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Calculation of space-charge tune shift in a cylindrical chamber
for bunched beams employing Green’s function formalism
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When computing the space-charge tune shift for a relativistic bunched beam within a cylindrical
chamber, mirror currents for a coasting beam, initially introduced to replace the chamber wall, are
employed. Subsequently, the obtained result is extended to encompass the bunched beam, taking into
account the bunching factor which quantifies the distribution of bunches around the accelerator ring. In the
process of derivation, the terms that characterize the bunch length are intuitively integrated into the formula.
As a result, the validity of this approach has never been established. This study provides the derivation of
the space-charge tune shift formula for both relativistic and nonrelativistic bunched beams right from the
outset, employing the Green function formalism. Subsequently, it is compared with the earlier formula

derived using mirror currents.
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I. INTRODUCTION

When generating high-intensity beams in contemporary
accelerators [1,2], it becomes essential to assess both the
coherent and incoherent space-charge tune shifts [3-8].
Understanding the impact of the chamber boundary on the
tune shifts holds particular significance, as it enables the
evaluation of space-charge damping effects on beam
instabilities [9,10].

The significance of acknowledging the space-charge
tune shift resulting from the presence of the chamber
boundary was initially identified and articulated by
Laslett [11]. Presently, his research findings have been
cited in numerous accelerator textbooks and reports [3—8].

The formulas for the coherent (Avy), .,,) and incoherent
space-charge tune shifts (Avg, jc,n) Of @ Gaussian beam,
with identical standard deviations in both horizontal and
vertical directions, within a cylindrical chamber of radius a,
can be expressed as follows:

for the coherent space-charge tune shift:
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for the incoherent space-charge tune shift:
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These formulas (1) and (2) consider both the conductive
chamber with radius a and the ferromagnetic boundaries
with radius g. Here, f§; and y, denote Lorentz-f3; and -y, r),
represents the classical particle radius, N, signifies the total
number of particles in the accelerator ring, v7 stands for
one of the unperturbed tunes on the transverse plane, 2zR
denotes the circumference of the ring, and B corresponds to
the bunching factor, which quantifies the bunch occupation
around the ring, defined by the equation:

nyV2mo,
2zR

B = (3)
where n,, indicates the number of bunches, and o, denotes
the standard deviation of the bunch length, assuming a
Gaussian distribution for the beam. The magnetic filling
factor 7, is defined as #, = Ly, /27R, where Ly,
represents the combined length of magnets with radius g
around the ring circumference.

Regarding the incoherent tune shifts, it is important to
note that the contribution solely originates from the direct
space-charge effect, without any involvement of the indi-
rect space-charge force in the case of 7, = 0.

A renowned and foundational text, exemplified by the
citation [4], outlines the direct space-charge’s potential
impact on the coherent tune shift through equations (10.44)
and (10.48), as well as equations (21.67) and (21.71) in its
revised edition [5], incorporating the direct space-charge
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contribution. This discrepancy becomes notable, given
that the initial work by Laslett [11] omits such a term.
Consequently, within this paper, we explicitly address the
accuracy of this description.

Meanwhile, it is important to emphasize that the for-
mula (1) is applicable exclusively to a thin vacuum chamber
where the ac magnetic fields can penetrate the walls, much
like the dc component, as discussed in Refs. [7,12]. As amore
typical case, Zotter studied scenarios in which a relativistic
beam passes through a thick chamber, where the skin depth is
smaller than the square root of the product of the chamber’s
radius and thickness, and modified the formula [7,12].

Reference [8] summarizes the formulas of the tune shifts
in the thick chamber in different boundary geometries,
including parallel plates, cylindrical, and elliptical cham-
bers. The horizontal coherent and incoherent tune shift can
be simplified as

rpr <ﬁx>

Avg, oop = — =220
e = B ]

(4)
and

Av.. _ _rpr<[}x>i (5)
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for a uniform cylindrical conductive chamber in an accel-

erator with an average of horizontal f function: {f3,), which

is sometimes approximated as

) =2 (6)

vro
with the average radius of the ring R and the unperturbed
tune vy . In the above formulas, the bunching factor By is
defined as
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The definition of B is contingent on the particular bunch
shape, with [ denoting the overall bunch length and §
representing a numerical factor that adapts to the given
bunch shape. When dealing with Gaussian bunches, the
values assigned to / and S are 40, and 1.6, respectively. In
practical terms, the numerical value of By for a Gaussian
beam is nearly indistinguishable from that found in Eq. (3).

It is worth noting that the Lorentz-f and-y dependence in
Eq. (4) differs significantly from that in Eq. (1). This
distinction is attributed to the factor (1 + $2y2B) in Eq. (1),
especially when 77, = 0. On the other hand, Egs. (2) and (5)
exhibit almost identical behavior under the condition.

However, during the derivation of the aforementioned
formulas, a substitution of the boundary condition is intro-
duced, specifically involving mirror currents for coasting
beams. This substitution is necessitated by the inherent
challenges in integrating boundary effects into calculations

related to the impact of space charge on bunched beams. As
a result, the expressions for bunched beams are developed
by extending the formulations initially devised for coasting
beams, a process facilitated by the introduction of the
bunching factor. Therefore, a more advanced formalism is
essential to validate the approach relying on image currents.

Our investigation revolves around verifying whether
the derived formulas exhibit the Lorentz-y dependence,
as proposed by the mirror currents approach, when a
Gaussian bunched beam travels through a cylindrical
chamber characterized by conductivity and permeability.
Furthermore, we investigate the potential influence of the
chamber’s conductivity or permeability on the magnitude
of the tune shifts when the wakefield effects generated by
previous bunches are disregarded [13].

This study is dedicated to systematically deriving space-
charge tune shifts for a bunched beam within a thick
chamber, utilizing the Green function approach under the
assumption of translational symmetry, resulting in setting
n,, to zero. Consequently, the derived formulas are suitable
for comparison with formulas (4) and (5).

The paper is organized as follows: In Sec. II, we
introduce previous expressions [14,15] for tune shifts of
a bunched beam without any boundaries, using the familiar
Green function technique and devoid of boundary con-
ditions. Meanwhile, we review the formalism for incorpo-
rating the boundary effect into the tune shifts based on the
mirror currents of a coasting beam. Subsequently, in
Sec. III, we address the coherent and incoherent tune shifts
for a bunched beam within a cylindrical chamber in a more
integrated manner. This is achieved by employing the
Green function approach, incorporating cylindrical boun-
dary conditions, and considering both conductivity and
permeability effects. In this section, we also validate the
results against earlier formulations. Finally, Sec. IV con-
cludes this paper.

II. CONVENTIONAL APPROACH FOR
CALCULATING SPACE-CHARGE TUNE SHIFTS

A. Tune shift due to space-charge effects in a Gaussian
beam without considering any boundaries

This section calculates the direct space-charge effects on
a bunched Gaussian beam based on the Green function
formalism. The Poisson equation in the reference frame of a

beam moving along the z axis is expressed as follows:
R e ZoeN, — —Sieis
gt ot o= e L (§)
ox>  dy* 0% (27)**0,0,0,

where
0, = Y0, (9)

Here, ®(x, y,7) represents the scalar potential in the rest
frame (cf,x,y,Z), e signifies the elementary electric
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charge, ¢ stands for the speed of light, Z, = 120z Q
denotes the impedance of free space, o, and o, represent
the horizontal and vertical standard deviations, respectively,
and N, represents the number of particles per bunch.
Reference [14] provides the expression of the scalar
potential ®(x,y,z) as

)2 2
5
zr +§0 52 +g0 6% +§0

Blx,y.5) = eN,,cZO/
2(2m)¥? \/ 2+&) 0v+50)(5 +&o)

dé,

(10)

whose concrete derivation is explained in Appendix A.
Without loss of generality, we can introduce the transverse
position of the source particle (x,, yo) replacing Eq. (10) as

®(x,y,Z: X0, Yo)

(‘ x0)? | 0%, 2
n 24 +62+f +52+5
eN »CZg 0 YT T

2(27 3/2/ \/ 24+ &) (02 + &) (52

&, (11)
o +§0)

which can be expanded for small (x, y) and (xq, yq)-

The scalar potential ® and vector potential A, in the
laboratory frame (ct,x,y,z) undergo transformations as
follows:

O(x,y.z = fyct) = 7, @lx, y.75(z = fsct)],  (12)

/-
Ac(x,y.z = fset) ==y, ®le v,y (2 = fyer)]. - (13)
In these equations, the relationship between the coordinates
in the rest frame and the laboratory frame is governed by
the equations:

ct= 7.;(0[ - ﬁsz)’ (14)
_ﬂsCt)- (15)

Space charge is occasionally formulated in terms of the
scalar potential ®(x, y,z) in the rest frame because certain
simulation programs that handle space-charge effects
calculate them in the rest frame of the beam, then transform
them in the laboratory frame [16].

When the electromagnetic fields are expanded around
small values of (x, y), and (x(, o), the horizontal space-
charge tune shift can be expressed as [4,5,17]:

= 73(2

Aysp,cah
_ 2zR(B,) [ & e®@(x,y,z = Byct; Xo, Vo)
4z |ox? m,c*prys
? e®(x,y,z - fyct; xo,yo)]
0x0x, m,c*pry3 SmymomyoOgmfict

(16)

for coherent tune shift and

Aysp incoh
277.'R<ﬁx> e®(x,y,z—pct;xp. o) (17)
4x 6x2 m Cz/}sys x:y:Xo:}'():O’

for incoherent tune shift, or equivalently:

AVsp,coh
20R(B) [ e® (. ra(z—yct): 0, v0)
4r ox? m cz/)’sys
* ed(x.y, n( ﬁsCt) xO,yo)]
0x0x cpy? =y romyomO.2= ﬁscl7
(18)
AVsp incoh
_27R(B.) 0 e®(x.y.y,(z = Bsct): Xo. yo)
4z ox? m,c*py? x:y:x(,:yO:O’
(19)

where m, represents the mass of the particle because the
coherent tune shift for an axisymmetric Gaussian beam is
computed via fields at the observed point (x, y, z),
identifying with the bunch centroid (x, yg, fsct).

In the process of calculating the vertical tune shift, the
horizontal  function and the derivative found in Egs. (16)-
(19) with respect to the horizontal coordinates x or x, are
substituted with the vertical f function and the derivative
associated with the vertical coordinates y or y,.

The coherent tune shift for the Gaussian beam is
concretely, calculated with Eq. (11) as follows:

D (x, y,7:x0.¥9) | PP(x.y.Z: X0, Yo)
ox? 0x(0x

=0, (20)

demonstrating the coherent tune shift is identical to zero
due to the absence of boundary conditions, which is
consistent with Egs. (1) and (4). This lack of contribution
from direct space charge to the coherent tune shift is
indicative of the inherent symmetry of space.

When dealing with the incoherent tune shift of an
axisymmetric Gaussian beam, we make use of Eq. (10)
with 6, = &, and make an approximation for small values
of x and y:

2

eN,,cZO/ Y
®(x,y,7) déy
2(2z)’? V(o2 + fo 2+ &)

+ @ (x,y,2), (21)

where the second term ®?) is contingent upon the trans-
verse coordinates (x, y):
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and is further approximated for large &, as
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Substituting Eq. (23) into Eq. (18), we rederive the first
term (direct space-charge tune shift) in Egs. (2) and (5) as

M (x,y.2) =~ (23)

B r,N,R 1
Aysp.incoh - 277:I/T ()B,B273 202 . (24)
\ sls «Ox

In this derivation, we utilize the approximate relationship of
Eg. (6), define N, = n,N,, and use the definition of the
bunching factor as given by Eq. (3).

Let us investigate whether the approach with a coasting
beam can yield the same formula. The scalar potential in the
laboratory frame, denoted as ®(x, y, z — f,ct), is expressed
as

CI)(X Y,z _ﬂ\CI)

2 2 (2—pgct)?
+ y +/\<2 2/:‘)
6 +50 o +5o 750z o

_eNycZ,
- 73 27[ 3/2/ \/ ng’

o2 + &) (0% + &) (rio? + &)
(25)

which pertains to the three-dimensional scenario through
transformation relations provided by Eq. (12) with Egs. (9)
and (10).

Now, if we modify Eq. (25) by replacing 7z with 7 — z;
before integrating the scalar potential over z; from negative
infinity to positive infinity, while also dividing it by the
circumference 2zR, we arrive at the two-dimensional scalar
potential @,y (x,y):

‘.2
(r +50 o +EO

AcZ
Oaplxy) =0 [ déy. (26)
\/ +&o) (o5 + &)
which holds for a longitudinally uniform beam given by
— o ny7 27
P2p 2700, € (27)

thus reproducing the scalar potential formula presented in
Ref. [15]. Here, 1 represents the line density.

Since Eq. (26) with ¢, = o, is approximated as

Niczo/oo dé,
C4x o (624 &)

when considering small values of x and y, we can
reproduce formula (24) for the incoherent tune shift, which
comes from substituting Eq. (28) into Eq. (17), while also
utilizing the definition of the bunching factor as presented
in Eq. (3).

Emphasizing the crucial role played by the assumption
concerning the line density,

ZCZO

ey, (28)

q)ZD(x’ y)

N
— 671’ , (29)

27no,

Y]

is of paramount importance within this derivation. This
becomes particularly evident when delving into the deri-
vation process for the two-dimensional potential @, (x, y).
In this process, the initial step involves substituting 7 with
Z — z; in the expression for the three-dimensional potential,
as outlined in Eq. (25). Subsequently, integration over z;
spans the entirety of the range from negative infinity to
positive infinity. However, it is noteworthy that due to the
nuanced nature of the mathematical procedure involved, it
is not a perfect match to the aforementioned assumption.
Therefore, the intricate interplay between this assumption
and the sequence of mathematical steps remains pivotal for
the successful completion of the derivation.

B. Evaluating the effects of chamber boundary
with mirror currents

Following Ref. [7], let us solve the Poisson equation in
the laboratory frame:

AD(x,y,z = Byct) = —cZoAd(x = x0)8(y — yp).  (30)

for a coasting beam within a cylindrical chamber with
radius a. The solution, which satisfies ®(x,y, z — f,ct) =
log[(x3 + y3)/a?] being constant on the chamber boundary
with p = a, is expressed as

O(x,y,z—fyct) = Py (x,y.z2—fyct) + Ppy (x,y,2 = fyct),

(31)

where the scalar potential ®,(x, y, z — ff,ct) created by the
source particle and @y, (x, y, z — fyct) due to the boundary
are, respectively, described as

Zy
®,(x.y.2 = fct) == Llogl(x=x0)* + (y=30)%).  (32)
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0D, (x,y,2 — Byct)  cZol (x — xo)
- 2 21° (34)
ox 2z [(x = x0)" + (y = 0)7]

0Dy, (x,y, 7 — Pyct)
ox

azx
_cZyl Q‘%%D (
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In this context, the scalar potential @y, (x,y,z — fect) is
analogous to the potential generated by the mirror current
positioned at [a*xo/(x3 + ¥3), a*yo/(x3 + y3)], effectively
substituting the chamber boundary.

The computation of the contributions to the coherent
Ay, and incoherent Auj ;. tune shifts arising from

35)

sp,coh
the mirror current is performed as follows:

Ay{vr;,cah
_2aR(p) [ & e®pn(x.y.2 = fyctixg. o)
47 ox? mpczﬁfyg
+ 02 e¢lm(x’y,z_ﬁsCt§x0,YO):|
0)60)60 mpczﬂ§y§ x=y=x9=yo=0,z2=p,ct
_ rpNp(By) (36)
270, ’
2 (R
Ayfvrg.incoh
_20R(p,) P @i (x.y.2—fycli%0.y0) »
4w ox? m,c*pryi Ymy—xg=yg=0
(37)

These expressions are derived using Eqs. (16) and (17),
under the assumption stated in Eq. (29). Although Eq. (34)
is not Taylor expanded for small values of (x, y) and
(xg> ¥o), the symmetry ensures that

aZCI)S(x, YV, Z— ﬁxcr;x09 yO)
ox>
82CDS<)C, Y, 2 _:BsCt; X0, yO)
+
0x0x,

=0, (38)

demonstrating no contribution of the direct space-charge
effect to the coherent tune shift. On the other hand,

azq)s (X, Y, Z— ﬂsCt)

2 b
0x x=xo=y=yo=0

(39)

becomes infinite due to the self-energy of the point particle,
consistent with formula (5). Thus, formulas (4) and (5) can
be reproduced by combining Egs. (20), (24), (36), and (37)
in a conventional manner.

In the next section, the coherent and incoherent tune
shifts for a bunched beam within a cylindrical chamber are
addressed more integratively by employing the Green’s
function approach with cylindrical boundary conditions.

III. A SOLUTION TO A POISSON EQUATION
WITHIN A CYLINDRICAL CHAMBER

In this section, we will illustrate the approach to solving
the Poisson equation for an axisymmetric Gaussian
bunched beam within a conductive cylindrical chamber
of radius a. The Poisson equation in the rest frame of the
beam (c7, x,y,z) can be expressed as

I’o PO FP

axz +W+a—22 = —CZ()ﬁp(x, Yy, Z), (40)
where p,(x,y,z) is defined by
(p cos p—r( cos 00)2+(p sin g—rq sin ()“)2
B _ e e 25%
Pp(x,¥,Z) = eNyp(Z) 2o . (41)
and p(z) is given by
_2
23 odk .. i
pE) = = / A itz (42)
271'52 —00 277:

where j is the imaginary unit. Additionally, we introduce
the polar coordinates (p, @, Z) as

X = p cos @, (43)

y=p sin g, (44)
and the center of the bunch on the horizontal plane is given
by (ry cos 6y, rg sin ;).

Let us begin by considering the boundary condition (I)
within the context of a conductive chamber character-
ized by a conductivity of . The thickness of this
chamber is assumed to exceed the skin depth, denoted
as 6 = \/2/(wpoo) = \/2/(kB,Zyo), where o represents
the angular frequency and p, stands for the vacuum’s
magnetic permeability.

In this scenario, we can deduce an approximate relation-
ship for the electromagnetic fields that are proportionate to
ed?=ikz at the boundary defined by p = a as follows:
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1 2
pa-Utdo, [ 2 (45)
2 ¢ WHyo

This outcome arises after solving Maxwell’s equations:
rotE = —jouyH, (46)
rotH = oE, (47)

within the context of a chamber with infinite thickness, as
discussed within the laboratory frame (as referenced
in [13,18]).

We can convert Eq. (45) into its rest-frame equivalent,
resulting in

= (+J) - 2
E.~— }/Sﬂsk\/y”ﬁykzo vsBsE, (48)

This corresponds to the expression:

b(x. v 7)o (| P 00y, D)
D(x,y,7) = Zoo  dp (49)

where ®(x,y,7) represents the scalar potential in the rest
frame. The quantities @ and k, which relate to the angular
frequency and wavelength in the rest frame, respectively,
are linked to their counterparts @ and k in the laboratory
frame as follows:

E=n(k-p2) =5 (51)

Furthermore, when we consider the boundary condition
(II) imposed by a conductive ferromagnetic chamber with
relative permeability 4’ and conductivity o, the relation in
Eq. (45) between the fields in the laboratory frame takes on
a more general form:

w [ ]
E ~——uZy | ——H . 52
z C'u 0 wﬂ/ﬂ()O' 7 ( )

This results in a corresponding relation for the scalar
potential in the rest frame:

Bivau 0®(x,y,7)
JkZOG 0[7 ’

D(x,y.2) = (53)

replacing the earlier Eq. (49). In essence, Eq. (53) can be
seen as a generalized boundary condition, accommodating
both conductive and magnetic boundary walls.

The interplay between this boundary condition and the
Poisson equation constitutes the foundational aspects of the
problem that we will delve into more extensively.

The Green’s function G(7,7), which fulfills the boun-
dary condition stated in Eq. (53) at p = a, is provided
as [19]:

. =\ €,
G(r,7) = Zz—ﬂzcos m(p—¢')
m=0

) w [+
S <; - ﬁsk) =0, (50) X / dAF (p;p')cos[A(z = 2)].  (54)
0
and Here, the function F,,(p;p’) takes the form:
< ’ig " K, (Aa)+K,, (Aa)
K, (2p") - Ly(2') | Ln(2p),  for p' > p,
( ‘jk;SO“Jz 1 (Aa)+1,, (2a )
Fulp:p') = (55)
( ﬂ,kg"ﬁm, (Aa)+K,, ( ﬂa))
. L,(Ap) | 1y(Ap"),  for p' < p.
( 4 /”]*k’lo”ﬁ A, (Aa)+1,, (Aa )
In these expressions, /,,(z) and K,,(z) are the modified G _ B oG 56
Bessel functions [20], the prime of 7},(z) and K}, (z) means (6.3, 2)|pma = 5 (56)

the derivative with respect to z, €,, = 2 — J,,0 Where 9,,, is
the Kronecker-6, and 7 = (p,9,2), 7 = (0, ¢', 7).

Importantly, the Green’s function in Eq. (54) satisfies the
relationship:

jI_CZOG 0p /):u’

which ensures that the solved potential utilizing the Green’s
function adheres to the specified boundary condition.
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Particularly, when the conductivity o is infinite, Eq. (55) simplifies to

[Km(ﬂﬂ') Ifff((ff))lm ]Im (4p), for p' > p, 5
7

| [Kn0) =2 1,00) [ 1,00). for <.

This expression reproduces the Green’s function with a perfectly conductive boundary, which was employed for the
computation of the transverse space-charge impedance in Ref. [21].
The solution to the Poisson equation [Eq. (40)], which satisfies the given boundary condition, can be expressed as

D(p,p.7) = / l‘cicz"e/ 'dp/ dg/ cos m(¢p — go)/ dz/ da

(=\/"5aKs, 0a) + K, ()

x | K,,(Ap) — = / 1,,(2p)
( Gaeir, (/Ia)—f—lm(/la))
(p' cos r/;'—r{] cos 0{])24;(/11 sin 1//—r0 sin 00)2 .]_c_/
207 —JKZ Y
xlm(/lp’)cos[l(Z—Z')}eNhe 5o ezﬂ e
o _ =2 7, A 2z
+/ dkzczoim/ p’dp’/ dp cos m(p — ¢ / dZ/ di
oo — 2 0
m=0 P
3,3,/
—\[HLEIK,, (ha) + K,y (a)
x | Ko Gp) o 1.00)
( BT, (1a) —I—Im(/la))
(p' cos g/ =r( cos 90)2+(p’ sin ¢/ —rq sin 6'0)2 o
) ¢ = e I k252
x I,,(4p) cos[A(z —Z')]eN, Py 2. C (58)
X

using Eq. (54). Here, the upper limit of integration over p’ is denoted as A, based on the assumption that the beam is
primarily confined within the region p < A, and the contribution from the Gaussian distribution’s tail component (p > A) is

negligible in the transverse direction.
In order to carry out the integrations over o/, ¢/, 7/, and A in Eq. (58), we can redefine the function F,,(p; p’) from Eq. (55)

using Bessel functions J,,(x) [20,22], resulting in

ii J émjp ]m(ém,jp/) + ?l%};iém-jlm[ﬂpl]‘];”[afm i] (59)
= @ UnEnja)P | F+E) (248, )1 [ad] B2, )

where the prime in J),(z) denotes the derivative with respect to z. This new expression for F, (p;p’) utilizes the
relationship:

Birin ny
“ (gm pl) jkZ o’ngIm Mp ]J [aém J]
[ dont(Ens) Pt = s VI - (60)
0 mj) (A + & ) (Tylad] = J;fz";/ll’ [all])
In this context, Bessel function J,,(z) satisfies the characteristic property:
a a2 ! 2
0 dppjm (fm,ip)p']m (fm/p) = ? [Jm (fm,ia)] 5ijv (61)

where ag,, ; represents the jth zero of the Bessel function of order m, i.e., J,,(a&, ;) = 0.
The summations over index j in the first and second terms of Eq. (59) are computed as follows:
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in the first term,

/ K, (4a) ’
3 Inenp) In(ens) |Kn(2p) = 52891, 20| 1 3p). for p' > p, )
2 2 2 -
oGl (B + &) |Knp) = 52041,G0) |1, Gp), for p >,

and in the second term,

By -
2 Jk}é’if[ [/Ip ] Z
@ (L [ad] = \/BLEar [ad]) =17

jkZyo
( \//j,\;’;ﬂl(ﬁn (la)+K,, ﬂa))
]m< ) 3.3 Im(/lp/) Im(j-p)5 fOI‘ p/ > p,
( B AL, (Aa)+1,, (M))
(63)

JAZO

ﬂ Vx 1
K, (1a) (_ \/ ikZg O‘AK (2a)+K,,(4a)
) Inld0) = ( \//T ALl (2a)+1, (2 ))
- jkZyo miAd

. ) described by Eq. (57), which is identical to the right-hand side of

L,(Ap) | 1,,(Ap)), for p' <p.

This is due to the fact that the function F,, ’(
Eq. (62), corresponding to the perfectly conductive boundary case, can be transformed into the left-hand side of Eq. (62)

using the following relation:
“ (ém P /)
dppJ (€, - 64
A P0d 1 (EmiP) Fn(p3p) = B+ (64)

Upon substituting Eq. (59) into Eq. (58), the scalar potential can be simplified as follows

- _ 2 [ SN cZge, [N o'r
D(p,p.2) =N Z/O dkz HOZ A p’dp’lm< 020> cos[m(p — 6,)]
= x

m=0
i} )
e k2 N e g J (%Zm]p)

X elNp—— 7 (& AP

a ox [ (Em.ja)]
ﬂ?YVﬂ !
Jm(gm.jpl) + V ikz, aémJ J agmj] (65)
Biriw /_d;n[a/_c])

(1_62 + 53”) (]_62 + é%”)( m[ak] “\ jkzZyo

The integration with respect to ¢’ can be performed using the formula

o P ) p/ Yo
/ dg' cosm(p—¢'le = =2zl ( ) cos[m(p — 6)].
0 Gx

In order to carry out the integration with respect to p’ in Eq. (65), we need to expand the product of the Bessel functions

(66)

for their arguments as follows [22]:
2r):

for the term involving J,,,(&,, ;0" )1, (>

. _1)"52”.+mrm F, |-m—n,—-n,1+m,——3

To m,j 021 4 ’ ’ o“}fﬁl .
J ! I 0oy — 12n+2m o , 67
(& i) m<g§p> Zn:op X4 M m (m + n)! (7)
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and for the term involving 7,,(kp')1,, (;—% P):

L.2n+m .m I
1,,(kp") rU P Z 12n+2m kErgoFy [—m —non 1t m"Tzz} (68)
P p 24 (- n)! ’

where ,F,[a, B, y; z] represents Gaussian hypergeometric function [20,23,24].
Ultimately, we arrive at the following expression:

n=0 j=1 m=0
—jkz 3 J A2
x & eNez”‘ “kHM 2”<(m—|—n)'— {l—l—m—l—n,—z])
a’ o (Emja)]? 207
}’2
1 (=)™ 52"+mro ,F,| [—m -n,1+m, 62 }
Oy m,j
g 2 M tm! (m + n)!
( ém,/
ﬂg?’?ﬂ/ ~J/ . ]_(211+m m B l—m—=n.—n.1 ’_(22
L jkzoggm,] [agm ]] oo 1[ m—n,—n,l +m, a}‘kz] (69)
_ _ 3,3 2n+m Im! |
(B + &) Inlak] = \ 552K [aF) ntmi(m + 1)
This expression is obtained through integration with respect to ¢’, utilizing the relation:
/2 A2
A dpfe A p2 it — o) g 2 <(m +n)! =T [1 +m+n, 22] ) 70
X

where I'[a, z] refers to the incomplete Gamma function [20].

To verify the consistency of the present formalism with the approach based on mirror currents for handling the chamber
boundary, let us consider the limit as ¢, tends to zero and the conductivity ¢ approaches infinity in Eq. (69). In the limit,
Eq. (69) simplifies to

2”6”

e ikz g N Jwmgp) mj
lim  ®(p, .z )_S)t{A dkz ™ cos|m(p — 90)] —eNye me‘Z[Jén(fm, T (1€2+§31,‘,.)}’ (71)

0,—0,0>00

after employing:

| 3 Y
Ghr_n)ozFl {—m—n,—n,l—i—m,—a4 > } = (—04 > ) , (72)
x xXom,j Xom,j
A2
AEEOF{1+m+n 26}4 =0. (73)

The summation over j in Eq. (71) can be further performed as

i 002 =u{ [T

by utilizing

o ke _ K. (k _
" cosfm ¢_90)]e_we,vhe-%k20zi[Km(kp)_ n(ka) 1m<kp>]}’ &
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0

>

J:1

m

Jm ém]p m,j _
Jﬁn é:mj } (k2 +§3n,])

which is derived from Eq. (62) for p > p’ after taking a
limit for infinitesimal p’.

Finally, adhering to the methodology elucidated in
Sec. II for obtaining the scalar potential of a coasting
beam, we perform the integration of Eq. (74) with respect to
z; over the range from negative infinity to positive infinity.
|

(75)

This process entails substituting zZ with zZ — z; in Eq. (74)
and subsequently dividing the outcome by the circum-
ference 2zR following the transformation of the scalar
potential from the rest frame to the laboratory frame. The
outcome is the two-dimensional scalar potential ®,p(x, y)
in the laboratory frame:

Vs
Dyp(x.y) = HlorgmzﬂR/ dzi®lp, 9.7,z = 2;)]
= d ;D
oy —>0r(171—>oo 2zR < (,0 92 )
Nz
=57 / dz; %{ / de ™ cos [m(gp — 6y)]
ST (3 17 k ri - K (I_CCZ) -
—Jks(z-2) e Ko’ —om
XTI eN e [K'"("”) 1, (ka) ""("’”H
z¢Zy, [p] | 52¢Zyg~cos[m(p —60)] [(ro\™ _ (ror\"
= —1%00g|2| +7 o) (22, 76
z e [a] i T ; 2m P a’ (76)
5 ¢Zo a’ 5¢Zy [(x = x0)* + (y = ¥0)’]
=—A-—log| 5| —4A——log . (77)
2z (x5 + ¥5) 2r a’y,

where 1 represents the line density. Here, we employ the
relation:

a™ cos(m@)

= 1
Z = —Zlog[l + a® —2a cos(0)],

m=1

2m (78)

to perform the summation over m in Eq. (76).

Ultimately, we can establish that Eq. (77) is equivalent to
Eq. (31) obtained using a mirror current, except for a
constant term related to the derivative of x (the first term in
Eq. (77)). This additional term guarantees that @, (x, y) =
0 at the chamber boundary surface, where p = a.

Having confirmed the consistency of the current for-
malism with the mirror currents approach, the following
subsections will involve the computation of both coherent
and incoherent tune shifts for a bunched beam constrained
within a conductive cylindrical chamber, starting with
Eq. (69). Subsequently, we will assess the consistency of
these results by comparing them with previous findings.
Furthermore, we will explore the influence of material
properties on these tune shifts.

011

a XO 2 2 2 ’
[(x - ‘<x3+y3>) + (y B <x3+y§>> }

A. Coherent tune shift

To calculate the horizontal coherent tune shift, we

evaluate:
P D(p,p,7)  PD(p,p.2)
axz a)C()aX ¢:00,p=r0=0.2=0
_ <a2<i><”(p, 9.7)  0*0W(p.g.2) >
axz ()xodx p=0y.,p=r,=0,2=0
<02<i><2) (p.9.2) PP (p.p.2) >
+ 3 '

ox ()xodx @=0y.p=r,=0,2=0

(79)

utilizing Eq. (69) after applying synthetic differential for
the equation. Consequently, only m = 0 and m = 1 terms
in Eq. (69) are retained in the calculation. Here, the first
term corresponding to the perfectly conductive chamber,
and the second term accounting for correction terms due
to the chamber’s material properties, are, respectively,
defined as
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0V (p.¢.2) 7OV (p.9.2)
ox? 0x(0x

and

FO(p,¢.2) PO (p,9.2)
ox? 0x(0x

k22 rf,(

¢=0p.p=ry=0,2=0

22
50

Jl 50/ \/i
eN cZ £ na g &1,0;
b UZ Jll 15110) { V2 } (80)

9=00.p=ry=07=0

Birin
50 ]J/ 6150 j]

N.cZ, © e e
=0 - ”2"20/ dk——
2nca” Jo (Io[ak}—

_lp252 "x

jkZyo =
/}‘y”kll[ )Z kz‘f’éo,)[‘]/(gO] )]

jkZyo

J=1

N Z o _ e 2 e 0
1 e bZC 20 / dk JkZoa Z
2” a 0 7 _ ﬁxy:ﬂ kI/ ak > =

(11 [ak]

In the derivation, we assume A > 20, and utilize Eq. (73),

the formulas:

2

) b} ’0 F%
lim — xro 0T [—m—n, -n,1 +m’X =0m1-

(82)
JF [-m—n,—n,1+m,0] =1, (83)
e e@nErfc [5”’—/6}
JAr—— Pl e
o (+&) 2.

as well as the complementary error function Erfc[x] [20],
defined as

Bricl = - / (85)

Notably, Eq. (81) approaches zero for infinite conductivity
O.

The summation over j in the correction term of Eq. (81)
can be executed by employing the formulas

= &, K*a
—, 86
;J (Go,a)(C+8,) 2y (ka) (86)

and

8
bl
Q

2
1

— (& ja) (R + &)

- s

ENTAE: >]1 (51

|
Equation (86) is derived by taking a derivative of

al,(kp)
" 21,(ka)’ (88)

i‘lm(ém,jp> _ gm,j _
=1 J;n(fm,ja) (k2 + ggn,j)
which originates from Eq. (63), with respect to p for m = 0
when p is infinitesimally small. Meanwhile, Eq. (87) is
obtained from Eq. (88) for m =1 when p is infinitesi-
mally small.

As a result, Eq. (81) is further simplified as

PO (p.p.7) POV (p.¢.2)
ox? 0x(0x

@=00,p=rp=0,2=0

R
Re—ka+— By

g cZOer/ Jk : jkZyo
0 Io(ka)

4n* a (rolak] - /552Ky a])
72 iR R
-5+~ [Psrsi
ZZO er/ dl_c . k-e ~_ ? jkZyo
7 a Jo Il(ka)(ll[ak]— g, [ak})
(89)

The formulation that incorporates the zeros of the Bessel
function in Eq. (80) can be understood as a method of
replacing the boundary condition by utilizing the super-
position of image currents at positions ¢, ja along the
radial direction for the bunched beam [19]. This approach is
advantageous for conducting analytical calculations. Even
within the context of Eq. (89) dealing with the correction
effects, the expansion of these terms related to the zeros of
Bessel functions will play a crucial role in the analysis
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when we make approximations to assess their impact on the
coherent and incoherent tune shifts.

The contribution stemming from the direct space-charge
effect is isolated from Eq. (80) by considering a limit as the
chamber radius a tends toward infinity. In this scenario, the
summation over j is substituted with an integration over x
as shown below:

PdW(p,p.2) PV (p,¢,2)
ox? 0x(0x

@p=0,,p=rq=0,z=0

(&) Z x252 xz.’fz
= —/ dx%erxze = e 7 Erfc {xa ]
0

m V2
[+S) Z, )Zuz vzzrz O
+A dx%erxze — e Erfc k}}] =0, (90)

where we make use of the fact that the zeros &, ;a of the
Bessel function and J;,(&, ;a) approach the following
values [20,22]:

mnr  3rx
tfm,ja =—++

> 4+(] m—1)z, forj>1,

and m >0,

(1)

! _ 2 _ Jj—m
’"1(‘5’"-1“’)‘W%%w—m—l)n)( v e

for large a.

An interesting observation is that the cancellation occurs
between the first and second terms in Eq. (80), indicating
the disappearance of the coherent tune shift due to the direct
space-charge effect. This finding aligns with the discussion
in Sec. II and reproduces the absence of direct space-charge
contribution in Egs. (1) and (4).

Upon substituting Eq. (80) into Eq. (18), we arrive at a
more precise expression for the coherent tune shift Avs‘]D)’CO i
of an axisymmetric Gaussian beam within a perfectly
conductive cylindrical chamber. This expression is ulti-
mately given by

A0 RNy
sp,coh 2l/T 0a3ﬂsys
<:o, >2</§ 2-62)
(oa) Erfc [4( \/E)a 6’]

XZ

76 (S0,5a))?

(&9 w -o2) o
~ (&1 a)e Erfc [%}
V' (&1 ja))?

(93)

The expression in Eq. (93) sheds light on the critical
dependence of Lorentz-f5, and —y, on the tune shift through

beam parameters (o.,0,). This stands in contrast to
formula (4).

In the case of a typical relativistic beam, where

Vs z
> 1, 94
v (94)
Eq. (93) can be further simplified to
N,)R
Ayi;),cr)h == T (nb b)

277'7/T,0a2 (nb;/ﬂ-%ﬂ )ﬁYYS‘

(5()‘]'0)25)2[ (51,]'14)20,2[
- e e 22

x - . (95)
; [J(/)(fo,ja)]z [Jﬁ(gl,ja)}z

This simplification arises from the utilization of the
approximation

¢ Erfc[x] ~ %, (96)

X

for x > 1.

Equation (95) evidently exhibits a proportional relation-
ship with 1/42y3, which is consistent with formula (4).
Moreover, Eq. (95) approaches formula (4) for the infini-
tesimal o,. In the reproduction, a sophisticated procedure is
employed, utilizing

d = 50 ]p = 50 ]p 612
dp z:: Jo(& 250 J ; 501 2’
(97)

which is derived after applying Eq. (75) at the limit of
k=0 for m =0, and

= Ji(& JP (az_pz) 98
ZJ 51; 51] 2p ’ ( )

J=1

which is obtained after applying the expression for m = 1
and then taking the summation of Eqs. (97) and (98) before
taking a limit as p becomes zero.

However, in order to rigorously account for the Lorentz-
p, and -y, dependence during the acceleration process, it
becomes necessary to consider the adiabatic damping
effects on both the transverse bunch size and the bunch
length. Consequently, we introduce normalized transverse
emittance ey and longitudinal emittance J;, to represent o,
and bunch length o, respectively, as follows [9]:

€N<ﬂx>

. 99
Bsrs ©9)

O, =
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2RI olnle \: 8RR J3 |1 i
o, = -—_— = s
¢ SFsVsom ¢t/ e hyV cos dsm,c?/e

(100)
where vy, denotes the synchrotron tune:
1 [h|n|V cos ¢,
50 :/ZHM’ (101)
and 5 represents the slippage factor:
n=a- yiz (102)

Here, a signifies the momentum compaction factor, A
stands for the harmonic number, ¢, is the synchronous
phase, and V corresponds to the acceleration voltage.

We will now perform a detailed comparison between
Egs. (1), (4), (93), and (95) (after substituting #;, = 0)
across different parameter regions. In Fig. 1, we can
observe the pattern of ramping over a 20-ms interval for
both the synchronous phase ¢, and the acceleration voltage
V, which are typical parameters implemented into the
Rapid Cycling Synchrotron in J-PARC [25]. Meanwhile,
the corresponding representation of Lorentz-f, and -y,
during the acceleration is depicted in Fig. 2. This scenario
involves a proton beam with a normalized transverse
emittance of ey =2 x 107 m, a total of two bunches, a
harmonic number of & =2, an average transverse beta
function of (f,) =8.58 m, an accelerator radius of
R =554 m, the chamber radius is a = 0.145 m, the
nominal tune is vy = 6.45, and the momentum compac-
tion factor is @ = 0.0124619.

‘ ----- acceleration voltage‘

‘ —synchronous phase‘

50 500

40 400
30 300
20 200

10 100

Synchronous phase [deg]
[A]ebeyjon uonelsjeooy

t[ms]

FIG. 1. The synchronous phase ¢, (red) and the acceleration
voltage V (blue) for the pattern of ramping. The left and right axes
denote the scales for ¢; and V, respectively.

_/35 _____ V

0.95
0.9
«* 0.85
0.8

0.75

0.7

FIG. 2. The changes in Lorentz-f, (red) and -y, (blue) through-
out the acceleration phase. The left and right axes denote the
scales for S, and y,, respectively.

In the left panel in Fig. 3, the space-charge tune shifts are
displayed for a bunch with a normalized longitudinal
emittance of V;, = 3.4545 Vs, containing a total of N;, =
4.15 x 10" particles. The lines in different colors, namely
green dashed (Laslett), black dot with “x” (Zétter), red
solid with “o” (rigorous), and blue dashed with “[1”
(approximate), correspond to the results derived from
Egs. (1), (4), (93), and (95), respectively. The middle
and right panels display the variation of the left-hand side
(nys0,/v/2a) of Eq. (94) and (f2y2B) as they relate to
different Lorentz-f, values.

As observed in the middle and right panels, the results
pertain to a scenario characterized by a relativistic and
elongated bunch. The approximate formula (95) aligns well
with the rigorous formula (93) thanks to the relativistic
approximation. Meanwhile, formula (4) provides a good
approximation to the precise results as it is derived based on
the assumption of a coasting beam. Consequently, all
outcomes are in good agreement, except for the result
obtained using formula (1) for a thin chamber, which
deviates significantly from formula (4) for a thick chamber
because (B%y2B) is notably larger than 1.

Figure 4 deals with shorter bunch cases with
N, = 2.075 x 10'2. The middle and right panels display
the variation of the left-hand side (zy0./ V2a) of Eq. (94)
and (B%y2B) through alterations in the longitudinal emit-
tance J;o. On the left panel, we present the space-charge
tune shifts for various values, as seen in the middle and
right panels of Fig. 4. In the graphs, the dot with “¢”
(Zotter), solid (rigorous), and dashed marked with “o”
(approximation) lines represent calculations based on
Egs. (4), (93), and (95), respectively. The colors used in
all panels correspond to the same conditions used for
calculating the space-charge tune shifts. As demonstrated
in the right panel, 1 + 2y2B is close to 1. Therefore, in this
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0 1400 6 . . . . .
1300 5! |
—0.005
1200
< © 41 ]
g £ 1100
_ 8-001 L ~a3
=) “ & B
>
3 1000 T
21 ]
-0.015 900
800 k 11 E
—-0.02 700 0 . L L . .
0.7 0.75 0.8 085 0.9 095 1 0.7 0.75 0.8 0.85 09 095 1 0.7 0.75 0.8 0.85 09 095 1
ﬁs ﬁs ﬁs
FIG. 3. On the left side, we present the space charge tune shifts. The lines in green dashed (Laslett), black dot with <’ (Zétter), red

solid with ‘o’ (rigorous), and blue dashed with ‘[J° (approximate) correspond to Egs. (1), (4), (93), and (95), respectively. The middle
and right panels display the variation of the left-hand side of Eq. (94) and (52y2B) as they relate to different Lorentz-f3, values.

case, the results from Eq. (1) (Laslett) are omitted since
they closely overlap with the results from Eq. (4).

Once again, it is noteworthy that the dashed lines,
denoted by ‘“o” and derived from Eq. (95), provide
a suitable approximation to the rigorous results obtai-
ned from Eq. (93), especially when the left-hand side
(nys0,/v/2a) of Eq. (94) increases in magnitude. This
observation is evident in the black solid line and the black

|

9
[¢]

dashed line marked with “o”. The overlap of the approxi-
mate results calculated by Eqgs. (4) and (95), facilitated by
the product of o, in formula (93), is apparent for all cases.
However, they exhibit significant deviations from the
rigorous results (solid lines) for nonrelativistic shorter
bunch cases, as indicated by the red and blue lines.

The ratio R, defined as the exact formula (93) divided
by formula (95),

j=1

Oy ysaz
Ryl x = ,Z = =7z
0 ( V2a ﬁa) va

provides a useful guideline to judge whether the relativistic or
coasting approximation is suitable to describe the coherent
tune shift. Let us investigate the behavior of Ry (x, z) along

7=y,0,/ \/2a for various normalized transverse beam sizes

0 |:(§o_/u)6@0'/'”)2(72"‘2>Erfc[(§o__/-a)z] <‘flJ“)f(é"ja)z(zz_xz)Erfc[(gl_ja)z]
oG ) ~ V&P }
© |:e'(50-/“>2"2 B e_@‘v/")zxzi| ’ (103)
J=H GG @) ) (Eja)P

x, as shown in Fig. 5. The lines in red with “o”, blue
dashed with “[J”, black dot with “¢”, green dot with “x”,
and purple solid with “x” correspond to the cases of

x(= 6,/v/2a) = 0.028, 0.056, 0.085, 0.113, and 0.141,

0.035
0.03 1
0.025 1
& 0.02f 1
NAW
1 "@» 0.015 1
0.01+ 1
\_//J 0.005»—_—’”// 1
—r—l——l//
-0.5 1 74 1 1 1 0 ! ! ! ! ! 0 T !
0.7 0.75 0.8 085 09 095 1 0.7 0.75 0.8 0.85 0.9 095 1 0.7 0.75 0.8 0.85 0.9 095 1
B, B B
S S

FIG. 4. On the left panel, we present the space-charge tune shifts for various values on the left-hand side of Eq. (94) (middle), using
a total particle count of N, = 2.075 x 10'2, where the dot with “o” (Zétter), solid (rigorous), and dashed marked with “o”
(approximation) lines represent calculations made using Eqgs. (4), (93), and (95), respectively. The right panel shows (2y2B) for various
values corresponding to the condition in the middle panel. The colors used in all panels correspond to the same conditions employed for
calculating the space-charge tune shifts.

011001-14



CALCULATION OF SPACE-CHARGE TUNE SHIFT ...

PHYS. REV. ACCEL. BEAMS 27, 011001 (2024)

1.1

o
©

0

R (x,2)
o
2]

0.6

0 5 10 15 20
z=ysaz/\/23

FIG. 5. The variation of function Ry(x, z) along z. The lines in
red with “o”, blue dashed with “[J”, black dot with “¢”, green dot
with “x” and purple solid with “x” correspond to the cases of

x(= x/ﬁa) = 0.028, 0.056, 0.085, 0.113, and 0.141, respec-
tively.

respectively. All results almost overlap, demonstrating
that the beam size dependence of the tune shift is negligible.
The results reveal that if the condition:

YS Z>5

V2a"~

is satisfied, the approximate formula (95) or the conventional
formula (4) well approximates the exact results. Meanwhile,
for a nonrelativistic short bunch case that does not satisfy the

(104)

AP

condition, the conventional formula (4) or the approximate
formula (95) may overestimate the coherent tune shift,
consistent with the results shown in Fig. 4.

In the context of the conductive chamber, there exists an
additional factor stemming from &) that could potentially
influence the tune shift. This particular contribution can be
described after substituting Eq. (89) into (18), such as

r,N,R?

J L A i
2urgma ?7?

sp,coh

Ao Ra-a) 2

) /0 i [ﬁzo(im)ao(/}a) — AV (ka))

Ae K (riot-al) 2
I i —— ] (105)
VI, (ka) (I, (ka) — AV (ka))
where the parameter A is given by
3,3,/
R ety (106)
20J6

In the scenario of a typical conductive material, where

3,,3,,/
Birsm <1,

- LALa— 107
Zyo(rio; — 03): o7

the terms proportional to A in the denominators of
Eq. (105) can be disregarded. Consequently, Eq. (105)
can be approximated as follows:

2
__ TR /
oo = 2 gmafi? Jo

rprR2

Ae-Hotiat-a) ;;%]

? /‘«a) T Pka)

P 2P

roNRTE] By

I/T,Oﬂa3ﬂ.sy.s 2Z060-z (1 —

1.9
[ a224
=
y?a a( 4

2?7)% 2I/T0ﬂ'a%ﬁsys 220661
r50z

2 (262 _52

. (2e2-o2)
- 212,(3o2=c2)\ ok 1 J(riei—o3)
V]Ok(s ) oo | -4 i)

XZ

yioli—c

|:_( 24\/_) +\/‘]T(5+211k<7’s5 %))eT

2J3 ok

2022 2
I 5oz =0%)

2 —62
)

Here, we use the following integral expressions:

22 2
(rso7=0%) »

* (108)
2JO{Jlk]
e I N .
dZ:/ dZe 2:12 ZZE— / dZ y -
/) 15() 0 kz:; 0 (2% + Jo) >3 Lok
a g 272 (yio?—o? M 2 (26202
@2iT ® _](ﬁ_ jOk(S—i-%)e 242 F[_‘_l*’]()k(y‘zai )})
= o Z : (109)
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<ya—a>2

— 52 Z4
(J1k+z 2]2[Jlk]

(SN}

(7202_62)

and
132D 5 4
© e 22 ° 72 o (ro2- "2 .
dzi—/ dze 2 124 22 )+ /
I e >
I\E
2a 1+—< Sl e *](‘
e el 1S
(}/so- _O-x k=1

through Egs. (B1) and (B2). In these equations, j,.(=
¢nia) represents the zeros of Bessel functions J,, [x]. It is
notable that the leading-order term in Eq. (108) is naturally
proportional to 1/, after the cancellation between the first

and second terms in Eq. (105) is performed. Similar to the
(1)

sp,coh’
zeros of Bessel functions, which corresponds to the super-
position of the image currents. The proof for the expansion
formulas (B1) and (B2) with respect to the zeros of Bessel
functions is given in Appendix B.

Equation (108) can be further simplified in the context of
relativistic conditions, specifically when

m(yio? — o2)

calculation of v this formula is expanded using the

> 1, 111
2a? (1)
leading to the following expression:
9
Al/(2> _ rPNsz ﬂs:u/ 241—‘[%] (1 12)
sp,coh — 3 27 >\ 1’
Urora B 000, (] — ;7)»2)4
}/SGZ
0
-0.002
-0.004
§
5—0.006
>tr)
<
—-0.008
-0.01
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S

FIG. 6. Space-charge tune shifts, featuring the black dot line
with “¢” and the blue dashed line with “o” representing Egs. (4)
and (93), respectively. The red solid line corresponds to the
outcomes derived from Eq. (93) when considering the impact

of Eq. (112).

7 a - 272 (y262—c2 /”( $0;—0%
22‘;\_/;%)%+\/m(5+ /1;‘(ya2A ))e 2 F[_}pj”\(yzaz ):|>
2J5] ’
(110)
|
where the expansion formulas
1 1
eT|——, x| ~—, (113)
4 X4

are employed for large x. Notably, the dominant term that
scales with 1/y, remains significant in Eq. (112), even
under the relativistic condition indicated by Eq. (111).

Now, let us examine the impact of the contribution from
Eq. (112) on the space-charge tune shift using the same set
of parameters that led to the results in Fig. 3. Additionally,
we consider a relative permeability 4’ = 1 and a conduc-
tivity of 6 = 1.35 x 10° S/m. The outcomes are illustrated
in Fig. 6, where the black dot line with “¢” and the
blue dashed line with “o” represent Eqs. (4) and (93),
respectively.

The red solid line represents the outcomes obtained
using Eq. (93), which encompasses the influence of
Eq. (112). A close alignment between the red solid line
and the blue dashed line with “o” is observed, indicating
that the impact stemming from Eq. (112) holds little
significance, when we neglect the wakefield effects from
previous bunches in the accelerator [13].

It becomes apparent that the contribution arising from
Eq. (112) does not carry significant weight, primarily due
to the elevated conductivity o. This implies that the
Lorentz-y, dependency present in Eq. (112) does not hold
a prominent role in determining the space-charge tune
shifts, even when the material of the chamber is taken into
account. In other words, the conventional formula (4) is
applicable regardless of the chamber material as long as the
condition (104) is satisfied.

B. Incoherent tune shift

In this section, our attention turns to the incoherent tune
shift, followed by a revisit to Eq. (69). Under the approxi-
mation of A > 2¢, and assuming r, = 0, we calculate the
second derivative of Eq. (69) for x after applying synthetic
differential. In this particular scenario, only the term with
m = 0 remains, leading to the following expression:
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azq_)(P» ®,7) a2¢1(n(2 a2q>fng (1 14)
0x? pry=0 o pry=0 o prg=0
where

ach( ) 7~ eN e 260]0\ B _1z2 5 ]_C -

TS R [T et (19
ox* |, —o n* 24> [T5(80 ja (k> + 50,])
az(Dl(n(z - —N %y%”/ CZ()er B d]_( l_(2€_j]_<ze__k2<62 6)2() (1 16)
T o jZoo  4n’a ) Vil (F 7 Brdzr ) [
o k1o (ka) (10 (ak] — /B2 RE, [ak])

after Eqs. (73) and (86) are applied.

It is important to note that Eqgs. (115) and (116) in Eq. (114), which pertain to the incoherent tune shifts, differ from
Egs. (80) and (89) in Eq. (79), respectively, as the latter deals with coherent tune shifts.

The expression for the incoherent tune shift Ay ,, in the context of a perfectly conductive chamber is finally given by

sp.inco
. : G [t
AV rpNoR > (60,j)° ——f?;é'“) ® dF (117)
sp.incoh 3 J, ]_(2 '
Urora ﬂs}/s j=1 50/ 0 ( +§0,ja )
after substituting (115) into (19). In this expression, we utilize Eq. (6) and the integral representation:
(emja) 7302 P22
AZ@G% . (_1>ke 27 ( )2k (glﬂj )Zk 11—*[ +k]r |:] k, <5/" /202/X i| _
© e 2 cos[AZ] 2o 300 , forz#0,
o TETE ) T Gweran (118)
" eT Erfc |:(5nz.f‘/‘i)7.x-dzi|
2a f - 0
2(&,,a) P or z = 0U.

To examine the contribution of the direct space effect in the incoherent tune shift, we consider the limit of an infinite
radius a in Eq. (117), taking into account Egs. (91), (92), and (118). As a result, Eq. (117) is replaced by

Al/(])- = . NbR /00 dxx e :a~2 /oo dll e_%izy%ﬂg COS[;L]/A' (Z _ﬂsCZ)]
0

sp,incoh 21/ 07104/}5“ (/12 + Zé)
% 2 2 2Vkd
=— rprRz . (=75 (z = Pyct)”) T[5 + k] /oo dxxzkxze_(q%_éa%)xzr‘ {1 _k xzygog}
k=0 4I/T,0” sVs (2k)! 0 2 2
2 3 5 o3
L NR e S R (e PTRERR Lk kL
ZVZﬂUTOﬁAny Gx k= ()\/_VTO7T : 5 3 (Zk)‘ O-gk(3+2k) '
(119)
In the derivation, we employ the relationships:
k 3 ;
oo [1 22 o 20 2WE R L34 ekl -]
dxx r k, , (120)
0 2 ] Vasthe V2T + K]
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0 ) ok 2
Z [ +k} = #ym  (121)
k=

Consequently, we determine the incoherent tune shift for
relativistic beams due to the direct space-charge effect,
yielding

Rn,N, r 1 _lepser?
ALY L= —e 7 . (122)
sp,inco 27Z'l/T_() (nbga )ﬂz 3 20'x

This equation replicates Eq. (5) because of B~ B, by
substituting fct in place of z. It is important to highlight
|

that even though Eq. (5) was originally derived with the
assumption of a coasting beam, and subsequently applied
to a bunched beam, the current formalism reproduces
the identical result by directly considering the bunched
beam from the beginning. As a result, we can clearly
observe the longitudinal dependence of the tune shift,
which follows a Gaussian pattern corresponding to the
beam’s shape.

Let us proceed by approximating Eq. (117), which
already accounts for both the direct and indirect space-
charge effects, particularly focusing on the scenario where
y?6? > 2a4*. This approximation yields the following
expression:

2 2
17.275%

aﬁ(:ovjaﬂ o _e X2 cos[kyf( ﬁyct)]
A (k2+§0,j %)

(123)

2 (¢
Al/(]) L= r,NyR Z 501 =
sp.inco 3
l/TOn'a ﬁsij 1 JO 50]
_Gpsen)? 72 (& ja)
402 - 2
- rp(nbNb)R e z Z e 24
- 2 ! ’
271'1/710 (nbgaz) 3}/3 a j=1 [JO (50 ja)]

which is proportional to 1/2y3. In the above derivation, we
utilize the relationship
ma

/ dke” ;kzy:ﬂ cos {]_Cys(z_ﬂsct)} _¢
° “ Var.0.

Equation (123) becomes infinite for infinitesimal o,
consistent with the result obtained in the conventional
manner at the end of Sec. II B and in formula (5).
Currently, let us center our attention on the approximate
outcome derived solely from Eq. (123), specifically
addressing a relativistic longer pulse beam as an illustrative
example. In essence, this result will be juxtaposed with

_(z=Bs cr)?

(124)

Eq. (5), wherein only the direct space-charge effect comes
into play.

The left panel of Fig. 7 illustrates the computed results by
Egs. (5) (green dashed) and (123) (red solid) under the same
conditions used for generating the outcomes in Fig. 3. The
red solid lines in the middle and right panels depict the
transverse root mean square beam size and y,o,/ V2 during
the ramping time, respectively. The black dot lines in the
panels refer to the chamber radius a for reference. Since the
right panel demonstrates 7,6, /1/2 > a, the formula (123) is
validated in the present example. It is worth noting that there
is a numerically significant agreement between Egs. (5) and
(123) in the left panel when taking into account the provided
transverse beam size shown in the middle panel.

0 O — 70
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FIG. 7.

B

)

B

s

Incoherent tune shifts (left), where the green dashed and red solid lines represent Eqs. (5) (conventional) and (123) (present

formula), respectively. The transverse root mean square beam size (middle) and y,6,/+/2 (right) are denoted by the red lines, where the

black dot line refers to the chamber radius a for reference.
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FIG. 8. The variation of function R(x, z) along z. The lines in
red with “o”, blue dashed with “[J”, black dot with “¢”, green
dot with “x”, and purple solid with “x” correspond to the cases
of x(= x/\fa) = 0.028, 0.056, 0.085, 0.113, and 0.141,
respectively.

From a purely mathematical perspective, Eq. (123)
suggests that the chamber could potentially affect the
incoherent tune shift when the beam size is comparable
to the chamber radius. However, the beam size must be
significantly smaller than the chamber radius to render the
Gaussian tail negligible, as discussed earlier. Consequently,
when dealing with a Gaussian beam for a relativistic or
longer pulse beam, the contribution from the indirect space
effect generally becomes negligible in the incoherent space
tune shift for a cylindrical chamber.

On the other hand, the relativistic or coasting beam
approximation may lead to deviations of the conventional
results from the rigorous ones for nonrelativistic shorter
pulse beams. Hence, let us now calculate the ratio of
Eqgs. (117) with z = f,ct to Eq. (123), defined as

: (x = Zz= @)
\/za ' \/E a
o (& -a)e7<"2*22)(50,/-1x)2
P e Bl

Vrz

(125)

w0 '

J=1 5 (Goa)

and investigate its behavior along z for fixed x, following a
similar approach as in the coherent case. Figure 8 shows the
results for the same set of parameters in Fig. 5, where the
lines in red with “o”, blue dashed with “[]”, black dot with
“o”, green dot Wlth “x”, and purple solid with “x”

correspond to the cases of x(— 6,/v2a) = 0.028, 0.056,
0.085, 0.113, and 0.141, respectively.

Similar to the coherent tune shift, the condition (104)
acts as a reliable criterion for utilizing both the conventional
formula (5) and the approximate one (123) to judge
whether they well approximate the exact formula (117).
For a nonrelativistic short bunch case that does not satisfy
the condition, the conventional formula (5) or the approxi-
mate formula (123) may slightly overestimate the incoher-
ent tune shift by around 10% for a beam with a broader
transverse beam size, such as o,/ ﬂa = 0.141, due to the
effect of the chamber boundary.

Overall, the comparison between Figs. 5 and 8 illustrates
that the influence of y,o, on the deviation of the conven-
tional formula (5) from the rigorous results in (117) is
relatively minor compared to the case of the coherent tune
shift. However, the dependence on the transverse beam size
is more pronounced in the incoherent tune shift.

The contribution arising from the second term of
Eq. (114) attributed to the chamber material, as given by
Eq. (116), can be approximated in the following manner:

_ N i)

azq)l(nc) R ﬁx 7/3// cZyeN,, / dk kateikaie™ 22 14

o2 -7 a——— -
ox" |y = §Zoo 4n2a’ar Jo */kalo(ka)<10[ak} _ /;;{;2;;“/ [akD
oo 3,31 7 \24n = g

O ﬁsysﬂ CZOeNh( J ) /°° d(/_ca) (k(l) e 2l

o 0 iZoo  4ma*an! Jo Vkal}(ka)

i v22 \'TpPgn
3 ' ¢ZyeN,2: i’: ( J (frz—ai)) TG +3] % By cZyeN), & Z [5 +3]
JZOU 4nta(52 — 62)i 4= n! ) iZyo 872d2ar
24+2a2+" 2+n /01((6- }) -%ﬁ”%{”?) 1 n /Ok(ag_"%)
= [— SFE T (5+2”+ 2 )e a F[‘Z‘TTH
s (126

=1 J3jow]
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This is obtained by utilizing the following relation:

@) | 2(62=02)
S Zn+2 2 202 +3 —Z 4Zn+ze zZ 2
0 212(2) 0 @+ 7303 jod]

24+2 a3 4 +

2

2yt

2
o TE+1] [— 2 | (5-+2n+ 250 6‘))6%7(F[—%—%,jﬂk e

Z 23 jok]

(5 _0 k=1

alongside Eq. (B1). Notably, it is evident that Eq. (127) reproduces (109) when substituting n = 0 into it.
In the case of

(57 = o3)

2d2 > 1,
a

since we can apply for the expansion formulas:

1 1 n
e'r [—Z —g,x} ~ Zx_%_i(—S —2n + 4x),

for x > 1, consistent with Eq. (113) in the case of n = 0, Eq. (126) is approximated as

V22 s | ow
PO gl [Bre cZeeN,2 2"’:( J <a§-m%>) TG+
a2 p=ro=0 jZyo 4n%a (5 — 6}2& 2 Y
1 —1 \/. "
R ﬂsys,"t CZoer2Za i( J (6'?—0')()) (5+2n) [ +2]
‘ Zyo 167[2(53—0/%)% g n! s
where we use
oo 1 1

k=1 ]gk‘l% [jOk] 8

obtained by after taking a limit of z to zero in Eq. (B1).
After summing up n in Eq. (130), Eq. (130) is equal to

PP, piyiu LoeN b24( al 1[4 5"2@?—«:&)} _ﬁff—})rﬁh}:l [%’%"z@?—g@])
o |0\ 20 162%a(52 — o)}

393 cZyeN,2i 9 1 72 907> [l 13 3
— ﬂ‘;%/«l CooelNpoid 3 SOF 1 1 — T, _2Z 5 ) < B ri- 1F1 T A —
2Zyo 51277:2(5% —0)26)Z 4 4°2° 2(67 - o3) (67 —03) |4 42 z

_84\/§Z répﬂl_ 22 _210\/521"%1:2%_ 22
62-02) 4]V 1472 2(62-03) @2-0) [4]"'4°2 2@2-o)])

where we use
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and | F[a, b, z] represents Kummezr's confluent hypergeometric function [20,24].
Finally, the correction term Al/i p)’l.nwh owing to the conductive chamber material is described as

AL 2Rr N P

sp.ncoh — 3 5
8ravy ofsyso:(1 — 03}/2)4 2Zyo0,

s

for relativistic or longer bunched beams, after substituting
Eq. (132) into (19). Differently from Eq. (112) in the
coherent tune shift case, Eq. (135) is proportional to 1/y3
rather than 1/y,. The longitudinal distribution of correction

_xz} ,

(136)

term Augmwh is characterized by the function:

51 3 73
:|_6r|:1:|X1F1 |:Z,5,

£) :FH F, [1,5,-;&

which is shown in Fig. 9 whose longitudinal shape is
asymmetric owing to the resistive wall effect.

Finally, let us perform a quantitative assessment of the
impact due to the chamber material on the incoherent
space-charge tune shift. Figure 10 presents a comparison
between Eqs. (5) and (123) without the inclusion of
Eq. (135), as well as the case when Eq. (135) is considered

-2

-4

4 2 0 2 4

FIG. 9. Longitudinal distribution of function f(x).

alongside (123). The red dashed “o”, and black solid “¢”
lines correspond to formula (123) without and with the
correction term (135), respectively. The green dot “A”
line denotes the result by Eq. (5) for reference. This
analysis is carried out under the same conditions used
to produce the results in Fig. 7, and the utilization of
Eq. (135) is justified since Eq. (128) is satisfied, as
evidenced by the outcomes in the middle and right panels
of Fig. 7. It is evident that the red dashed “o”, black solid
“o”, and green dot “A” lines bear a strong resemblance
to each other. This observation underscores that the
material properties have minimal influence on the inco-
herent tune shift.

-0.7
0.7 0.75 0.8 0.85 0.9 0.95 1
B

S

FIG. 10. Incoherent tune shifts: the green dot “A”, the red
dashed “o”, and the black solid “¢” lines represent Eq. (5),
Eq. (123) without Eq. (135), and Eq. (123) combined with
Eq. (135), respectively.
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IV. SUMMARY

The formulations used in previous studies to describe
the tune shifts for a relativistic bunched beam were
constructed based on the assumption of mirror currents
for a coasting beam to address the chamber wall effects and
then extended to the case in a somewhat intuitive manner
by introducing the bunching factor. The validity of this
conventional formalism has to be established more rigor-
ously. In this paper, by employing the formalism of the
Green function, which accounts for the boundary condi-
tions and addresses the characteristics of pulsed beams, we
have derived expressions for the coherent [Eq. (93) with
Eq. (112)] and incoherent tune shifts [Eq. (117) with
Eq. (135)] resulting from the passage of an axisymmetric
bunched Gaussian beam with a wider range of transverse
and longitudinal beam sizes through a cylindrical conduc-
tive chamber.

Although the comprehensive formula involving Lorentz-
p, -y dependence is intricate in general circumstances,
particularly in scenarios involving relativistic beams, both
the incoherent and coherent tune shifts adhere to the typical
Lorentz-$, -y dependence of 1/%y3, provided we disregard
the adiabatic damping impact on beam size.

In the case of the coherent tune shift, the rigorous results
converge toward Zotter’s formula (4) as Lorentz-y
increases, considering an infinitesimal transverse beam
size. This convergence is attributed to the presence of
the factor y,0, in the rigorous formula (93), even though
formula (4) was derived under the assumption of a coasting
beam. It is important to emphasize that the condition (104)
serves as a reliable criterion for determining the suitability
of Zotter’s formula (4) in describing the coherent tune shift.
Otherwise, the conventional formula may overestimate the
coherent tune shift in nonrelativistic shorter bunch cases.
Additionally, in this investigation, we directly confirm that
the direct space-charge effect cannot contribute to the
coherent tune shift when a beam passes through a cylin-
drical chamber.

On the contrary, the incoherent tune shift is primarily
governed by the direct space-charge effect when consid-
ering a Gaussian beam within a cylindrical chamber, as
illustrated by formula (5). This is due to the necessity for its
transverse root mean square size to be considerably smaller
than the chamber radius. However, the transverse beam size
could moderately influence the conventional formula (5)
for nonrelativistic shorter bunch cases, in contrast to its
impact on the coherent tune shift, as observed in the
comparison between Figs. 5 and 8. It is worth noting that
the condition (104) also serves as a reliable criterion for
applying the conventional formula (5) to evaluate the
incoherent tune shift for a given pulsed beam.

In order to validate the soundness of the current method-
ologies, we replicate the earlier findings achieved through
the Green’s function, with no boundary conditions imposed.
This replication is carried out by considering an infinitely

large chamber radius, serving as a form of consistency
assessment in relation to the prior result. Furthermore, we
successfully reproduce the scalar potential obtained by
introducing the mirror current for the coasting beam through
the integration of precise results for a pulsed beam in the
longitudinal direction.

One advantage of using the Green’s function formalism
is its ability to consider the impact of chamber material on
the tune shifts. When a bunched beam travels through a
chamber with conductive material, this substance can
introduce specific Lorentz-y dependencies. For instance,
it may lead to an inverse proportionality of Lorentz-y for the
coherent tune shift. Additionally, the chamber material has
the potential to influence the incoherent tune shift along the
longitudinal direction due to the resistive-wall effect.

However, from a quantitative standpoint, these material-
induced effects do not significantly alter both the coherent
and incoherent tune shifts, primarily due to the substantial
conductivity of the material, unless we consider the wake-
field effects created by previous bunches.
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APPENDIX A: DERIVATION OF FORMULA (10)

In this Appendix, we provide the derivation of for-
mula (10) presented in the main text. To address the
Poisson equation (8), we partition the beam density into
several concentric shells. For each shell determined by the
parameter z, we introduce a Poisson equation as follows:

= _ eN,cZ, 2
AD(x,y,7;7) = ———72——2772
(x.3.%37) (27)*%6,0,5,
2 P 2
x6[ | —+=—+>=—1]|z%). Al
(G+5+5-1)7) @
Here, a=1%ci, b=1%73, and c¢ =152 with the

assumption that a < b < c.

In the end, the solution to Eq. (8) can be obtained by
integrating the solution of Eq. (Al) with respect to the
variable 7 over the range from zero to infinity.

By introducing ellipsoidal coordinates (&, #, {), defined
as the three solutions of the cubic equation [26,27]:

x2 y2 22

=1,
a—-u b—u c—u

(A2)

where u is chosen to satisfy the conditions (—oco < & <
a<n<b<{<c), the function ®(x,y,Z;7) can be
expressed as a function of only & Thus, Eq. (Al) can be
simplified to
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40 o [ oD(&; 1)}
- )(c: 5) 2 |V
__ eNycZy 2 abc
B s e R
where Q(§) = (a = &)(b —&)(c - §).
The solution to Eq. (A3) takes the form:
pE&) ,
d(¢ dé, A4
g / Va-006-8)c-?) A
where
po) — - et o (A9

Here, c; is an arbitrary constant and ©(&) represents the
step function. The regions where £ < 0 and £ > O corre-
spond to the areas outside and inside the shell, respectively.

In order to determine the constant ¢y, let us examine the
asymptotic behavior of ®(&;7) as & approaches negative
infinity. This behavior is given by

= 2¢, 2¢, 0.

O&7) » == = :
N m 4reg \/m
(A6)

where Q, is the total charge on the shell, and ¢y = 1/cZ,
represents the vacuum’s dielectric constant. In the given
expression, the parameter £ is expressed in relation to the
original Cartesian coordinates x,y,Z with reference to
Eq. (A2). This is based on the understanding that the

potential ®(&;7) approaches Q./(4mey\/ x> + y* + 7%) as

the magnitude of /x> + y> + z> becomes large.
Meanwhile, the calculation of the total charge on the

shell O, proceeds as follows:

N, 2e5
o= [l [[on [ acisinie o

L e=mn=4)(¢ - é)
-0(&0m0o(&)
8eN,1%e™>

where the recognition of the right-hand side of the Poisson
equation [Eq. (A3)] is used. During the derivation, we
observe that the volume element in ellipsoidal coordinates
takes the form:

m=&6C=-8(&-n)
8,/0(&)[-0(n)]0(0)

and we also utilize Legendre’s relation for the complete
elliptic integral of the first kind, denoted as K[m]|, and the
second kind, denoted as E[m], as stated in Refs. [20,23]:

E(m)K(V1—m?) +E(NV1—m?)K(m)
- K(m)K(V1—-m?) ==

Upon substituting Eq. (A7) into Eq. (A6), the coefficient ¢,
is ultimately found to be

dxdydz =

dédndg,

(A8)

(A9)

eN, ) 22

=——>—717¢e 2. Al10
“ 2(27z)3/2€()T ¢ (A10)

The solution to the original Poisson equation, Eq. (8),
can be expressed as

b = [~ de2ee [ g Po(£)
30 = ["aeeet [ Tae NCERI R
(Al1)

by integrating ®(&;7) over 7 after combining Egs. (A4),
(AS5), and (A10). Here,

A EN;,

Po(&) = —m(@(f) - 1). (A12)

Let us introduce a new parameter, &(z), defined as

&(e) = 7250(7),

to enable a partial integration of Eq. (A11) with respect to 7.
This leads to the following expression:

(A13)

®(x,y,2) :/ dm-e‘é
0

blo) Bo(E")
X dé
/- J@-e - -e

[Se]

2 [l " /}0(5//)
——e72 d¢é
/—oo \/(6)%—f”)(&%—f”)(é‘%—f’/)
© 2 Bo(&o) déy
+ e ? drz.
) V(@ =&)(G-&)(5 -&) ¥
(A14)
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Given that the parameter £)(7) adheres to the condition:

x2 y2 22 5

—&(7) - oy — &o(7) " 52 — & (1) -

(A15)

we observe that &(7) approaches o2 as 7 tends to infinity,
and &y(7) tends toward negative infinity as ¢ approaches
zero. This implies that the first term of Eq. (A14) must
evaluate to zero.

By amalgamating Eqs. (A12) and (A15) prior to the
transformation of 7 into &y, the scalar potential ®(x, y, z) in
the rest frame can ultimately be expressed as formula (10).

APPENDIX B: DERIVATION OF FORMULAS
RELATED TO BESSEL FUNCTIONS

The modified Bessel functions 7,,[x] exhibit the follow-
ing relationships:

1 o0
=— (B1)
21 z? Z(Z +Jok )21 lor]”
and
! + i (B2)
221%(2) =1 (i +2%) 2J2[]1k] '
Here, j,«(= {,xa) represents the zeros of Bessel func-
tions J,, [x].

The aforementioned equations can be demonstrated
through the following method. Let us consider the loop
integral in the following form [28]:

A
1z

loop integral

FIG. 11. The path of integration in Eq. (B3) and in order to
prove Egs. (B1), (B2), (B6), and (B7).

(B3)

0. mfg

on the complex plane, where j represents the imaginary
unit. The computation of Eq. (B3) can be carried out by
evaluating the residues within the integration path’s circle
as shown in Fig. 11, which must be zero for an infinite
radius. Within the complex plane, there are poles located at
{ = 4z, zero, and the zeros of Bessel functions. These
Bessel functions’ zeros are present in both positive and
negative directions along the real axis. The zero at { = 0 in
the denominators of Eq. (B3) is a third-order pole in Qy,
while it is a first-order pole in Q.

Consequently, we derive the identity equations for the
respective integrals as presented below:

00 = le (J%)_ 1) + kf; [(—611 Lok] + Joxd2ljox])

CJ2 )

22 (73 = 2273 liod]
SR ™
and
Q= f%@)<4?2)
D AT

_ 82> (Jo[hk] + Jaljik)
(e = Juz?)*oljul = 7]

J.lk})3] =0 (83)

These equations are summarized as the formulas for the
Bessel functions:

1 (s}
=— 4+ , (B6)
ZJO 22 ; (ox = 221 lo]
and
1 (4 + z
. (8Y)
ZzJ%(Z) Z(]]k J2 k]
where we utilize
. 2 .
Jaljo] = EJI[]Ok}v (B8)
Jaljie) = =Joljl- (B9)

Ultimately, we can derive Eqs. (B1) and (B2) by
reexpressing Eqgs. (B6) and (B7) utilizing the connection
between modified Bessel functions and Bessel functions,
given as I,,[z] = e™"%/2],, [e/7/?7].
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