð58Þ

γ2 ¼ β2 −
cotω2

sinΩ2

ðcosΩ2 − cosΩ1 þ cosω1 − cosω2Þ;

ð59Þ

where by direct substitution, it can be verified that βiγi −
α2i ¼ 1 for i ¼ 1, 2 as should be expected. Since the motion
in the normal mode is decoupled, there exist the two
independent Courant-Snyder invariants
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Ið1Þn ¼ γ1X02
n þ 2α1X0

nP0
x;n þ β1P02

x;n: ð60Þ

Ið2Þn ¼ γ2Z02
n þ 2α2Z0

nP0
z;n þ β2P02

z;n: ð61Þ

Our final task consists of expressing the above invari-
ants in terms of the original canonical variables Zn. By
inverting the linear canonical transformation defined in
Eq. (42), we can write

Z0
n ¼ R̂−1Zn ¼

�
R̂c

1 r̂c1
r̂c2 R̂c

2

�
Zn ¼

� ffiffiffiffi
D

p
Î −r̂2

−r̂1
ffiffiffiffi
D

p
Î

�
Zn;

ð62Þ

or alternatively

�
X0
n

P0
x;n

�
¼
 ffiffiffiffi

D
p

Xn − C
U
ffiffiffi
D

p Zn sinω1ffiffiffiffi
D

p
Px;n− C

U
ffiffiffi
D

p
�
T
2
ZnþPz;n sinω2

�
!
; ð63Þ

�
Z0
n

P0
z;n

�
¼
 ffiffiffiffi

D
p

Znþ C
U
ffiffiffi
D

p Xn sinω2ffiffiffiffi
D

p
Pz;n− C

U
ffiffiffi
D

p
�
T
2
Xn −Px;n sinω1

�
!
: ð64Þ

What remains to be done now is to replace the new phase
space coordinates Z0

n with the corresponding expressions
in terms of the initial onesZn given by the above equations,
in the Courant-Snyder invariants defined by Eqs. (60)
and (61). Thus, we obtain the sought-for two independent
invariants in the initial coordinates in phase space. And so
our original goal has been reached; a split description of the
coupled betatron motion in terms of new optical eigen-
functions (normal mode Twiss parameters) defined in a new
coordinate system has been found. Similar expressions for
normal mode Twiss parameters, and therefore for the
invariants (60) and (61) have been reported in Ref. [12].

VI. TRACKING AND ILLUSTRATION
OF THE BEAM DYNAMICS

The one-turn map given by Eqs. (18)–(21) and describing
the linear betatron coupling was iterated 2000 turns for
different values of the coupling coefficientC. Unfortunately,
it is not possible to visualize the multidimensional torus (on
which the phase-space trajectory lies) in the full four-
dimensional phase space. For this reason, the initial state
vector Z0 has been evolved and after each turn has been
mapped as a point on the corresponding subspaces of the full
four-dimensional phase space.
Focusing a look at the simulation results (as shown in

Fig. 2), one can observe that particle evolution in the four-
dimensional phase space is actually a trajectory on a higher-
dimensional (four-dimensional) torus spanned over the
horizontal and the vertical two-dimensional phase spaces.

The inverse canonical transformation, specified by the
matrix R̂−1 and given by Eqs. (63) and (64), reveals the
major orbits in the phase space. By keeping the unperturbed
betatron tunes νx and νz unchanged and adjusting the

FIG. 2. Linear map (18)–(21) has been iterated 2000 turns with
respect to the following randomly chosen (sufficiently far from
resonances) parameters: ν1 ¼ 0.75, ν2 ¼ 0.53, and C ¼ 0.25.
The initial state vector has been set toZ0 ¼ ½0.3; 0.8;−0.3; 0.5�T ,
but it is almost irrelevant to the shape of the trajectories in phase
space. First row: phase space projections in the initial coordinates
Z; second row: phase space projections in the normal form
coordinatesZ0. First and second column: horizontal, respectively,
vertical phase space projections; third column: transverse plane
trajectory.

FIG. 3. After elimination of the vertical momentum Pz;n using
the second invariant (61), the first invariant (60) has been plotted
with respect to the same as in Fig. 2 randomly chosen (suffi-
ciently far from resonances) parameters: ν1 ¼ 0.75, ν2 ¼ 0.53,
and C ¼ 0.25. The initial state vector has been taken to be the
same Z0 ¼ ½0.3; 0.8;−0.3; 0.5�T .
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coupling coefficient C, which relates the disposition of
solenoids and the skew quadruples along the ring circum-
ference, one can follow in detail the metamorphosis of
shape change of the phase-space manifold from a ring torus
to a horn torus and then a spindle torus. It is worth also
noting that the trajectory on the manifold exhibits some fine
structure determined by the map. At first glance, it may
seem that trajectories with the same initial state vector lie
on the same manifold and intersect with each other. What is
shown in this figure, however, is a projection onto the
horizontal/vertical plane in the phase space, so that it does
not violate the Liouville theorem.
Mentioned last but not least important, at each iteration

step (that is, after each turn), a check has been carried
out, which showed that the invariants (60) and (61) are
preserved.
For comparison with the direct simulation of the one-turn

map, let us present the numerical results obtained in the
immediate use of the invariants (60) and (61). They
represent two equations relating four phase-space variables
in terms of the original phase-space coordinates Z. One of
the canonical momenta, say Pz;n, can be eliminated, thus a
single invariant can be obtained, in which the horizontal
phase space ðXn; Px;nÞ is parameterized by the vertical
coordinate Zn. Similarly, by choosing Px;n to be eliminated,
the vertical phase space ðZn; Pz;nÞ parameterized by the

horizontal coordinate Xn can be represented by a single
invariant.
The dependence of the horizontal phase space as a

function of the vertical coordinate in Fig. 3 represents an
inclined cylinder with an elliptical base. The fact that the
invariant surface is an inclined cylinder explains the zigzag
character of the trajectory in phase space represented at the
top left of Fig. 2. Figure 4 shows the invariant surface in
the case of a difference resonance. The inclination of the
cylinder increases significantly, while the effective interval
which the horizontal coordinate spans over also increases.

VII. CONCLUDING REMARKS

In all cases of practical interest, numerical methods for
solving the differential equations governing the particle
motion involve discretization schemes anyway. The sub-
stitution of the Hamilton’s equations of motion with
mappings is a natural way to alternatively describe particle
dynamics. Using the technique of the discrete one-turn
transfer maps, the problem of linear coupling between
horizontal and vertical betatron oscillations in an accel-
erator has been treated exactly and entirely in explicit form.
The stability region of betatron oscillations with linear

coupling between the transverse degrees of freedom in the
fractional part of the horizontal and the vertical betatron
tune spaces as a function of the linear coupling strength has
been obtained. As far as our knowledge of the matter
extends, this result is being reported for the first time. It is
intuitively clear to expect the instability regions to be located
in the vicinity of the linear sum resonances of the form
FracðνxÞ þ FracðνzÞ ¼ 0 and FracðνxÞ þ FracðνzÞ ¼ �1,
where Fracðνx;zÞ are the fractional parts of the betatron
tunes. It has been also shown that the increment/decrement of
the horizontal and thevertical betatron oscillations in the case
of the linear sum resonance is approximately equal to half of
the coupling strength.
Further, the normal form parameterization of the one-

turn linear map is worked out in detail. It has been shown
that the normal form representation possesses an important
feature that the stability properties of both the 2 × 2
symplectic matrices comprising the diagonal of the
block-diagonal transfer matrix in the normal form depend
only on the matrix elements of the original linear coupling
matrix and are independent of the particular form chosen
for the diagonal 2 × 2 matrix blocks of the symplectic
transformation matrix bringing the initial one-turn matrix to
normal form. Since by construction, the motion in the
normal mode in the new normal form coordinates is
decoupled, there must exist two independent Courant-
Snyder invariants, which have been found explicitly.
As shown in Sec. V, there is a certain degree of freedom

in the choice of the matrices R̂1;2. The simplest but not the
only one as expressed by Eq. (52) leads to a close similarity
between our description and that of Sagan and Rubin [9].
These similarities consist in the specific form of Eq. (62)

FIG. 4. After elimination of the vertical momentum Pz;n using
the second invariant (61), the first invariant (60) has been plotted
with respect to the almost exact difference resonance parameters:
ν1 ¼ 0.75, ν2 ¼ 0.749, and C ¼ 0.25. The initial state vector has
been taken to be the sameZ0 ¼ ½0.3; 0.8;−0.3; 0.5�T as in Fig. 3.
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corresponding to the analogous expression presented in
Ref. [9]. The main advantage of our approach is the use of
maps, where the transfer matrix is known explicitly, which
leads to expressions for the optical functions and invariants
in closed form.
The systematic developments presented here provide a

normal form parameterization for the four-dimensional
symplectic one-turn matrix, which has a close connection
to the original Courant-Snyder representation of the two-
dimensional symplectic matrix. All of the parameters and
expressions entering explicitly the transfer map parameter-
ization can provide a valuable framework for accelerator
design and particle simulation studies.
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APPENDIX A: BOUNDARIES
OF THE STABILITY DIAGRAM

The stability constraint [Eq. (35)] can be split into the
following inequalities:

cosω1 þ cosω2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcosω1 − cosω2Þ2 þ C2 sinω1 sinω2

q
≤ 2; ðA1Þ

cosω1 þ cosω2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcosω1 − cosω2Þ2 þ C2 sinω1 sinω2

q
≥ −2; ðA2Þ

ðcosω1 − cosω2Þ2 þ C2 sinω1 sinω2 ≥ 0: ðA3Þ

Obviously, there exist the trivial solutions:

sinω1 sinω2 ¼ 0; ðA4Þ

i.e.,

ω1 ¼ k1π; ðA5Þ

ω2 ¼ k2π; ðA6Þ

where k1; k2 ∈Z.
After transforming the coordinates with the following

rule:

�
u

v

�
¼ 1

2

�
1 −1
1 1

��
ω1

ω2

�
; ðA7Þ

one can obtain a set of simple boundaries:

cos v ¼ � C2 − 4

C2 þ 4
cos u; ðA8Þ

cos v ¼ 2 cos u − C2 cos u − 2

2 cos u − C2 − 2
: ðA9Þ

The analytical boundaries of the stability areas are straight-
forward (as shown in Fig. 5):

v ¼ � arccos

�
C2 − 4

C2 þ 4
cos u

�
þ 2k3π; ðA10Þ

v ¼ � arccos

�
−
C2 − 4

C2 þ 4
cos u

�
þ 2k4π; ðA11Þ

v ¼ � arccos

�
2 cos u − C2 cos u − 2

2 cos u − C2 − 2

�
þ 2k5π; ðA12Þ

where k3; k4; k5 ∈Z. We can also rewrite the trivial
solutions:

FIG. 5. Stability areas (with C2 ¼ 0.1) divided by the con-
straints. The cyan curves are the solutions (A11) and the trivial
solutions (A13); the magenta curves are the solutions (A10) and
the trivial solutions (A14); and the yellow curves are the solutions
(A12). The shaded square at the center is one of the tiles.
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v ¼ �uþ 2k6π; ðA13Þ

v ¼ �uþ ð2k7 − 1Þπ; ðA14Þ

and again k6; k7 ∈Z.

APPENDIX B: REVIEW OF SOME BASIC
PROPERTIES OF SYMPLECTIC MATRICES

By definition, the four-by-four matrix Ŝ is symplectic if

ŜTĴ Ŝ¼ Ĵ ; where Ĵ ¼
�
Ĵ 0̂

0̂ Ĵ

�
; Ĵ¼

�
0 1

−1 0

�
;

ðB1Þ

and the superscript “T” implies matrix transposition.
The basic nonsingular, skew-symmetric matrix Ĵ has
the obvious properties

Ĵ 2 ¼ −Î; Ĵ −1 ¼ −Ĵ ; Ĵ T ¼ −Ĵ : ðB2Þ

From the above equation

Ŝ Ĵ ŜTĴ Ŝ ¼ ŜĴ 2 ¼ −Ŝ Î ¼ −Î Ŝ;

an alternative definition

Ŝ Ĵ ŜT ¼ Ĵ ðB3Þ

of a symplectic matrix follows. Next, we define the
symplectic conjugate [15] of a generic matrix Â to be

Âc ¼ −Ĵ ÂTĴ : ðB4Þ

From Eq. (B1) or Eq. (B3), an important property

Ŝc ¼ Ŝ−1 ðB5Þ

of symplectic matrices follows. For a generic 2 × 2 matrix
B̂, we have

B̂ ¼
�
b11 b12
b21 b22

�
; B̂c ¼

�
b22 −b12
−b21 b11

�
; ðB6Þ

and

B̂B̂c ¼ B̂cB̂ ¼ Î detðB̂Þ;
B̂þ B̂c ¼ ÎSpðB̂Þ;

B̂c ¼ B̂−1 detðB̂Þ; ðB7Þ

where as usual “det” and “Sp” denote the determinant and
the trace of the dedicated matrix, respectively.

Let us write the 4 × 4 symplectic matrix Ŝ in a 2 × 2
block form

Ŝ ¼
�
Ŝ1 ŝ2

ŝ1 Ŝ2

�
: ðB8Þ

Since the inverse of a symplectic matrix is equal to its
symplectic conjugate, according to Eq. (B5), we must have
ŜŜc ¼ ŜcŜ ¼ Î. Comparing

ŜŜc ¼
�
Ŝ1 ŝ2

ŝ1 Ŝ2

��
Ŝc
1 ŝc1

ŝc2 Ŝc
2

�

¼
�
Ŝ1Ŝ

c
1 þ ŝ2ŝc2 Ŝ1ŝc1 þ ŝ2Ŝ

c
2

ŝ1Ŝ
c
1 þ Ŝ2ŝc2 Ŝ2Ŝ

c
2 þ ŝ1ŝc1

�
;

and

ŜcŜ ¼
�
Ŝc
1 ŝc1

ŝc2 Ŝc
2

��
Ŝ1 ŝ2

ŝ1 Ŝ2

�

¼
�
Ŝc
1Ŝ1 þ ŝc1ŝ1 Ŝc

1ŝ2 þ ŝc1Ŝ2

ŝc2Ŝ1 þ Ŝc
2ŝ1 Ŝc

2Ŝ2 þ ŝc2ŝ2

�
;

using Eq. (B7), we obtain

detðŜ1Þ þ detðŝ2Þ ¼ 1; detðŜ2Þ þ detðŝ1Þ ¼ 1;

Ŝ1ŝc1 þ ŝ2Ŝ
c
2 ¼ 0; ðB9Þ

and

detðŜ1Þ þ detðŝ1Þ ¼ 1; detðŜ2Þ þ detðŝ2Þ ¼ 1;

Ŝc
1ŝ2 þ ŝc1Ŝ2 ¼ 0; ðB10Þ

respectively. Note that the above relations also imply the
following properties:

detðŜ1Þ ¼ detðŜ2Þ; detðŝ1Þ ¼ detðŝ2Þ: ðB11Þ

Equations (B9) and (B10) are actually equivalent, and they
impose a total of 6 independent constraints on the 16 matrix
elements of Ŝ. The four-by-four symplectic matrix Ŝ, is,
therefore, specified by ten independent parameters.

APPENDIX C: DERIVATIONS
OF EQUATIONS (47) and (48)

Carrying out explicit matrix multiplications in Eq. (46),
we find

Ĝ1 ¼ R̂1Â1R̂
c
1 þ r̂2Â2r̂c2 Ĝ2 ¼ R̂2Â2R̂

c
2 þ r̂1Â1r̂c1;

ðC1Þ

ĝ1 ¼ r̂1Â1R̂
c
1þ R̂2Â2r̂c2 ĝ2 ¼ R̂1Â1r̂c1þ r̂2Â2R̂

c
2. ðC2Þ
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First of all, let us note that since the transformation matrix
R̂ is symplectic, relations similar to (B9)–(B11) for the
corresponding blocks of R̂ must hold. In particular

detðR̂1Þ ¼ detðR̂2Þ ¼ D; detðr̂1Þ ¼ detðr̂2Þ ¼ 1 −D:

ðC3Þ

Let us now define

A1 ¼ SpðÂ1Þ; A2 ¼ SpðÂ2Þ; ðC4Þ

G1 ¼ SpðĜ1Þ; G2 ¼ SpðĜ2Þ; ðC5Þ

and

T ¼ SpðĜ1 − Ĝ2Þ ¼ G1 −G2; ðC6Þ

U ¼ SpðÂ1 − Â2Þ ¼ A1 − A2: ðC7Þ

Taking the trace of Eq. (C1) and using Eq. (C3), the last
property in Eq. (B7), and the invariance of the trace of a
matrix subjected to a similarity transformation, we obtain

G1 ¼ A1DþA2ð1−DÞ; G2 ¼ A2DþA1ð1−DÞ: ðC8Þ

Adding and subtracting the last two equations, important
relations influencing the dynamical stability follow

G1 þG2 ¼ A1 þA2; T ¼G1 −G2 ¼Uð2D− 1Þ: ðC9Þ

Adding the first of Eqs. (C2) and the symplectic conjugate
of the second one, we find

ĝ1 þ ĝc
2 ¼ r̂1ðÂ1 þ Âc

1ÞR̂c
1 þ R̂2ðÂ2 þ Âc

2Þr̂c2
¼ A1r̂1R̂

c
1 þ A2R̂2r̂c2;

where we have used the second property in Eq. (B7).
Taking into account the symplectic conjugate of the last
property in Eq. (B9) written for the matrix blocks of R̂, we
finally arrive at

ĝ1 þ ĝc
2 ¼ Ur̂1R̂

c
1 ¼ −UR̂2r̂c2: ðC10Þ

Taking now the determinant of Eq. (C10), we obtain [18]

detðĝ1þ ĝc
2Þ¼U2detðr̂1ÞdetðR̂1Þ¼U2Dð1−DÞ: ðC11Þ

From the above equation and the second of Eqs. (C9), the
determinant D of the diagonal blocks R̂1;2 of the unknown
transformation matrix can be expressed in terms of known
quantities, namely

ð2D − 1Þ2 ¼ T2

T2 þ 4 det ðĝ1 þ ĝc
2Þ
: ðC12Þ

The final step is to perform in an explicit form the
following matrix multiplication:

ĝ2ðĝ1 þ ĝc
2Þ ¼ UðR̂1Â1r̂c1r̂1R̂

c
1 − r̂2Â2R̂

c
2R̂2r̂c2Þ

¼ U½ð1 −DÞR̂1Â1R̂
c
1 −Dr̂2Â2r̂c2�

¼ UR̂1Â1R̂
c
1 −UDĜ1: ðC13Þ

In passing to the second row of the above multiple
equations, we have used the first property in Eq. (B9) as
well as Eq. (C3). In a similar manner, we obtain

ðĝ1 þ ĝc
2Þĝ2 ¼ Uðr̂1R̂c

1R̂1Â1r̂c1 − R̂2r̂c2r̂2Â2R̂
c
2Þ

¼ U½Dr̂1Â1r̂c1 − ð1 −DÞR̂2Â2R̂
c
2�

¼ −UR̂2Â2R̂
c
2 þ UDĜ2: ðC14Þ

This completes the derivation of Eqs. (47) and (48).
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