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We present a framework with which to analyze the effects of magnetic fringe fields. The theory defines
the fringe field to be the transition between two regions of nearly constant field, and can incorporate
constant multipoles in the magnet body. We then analyze Cartesian dipoles and derive symplectic fringe
field maps that are applicable to longitudinal and/or transverse gradient dipoles. We verify the fringe maps
with tracking, and show how we incorporated the theory into the tracking code ELEGANT. The resulting
elements and several supporting scripts are now available for users, and we conclude with several
predictions relevant to the APS Upgrade project.
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I. INTRODUCTION

Particle tracking for accelerators typically treats magnets
using hard edge models, wherein the magnetic lattice is
composed of a sequence of piece-wise continuous regions
that have constant multipole content. The hard edge
approximation allows for fast, symplectic tracking, since
the numerical step size is dictated by the size and strength
of the magnets themselves, and explicit integration meth-
ods are possible using splitting techniques. While the hard
edge idealization provides a good starting point for lattice
design, real magnets have multipole fields that transition
from zero to their nearly constant values over a finite
length. These transition regions contain the magnet fringe
fields, and the fringe fields can give rise to additional
focusing that can change the tune, and nonlinear contri-
butions that can modify, for example, the chromaticity.
Hence, we would like to have a simple way to include the
fringe field effects while retaining all the advantages of the
standard hard edge tracking.
Calculating fringe field effects in dipoles has a long

history, with the definitive reference probably still being
the second order results by Brown [1]. Since that time,
Ref. [2] extended the calculation to higher order, while the
relatively recent work of [3] applied Hamiltonian pertur-
bation theory to extract dipole fringe field maps. Another
approach to dipole fringe fields was presented in Ref. [4]
and subsequently reviewed in [5], wherein the dipole is

assumed to be sufficiently wide such that the field depends
only on the longitudinal and vertical coordinates. We will
show how to recover this “infinite parallel face” approxi-
mation within our theory, in which case our analysis agrees
with the results of [4]. Additionally, we will indicate under
what conditions our approach can be reconciled with the
quite different predictions presented in, e.g., [6,7].
The goal of this paper is to extend the results of [1]

and [3] in essentially three ways. First, we will employ a
more general definition of the fringe field that can be
applied to longitudinal gradient dipoles used in ultralow
emittance lattices [8–10]; second, our model will allow for
nonzero quadrupole and/or sextupole content in the magnet
body, which will therefore be able to describe either
nonideal effects in usual dipoles or the transverse focusing
that is designed into transverse gradient dipoles; third, we
will show how to employ the resulting fringe field maps as
symplectic transformations of the coordinates.
This paper will consider Cartesian dipoles, which are

bending magnets that have straight magnet poles. This
should be contrasted with sector bends whose poles are
swept to follow the design trajectory. The integrated
multipole content of Cartesian dipoles is only properly
defined with respect to Cartesian coordinates, so that these
dipoles are best described using ðx; y; zÞ. Nevertheless, our
results will essentially agree with the sector bend calcu-
lations of Refs. [1–3] when the dipole has a purely bending
field in the magnet body, and also match the parallel plate
predictions of Ref. [4]. In this idealization the magnetic
fields of Cartesian and sector bends are indistinguishable
within the magnet body, so that the difference between
sector bends and Cartesian dipoles comes from any non-
zero quadrupole, sextupole, or higher order components
to the bending field. We will show a few cases from the
APS-U [9] where these differences are important, including
two reverse-bend dipoles [11,12] designed for the APS-U
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that closely resemble displaced quadrupoles, and a longi-
tudinal gradient dipole designed for the APS-U whose
dominant multipole components come from sextupole-
like terms.
Our paper is organized as follows. We begin in Sec. II

with a general description of the magnetic field, and then
present the hard edge model and its associated fringe field.
This model is then used in the Hamiltonian perturbation
theory of Sec. III, with which we derive symplectic fringe
field maps applicable to generic Cartesian dipoles.
We compare theoretical predictions to those obtained by
tracking in Sec. IV, finding good agreement for both
idealized fringe field models and for those designed for
the APS-U. In Sec. V we show how the theory was
incorporated into the tracking code ELEGANT [13], includ-
ing some tracking results relevant to the APS-U lattice.
Finally, we conclude in Sec. VI.

II. DESCRIPTION OF THE MAGNETIC FIELD

Previous analytic descriptions modeled the fringe field
using a curved and inclined boundary [1,2]. This model
includes one dipolelike fringe profile that describes the
longitudinal variation of the bending field, along with one
sextupolelike profile that gives the field curvature asso-
ciated with a dipole of finite horizontal extent. This model
was also adopted in [3], where it was shown to be
derivable from the assumption that the field respects
rotational symmetry at the boundary. Our approach will
instead rely on the generalized gradient representation of
the field [14–16]. While the use of generalized gradients
may seem to replace geometric considerations with more
brute force calculations, in the process it provides a
systematic way to include all possible field components.
Furthermore, our final results have the advantage that all
fringe field integrals that arise in the particle maps can be
naturally and accurately computed using tools that
compute the generalized gradients from magnetic field
data [15–17].

A. Generalized gradient representation

We would like to describe the magnetic field using a
representation that both satisfies the vacuum Maxwell
equations and expresses the transverse dependence of
the field as a Taylor series in the (assumed small)
coordinates x and y. This can be done using generalized
gradients [14–16], wherein the magnetic field associated
with each multipole component is expanded as a series
whose coefficients are longitudinal multipolelike field
profiles and their derivatives. Our model for the fringe
field will include dipole, quadrupole, and sextupole com-
ponents, and uses a vector potential that is a truncated
sum of the associated generalized gradient expansion. We
describe these vector potentials and our choice of gauge in
this section.

The vector potential describing a magnetic field with no
skew components has the generalized gradient expansion

ðA; AzÞ ¼
X∞
m¼1

ðAm; Am
z Þ: ð1Þ

The azimuthal dependence of Am
z ∝ eimϕ while Am ∝

eiðmþ1Þϕ, and each term can be expanded as a Taylor series
in the transverse coordinates whose z-dependent coeffi-
cients define the generalized gradients and their derivatives.
Reference [16] writes this expansion in the symmetric
Coulomb gauge as

Am
z ðx; y; zÞ ¼ −ℜ½ðxþ iyÞm�

×
X∞
l¼0

ð−1Þlm!ðx2 þ y2Þl
4ll!ðlþmÞ! C½2l�

m ðzÞ ð2Þ

Am
x ðx; y; zÞ ¼

1

2
ℜ½ðxþ iyÞmþ1�

×
X∞
l¼0

ð−1Þlm!ðx2 þ y2Þl
4ll!ðlþmþ 1Þ! C

½2lþ1�
m ðzÞ ð3Þ

Am
y ðx; y; zÞ ¼

1

2
ℑ½ðxþ iyÞmþ1�

×
X∞
l¼0

ð−1Þlm!ðx2 þ y2Þl
4ll!ðlþmþ 1Þ! C

½2lþ1�
m ðzÞ; ð4Þ

where C½n�
m ðzÞ is the nth derivative of CmðzÞ. When the

longitudinal variation is small so too are the transverse
components ðAx; AyÞ, and the longitudinal Az is given by a
sum over the magnetic multipole components.
We will model the fringe field using the m ¼ 1, 2, 3

components of the vector potential through fourth order
in the particle coordinates. In addition, we will find it
convenient to work in the gauge where Ay ¼ 0 as suggested
by [3], which we set by subtracting from ðAx; Ay; AzÞ the
following gradient:

∇
�
x3 þ 3xy2

12
C0
1ðzÞ þ

x4 þ 6xy2 − y4

24
C0
2ðzÞ

−
2x5 þ 10x3y2 þ 5xy4

480
C000
1 ðzÞ

þ x5 þ 10x3y2 − 5xy4

40
C0
3ðzÞ

�
: ð5Þ

Then, to connect with previous work we can introduce
the dimensionless on-axis dipole and quadrupole field
profiles

DðzÞ ¼ qρ
p0

C1ðzÞ QðzÞ ¼ 2q
Kp0

C2ðzÞ: ð6Þ
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Here, ρ is the nominal bending radius, K is the nominal
focusing gradient, q is the particle charge, and p0 is the
reference momentum. Well inside the body of a transverse
gradient dipole both DðzÞ and QðzÞ will approach unity,
while each becomes vanishingly small far outside the
magnet. The field curvature term is obtained from the
following linear combination of the sextupole gradient and
the second order derivative of the dipole profile:

1

ρB0

∂
2By

∂x2
¼ −

q
p0

�
1

4
C00
1ðzÞ − 6C3ðzÞ

�
: ð7Þ

The quantity in Eq. (7) is related to the curved field
boundary introduced by Brown [1] and a similar definition
used by [3]; physically it accounts for the finite horizontal
extent of the magnet. Our dipole fringe terms will yield the
corresponding horizontally infinite result of Lee-Whiting
[4] when 24C3ðzÞ − C00

1ðzÞ ∝ ∂
2
xBy ¼ 0, while reproducing

the purem ¼ 1multipole terms of Refs. [6,7] when C3 ¼ 0

and ∂
2
xBy ∝ C00

1 . For those interested, Appendix A shows
how connect the two-dimensional, parallel face dipole
representation described in Refs. [4,5] to our generalized
gradient representation at higher order. In any event, we
choose to quote all final results in terms of the generalized
gradients C1, C2, C3, and their derivatives, so that con-
nections to previous works should be made with the
distinctions just highlighted in mind.
Putting everything together, we retain the fourth order

terms of the dipole, quadrupole, and sextupole terms of the
vector potential (2)–(4), choose the gauge by subtracting
the gradient (5), and write the result in terms of the
definitions (6) and (7) to obtain

Az ¼ −
p0

q

�
x
ρ
DðzÞ þ x3 − 3xy2

6ρB0

∂
2By

∂x2

þ x2 − y2

2
KQðzÞ − x4 − 6x2y2 − y4

48
KQ00ðzÞ

�
ð8Þ

Ax ¼ −
p0

q

�
y2

2ρ
D0ðzÞ − 8y4

192ρ
D000ðzÞ

þ 6x2y2 − y4

24ρB0

∂
2B0

y

∂x2
þ xy2

2
KQ0ðzÞ

�
: ð9Þ

The vector potential (8) and (9) forms the basis for our
model of the dipole field. In the next section we introduce
its hard-edge approximation. The difference between these
two defines the fringe field from which we will derive the
corresponding coordinate maps.

B. Hard edge approximation of a bending magnet

We will suppose that there is a boundary between two
regions of nearly uniform magnetic field as shown in Fig. 1.

We assume that far to the left (in the “−” region) the
magnetic field is described by an approximately constant
bending field and multipoles, and similar conditions are
satisfied far to the right (in the “þ” region). Importantly,
however, the two regions have different multipole content,
and are separated by a length over which the field changes.
We further suppose that the transition between these two
regions occurs over a short distance, such that its effect can
be considered within perturbation theory. We then identify
the nominal boundary (or hard edge) between the two
regions with the coordinate zedge, and finally use z� to label
coordinates in the �-regions that are either far from the
edge (if the ideal field in that region is zero) or near the
middle of the flat-field region (if B ≠ 0).
The precise location of zþ and z− is not terribly

important, since we assume that the field in their vicinity
is approximately constant; we can take their location to be
at the local maximum of jBj if the magnet is left-right
symmetric, or near the center of the flat-field region for
cases like that in Fig. 1. The location of the hard edge is
important, however, and is defined such that the integrated
bending field matches that of its hard edge model.
To be more explicit, we start by describing the hard-edge

field profile using the step function

Π1ðzÞ ¼ C1ðzþÞΘðz − zedgeÞ þ C1ðz−ÞΘðzedge − zÞ; ð10Þ

where the Heaviside step function ΘðzÞ ¼ 0 if z < 0 and
ΘðzÞ ¼ 1 if z > 0. If we are considering the entrance to a
magnet as illustrated by the left-hand side of Fig. 1 then all
the field components at z− vanish, while if it is a magnet
exit then those at zþ are zero; the magnetic profile shown
on the right-hand side of Fig. 1 has nonvanishing steps at

FIG. 1. Example of the on-axis magnetic field profile (red) and
the corresponding hard edge models (blue). On the left is the
entrance edge geometry where the field starts from zero at z− and
reaches a maximum at zþ. The hard edge model on the right
approximates a longitudinal gradient dipole where the fringe field
profile is more complicated.
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both zþ and z−. We define the hard edge zedge to match the
integrated bending field as follows:

Z
zþ

z−

dzByð0; 0; zÞ

¼
Z

zþ

z−

dzC1ðzÞ

¼ ðzþ − zedgeÞΠ1ðzþÞ þ ðzedge − z−ÞΠ1ðz−Þ: ð11Þ

The hard edge bending profile defines the nominal bending
radius in each region by

1

ρþ
¼ q

p0

Π1ðzþÞ and
1

ρ−
¼ q

p0

Π1ðz−Þ; ð12Þ

where q is the particle charge and p0 is the reference
momentum. Electrons have q¼−jej and By ¼ Π1ðzþÞ < 0

for a positive bending radius.
We have used the dipole field to specify the location

of the hard edge step zedge in terms of the reference field
locations z�. These in turn define the hard edge profiles of
the quadrupole and sextupole components via

Π2ðzÞ ¼ C2ðzþÞΘðz − zedgeÞ þ C2ðz−ÞΘðzedge − zÞ ð13Þ

Π3ðzÞ ¼ C3ðzþÞΘðz − zedgeÞ þ C3ðz−ÞΘðzedge − zÞ: ð14Þ

Then, for example, the geometric focusing strength in each
region is

Kþ ¼ q
p0

2C2ðzþÞ and K− ¼ q
p0

2C2ðz−Þ;

with again the caveat that we set K� → 0 in regions far
outside the magnet. For pure dipoles we expect K� ≈ 0 in
the body as well, but we will make no assumptions as to
its size. Hence, our theory will be able to describe both
nonideal effects in regular dipoles as well as the strong
focusing that is designed into transverse gradient dipoles.
The focusing in a well-made transverse gradient dipole
should satisfy

q
p0

Z
zþ

z−

dz 2C2ðzÞ ≈ ðzþ − zedgeÞKþ þ ðzedge − z−ÞK−;

but the two may not be equal due to small differences in
the fringe field shape of the quadrupole and dipole field
components.

III. HAMILTONIAN PERTURBATION THEORY

This section describes how we apply Hamiltonian
perturbation theory to construct symplectic maps that
account for the effects of dipole fringe fields. Our approach
employs the same basic techniques as those used in

Ref. [3], but with three main differences: first, we allow
for nonzero quadrupole and sextupole terms in the body;
second, we use our more general definition of the hard edge
model and its corresponding fringe field; third, we consider
the unperturbed motion to be that of the hard edge model in
Cartesian coordinates. The last two features eliminate the
need to separately calculate the entrance and exit maps, and
somewhat streamlines the calculation of the map itself.
Bending magnets with straight poles define integrated

multipole content with respect to the straight axis z,
and furthermore have hard edges defined by planes of
constant z. Hence, our calculations are simplest when
expressed using the initial particle coordinates along the
hard edge. In our typical accelerator formalism, however,
upstream elements deliver particles to the entrance plane
shown as the red line in Fig. 2(a), and this entrance plane
makes an angle θ with respect to the magnet face shown in
blue. In this case we must first drift the particles from the
entrance plane to the hard edge of the magnet at z ¼ 0.
To compute this transformation, we denote the magnitude
of the momentum as Pk, and use the subscript e for
coordinates along the entrance plane and 0 for those at
the hard edge. For example, along the entrance plane
P2
k;e ¼ P2

x;e þ P2
y;e þ P2

z;e, and since the total momentum
is constant we have Pk;e ¼ Pk;0. The transverse momentum
components at the hard edge are related to those along the
entrance plane by a simple rotation, with

Px;0 ¼ Px;e cos θ þ Pz;e sin θ

¼ Px;e cos θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
k − P2

x;e − P2
y;e

q
sin θ ð15Þ

Py;0 ¼ Py;e: ð16Þ

FIG. 2. (a) Basic layout of a straight dipole. The entrance plane
in red is at an angle θ from the magnet hard edge in blue. The hard
edge is located inside the narrow fringe region where the
magnetic field transitions between two values. The reference
trajectory is dashed. (b) Geometry relating the horizontal position
along the entrance plane xe to that at the hard edge x0. The
particle momentum makes the angle θx with respect to the
entrance plane normal, and is transported a distance L along
ze to the hard edge.
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Using simple geometry we also have

x0 ¼
x̂

cos θ
¼ xe þ x0eL

cos θ
¼ xe þ x0ex0 sin θ

cos θ
; ð17Þ

where x0e ¼ dxe=dze ¼ tan θx in the rectangular system
defined by the entrance plane. Solving for x0 we find that

x0 ¼
xe

cos θ
þ x0exe tan θ sec θ

1 − x0e tan θ
: ð18Þ

Equation (18) is the sum of the geometric contribution
xe=cos θ and an addition corresponding to a drift along ze
by the amount L ¼ x0 sin θ ¼ xe tan θ=ð1 − x0e tan θÞ. The
other coordinates are given by y0 ¼ ye þ y0eL and vt0 ¼
vte þ vt0eL; expressing everything in terms of momenta
using x0e ¼ Px;e=Pz;e, y0e ¼ Py;e=Pz;e, and vt0e ¼ Pk=Pz;e

implies that

x0 ¼
xe

cos θ
þ Px;exe tan θ sec θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
k − P2

x;e − P2
y;e

q
− Px;e tan θ

ð19Þ

y0 ¼ ye þ
Py;exe tan θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
k − P2

x;e − P2
y;e

q
− Px;e tan θ

ð20Þ

vt0 ¼ vte þ
Pkxe tan θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
k − P2

x;e − P2
y;e

q
− Px;e tan θ

: ð21Þ

One can show that the transformation equations (15)–(21)
are symplectic by verifying that

MT JM ¼ J; ð22Þ

where J is the usual skew-symmetric symplectic matrix and
M is the Jacobian matrix of the transformation:

J ¼
�
0 I

−I 0

�
Mi;j ¼

∂Z0;i

Ze;j
: ð23Þ

Here, Z ¼ ðx; y;−vt; Px; Py; PkÞ denotes the phase space
coordinates, and we calculated (22) using Mathematica.

A. Dynamics on the fringe

Once the particles have been initialized along the hard
edge, we use the location z along the length of the Cartesian
dipole as the independent variable describing particle
dynamics. The positions in phase space consist of the
transverse coordinates x ¼ ðx; yÞ and negative path length
l ¼ −vt, whose conjugate canonical momenta we defined
to be P and Pk, respectively. The Hamiltonian governing
motion in a static magnetic field is then

H ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
k − ½P − qAðx; zÞ�2

q
− qAzðx; zÞ; ð24Þ

where q is the particle charge and ðA; AzÞ is the magnetic
vector potential. Now, we define the dimensionless
momenta by dividing by the reference value p0 and
subtracting off those of the nominal orbit as follows

px ¼ Px=p0 − ð1þ δÞ sin θ; ð25Þ

py ¼ Py=p0; ð26Þ

δ ¼ Pk=p0 − 1: ð27Þ

The dynamics remains Hamiltonian with dimensionless
H ¼ H=p0 if we retain the coordinates x and introduce the
(almost) path length difference τ ¼ lþ zþ x sin θ. While
the subtraction of δ sin θ from the horizontal momentum
may seem somewhat unusual, it ensures that p ¼ 0 when
the transverse momenta at the magnet entrance vanish as
shown by Eq. (15). Including the term x sin θ for l is
required for the transformation to be canonical. Somewhat
fortuitously, it also turns out that these coordinates simplify
subsequent calculations.
Next, we introduce the dimensionless vector potential

ða; azÞ ¼ −
q
p0

ðA; AzÞ; ð28Þ

where the sign convention is chosen such that az ∼ x=ρ
for a dipole with bending radius ρ. We then choose a
gauge where the vertical component ay ¼ 0, and assume
that the transverse momenta and vector potential are
small such that p2 and a2x ≪ ð1þ δÞ2 sec2θ. Under this
assumption we expand the dimensionless Hamiltonian to
arrive at

Hðx; p; δ; zÞ ≈ tan θðpx þ axÞ þ az þ δð1 − cos θÞ

þ sec3θ
2ð1þ δÞ ðpx þ axÞ2 þ

sec θ
2ð1þ δÞp

2
y:

ð29Þ

In general the field is given by Eqs. (8) and (9), but the
fringe field maps that interest us are obtained by taking the
difference between the full motion and that of the hard edge
model. In other words, the hard edge model defines the
unperturbed Hamiltonian

H0ðx; p; δ; zÞ ¼ px tan θ þ az;0ðx; zÞ þ δðcos θ − 1Þ

þ sec3θ
2ð1þ δÞp

2
x þ

sec θ
2ð1þ δÞp

2
y; ð30Þ
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with the hard edge ax;0 ¼ 0 and the unperturbed longi-
tudinal vector potential

az;0ðx; zÞ ¼ x
q
p0

Π1ðzÞ þ ðx2 − y2Þ q
p0

Π2ðzÞ

þ ðx3 − 3xy2Þ q
p0

Π3ðzÞ: ð31Þ

Here, the hard edge field profiles are given by (10), (13),
and (14), but our calculation will assume that we shift the
origin of z such that zedge ¼ 0.
The unperturbed equations of motion are

dx
dz

¼ ∂H0

∂px
¼ tan θ þ sec3θ

1þ δ
px ð32Þ

dpx

dz
¼ −

∂H0

∂x
¼ −

qΠ1

p0

−
2qΠ2

p0

x −
3qΠ3

p0

ðx2 − y2Þ ð33Þ

dy
dz

¼ ∂H0

∂py
¼ sec θ

1þ δ
py ð34Þ

dpy

dz
¼ −

∂H0

∂y
¼ 2qΠ2

p0

yþ 6qΠ3

p0

xy: ð35Þ

These equations are exactly solvable only if there is no
sextupole field in the body, Π3 ¼ 0. Fortunately, we are
only interested in the particle motion in the vicinity of the
fringe field, and so we need only write out the solution as a
Taylor series in z. To the required order we have

xðzÞ ≈ x0 þ z tan θ þ zsec3θ
1þ δ

px;0 −
z2

2

sec3θ
1þ δ

qΠ1

p0

−
z2

2

sec3θ
1þ δ

q
p0

½2Π2x0 þ 3Π3ðx20 − y20Þ� ð36Þ

yðzÞ ≈ y0 þ z
sec θ
1þ δ

py;0 þ
z2

2

sec θ
1þ δ

q
p0

½2Π2y0 þ 9Π3x0y0�

ð37Þ

pxðzÞ ≈ px;0 − z
q
p0

½Π1 þ 2Π2x0 þ 3Π3ðx20 − y20Þ� ð38Þ

pyðzÞ ≈ py;0 þ z
q
p0

½2Π2y0 þ 9Π3x0y0�: ð39Þ

Note that no derivatives of the hard edge envelopes arise,
since such terms contribute ∼zðdΠj=dzÞ ∝ zδðzÞ ¼ 0.
The perturbation Hamiltonian H1 includes a nonzero

transverse vector potential a in addition to corrections to
the longitudinal az. In the electromagnetic gauge with zero
vertical component the perturbation is described by

H1 ¼ axðx; zÞ tan θ þ
sec3θ

ð1þ δÞ2 pxaxðx; zÞ

þ sec3θ
2ð1þ δÞ2 a

2
xðx; zÞ þ ½azðx; zÞ − az;0ðx; zÞ�: ð40Þ

We want a coordinate map at the magnet hard edge that
approximately includes the effects of H1, and we will
develop such a map using Hamiltonian perturbation
theory [14] in a manner similar to that of Ref. [3]. Our
solution begins with the unperturbed Hamiltonian H0

and its associated dynamics Eqs. (36)–(39). We define
B0 to be the map associated with the unperturbed dipole
Hamiltonian H0, and introduce the notation B0ðzjz−Þ to
describe the map from the location z ¼ z− well outside the
magnetic fringe field to the arbitrary position z. The map
M for the total HamiltonianH0 þH1 can be written using
the so-called reverse factorization (see, e.g., Ch. 10 of
Ref. [14])

M ¼ B1ðzjz−ÞB0ðzjz−Þ; ð41Þ

where B1 accounts for the perturbationH1 and satisfies the
differential equation

d
dz

B1 ¼ −B1ðB0∶H1∶B−1
0 Þ ¼ −B1∶Hint

1 ∶: ð42Þ

Here, we employ Dragt’s colon notation for the Poisson
bracket operator associated with the function f

∶f∶ ¼
X3
i¼1

�
∂f
∂qi

∂

∂pi
−

∂f
∂pi

∂

∂qi

�
; ð43Þ

and Hint
1 is the interaction picture Hamiltonian.

The interaction picture HamiltonianHint
1 is defined along

the unperturbed trajectories, meaning that it also satisfies
Hint

1 ðZ; zÞ ¼ H1ðB0ðzjz−ÞZ; zÞ. Hence, Hint
1 ðzÞ depends

upon the independent variable z from both its explicit
z-dependence and through the evolution of the unperturbed
particle motion.
As described previously and diagrammed in Fig. 3, the

full fringe field mapF takes the particles that are initially at
the hard magnet edge, propagates them to z ¼ z− where the
magnetic field is approximately constant, uses (41) to track
the particles through the fringe fields, and then maps the
particles back through the ideal magnetic field to the hard
edge. This can be expressed by sandwiching the dipole
field map M from Eq. (41) between unperturbed dipole
maps B0 to and from the edge as follows

F ¼ B0ðz−j0ÞMB0ð0jzþÞ
¼ B0ðz−j0Þ½B1ðzþjz−ÞB0ðzþjz−Þ�B0ð0jzþÞ
¼ B0ðz−j0ÞB1ðzþjz−ÞB0ð0jz−Þ: ð44Þ
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Note that the ordering of the maps from left to right means
that each one acts on the initial particle coordinates.
To simplify Eq. (44) further, we write the field perturbation
map through its exponential (Magnus) representation via
B1ðzjz−Þ ¼ e∶B1ðzjz−Þ∶. The generator of this map is given
by the infinite series of Poisson brackets [14]

B1ðzþjz−Þ ¼ −
Z

zþ

z−

dzHint
1 ðzÞ

þ 1

2

Z
zþ

z−

dz
Z

z

z−

dζ ∶Hint
1 ðζÞ∶Hint

1 ðzÞ þ � � � .

ð45Þ

If we exponentiate this, insert into (44) and Taylor expand,
the first order term is

B0ðz−j0Þ∶Hint
1 ðzÞ∶B0ð0jz−Þ

¼ B0ðz−j0Þ½B0ðzjz−Þ∶H1ðzÞ∶B−1
0 ðzjz−Þ�B0ð0jz−Þ

¼ B0ðzj0Þ∶H1ðzÞ∶B−1
0 ð0jzÞ ¼ ∶Hint

1 ðzj0Þ∶; ð46Þ

where we have (temporarily) introduced the additional
notationHint

1 ðzj0Þ to emphasize that the interaction picture
perturbation Hamiltonian at z is written in terms of initial
coordinates at z ¼ 0. The second order terms also reduce
to ones that only involve ∶H1ðzj0Þ∶, as can be seen with
the example

B0ðz−j0Þ∶∶Hint
1 ðζÞ∶Hint

1 ðzÞ∶B0ð0jz−Þ
¼ B0ðζj0Þ∶∶H1ðζÞ∶B−1

0 ðζjz−ÞB−1
0 ðz−j0Þ

× B0ðz−j0ÞB0ðzjz−ÞH1ðzÞ∶B−1
0 ðzj0Þ

¼ ∶∶Hint
1 ðζj0Þ∶Hint

1 ðzj0Þ∶: ð47Þ

Here, we added the identity map B−1
0 ðz−j0ÞB0ðz−j0Þ

between products of the interaction Hamiltonian to setHint

to be a function of the initial coordinates along the hard
edge. Similar manipulations of higher order products
should convince one that the fringe field map can therefore
be written as

F ¼ e∶ΩM∶ ð48Þ

with Lie generator

ΩM ¼ −
Z

zþ

z−

dzHint
1 ðzj0Þ

þ 1

2

Z
zþ

z−

dz
Z

z

z−

dζ ∶Hint
1 ðζj0Þ∶Hint

1 ðzj0Þ þ � � � :

ð49Þ

The mathematical gymnastics we used to arrive at (49)
may have been somewhat opaque and perhaps subopti-
mal, but the physical meaning of the map (48) and its
generator (49) should be clear: the Magnus (exponential)
solution is given by an expansion in powers of an
interaction Hamiltonian whose z-dependent coordinates
are expressed in terms of the unperturbed values along the
hard edge of the magnet. Hence, we evaluate (49) along
the unperturbed trajectories (36)–(39), and all Poisson
brackets are with respect to the “initial” coordinates
ðx0; y0; px;0; py;0Þ at the hard magnet edge.

B. Lie generator and resulting fringe field map
for a Cartesian bend

We now have all the elements needed for our calculation.
Before we go to our approximation of ΩM, we first define
the various fringe integrals that arise directly in terms of the
generalized gradients C1ðzÞ, C2ðzÞ, and C3ðzÞ; note that
these have dimensions of Tesla (T), T/m, and T=m2,
respectively. First, we recall that the nominal bending radii
1=ρ� and focusing gradients K� are defined in terms of the
generalized gradients at z�:

1

ρ�
¼ q

p0

C1ðz�Þ K� ¼ q
p0

2C2ðz�Þ; ð50Þ

again, we set Ci → 0 if the ideal region is vacuum. Next,
recall that the hard edge is set such the integrated bending
field in the hard edge model matches that of the actual
dipole component:

q
p0

Z
zþ

z−

dz½C1ðzþÞΘðz − zHEÞ þ C1ðz−ÞΘðzHE − zÞ�

¼ zþ − zHE
ρþ

þ zHE − z−
ρ−

¼ q
p0

Z
zþ

z−

dzC1ðzÞ: ð51Þ

FIG. 3. Schematic of the fringe field map composite parts
including the map to outside the fringe region (in red), through
the fringe field (black), and back to the hard edge (violet).
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Then, we define the following dipolar fringe field integrals:

�
g2K0

ρ

�
¼ q

p0

Z
zþ

z−

dz ðz − zedgeÞfC1ðzþÞΘðzÞ þ C1ðz−Þ½1 − ΘðzÞ� − C1ðzÞg ð52Þ

�
gK2

ρ2

�
¼ q2

p2
0

Z
zþ

z−

dzfC1ðzÞ½C1ðzþÞ þ C1ðz−Þ − C1ðzÞ� − C1ðzþÞC1ðz−Þg ð53Þ

�
K3

gρ2

�
¼ q2

p2
0

Z
zþ

z−

dz½C0
1ðzÞ�2: ð54Þ

The notation is lifted from Ref. [3], with g giving the magnetic gap so thatK0, K2, andK3 are dimensionless and give rise to
terms that areOðg2Þ,OðgÞ, andOð1=gÞ, respectively; the hard edge definition (51) ensures that the integral formerly known
as K1 vanishes. At the magnet entrance the fringe field integrals for electrons reduce to

�
g2K0

ρ

�
→

jej
p0

Z
zþ

z−

dzðz − zedgeÞ½C1ðzÞ − C1ðzþÞΘðzÞ�;
�
gK2

ρ2

�
→

e2

p2
0

Z
zþ

z−

dzC1ðzÞ½C1ðzþÞ − C1ðzÞ�;

and we find that K2 as defined in (53) is a modest generalization of the usual field integration (FINT) parameter for vertical
focusing from a dipole fringe field.
In addition, we will require the quadrupole fringe integrals

g2KI1 ¼
2q
p0

Z
zþ

z−

dzðz − zedgeÞfC2ðzÞ − C2ðzþÞΘðzÞ − C2ðz−Þ½1 − ΘðzÞ�g ð55Þ

gKI0 ¼
2q
p0

Z
zþ

z−

dzfC2ðzÞ − C2ðzþÞΘðzÞ − C2ðz−Þ½1 − ΘðzÞ�g; ð56Þ

and the field curvature/sextupole integrals

�
g2K4

Rρ

�
¼ q

p0

Z
zþ

z−

dz ðz − zedgeÞ2
�
6C3ðzÞ −

1

4
C00
1ðzÞ − 6C3ðzþÞΘðzÞ − 6C3ðz−Þ½1 − ΘðzÞ�

�
ð57Þ

�
gK5

Rρ

�
¼ q

p0

Z
zþ

z−

dzðz − zedgeÞ
�
6C3ðzÞ −

1

4
C00
1ðzÞ − 6C3ðzþÞΘðzÞ − 6C3ðz−Þ½1 − ΘðzÞ�

�
ð58Þ

�
K6

Rρ

�
¼ q

p0

Z
zþ

z−

dz

�
6C3ðzÞ −

1

4
C00
1ðzÞ − 6C3ðzþÞΘðzÞ − 6C3ðz−Þ½1 − ΘðzÞ�

�
: ð59Þ

The notation of (55) is adapted from the quadrupole
calculations of Ref. [18] with their ðIþ1 þ I−1 Þ ¼ g2I1, while
that of the field curvature terms (57)–(59) is again borrowed
from [3] but now allow for body sextupole fields in the
magnet. These last three integrals are due to the finite
horizontal extent of the magnet, with R giving the field’s
radius of curvature. Finally, Eq. (56) represents a new
fringe integral that quantifies the difference in the quad-
rupolar fringe field profile from that of the dipole compo-
nent. Note that if the magnet had no dipole component, we
would define the quadrupole’s hard edge by requiring the
integral in (56) to vanish.

Having defined the fringe integrals, we are now in a
position to write out the Lie generator of the fringe field
map. The only remaining challenge is to choose what
small parameters will be used to constrain the perturba-
tion expansion. For example, since the distance that a
particle travels in the fringe region scales with g sec θ, we
should require both the gap g to be small and the angle θ
to be not too large. We define the dimensionless small
parameter ϵ, assume that the ordering satisfies g=ρ ∼OðϵÞ
and Kx2 ∼ p2

x ∼Oðϵ2Þ, and retain terms in ΩM through
Oðϵ3Þ. In addition to this, we have found that contribu-
tions ∼ðgK5=ρÞ can sometimes be considerably larger
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than other OðϵÞ terms, and so we will also keep this contribution at third order in the coordinates. The resulting Lie
generator is then

ΩM ¼ sec3θ
2ð1þ δÞ

�
g2K0

ρ

�
px þ

�
tan2θ
2

�
g2K4

Rρ

�
− tan θ

�
1 −

1

2
tan2θ

�
ðg2KI1Þ

�
x

þ
�
−
�
tan θ
ρþ

−
tan θ
ρ−

�
þ 1þ sin2θ
cos3θð1þ δÞ

�
gK2

ρ2

�
þ
�
1þ 1

2
tan2θ

�
ðgKI0Þ

�
y2

2

þ tan θ

�
gK5

Rρ

�
y2 sec2θ − x2

2
−
�
1 −

1

2
tan2θ

�
ðgKI0Þ

x2

2
þ sec θ
1þ δ

ðg2KI1Þðpyy − pxxÞ

−
sec2θ
1þ δ

�
1

ρþ
−

1

ρ−

�
pxy2

2
þ sec θ
1þ δ

�
gK5

ρR

��
pyxy − pxðx2 − y2Þ sec

2θ

2

�

−
tan θ
12

ðKþ − K−Þð3xy2 þ x3Þ þ
�
K6

Rρ

�
3xy2 sec2θ − x3

6
−

1þ sin2θ
cos3θð1þ δÞ

�
K3

gρ2

�
y4

6
: ð60Þ

The fringe field map can now be had by applying the exponentiated operator e∶ΩM∶ to the coordinates at the hard edge.
For example, the displacement due to the fringe fields in the horizontal direction is given by Δx ¼ ðe∶ΩM∶ − 1Þx. At the end
of this section we will express the full fringe field map as a sequence of symplectic coordinate updates, but to compare our
results with previous work we first compute the Taylor map by expanding e∶ΩM∶ to second order. The resulting corrections
to the particle coordinates are then given by the sum of

Δxjold ¼ −
sec3θ
1þ δ

�
g2K0

ρ

�
þ sec3θ
2ð1þ δÞ

�
1

ρþ
−

1

ρ−

�
y2 ð61Þ

Δyjold ¼ 0 ð62Þ

Δpxjold ¼
tan2θ
2

�
g2K4

ρR

�
− tan θ

�
gK5

ρR

�
xþ

�
K6

2ρR

�
y2 − x2cos2θ

cos2θ
ð63Þ

Δpyjold ¼ −
�
tan θ
ρþ

−
tan θ
ρ−

�
yþ 1þ sin2θ

ð1þ δÞcos3θ
�
gK2

ρ2

�
yþ tan θ

cos2θ

�
gK5

ρR

�
yþ sec2θ

�
K6

ρR

�
xy

−
sec3θ
1þ δ

�
1

ρþ
−

1

ρ−

�
ypx þ

2cos2θ − 4

3ð1þ δÞcos3θ
�
K3

ρ2g

�
y3 ð64Þ

and

Δxjnew ¼ sec θ
1þ δ

�
ðg2KI1Þxþ

�
gK5

2ρR

�
x2 − y2

cos2θ

�
ð65Þ

Δyjnew ¼ −
sec θ
1þ δ

ðg2KI1Þy −
sec θ
1þ δ

�
gK5

ρR

�
xy ð66Þ

Δpxjnew ¼ −
�
1 −

1

2
tan2θ

�
ðgKI0Þx −

sec θ
1þ δ

ðg2KI1Þpx −
tan θ
4

ðKþ − K−Þðx2 þ y2Þ

þ sec θ
1þ δ

�
gK5

ρR

��
pyy −

pxx
cos2θ

�
− tan θ

�
1 −

1

2
tan2θ

�
ðg2KI1Þ ð67Þ

Δpyjnew ¼
�
1þ 1

2
tan2θ

�
ðgKI0Þxþ

sec θ
1þ δ

ðg2KI1Þpy −
tan θ
2

ðKþ − K−Þxyþ
sec θ
1þ δ

�
gK5

ρR

��
pxxþ

pxy
cos2θ

�
: ð68Þ

The Taylor map at a dipole entrance obtains by setting ρþ ¼ ρ, Kþ ¼ K, θ ¼ θentry, and K− ¼ 1=ρ− ¼ 0. We show in
Appendix B that in this case the “old” corrections (61)–(64) match those previously derived in [1–3], once the latter are
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transported to the magnet hard edge. Similarly, the map at
the dipole magnet exit has ρ− ¼ ρ, K− ¼ K, θ ¼ −θexit,
Kþ ¼ 1=ρþ ¼ 0, and the results of those same references
can be reproduced by using the symmetries of the fringe
integrals.
The “new” terms (65)–(68) include those associated with

the quadrupole focusing and the formally third order
contributions ∝ K5. We have found that the second order
correction due to the hard edge quadrupole term does not
match that of Brown; we believe that this is due to differing
reference trajectories of the two. Regardless, in later

sections we will compare our predictions with particle
tracking for an idealized magnet fringe profile.
Finally, we conclude this section with a symplectic

implementation of the fringe map. There are several ways
to “symplectify” a map, and in the Appendix we derive one
scheme that uses the Lie generator to split the update into
four separate steps. Each step is symplectic, and the
composition is chosen such that the resulting map that
agrees with (61)–(68) to our chosen order. Our update starts
with the linear transformation

x1 ¼ x0eb þ Xd
eb − 1

b
ð69Þ

y1 ¼ y0e−b ð70Þ

px;1 ¼ px;0e−b þ Pd
eb − 1

beb
−
�
tan θ

�
gK5

ρR

�
þ
�
1 −

1

2
tan2θ

�
ðgKI0Þ

��
cosh b − 1

b2
Xd þ

sinh b
b

x0

�
ð71Þ

py;1 ¼ py;0eb þ
sinh b
b

�
1þ sin2θ

cos3θð1þ δÞ
�
gK2

ρ2

�
−
�
tan θ
ρþ

−
tan θ
ρ−

�
þ tan θ
cos2θ

�
gK5

ρR

�
þ
�
1þ 1

2
tan2θ

�
ðgKI0Þ

�
y0 ð72Þ

where Xd is the lowest-order horizontal offset due to the
fringe, Pd is the displacement in px, and b effectively
sets the magnification in each plane; these parameters are
given by

b ¼ sec θ
1þ δ

ðg2KI1Þ; Xd ¼ −
sec θ
1þ δ

�
g2K0

ρ

�
;

Pd ¼
tan2θ
2

�
g2K4

Rρ

�
− tan θ

�
1 −

1

2
tan2θ

�
ðg2KI1Þ. ð73Þ

After the linear map, we proceed with the nonlinear
contributions

x2 ¼ x1 ð74Þ

y2 ¼ y1 exp

�
−
sec θ
1þ δ

�
gK5

ρR

�
x1

�
ð75Þ

px2 ¼ px;1 þ
sec θ
1þ δ

�
gK5

ρR

�
py;1y1

−
��

K6

ρR

�
þ tan θ

Kþ − K−

2

�
x21
2

ð76Þ

py;2 ¼ py;1 exp
�
sec θ
1þ δ

�
gK5

ρR

�
x1

�
; ð77Þ

and then

x3 ¼ x2 −
sec3θ
1þ δ

��
gK5

ρR

�
−
�

1

ρþ
−

1

ρ−

��
y22
2

ð78Þ

y3 ¼ y2 ð79Þ

px;3 ¼ px;2 þ
�
sec2θ

�
K6

ρR

�
− tan θ

Kþ − K−

2

�
y22
2

ð80Þ

py3 ¼ py;2 þ
sec3θ
1þ δ

��
gK5

ρR

�
−
�

1

ρþ
−

1

ρ−

��
px;2y2

þ
�
sec2θ

�
K6

ρR

�
− tan θ

Kþ − K−

2

�
x2y2; ð81Þ

and finally

x4 ¼
�
1 −

sec3θ
1þ δ

�
gK5

ρR

�
x3
2

�−1
x3 ð82Þ

y4 ¼ y3 ð83Þ

px;4 ¼
�
1 −

sec3θ
1þ δ

�
gK5

ρR

�
x3
2

�
2

px;3 ð84Þ

py;4 ¼ py;3 þ
2cos2θ − 4

3cos3θð1þ δÞ
�
K3

ρ2g

�
y33: ð85Þ

We provide a derivation of the symplectic fringe field
map (69)–(85) in the Appendix, and additionally include
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the updates to the (negative) path length coordinate l. This
map has been incorporated into ELEGANT’s Cartesian
bending magnet element CCBEND, and we will discuss
this and its predictions further in Sec. V. But first, we will
verify our new fringe map predictions that were summa-
rized by Eqs. (65)–(68).

IV. NUMERICAL TESTS

This section will compare our theoretical predictions
for the fringe field maps with tracking results in several
different scenarios. Within this section the tracking pre-
dictions are obtained using a custom code that numerically
integrates the equations of motion that we will describe
more fully later. In part A we isolate the “new” contribu-
tions proportional to the dipole focusing K, and verify their
form using a simple, Enge-type model for the magnetic
fringe field. Part B then compares the full fringe field
theory using magnetic field models of gradient dipoles that
are being built for the APS-U.

A. Tracking through idealized dipole fringe fields

This section will compare the fringe field corrections
that come from the quadrupole focusing terms in
Eqs. (65)–(68). We do this by comparing the theory to
tracking using a fringe field that is described by the
simplest, one-parameter Enge function [19], wherein longi-
tudinal variation of the field at x ¼ y ¼ 0 is given by the
logistic equation 1=ð1þ e−z=gÞ. In this case we can model
the magnetic field using the exact expressions provided in
Ref. [20], although a Taylor series description gives similar
results. The dipole contribution is given by

By ¼
p0

qρ
1þ e−z=g cosðy=gÞ

1þ 2e−z=g cosðy=gÞ þ e−2z=g
ð86Þ

Bz ¼
p0

qρ
e−z=g sinðy=gÞ

1þ 2e−z=g cosðy=gÞ þ e−2z=g
; ð87Þ

while we model the quadrupole component using the
symmetrized, one-parameter limit provided by Ref. [20]
at the end of Sec. IV B:

Bx ¼
p0K
4q

�
3þ sinhðz=gÞ

coshðz=gÞ þ cosðx=gÞ
�
y

−
p0K
2q

atan
�

sinðy=gÞ
ez=g þ cosðy=gÞ

�
g ð88Þ

By ¼
p0K
4q

�
3þ sinhðz=gÞ

coshðz=gÞ þ cosðy=gÞ
�
x

−
p0K
2q

atan

�
sinðx=gÞ

ez=g þ cosðx=gÞ
�
g ð89Þ

Bz ¼
p0K
4q

sinðy=gÞ
coshðz=gÞ þ cosðy=gÞ x

þ p0K
4q

sinðx=gÞ
coshðz=gÞ þ cosðx=gÞ y: ð90Þ

Our custom tracking code numerically evaluates the
fringe field map using the following five steps: (1) Initialize
coordinates on the hard edge z ¼ 0. (2) Drift particles to
z ¼ −10g where B ≈ 0. (3) Track particles through mag-
netic field (86)–(90) to z ¼ 10g where it is approximately
constant. (4) Back-track the particles to z ¼ 0 using the
ideal field B ¼ ðp0=qÞð1=ρþ Ky;Kx; 0Þ. (5) Compute
coordinate differences at hard edge.
The tracking comparisons aim to verify the theory over a

wide range of magnet parameters and initial conditions. To
this end, our results include initial angles in the range
jθj ≤ π=16, focusing gradients jKj ≤ 4 m−2, and magnetic
gaps such that 50 mm ≥ g ≥ 5 mm. The tracking presented
here also assumes that ρ ¼ 20 m, but we have found similar
results for bending radii larger than 5 m. Finally, we choose
initial coordinates with jx0j; jy0j ≤ g=2, similar ranges for
px;0 and py;0, and energies with jδj ≤ 20%.
We begin our comparison by summarizing in Fig. 4 the

tracking results for the “new” linear corrections ∝ ðg2KI1Þ
from Eqs. (65)–(68). Specifically, these terms are given by

ðΔx;ΔpxÞ ¼
1 − 3

2
tan2θ

1þ δ
ðg2KI1Þð−x0; px;0Þ ð91Þ

ðΔy;ΔpyÞ ¼
1þ 1

2
tan2θ

1þ δ
ðg2KI1Þðy0;−py;0Þ; ð92Þ

where for the Enge field I1 ¼ π2=6. Panel (a) plots
horizontal tracking results, where the plotted Δx subtracts
off the zeroth-order orbit error xorbit ¼ ðg2K0=ρÞsec3θ=
ð1þ δÞ, while the plotted Δpx subtracts off the theoretical
orbit angle pxorbit ¼ tan θð1 − 1

2
tan2θÞðg2KI1Þ (green). The

scaling is chosen such that the theory predicts a straight line
with slope −1 (þ1) for Δx ðΔpxÞ. This trend is closely
followed for Δx in red, but we can observe some deviations
for Δpx in green. We have found that the difference can be
largely attributed to small deviations from the theoretical
orbit angle offset; if we instead subtract off the numerically
determined px

sim
orbit. then we get the blue points that are in

very good agreement with expectations. Although the next-
order correction to pxorbit is calculable in principle, for all
the parameters tested it constitutes a less than 6% correction
to px

theory
orbit that does not appear to be worth the trouble.

A similar graph for the vertical coordinates is shown in
Fig. 4(b), but in this case there is no orbit deviation. With
the chosen scaling the points for Δy should theoretically lie
on a line with unit slope, while those for Δpy are predicted
to have a slope of −1.
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Our next comparison concerns the second order
corrections to px and py due to the focusing. In this
case the theory predicts Δpx ¼ −ðK=4Þ tan θðx20 þ y20Þ and
Δpy ¼ −ðK=2Þ tan θðx0y0Þ. We tested these nonlinear
corrections to the momenta by varying both coordinates
x0 and y0. We summarize the resulting tracking predictions
in Fig. 5.
The red points in Fig. 5(a) plot the tracking results for

Δpx as a function of the scaled magnitude of the particle
offset once we have subtracted off the zeroth-order offset
pxorbit. The scaling is chosen such that the theory predicts
the points to lie on the parabolas y ¼ �x2, and while this
general trend is followed, there are some significant
deviations. We found empirically that these discrepancies
can be attributed to a focusing term that is third order in
the gap. If we subtract off this small focusing correction
∝ g3K2x0 we obtain the blue points, which lie neatly along
the theoretical prediction. This higher-order fringe focusing

appears relevant here because the idealized field (86)–(90)
assumes that the dipole and quadrupole components have
identical field profiles, meaning that the fringe integral
I0 ¼ 0. In the more realistic gradient dipoles that we have
studied the focusing is dominated by Eq. (67)’s correction
∼ðgKI0Þx0, in which case the third order focusing term can
be neglected.
Figure 5(b) plots analogous tracking results for Δpy as a

function of the scaled offset product jx0y0j1=2, once the
theoretical linear focusing terms has been subtracted off.
The scaling for the independent variable is again such that
the points should theoretically lie along the parabolas
y ¼ �x2. The red points generally follow this trend, with
evidence of similar differences to that observed in panel (a).

FIG. 5. Tracking results for the second-order focusing correc-
tions. (a) Plots the observed Δpx corrected by the zeroth order
pxorbit as a function of the scaled magnitude of the particle offset;
the scaling is chosen such that the points should fall on the
parabolas y ¼ �x2 shown in cyan. The red points indicate this
trend, while the blue correct for an empirically determined linear
focusing term ∝ g3K2x0. (b) Plots the observed Δpy corrected by
the theoretical focusing as a function of jx0y0j1=2 scaled such that
the theory follow y ¼ �x2. The red points show this trend, which
becomes even clearer if we also subtract off an empirically
determined linear focusing term ∝ g3K2y0.

FIG. 4. Tracking results for the corrections of Eqs. (91)
and (92). (a) Plots the observed Δx and Δpx as a function of
the scaled initial x0 and px;0, scaled such that the theory predicts
lines with slopes equal to ∓1. The green points remove the
theoretical orbit error pxorbit ∝ g2, while the blue removes the
orbit angle observed in the simulations. (b) Plots the same results
for the vertical plane, where theory predicts slopes for Δy and
Δpy equal to �1.
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If we again subtract off an empirically determined focusing
∝ g3K2y0 we obtain the blue points, which again show that
the nonlinear corrections are well described by the theory.
Again, the empirical focusing is typically a small correction
to the term ∼ðgKI0Þy0 for realistic gradient dipoles, and is
also smaller than the hard-edge focusing term we sub-
tracted off.
We conclude this section by providing tracking results

for a simplified longitudinal gradient dipole. For this we set
the focusing gradient K ¼ 0, and choose a bending field
that smoothly transitions between two values by replacing
1=ρ → ð1=ρþ − 1=ρ−Þ in the bending field (86) and (87)
and then adding the constant field p0=qρ− to By. We track
particles using the same procedure described previously,
except that in Step 2 we transport particles from the hard
edge to z ¼ −10g assuming a constant bending field
By ¼ p0=qρ−. In addition, we will fix ρ− ¼ 10 m, vary
ρþ between 15 and 100 m, and otherwise use the same
range of initial conditions, angles, energies, and magnetic
gaps as was done previously.
We summarize the tracking results for the vertical

focusing in Fig. 6(a), for which we have subtracted off
the dominant term tan θð1=ρþ − 1=ρ−Þy0, whose size for
our parameters is typically between 10 and 400 μrad. The
red points plot the resulting displacement versus the soft
fringe focusing term

1þ sin2θ
cos3θð1þ δÞ

�
gK2

ρ2

�
y0 ¼

1þ sin2θ
cos3θ

gðρþ − ρ−Þ2
ð1þ δÞρ2þρ2−

y0;

so that the theory predicts the points should lie along the
line with unit slope. Figure 6(a) verifies the linear trend
with some outliers. We found that these largely correlated
to small magnetic gaps, and after subtracting off the
pseudo-octupole correction ∝ y30=g given by the final term
in (64) and derived previously in [2,3], we find the very
good agreement shown by the blue points.
Our next test targets the hard-edge, second-order con-

tributions to Δx and Δpy that are given by

Δx ¼ sec3θ
2ð1þ δÞ

�
1

ρþ
−

1

ρ−

�
y20

Δpy ¼ −
sec3θ
ð1þ δÞ

�
1

ρþ
−

1

ρ−

�
y0px;0.

To isolate these terms we set θ ¼ 0 and plot the tracking
output as a function of jð1=ρþÞ − 1=ρ−Þ=ð1þ δÞj1=2y0 in
Fig. 6(b). The red points plot the horizontal displacement
from the orbit offset Δx − xorbit, which lie closely along
the theoretical line −x2=2. The dark blue and black points
plot the vertical momenta after we subtract off the linear
soft fringe focusing for y0 ¼ py;0 and y0 ¼ −py;0, respec-
tively. The tracking is clustered about the theoretical lines
y ¼ �x2 as predicted.

B. Fringe field tracking through APS-U dipoles

The APS-U will employ several Cartesian dipoles [21]
whose parameters we summarize in Table I. The Q4 and
Q5 magnets are reverse bends with strong focusing
gradients, while the A:M1 magnet varies the bending field

FIG. 6. (a) Vertical focusing for a longitudinal gradient dipole as
a function of the soft fringe size after subtracting off the dominant
term ∝ tan θð1=ρþ − 1=ρ−Þ (red). Theory predicts a unit slope.
The blue points also subtract off the cubic correction ∝ y30=g.
(b) Quadratic fringe terms for Δx and Δpy for θ ¼ 0 as a function
of the scaled y0 ¼ �py;0, Cyan theory lines are y ¼ x2=2 for the
red points and y ¼ �x2 for blue and black points.

TABLE I. Cartesian dipole parameters in the APS-U.

Magnet Length (m) ρ (m) K (1=m2)

Q4 0.211 −126.6 4.00

Q5 0.104 −89.8 2.16

A:M1.1 0.154 27.5 −8 × 10−4

A:M1.2 0.179 43.7 −5 × 10−4

A:M1.3 0.370 65.4 −3 × 10−4

A:M1.4 0.543 87.1 −3 × 10−4

A:M1.5 0.910 130.6 −2 × 10−4
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longitudinally using five magnetic segments as indicated;
the APS-U also has a B:M1 magnet that is related to the A:
M1 by mirror symmetry along z. This section compares our
theoretical fringe map predictions to those obtained from
tracking through the Q4 and A:M1 magnets. The tracking
results are again obtained from our custom code essentially
following the five steps described in the previous sub-
section. Here, however, the drift in step 2 goes to the
beginning of the field map, while the particle integration of
step 3 proceeds to a location zþ in the middle of the
magnetic segment. Unlike the previous test cases, we have
found that the soft fringe corrections for the Q4 and A:
M1 magnets are dominated by the dipole field curvature
terms ∝ K4, K5, and K6.
First, we compare the theoretical fringe field corrections

with those obtained by tracking for the Q4 reverse gradient
bend. We summarize our predictions for the coordinate
maps as a function the initial coordinate offsets x0 ¼ y0 in
Fig. 7. We find excellent agreement between predictions

and theory provided jx0j ∼ jy0j ≲ 2 mm, after which higher
order nonlinearities lead to larger discrepancies, particu-
larly for the momenta. We have found similarly good
agreement when the initial coordinates are less than a few
mm or mrad for other fringe corrections.
Next, we will compare our fringe predictions to those

obtained from tracking through the A:M1 longitudinal
gradient dipole. Figure 8(a) shows how the bending
field varies longitudinally in five discrete segments,
with the black line showing the reference orbit. In
addition, the black dots indicate the theoretically
obtained locations of the six hard edges. At each of
those locations we repeat the five steps of fringe field
tracking that we described in the previous section,
meaning that we have six different fringe field maps
for the A:M1 magnet.
We compare the tracking results to theoretical predic-

tions for the change in the horizontal momentum as a
function of the initial horizontal offset x0 in Fig. 8(b),
wherein we offset the data by the fringe number 0 ≤ f ≤ 5
for clarity. We see that each line is horizontally centered
about the reference orbit, and each contains both first and
second order contributions. Figure 8(c) plots Δpx as a
function of the vertical y0, and we find that the nearly
quadratic theoretical predictions agrees well with tracking
each fringe location over the entire range of coordinates
investigated.
Figure 9 plots the fringe offsets for the vertical momen-

tum. Panel (a) plots the focusing Δpy as a function of
vertical y0 assuming all other coordinates vanish. Both
tracking and theory show that the vertical fringe focusing
goes from positive to negative as the particle traverses the
magnet. It turns out that the dominant contribution to this
trend comes from the nonzero orbit via the curvature term
∝ ½ðK6=ρRÞxref �y0; this term more than cancels the oppo-
sitely signed hard edge correction tan θðy0=ρ− − y0=ρþÞ,
and the only other significant contribution comes from the
soft-fringe fringe focusing ∝ ðgK2=ρ2Þy0.
Finally, Fig. 9(b) plots Δpy when we set the vertical

displacement y0 equal to the horizontal offset from the
reference orbit x0 − xref . We see that in addition to the
linear contributions seen in panel (a), we also have
important quadratic dependence from the term
∝ ðK6=ρRÞðx0 − xrefÞy0. For this magnet the terms involv-
ing the quadrupole gradient K are all close to zero.

V. CARTESIAN BENDS FOR TRACKING: THE
CCBEND AND LGBEND ELEMENTS IN ELEGANT

Thus far we have discussed fringe field modeling in
straight dipoles, with particular emphasis on the theory of
Cartesian dipoles whose bending fields incorporate trans-
verse or longitudinal gradients. The tracking code ELEGANT

models Cartesian dipoles with no longitudinal gradient
using the CCBEND element, while steplike longitudinal
variations in the bending field are simulated using the

FIG. 7. Comparison of the fringe theory to tracking for the Q4
reverse bend dipole. (a) Compares the offsets Δx and Δy as a
function of initial x0 ¼ y0, while (b) plots the anglesΔpx andΔpy.
The “old” theory predicts a nearly constant Δxjold ≈ 0.92 μm,
Δpxjold ≈ −0.41 μrad, and Δyjold ¼ Δpyjold ¼ 0 due to the large
bending radius ρ ¼ −126.6 m.
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LGBEND element. In this section we describe how the
fringe field maps were incorporated into these elements,
and show examples of what these models predict for the
APS-U lattice.

A. Tracking through Cartesian bends in ELEGANT

We begin by briefly describing how ELEGANT models
Cartesian bends [22]. The first step is to transform
the particle coordinates from the entrance plane to the
hard edge as given in Eqs. (15)–(21). Then, the exact
Hamiltonian of a hard-edge magnet in Cartesian coordi-
nates is

Hðx; p; δÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ δÞ2 − p2

x − p2
y

q
þ azðx; yÞ; ð93Þ

where the longitudinal vector potential az describes the
magnet’s multipole content such that the usual dipole
contribution is linear in x. We symplectically integrate
the particle trajectories associated with (93) using the usual
splitting (kick-drift) technique. Since the exact Hamiltonian
is used, the need to use a curvilinear coordinate system
is obviated. In this algorithm the numerical solution is
obtained by interleaving exact solutions of the kinetic

FIG. 9. (a) Vertical fringe field focusing for the APS-U
longitudinal gradient dipole. The tracking is plotted in red
while the theory is blue and dashed, and each prediction has
been offset by twice the fringe number for clarity. (b) Linear
and nonlinear fringe field corrections Δpy for initial coordi-
nates such that x0 ¼ y0 þ xref .

FIG. 8. (a) The A:M1 longitudinal gradient dipole field profile
and reference orbit, where the hard edge locations of each
magnetic segment are identified with the black points. (b) Com-
parison of tracking (red solid lines) with theory (blue dashed
lines) for the fringe field corrections Δpx as a function of input x0
at each hard edge. The lines are displaced by the fringe number
0 ≤ f ≤ 5 for clarity. (c) Analogous comparisons of tracking
and theory for the approximately quadratic Δpx as a function of
vertical coordinate y0 at each edge.
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square root term (the drift) with that of the potential az (the
kick) as described in Refs. [23,24]; we typically use the
fourth order scheme first introduced by Ruth [25], but a
sixth order integrator is also available.
While the particle tracking just described is similar to

that in other straight magnets, in dipoles one must take
particular care to preserve the reference trajectory. For
example, discretization errors in Cartesian bends can lead
to unphysical changes of the reference orbit that are not
present in sector bends, since the latter has a reference
trajectory at x ¼ 0. Even if numerical errors are mini-
mized, multipole components effectively change the
bending field as the particle moves off-axis, so that
combined-function or nonideal magnets must account
for a varying bending field along the trajectory. We have
chosen to preserve the reference trajectory and to center it
about x ¼ 0 within the CCBEND element by adjusting
both its field strength and its horizontal position. This is
done by tracking the reference trajectory from the
entrance hard edge at z ¼ 0 to the exit hard edge at
z ¼ L, and applying a simplex optimization of the frac-
tional strength error and horizontal offset that targets
xð0Þ ¼ xðLÞ, pxð0Þ ¼ −pxðLÞ, and the initial and maxi-
mum x to have equal magnitudes but opposite signs. The
first two conditions ensure that the reference trajectory
starts and ends with the correct coordinates, while the
third condition centers the orbit in the magnet to make
best use of the good field region.
The symplectic fringe field maps (69)–(85) are applied at

each edge. In addition, the CCBEND incorporates many of
the ELEGANT’s “standard” capabilities, including reverse
tracking, arbitrary misalignments, synchrotron radiation
in particle tracking, interior apertures, and six-dimensional
beam moment propagation with radiation damping and
diffusion.
Tracking in the LGBEND element can be usefully thought

of as tracking through a one full CCBEND element followed
by a series of CCBENDs, each of which has their own exit
plane position, angle, and fringe field map, but whose
entrance plane position and angle is inherited from the prior
segment. Hence, an LGBEND element with N magnetic
segments requiresN þ 1 horizontal offsets, angles, and sets
of fringe field integrals. The trajectory optimization, on the
other hand, proceeds over the entire magnet, and with
targets such that the entrance and exit horizontal positions
and angles match those specified in the user-supplied
configuration files.
Finally, the ELEGANT distribution provides the companion

program straightDipoleFringeCalc to help define
the Cartesian bend parameters and compute the fringe field
integrals.

B. Application to the APS-U lattice

In this section we show how incorporating the fringe
field terms into the CCBEND and LGBEND elements

impacts modeling of the APS-U lattice. In particular, we
will compare predictions using full field tracking of the Q4,
Q5, and A:M1 magnets listed in Table I to hard edge
models that variously include or neglect the fringe field
maps. The full-field tracking results are found by tracking
with generalized gradients using the BGGEXP element [17]
in ELEGANT. The generalized gradients themselves are
derived from OPERA field maps of the magnets that are
described in Ref. [21] using the tools described in Ref. [17].
We use numerical computation of first- and second-order
transport matrices as the means of comparison, with the
BGGEXP element taken as the “gold standard” against
which more approximate, faster methods (i.e., CCBEND,
LGBEND) are judged.
We begin with a detailed analysis of the Q4 reverse

bend transverse gradient magnet, summarized in Fig. 10.
Panel (a) compares the linear matrix elements by plotting
the fractional difference between the full-field tracking
with BGGEXP to those with (blue) and without (red) the
fringe field contributions. We see that the predictions
with the fringe field contributions typically agree to
within a few parts in 104 or better, and that these usually
improve agreement over those without the fringe maps by
a factor of 5 to 10. Significantly, the model without the
fringe maps predicts too much focusing in both planes,
meaning that it cannot be corrected by adjusting K; in
other words, without fringe effects the absolute magni-
tude of both R21 and R43 is too large by the amount
shown in Fig. 10, while the fringe map reduces this
discrepancy largely by the “magnification” terms
ðx; pxÞ → ðebx; e−bpxÞ and ðy; pyÞ → ðe−by; ebpyÞ.
Figures 10(b) and 10(c) compares the nonzero sec-

ond-order matrix elements that do not contribute to the
path length, with the terms grouped from the largest in
(a) to the smallest in (b). While the model without
fringe contributions does well for the largest hard edge
terms, once Txxx ≲ 0.1 we see errors as large 30%–40%.
On the other hand, including the fringe contributions
results in a fractional error of better than a few percent
for all terms.
The differences in the matrix elements, although small,

lead to noticeable differences in the linear lattice predic-
tions for the APS-U. We summarize these in Table II, in
which we list the linear tunes and chromaticities as
obtained by tracking in the APS-U lattice for various
models of the reverse bend gradient dipoles Q4 and Q5.
We see that the fringe field terms change the tunes by
0.03–0.06, which is significant for a machine that plans to
operate on the difference resonance. In addition, we see that
neglecting the Q4 fringe maps leads to tunes that are too
large in both planes, so that this cannot be fixed by
adjusting the focusing strength. Note that the design
APS-U tunes are 95.1 and 36.1, but that the lattice is
not yet adjusted to compensate for improved models of
Q4 or Q5.
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Next, we compare predictions for the longitudinal
gradient A:M1 dipole. The linear matrix obtained from
BGGEXP tracking through the full magnetic field is

2
6666666664

0.99822 2.2243 0 0 0 0.04035

−0.00101 0.9995 0 0 0 0.02857

0 0 1.0009 2.2251 0 0

0 0 0.00051 1.0002 0 0

0.02856 0.0232 0 0 1 0.00029

0 0 0 0 0 1

3
7777777775
;

while that of the hard edge LGBEND is

2
6666666664

0.99816 2.2242 0 0 0 0.04029

−0.00106 0.9995 0 0 0 0.02857

0 0 1.0010 2.2253 0 0

0 0 0.00056 1.0003 0 0

0.02856 0.0233 0 0 1 0.00029

0 0 0 0 0 1

3
7777777775
:

The agreement is quite good, such that the only element
whose fractional difference is larger than 0.5% is the very
small R34 ∼ 0.0005. If we do not include the fringe field
maps between the segments the agreement in the linear terms
is only a little worse. On the other hand, neglecting the fringe
field contributions results in very poor predictions for the
second order terms; we have found that more than half of the
terms differ by factors of two or more, with some having
the same order of magnitude but the wrong sign.
We compare the second order matrix elements of the A:

M1 longitudinal gradient dipole in Fig. 11, where we have
ordered the elements according to the absolute value of
their size and omitted the path length terms. The agreement
is not as good as that observed for the single CCBEND
magnet; the elements typically differ by 10%–25%, and
differences approaching 100% can be observed for a a few
of the smaller elements in panel (b). Nevertheless, the hard
edge LGBEND model provides a good representation for
the APS-U lattice. We summarize the APS-U lattice

TABLE II. APS-U lattice predictions for various models of the
transverse gradient reverse bend dipoles, where (F) includes
fringe maps while (NF) does not.

Model νx νy Natural ξx Natural ξy

(NF) CCBEND Q4 94.999 36.152 −131.79 −112.29
(F) CCBEND Q4 94.983 36.087 −131.41 −111.79
BGGEXP Q4 94.986 36.088 −131.45 −111.79
(NF) CCBEND Q5 95.136 36.069 −134.56 −111.07
(F) CCBEND Q5 95.115 36.076 −133.94 −111.39
BGGEXP Q5 95.116 36.076 −133.95 −111.39
(NF) CCBEND Q4+Q5 95.035 36.120 −132.65 −111.71
(F) CCBEND Q4+Q5 94.998 36.063 −131.68 −111.54
BGGEXP Q4+Q5 95.000 36.064 −132.05 −111.54

FIG. 10. Fractional differences between the Q4 transverse
gradient dipole matrix element predictions computed using
BGGEXP magnet field tracking and CCBEND models that include
(blue) and do not include (red) the fringe fields. (a) Plots the
differences in the linear elements, while (b) and (c) plot the
nonlinear elements as ranked from largest to smallest, and not
including path length terms.
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predictions when we use various models for the M1
longitudinal gradient dipoles in Table III. Note that these
include the respective models for both the A:M1 dipole
listed in Table I and the B:M1 dipole that is the related by
mirror reflection along z (i.e., the B:M1 dipole starts with
segment M1.5, followed M1.4, etc.).
As with the Q4 and Q5 examples, the effect of the

improved longitudinal-gradient dipole models on the ver-
tical tunes is operationally significant. Fortunately, the

lattice is sufficiently flexible that we can compensate for
such changes and restore the design working point and
lattice parameters. An important goal of our work is to
provide a fast model of the APS lattice that includes and
corrects for fringe field effects, to facilitate rapid commis-
sioning of the ring.

VI. CONCLUSIONS

We have presented a way to incorporate fringe field
effects into hard edge models of general Cartesian dipoles.
We have expressed these effects as a map to be applied at
the hard edge, and shown the resulting predictions for both
transverse gradient dipoles and staircaselike realizations of
longitudinal gradient dipoles. In the former case the fringe
terms due to the strong focusing fields can completely
dominate the usual dipole contributions. Finally, we
showed how these models have been incorporated into
the tracking code ELEGANT for fast modeling of storage
rings including the APS-U.
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APPENDIX A: THE GENERALIZED
GRADIENT REPRESENTATION OF A

PARALLEL-PLATE DIPOLE

Here we would like to show how our approach relates to
the dipole fringe model first worked out in Ref. [4]
and described further in [5]. In brief, these references
assume that the dipole is effectively infinite along x, which
leads to a B-field that depends only on the dipole field
profile, its derivatives, and the vertical coordinate y.
Since here we will only compare the field representations,
it will be simpler to work with the magnetic potential ψðxÞ.
The skew-free generalized gradient representation of the
potential is [14]

ψ ¼
X∞
m¼1

ℑ½ðxþ iyÞm�
X∞
l¼0

m!ðx2 þ y2ÞlC½2l�
m ðzÞ

ð−4Þll!ðmþ lÞ! ; ðA1Þ

and one can show that the magnetic field B ¼ ∇ψ is
identical to that found by taking the curl of the vector
potential (2)–(4).
A well-made dipole should be symmetric in x which

implies that the expansion will be dominated by terms with
m odd. Hence, for m ¼ 2pþ 1 we propose redefining the
generalized gradients via

p ≥ 1∶ C2pþ1ðzÞ → S2pþ1ðzÞ þ
C½2p�
1 ðzÞ

4pð2pþ 1Þ! : ðA2Þ

TABLE III. APS-U lattice predictions for various models of the
M1 longitudinal gradient bends.

Quantity BGGEXP (F) LGBEND (NF) LGBEND

βx (m) 5.197 5.197 5.200
βy (m) 2.455 2.458 2.470
ηx (mm) 0.373 0.368 0.355
νx 95.111 95.111 95.100
νy 35.987 35.980 35.963
Natural ξx −133.6 −133.6 −133.4
Natural ξx −111.4 −111.4 −112.1

FIG. 11. Second order matrix element predictions for the A:M1
longitudinal gradient dipole as computed from BGGEXP magnet
field tracking (black) and the LGBEND model (red). Panel (a)
contains elements whose absolute value is greater than 0.4, while
panel (b) the remaining ones.
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This means that all the odd generalized gradients include
higher-order derivatives of the on-axis dipole field C1.
Then, we claim that the expansion (A1) becomes

ψ ¼
X∞
p¼0

ð−1Þpy2pþ1

ð2pþ 1Þ! C½2p�
1 ðzÞ þ

X∞
p¼1

ℑ½ðxþ iyÞ2pþ1�

×
X∞
l¼0

ð2pþ 1Þ!ðx2 þ y2Þl
ð−4Þll!ð2pþ 1þ lÞ! S

½2l�
2pþ1ðzÞ

þ
X∞
p¼1

ℑ½ðxþ iyÞ2p�
X∞
l¼0

ð2pÞ!ðx2 þ y2Þl
ð−4Þll!ð2pþ lÞ!C

½2l�
2p ðzÞ:

ðA3Þ

The first term involves only powers of y and derivatives
of the dipole field profile, and results in a magnetic field
that is identical to that proposed in [4,5]. In other words,
we can reproduce the theory of [4] by first setting all
contributions ∼C2pðzÞ that are antisymmetric in x to zero,
and then assuming that the terms proportional to S2pþ1ðzÞ
also vanish; the latter is equivalent to assuming that the
dipole is infinite along x.
Unfortunately, we have been unable to prove that (A2)

implies (A3) for all p; we have, however, used
Mathematica to verify its validity for p ≤ 9 (m ≤ 19); at
the very least it is true out to the order of p one is likely to
use. When p ¼ 1 we have

S3ðzÞ ¼ C3ðzÞ −
C00
1ðzÞ
24

¼ p0

6ρqB0

∂
2By

∂x2
; ðA4Þ

which shows that the curvature term is indeed the
first correction encapsulating the finite extent of the
dipole. In addition, the expression (A3) may provide a
way to quantify higher-order aberrations to the “pure”
dipole field.

APPENDIX B: COMPARISON TO
PREVIOUS RESULTS

This Appendix compares our fringe field map, which
applies at the magnet’s hard edge, to the usual fringe maps
at the entrance plane. We will do this assuming that there is
no focusing component and that the body sextupole term
vanishes, in which case the Cartesian dipole is the same as a
sector bend, and our results should match those published
previously. We begin with the second-order Taylor map
results for the fringe field corrections at the entrance plane
given by Refs. [1–3]:

Δxe ¼ −
sec2θ
1þ δ

g2K0

ρ
−

x2esin2θ − y2e
2ρcos2θð1þ δÞ ; ðB1Þ

Δpx;e ¼ −
sec3θ sin θ1

1þ δ

g2K0

ρ2
þ tan2θ
2 cos θ

g2K4

ρR

þ tan θ
ρ

xe −
tan θ
cos2θ1

gK5

ρR
xe

þ tan2θ
ρð1þ δÞ ðxepx;e − yepy;eÞ

þ K6

2ρR
y2e − x2e
cos3θ

þ tan θð2tan2θ1 þ 1Þ
2ρ2ð1þ δÞ y2e; ðB2Þ

Δye ¼
tan2θ1
ρð1þ δÞ xeye; ðB3Þ

Δpy;e ¼ −
tan θ
ρ

ye þ
1þ sin2θ

ð1þ δÞcos3θ
gK2

ρ2
ye

þ tan θ
cos2θ

gK5

ρR
ye −

yepx;e þ xepy;esin2θ

ρcos2θð1þ δÞ

þ sec3θ
K6

ρR
xeye þ

2cos2θ − 4

3cos3θð1þ δÞ
K3

ρ2g
y3e: ðB4Þ

We have added the subscript e to all coordinates to indicate
that they are defined along the entrance plane of the
magnet, namely, the red line in Fig. 2.
To find the fringe field corrections at the hard edge of the

magnet, we must map the displaced coordinates at the
entrance plane through an ideal bend, and then subtract off
what the initial, uncorrected entrance coordinates would be
if they merely drifted in vacuum to the hard edge. We do
this in the following four steps: (1) Relate the particle
coordinates along the entrance plane to the rectangular
ðx; y; zÞ coordinate axes oriented along magnet. (2) Map
the displaced coordinates along the ideal bending magnet
trajectories to the hard edge. (3) Map the initial coordinates
with a simple drift to the hard edge. (4) Take the difference
of step 3 from step 2 and express everything using hard
edge coordinates.
The first step is simple geometry: the vertical coordinates

ðy; pyÞ ¼ ðye; py;eÞ, while in the horizontal

x ¼ xe cos θ; ðB5Þ

px ¼ px;e cos θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ δÞ2 − p2

x;e − p2
y;e

q
sin θ: ðB6Þ

Step two is resolved using the particle trajectories in a
constant bending field B ¼ ðp0c=qρÞŷ. A particle with
initial coordinates ðxi; pxi; yi; pyiÞ at zi has momenta

pxðzÞ ¼ pxi − ðz − ziÞ=ρ; ðB7Þ

pyðzÞ ¼ pyi; ðB8Þ
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and Cartesian coordinates

x ¼ xi þ ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ δÞ2 − p2

xðzÞ − py
2
i

q

− ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ δÞ2 − p2

xi − p2
y
2
i

q
; ðB9Þ

y ¼ yi − pyiρ tan−1

2
64 pxðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ δÞ2 − p2
xðzÞ − p2

yi

q
3
75

þ pyiρ tan
−1

2
64 pxiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ δÞ2 − p2
x i − p2

y i

q
3
75. ðB10Þ

We want to use the bending magnet trajectories
(B7)–(B10) to map the fringe-corrected positions and
momenta along the entrance plane of the magnet to the
hard edge at z ¼ 0. The horizontal positions and momenta
are found from inserting ðxi; pxiÞ into the left of Eqs. (B5)
and (B6) and the displaced edge coordinates into the
right; applying similar reasoning to the vertical equations
ðy; pyÞ ¼ ðye; py;eÞ yields

xi ¼ ðxe þ ΔxeÞ cos θ; ðB11Þ

pxi ≈ ðpx;e þ Δpx;eÞ cos θ þ ð1þ δÞ sin θ

−
ðpx;e þ Δpx;eÞ2 þ ðpy;e þ Δpy;eÞ2

2ð1þ δÞ sin θ; ðB12Þ

yi ¼ ye þ Δye; ðB13Þ

pyi ¼ py;e þ Δpy;e. ðB14Þ

These are located along the entrance plane at the longi-
tudinal position zi ¼ − sin θðxe þ ΔxeÞ. We now insert the
initial values (B11)–(B14) into the bending magnet tra-
jectories (B7)–(B10), expand to second order, and find that
at the hard edge z ¼ 0 we have

xð0Þ ≈ xe þ Δxe
cos θ

�
1 −

tan2θ
2ρð1þ δÞ ðxe þ ΔxeÞ

�

þ sec θ tan2θ
ð1þ δÞ ðxe þ ΔxeÞðpx;e þ Δpx;eÞ; ðB15Þ

pxð0Þ ≈ ð1þ δÞ sin θ þ ðpx;e þ Δpx;eÞ cos θ

− sin θ
xe þ Δxe

ρ
−
sin θðpx;e þ Δpx;eÞ2

2ð1þ δÞ
−

sin θ
2ð1þ δÞ ðpy;e þ Δpy;eÞ2; ðB16Þ

yð0Þ¼yeþΔyeþ
tanθ
1þδ

ðpy;eþΔpy;eÞðxeþΔxeÞ; ðB17Þ

pyð0Þ ¼ py;e þ Δpy;e: ðB18Þ

Combining these with the fringe field displacements listed
in Eqs. (B1)–(B4) completes step 2.
Step 3 involves taking the initial coordinates along the

entrance plane and drifting them to the hard edge. We
computed this in (15)–(20); and expanding to second order
shows that

x0 ≈
xe

cos θ
þ sec θ tan θ

1þ δ

�
xepx;e − tan θ1

x2e
2ρ

�
; ðB19Þ

px0 ≈ ð1þ δÞ sin θ þ px;e cos θ −
sin θ

2ð1þ δÞ ðp
2
x;e þ p2

y;eÞ;

ðB20Þ

y0 ¼ ye þ
tan θ
1þ δ

py;exe; ðB21Þ

py0 ¼ py;e: ðB22Þ

Alternatively, we could have derived this by setting
Δxe ¼ Δpx;e ¼ Δye ¼ Δpy;e ¼ 0 in the bending magnet
Eqs. (B15)–(B18), and taking the ρ → ∞ limit.
Now, we proceed to step 4 by subtracting the drifted

initial values (B19)–(B22) from the full coordinates
bent along the magnet trajectories that are given by
Eqs. (B15)–(B18). We then complete the calculation by
eliminating the entrance plane variables in favor of those at
the hard edge by approximately inverting the drift equa-
tions as follows

xe ≈ x cos θ; ðB23Þ

px;e ≈ px=cos θ; ðB24Þ

ye ≈ y −
tan θ
1þ δ

pyx

cos θ
; ðB25Þ

py;e ¼ py: ðB26Þ

After some cancellations we find that the fringe field
corrections at the magnet hard edge are given by
Eqs. (61)–(64) with ρþ ¼ ρ, 1=ρ− ¼ 0, and θ ¼ θentry. A
similar calculation that starts with the exit map of the
dipole reproduces our results with 1=ρþ ¼ 0, ρ− ¼ ρ, and
θ ¼ −θexit provided the fringe integrals are properly inter-
preted (we have defined all integrals to be evaluated along
the z axis about z ¼ zedge, while previous references
typically compute them from outside to inside the magnet).
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APPENDIX C: DERIVATION OF THE SYMPLECTIC FRINGE MAP AND THE PATH LENGTH TERMS

This Appendix provides a brief derivation of the symplectic fringe field map (69)–(85), and includes explicit expressions
for the particle path length. The linear part of the fringe field map is generated by

Ωlin ¼
sec3θ

2ð1þ δÞ
�
g2K0

ρ

�
px þ

�
tan2θ
2

�
g2K4

Rρ

�
− tan θ

�
1 −

1

2
tan2θ

�
ðg2KI1Þ

�
x

þ
�
−
�
tan θ
ρþ

−
tan θ
ρ−

�
þ 1þ sin2θ
cos3θð1þ δÞ

�
gK2

ρ2

�
þ
�
1þ 1

2
tan2θ

�
ðgKI0Þ

�
y2

2

þ tan θ

�
gK5

Rρ

�
y2 sec2θ − x2

2
−
�
1 −

1

2
tan2θ

�
ðgKI0Þ

x2

2
þ sec θ
1þ δ

ðg2KI0Þðpyy − pxxÞ; ðC1Þ

while the second order terms arise from a sum of the generators

Ω2 ¼
sec θ
1þ δ

�
gK5

ρR

�
pyxy −

�
K6

Rρ

�
x3

6
−
tan θ
12

ðKþ − K−Þx3; ðC2Þ

Ω3 ¼ −
sec2θ
1þ δ

�
1

ρþ
−

1

ρ−

�
pxy2

2
þ sec3θ
1þ δ

�
gK5

ρR

�
pxy2

2
−
tan θ
4

ðKþ − K−Þxy2 þ
sec2θ
2

�
K6

Rρ

�
xy2; ðC3Þ

Ω4 ¼ −
sec3θ

2ð1þ δÞ
�
gK5

ρR

�
pxx2 −

1þ sin2θ
cos3θð1þ δÞ

�
K3

gρ2

�
y4

6
: ðC4Þ

The total fringe field map can then be approximately split into the sequence

e∶ΩM∶ ¼ e∶Ωlin∶þ∶Ω2∶þ∶Ω3∶þ∶Ω4∶ ≈ e∶Ωlin∶e∶Ω2∶e∶Ω3∶e∶Ω4∶; ðC5Þ

since all the commutator terms in the Zassenhaus/Baker-Campbell-Hausdorff formula eXþY ¼ eXeYe−½X;Y�=2 � � � are Oðϵ4Þ
or higher. Hence, a suitable approximation to the fringe field map can be found by first mapping the coordinates using
e∶Ωlin∶, then by e∶Ω2∶, and so on. We found the linear map using a trial and error and some intuition, while the nonlinear
contributions can be obtained exactly using the monomial expressions [26]

ea∶q
npm∶q ¼

�
q½1þ aðn −mÞqn−1pm−1�m=ðm−nÞ if n ≠ m

q expð−anqn−1pn−1Þ if n ¼ m
; ðC6Þ

ea∶q
npm∶p ¼

�
p½1þ aðn −mÞqn−1pm−1�n=ðn−mÞ if n ≠ m

p expðanqn−1pn−1Þ if n ¼ m
: ðC7Þ

Finally, the symplectic fringe field map is completed by including the following updates to the particle path length:

l1 ¼ l0 −
Px

ð1þ δÞ2 px;0 þ
1þ a − ea

a2ð1þ δÞ Pxðax0 þ XdÞ −
a

1þ δ
ðpx;0x0 − py;0y0Þ þ

1þ sin2θ
cos3θð1þ δÞ2

�
gK2

ρ2

�
y20
2

−
�
tan θ

�
gK5

ρR

�
þ
�
1 −

1

2
tan2θ

�
ðgKI0Þ

��
e2a − 1 − 2a
4að1þ δÞ x20 þ

ðea − 1Þ2Xdx0
2a2ð1þ δÞ2 þ e2a − 4ea þ 2aþ 3

4a3ð1þ δÞ3 X2
d

�

−
e−2a − 1þ 2a
4að1þ δÞ

��
tan θ
ρþ

þ tan θ
ρ−

�
−

tan θ
cos2θ

�
gK5

ρR

�
−
�
1þ 1

2
tan2θ

�
ðgKI0Þ

�
y20; ðC8Þ

followed by

l2 ¼ l1 þ
sec θ

ð1þ δÞ2
�
gK5

ρR

�
py;2x2y2; ðC9Þ

FRINGE FIELD MAPS FOR SYMPLECTIC … PHYS. REV. ACCEL. BEAMS 26, 114001 (2023)

114001-21



and then

l3 ¼ l2 þ
sec3θ

2ð1þ δÞ2
��

gK5

ρR

�
−
�

1

ρþ
−

1

ρ−

���
px;2 þ

�
sec2θ

�
K6

ρR

�
−
tan θ
2

ðKþ − K−Þ
�
y22
4

�
y22; ðC10Þ

and finally

l4 ¼ l3 −
sec3θ

2ð1þ δÞ2
�
gK5

ρR

�
x23px;3 −

1þ sin2θ
cos3θð1þ δÞ2

�
K3

gρ2

�
y33
6
: ðC11Þ
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