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In this paper, we applied an approximate entropy (ApEn) analysis to nonlinear beam dynamics. Due to the
presence of strong nonlinear magnets, the degree of chaos in beammotion gradually increases proportionally
with its amplitude. Such chaos can be quantitatively characterized with ApEn of beam turn-by-turn readings.
ApEn analysis is a technique used to quantify the amount of regularity and the unpredictability of fluctuations
with respect to time-series data. The ApEn, when applied as a chaos indicator, can then be used for nonlinear
lattice optimization and analysis. The National Synchrotron Light Source II (NSLS-II) electron storage ring
lattice was used as an example of a real-world application of our technique.
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I. INTRODUCTION

For circular particle accelerators, the nonlinearity of beam
dynamics confines long-term motion stability within a
limited region in six-dimensional phase space, namely, the
dynamic aperture (DA) [1]. Even within the DA, particle
motionmay still be chaotic. It is commonly believed that, for
a given magnetic lattice, by suppressing the chaos of the
system, one can enlarge the DA and local momentum
aperture (LMA), thereby enhancing its robustness to errors
and imperfections. Various chaos indicators have been
adopted to characterize the nonlinearity of beam motion
[2], such as the Lyapunov exponent [3–5], frequency map
analysis (FMA) [6], forward-reversal integration (FRI) [7–9],
data-driven chaos indicator [10], fluctuation of approximate
invariant [11], etc. In this paper, we apply approximate
entropy (ApEn) to analyze the nonlinear beam dynamics.
The concept of entropy has its origins in classical physics

under the second law of thermodynamics. In the context of
nonlinear dynamics, information entropy is central in
quantifying the degree of uncertainty or information gain.
It is widely used to explain complex nonlinear behavior in
real-world systems. Among many entropy analyses, the
concept of ApEn was initially developed by Pincus [12] to
analyze medical data, such as heart functions (rate, impulse,
etc.) Applications of the ApEn later spread to many other
fields, such as finance [13], nonlinear dynamics [14], etc. It
is now widely used as a technique to quantify the amount
of irregularity and the unpredictability of fluctuations,

particularly for systems with noise components and short
time-series data.
Due to the presence of strong nonlinear magnetic fields

in circular accelerators, the chaos of beam motion gradually
increases with its amplitude. Chaos of a dynamical system
is often visualized with the Poincaré map. For beam
dynamics, it is seen at the intersection of periodic orbit
projected in a certain lower-dimensional subspace, usually
a two-dimensional conjugate coordinate-momentum phase
space. Experimentally, it can also be observed from turn-
by-turn (TBT) data collected by beam position monitors
(BPMs) after the beam is excited. ApEn can quantitatively
characterize the chaos of the circulating beam from the
TBT readings. Based on that, the suitability of the con-
figuration of magnetic lattices can be determined.
Therefore, the ApEn as a chaos indicator can be used
for nonlinear lattice optimization at the design stage. It can
also be used for online beam-based optimization, [15]
provided the BPMs TBT resolution is sufficient.
The remainder of this paper is outlined as follows: Sec. II

reviews the definition of ApEn and briefly explains its
underlying principles. In Sec. III, anApEn analysis is applied
to a Hénon map as a proof of principle. In Sec. IV, as a real-
world application, the ApEn observed in the transverse x-y
plane is used as a minimization objective to optimize the
National Synchrotron Light Source II (NSLS-II) nonlinear
lattice. In Sec. V, we implement a detailed ApEn analysis for
an elite candidate selected from the previous optimization
and can then interpret the physics information that is
conveyed by this analysis. A summary is given in Sec. VI.

II. APPROXIMATE ENTROPY

According to Pincus, ApEn is computed with the
following steps [12,16]. Fix m as a positive integer and
r as a positive real number. Given time-series data
u1; u2;…; uN , from measurements equally spaced in time,
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form a sequence of vectors x⃗1; x⃗2;…; x⃗N−mþ1, defined by
x⃗i ¼ ½ui; uiþ1;…; uiþm−1�. Next, define the correlation
parameter [17] for each i, 1 ≤ i ≤ N −mþ 1,

Cm
i ðrÞ¼ ðnumber of jsuch thatd½x⃗i; x⃗j�≤ rÞ=ðN−mþ1Þ;

ð1Þ

here the distance d½x⃗i; x⃗j� is defined as

d½x⃗i; x⃗j� ¼ max
k¼1;2;…;m

ðjuiþkþ1 − ujþkþ1jÞ: ð2Þ

The Cm
i ðrÞ’s measure, within the tolerance of r, the

regularity or frequency of patterns similar to a given pattern
of window length m. Next, define

φmðrÞ ¼ 1

N −mþ 1

XN−mþ1

i¼1

lnCm
i ðrÞ; ð3Þ

where ln is the natural logarithm. Finally, the parameter

ApEnðm; rÞ ¼ lim
N→∞

½φmðrÞ − φmþ1ðrÞ�; ð4Þ

is defined as the approximate entropy.
Fundamentally, ApEn measures the conditional proba-

bility that nearby pattern runs remain close in the next
incremental comparison [16,18]. A positive ApEn usually
indicates the presence of chaos [19]. In real-world appli-
cations, the length of input time series N cannot be infinite
as defined in Eq. (4). A practical value of N is typically
between 75 and 5000, depending on the availability of valid
data. Based on the calculations that include both theoretical
analysis and clinical applications, Pincus concluded that for
m ¼ 1, 2, and values of a filter r between 0.1σu to 0.25σu,
σu is the standard deviation of the ui data and can produce
good statistical validity [16]. By checking turn-by-turn
simulation data for the NSLS-II lattice (as will be discussed
in Sec. IV), we found that such configurations are also
applicable to its nonlinear beam dynamics.
ApEn can be computed directly based on the above

definition. Its required execution time is analogous to the
square of the size of the input signal. Fast algorithms, such
as [20], were proposed to speed up its computation. In the
meantime, well-developed and documented computation
packages, such as EntropyHub [21], are also available.

III. APPLICATION OF THE HÉNON MAP

In this section, an ApEn analysis is applied to a well-
studied one-dimensional quadratic Hénon map [22] with
dissipation,

�
x

p

�

n

¼
�

cos μ sin μ

− sin μ cos μ

��
x

p − λx2 − Δp

�

n−1
: ð5Þ

From the view of beam dynamics, this discrete map
represents a simple lattice structure composed of a thin
lens sextupole kick followed by a linear phase space
rotation at a phase advance of μ ¼ 2πν, and the dissipation
Δp can represent the synchrotron radiation damping. Here,
the normalized sextupole strength is λ ¼ 1, and the linear
tune is chosen to be ν ¼ 0.205, to produce the fifth-order
resonance crossing at certain amplitudes. Finding the
dynamic aperture of this map is straightforward due to
its low computational demand. The ApEn analysis, how-
ever, was applied here to demonstrate its ability to identify
the system’s chaos and nonlinear resonances as a proof-of-
principle.
The map is iterated for 512 runs, then the ApEns of x

coordinates are computed for each initial condition in the
phase space x-p. Tomimic themeasurement noise, a random
0.1% error Δx was added to each x reading, Here we chose
the parameters m ¼ 2, r ¼ 0.2σx, and σx is the standard
deviation of each time-series dataset, x in computing the
ApEn. The chaos measured with its ApEn increases gradu-
ally with the initial condition’s amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ p2

p
, except

when crossing stable resonances as illustrated in Fig. 1. The
contours of FMA analysis are also computed for comparison
purposes.Adetailed performance comparison among several
other chaos indicators, such as FMA, FRI, Lyapunov
exponent, etc., was well studied in Ref. [2].
Although the ApEn gradually increases with initial

amplitude in Fig. 1,we also observed that it is notmonotonic,

FIG. 1. Comparison of the ApEn (top), FMA (bottom) analyses
for a Hénon map with 512 iterative runs. The color maps represent
the ApEn and tune diffusion at the locations of their initial
conditions. The blank area represents unbounded trajectories.
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particularly, when crossing the fifth-order resonance, low
ApEn values were read. Figure 2 shows three trajectories in
the x–pPoincére sectionwhile crossing the resonance.When
the tune is sufficiently close to 0.2, and their trajectories are
trapped around five elliptical fixed points (FP), isolated
islands are formed and trajectories gradually merge with the
FPs.Around those stable FPs, the fundamental tune diffusion
is at the order of 10−6 with 512 turns data. However, because
the dimension of islands is sufficiently small, the time-series
data composed of x (or p) almost repeats itself with a
periodicity of 5, which yields a near-zero ApEn.

IV. APPLICATION FOR NONLINEAR
LATTICE OPTIMIZATION

In this section, we use ApEn as a chaos indicator to
optimize the nonlinear lattice for the NSLS-II storage ring.
In a linearly stable lattice, the motion of particles seen by a
BPM at certain locations can be represented as a periodic
time series, oscillating with a fixed frequency of 2πν. This ν
is known as the linear tune. Nonlinear magnets, such as
sextupoles for chromaticity correction, can perturb regular
beam motion. Thus, signals seen by the BPM now have
fluctuations on top of the regular motion. The ApEn of the
TBT BPM readings reflects the likelihood that similar
patterns of the TBT readings will not be followed by
additional similar readings. Given a nonlinear lattice, if the
ApEns of TBT readings are low, the beam motion is less
chaotic and vice versa. By minimizing the ApEn of
different trajectories through tuning nonlinear “knobs”
(i.e., sextupoles), the lattice can be optimized.
First, we need to determine the needed length of TBT

data to detect the chaos for a given lattice. Here, we use the
current NSLS-II operational lattice for demonstration.
From a certain longitudinal observation location (such as
the center of the long straight section for injection),
multiple initial conditions are uniformly populated within

a region of interest (ROI) with a transverse dimension
x∈ ½−40; 40� mm, and y∈ ½0; 15� mm (Fig. 4). Usually, the
ROI is chosen to be slightly larger than the desired dynamic
aperture. Particle trajectories are simulated with a sym-
plectic integrator [23] implemented in the code ELEGANT

[9]. Similar to the FMA analysis [6,24], the ApEn of those
TBT data starting with the same initial conditions but
different turns (64, 128, and 256) were visualized with
contour plots as illustrated in Fig. 3.
From our observation, the ApEn analysis yields visible

chaos even from smaller sets of TBT data. This means that
even short-term TBT data with this method is capable of
driving an optimizer. Therefore, early in the design stage,
the low computational cost of this method can efficiently
narrow down the search range by ruling out undesirable
(i.e., with smaller DA and LMA) candidates. Consequently,
longer datasets can provide even more detailed chaos
information but would require higher computational
time/demand.
In the following DA optimization, 256-turns simulated

TBT data were used, which can already clearly identify the

FIG. 2. Trajectories of the Hénon map in the phase space while
crossing a fifth-order resonance. Once the tune is sufficiently
close to 0.2, and the trajectory can be trapped around the fixed
points. The corresponding motion in the time domain almost
repeats itself with a periodicity of 5. Therefore, a near-zero ApEn
is observed.

FIG. 3. ApEns computed with 64, 128, and 256-turns TBT data
for the NSLS-II operational lattice. Although longer TBT data
provide more accurate information on the distribution of chaos,
the overall chaos map is already visible even with just the
64 turns data.
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degree of chaos. Conveniently, the needed computational
cost for the particle tracking simulation is affordable with
commonly available computational resources.
Now, we introduce the detailed optimization implemen-

tation using the NSLS-II storage ring as a real-world
example. The goal of optimization is minimizing the
ApEns for all initial conditions within the ROI. It is neither
practical nor necessary to minimize every initial condition
simultaneously, therefore, the ROI is divided into several
zones as shown in Fig. 4. For each zone, two objectives are
the survival after 256 turns of the horizontal and vertical
ApEns, averaged over all initial conditions. By tuning the
sextupole knobs, we attempted to minimize every zone’s
ApEns simultaneously to suppress the overall chaos within
the whole of the ROI. Many light source rings are
composed of multiple identical cells. Therefore, we can
even use one cell to optimize its DA for the ideal error-free
lattice to quickly narrow down the search range. In the next
stage, a full ring lattice, including various imperfections
and errors can be used to search for robust solutions within
the new, narrower ranges.
In the optimization, ApEns were computed in the hori-

zontal and vertical planes and their values were usually at
different scales and needed to be minimized separately. The
number of optimization objectiveswas 2 times the number of
zones. The “tuning knobs” in this examplewere six harmonic
sextupole families. These sextupoles do not contribute to the
linear chromaticity but can compensate for geometric and
chromatic optics aberrations generated by chromaticity
correction sextupoles. The range of these sextupoles
strengths K2 is confined within ½−40; 40� m−3, limited by
their power supply capacities and magnetic saturation.
This multiobjective optimization was accomplished with

the widely used genetic algorithm [25–27]. As a small
population with 1000 candidates evolved more than 30
generations, a good convergence of the average ApEn was

reached (Fig. 5). The DAs of all candidates in the 30th
generation were calculated, and from them, some “elite” or
desirable configuration candidates were selected. The on-
momentum DA profiles of the top 20 elite candidates are
illustrated in the top subplot of Fig. 6. It is interesting to
note that the distributions of their six tuning knobs (i.e., the
sextupole gradientsK2) also converge to some small ranges

FIG. 5. Convergence of averaged ApEns in the genetic algo-
rithm optimization. Solid lines stand for the horizontal plane, and
dashed-dotted ones for the vertical plane. Lines with the same
color are from the same zone.

FIG. 4. Dividing the region of interest (ROI) into 2 × 3 ¼ 6
zones in the x-y plane at the observation point. In each zone,
multiple initial conditions (represented with the same-colored
dots) are uniformly populated. The optimization objectives are
the averaged ApEns of all initial conditions within each indi-
vidual zone. The solid elliptical line is the desired DA profile.

FIG. 6. Top: on-momentum DA profiles for 20 elite candidates
selected from the last generation of the genetic algorithm
optimization. Bottom: distribution of six sextupole knob con-
figurations of these elite candidates. They converge to some
narrow ranges as well.
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as shown in the bottom subplot. The correlation between
the average ApEns and the area of DAs is illustrated in
Fig. 7, which indicates that suppressing the ApEns in both
the horizontal and vertical planes plays a role in enlarging
the DA.
In designing a nonlinear lattice, the DA and local

momentum aperture (LMA) must simultaneously be
considered to satisfy the requirements on injection effi-
ciency and beam lifetime [28]. The same strategy as
Ref. [8] was used to include some off-momentum DAs as
optimization objectives. In this example, on δ ¼ �2.5%
off-momentum planes, ApEns are added as the objectives,
which are evaluated in the same way as Fig. 4. Con-
sidering off-momentum DAs are usually smaller than the
on-momentum configurations, slightly narrower ROIs
were used. The on- and off-momentum (δ ¼ �2.5%)
DAs for a selected elite candidate are illustrated in
Fig. 8, which are sufficient to achieve high-efficiency

injections and 3 h Touschek beam lifetime [29] compared
with our current operational lattice.

V. INFORMATION LEARNED FROM ApEn

Like FMA, ApEn can also provide detailed chaos
information for a given nonlinear lattice, such as the
strength and location of resonances and robustness to
errors. Below, we use an elite candidate (the same as
shown in Fig. 8) as an example for implementing a detailed
ApEn analysis. To achieve a more accurate result, for each
initial condition, a N ¼ 1024 long TBT dataset was
obtained with the code ELEGANT. In the meantime, high
density initial conditions were populated to produce a high-
resolution DA profile to identify resonance lines. As
previously observed in Fig. 5, the horizontal and vertical
ApEns are at different scales. Therefore, three ApEn
profiles are provided in Fig. 9: two separated ApEn maps
observed solely in either the horizontal or vertical plane and
one weighted map obtained by adding them after normal-
izing with their maxima,

ApEnx;y ¼
ApEnx

max ApEnx
þ ApEny
max ApEny

; ð6Þ

where max ApEnx;y are the maxima in each planes,
respectively.
In the horizontal ApEnx map, besides visible resonances

around x ¼ �20 mm, strong chaos also appears in the
vicinity of the y axis (x ¼ 0), particularly when

FIG. 7. Correlation between ApEn and DA area. The horizontal
and vertical axes are the sums of six zone’s averaged ApEns.
Each dot represents one candidate in the 30th generation of the
genetic algorithm optimization, colored with its area of on-
momentum DA. The correlation indicates that having small
ApEns in both horizontal and vertical planes plays a role in
enlarging the NSLS-II ring’s DA.

FIG. 8. On- and off-momentum DAs for a selected elite
candidate.

FIG. 9. FMA and ApEn analyses for a selected elite candidate.
Left column: tune diffusion maps of FMA observed in the
horizontal, vertical, and then both planes. Right column: ApEn
maps observed in the horizontal, vertical, and then both planes.
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y ≥ 10 mm.While in the vertical plane, strong chaos shows
up when x ≥ j20j mm. Based on this observation, we can
conclude that a strong nonlinear coupling must exist
between two transverse planes. Such coupling drives the
vertical motion to be chaotic at large horizontal amplitudes
and vice versa. In the vicinity of y axis, small amplitude
horizontal TBT data are influenced by the coupling from
the vertical plane, thus its signal-to-noise ratio is low, which
results in visual chaos there. A larger concern is that such
coupling could cause the horizontal DA to reduce signifi-
cantly in the presence of vertical physical apertures and
errors. We use the ApEny (see Fig. 9, middle-right subplot)
to further illustrate this. When a particle’s horizontal
amplitude exceeds 20 mm, although the horizontal motion
remains regular (shown with “cold” colors in the top-right
subplot), its vertical motion becomes significantly chaotic
and has large fluctuations, as observed by their TBT data.
The particles can still survive in an open space, however,
once small vertical physical apertures and/or errors are
introduced, they can be lost (i.e., decreased horizontal DA).
Such coupling issues are often seen in light source rings, in
which in-vacuum undulators (IVU) usually have vertical
apertures of a few millimeters and cause a significant
reduction of the DA in the horizontal plane. Note that most
light source rings require a sufficiently large horizontal DA
for injection.
As illustrated in Fig. 10, after a �2.5 mm vertical

aperture is introduced and the intrinsic NSLS-II magnet
systematic multipole errors are accounted for, the horizon-
tal DA is reduced to the area with low ApEny. If the area
of DA in free space is used as the only objective of
optimization, some candidates might be unrealistically
estimated. Previously, such difficulty has been overcome
by including physical apertures and errors in the tracking
simulation and optimization [28], but it greatly slows down

the speed of optimization. One of the benefits of using
ApEn as the chaos indicator is that, even with error-free
magnet models, the robustness of the lattice to errors and
physical apertures is made more transparent to a certain
extent. Therefore, ApEn is particularly useful in the early
stage of lattice optimization in narrowing down the search
range for robust solutions, even while lacking information
on magnet errors.
The standard FMA analyses are also illustrated in the left

column of Fig. 9, for comparison. Three tune diffusion maps
(in the horizontal, vertical, and both planes, respectively)
gradually increasewith their initial amplitudes, but there is no
obvious “jump” between the regular and chaotic regime as
shown in the subplot of ApEny profile. However, FMA does
provide a clearer view of the location of resonances.

VI. SUMMARY

In this paper, the ApEn was applied to analyze the chaos
of nonlinear beam dynamics. With simulated TBT data,
nonlinear lattice configurations can be optimized by min-
imizing their ApEns. One of the advantages of using the
ApEn method is its low computational demand. The ApEn
method can be designed to work for small data samples.
Therefore, it can be particularly useful in the early stages of
nonlinear lattice design when a huge number of lattice
configurations need to be screened and evaluated quickly. It
can also potentially be applied to online optimizations
when the BPM system has the required TBT resolution.
It is important to note that some limitations also exist in

the ApEn analysis [18]. The algorithm counts each
sequence as matching itself to avoid the occurrence of
ln(0) in the calculations. This step might introduce bias in
the ApEn, which introduces two downsides in practice:
First, ApEn is heavily dependent on the record length and is
uniformly lower than expected for short records. Second,
the ApEn analysis sometimes lacks relative consistency.
That is, if the ApEn of one dataset is lower than that of
another, it does not remain lower for all conditions tested,
even though it should. Particularly, in the vicinity of low
order resonances, although TBT readings are regular due to
a low periodicity, such motions are vulnerable to errors.
Therefore, it might be better to use ApEn along with other
chaos maps, such as FMA, to identify the chaos from
different aspects in the nonlinear beam dynamics. All these
chaos maps share the same times series (TBT data) and can
be implemented in parallel.
Thus far, only an electron ring lattice dedicated as a

synchrotron light source has been tested. Applying ApEn to
other types of circular accelerators, such as hadron colliders,
is worth further exploration. Besides ApEn, many other
entropy algorithms, such as Kolmogorov-Sinai entropy
[30,31], sample entropy [18], Fuzzy entropy [32], etc., are
also available for analyzing nonlinear systems. Each algo-
rithm has its pros and cons in quantifying chaos. Some

FIG. 10. Reduction of DA when a vertical physical aperture
(dash-dot line) and multipole errors are introduced. The hori-
zontal aperture is decreased in the region where the vertical ApEn
is high. The DAwith imperfections (red solid line) confirms that
having a low ApEn is essential in obtaining robust solutions.
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further exploration of applying entropy analysis to beam
dynamics might be interesting.
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