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We explore the performance of a recursive least-squares algorithm to determine the bandwidth ω12 and
the detuning Δω of a superconducting cavity. We base the simulations on the parameters of the European
Spallation Source double-spoke cavities. Expressions for the signal-to-noise ratio of derived parameters are
given to explore the applicability of the algorithm to other configurations.
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I. INTRODUCTION

Superconducting accelerating cavities are used to accel-
erate protons [1,2], electrons [3–5], and heavy ions [6–8],
both with pulsed [1,4] and with continuous beams [3,9].
Owing to the low losses, the cavities have a very narrow
bandwidth on the order of Hz for bare cavities and a few
100 Hz for cavities equipped with high-power couplers. In
order to efficiently cool these cavities with liquid helium,
they are made of rather thin material that makes them easily
deformable and this changes their resonance frequency,
often by an amount comparable to their bandwidth. In
pulsed operation, the dominant deformation comes from
the electromagnetic pressure of the field inside the cavity,
the Lorentz-force detuning [10,11], while cavities operat-
ing continuously are perturbed by so-called microphonics
[12,13], caused by pressure variations of the liquid helium
bath or mechanical perturbations, for example, by recip-
rocating pumps or by malfunctioning equipment. As a
consequence of these perturbations, the cavities are detuned
and force the power generators to increase their output to
maintain fields necessary for the stable operation of the
beams. This reduces the efficiency of the system and
requires an, often substantial, overhead of the power
generation, forcing it to operate at a less than optimal
working point. To avoid this suboptimal mode of operation
and to compensate for the detuning, many accelerators
employ active tuning systems that use stepper motors and
piezo-actuators [14] to squeeze the cavities back in tune,
which requires diagnostic systems to measure the detuning.
These measurements are usually based on comparing the
phase of the signal that excites the cavity, measured with a

directional coupler just upstream of the input coupler, to the
phase of the field inside the cavity, measured by a field probe
or antenna inside the cavity. Both analog [12,15] and digital
[16,17] signal processing systems are used; often as part of
the low-level radio-frequency (LLRF) feedback system that
stabilizes the fields in the cavity. Even more elaborate
systems, based on various system identification algorithms,
are used or planned [18–21]. All these algorithms normally
rely on low-pass filtering of the often noisy signals from the
directional couplers and antennas in order to provide a
reliable estimate of the cavity detuning and the bandwidth.
In this report, we focus on a complementary algorithm

that continuously improves the estimated fit parameters by
increasing the size of a system of equations. Instead of
solving this rapidly growing system directly, we employ a
recursive least-squares (RLS) algorithm [22,23], which
only requires moderate numerical expenditure in each time
step. Remarkably, asymptotically the difference between
the continuously improving estimates of the fit parameters
and the “true” values—the so-called estimation error—
approaches zero [24] albeit at the expense of a limited
ability to resolve changing parameters. We therefore
introduce a finite memory when solving the system, which
downgrades old measurements in favor of new ones. This
allows us to handle even changing parameters at the
expense of an increased noise level of the fit parameters.
In the following sections, we first introduce the model of

the cavity and transform the continuous-time model to
discrete time. In Sec. III, we develop the RLS algorithm
to identify the cavity parameters. In Sec. IV, we explore the
capabilities of the algorithm in simulations before calculating
the signal-to-noise ratio in Sec. V and the conclusions.

II. MODEL

Accelerating cavities can be described by an equivalent
circuit composed of a resistor R, an inductance L, and a
capacitor C, all connected in parallel. This circuit is then
excited by a current I and responds by building up a voltage
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V ¼ Vr þ iVi across the components. This voltage is
decomposed into real (in-phase, I) and imaginary (out-
of-phase, Q) components. After averaging over the fast
oscillations, the evolution of the real and imaginary parts of
the voltage envelope is given by the following state-space
representation [16]

 
dVr
dt
dVi
dt

!
¼
�−ω12 −Δω

Δω −ω12

��
Vr

Vi

�

þ
�
ω12R 0

0 ω12R

��
Ir
Ii

�
ð1Þ

of the system that describes the dynamics of the cavity
voltage powered by a generator that provides the currents.
The directional couplers used to measure the input signal,
however, measure the forward component of the current I⃗þ

rather than the total current I⃗ ¼ I⃗þ þ I⃗−. Close to reso-
nance, it is straightforward to show that the measured
forward current I⃗þ, which is proportional to the signal from
the directional coupler, is related to the total current I⃗ by

I⃗ ¼ 2β

1þ β
I⃗þ ¼ 2QL

QE
I⃗þ ð2Þ

with the coupling factor β ¼ Q0=QE given by the ratio of
the intrinsic quality factor of the cavity Q0 and the external
quality factor QE. Moreover, 1=QL ¼ 1=Q0 þ 1=QE ¼
ð1þ βÞ=Q0 defines the loaded quality factor QL.
Replacing the currents on the right-hand side of Eq. (1)
with the help of Eq. (2), then leads to
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withωE ¼ ω̂=QE. We also introduceω12 ¼ ω̂=2QL and the
cavity resonance frequency ω̂. Furthermore, we assume that
the magnitude and phase of all currents and voltages can be
reliably measured after the hardware (antennas, cables, and
amplifiers) is properly calibrated. Equation (3) is in the

standard form of a linear dynamical system ˙V⃗ ¼ Ā V⃗þB̄I⃗þ

where V⃗ is the column vector with the real and imaginary
part of the voltages and I⃗þ that of the forward currents. The
matrices Ā and B̄ correspond to those in Eq. (3) and are
given by

Ā ¼
�−ω12 −Δω

Δω −ω12

�
and B̄ ¼

�
ωER 0

0 ωER

�
: ð4Þ

For the simulations, we will convert the continuous-time
system from Eq. (3) to discrete time with time step Δt,

which corresponds to the sampling time if the system is
implemented digitally. By replacing the derivatives of the
voltages with finite differences

dV⃗
dt

→
V⃗tþ1 − V⃗t

Δt
; ð5Þ

where we label the time steps by t, Eq. (3) becomes

V⃗tþ1 ¼ AV⃗t þ BI⃗þt þ w⃗t with

A ¼
�
1 − ω12Δt −ΔωΔt
ΔωΔt 1 − ω12Δt

�
; ð6Þ

B ¼ ωEΔtR1, and the process noise w⃗t. We assume that
the noise is uncorrelated and has magnitude σp. It is thus
characterized by its expectation value Efw⃗tw⃗⊤

s g ¼ σ2pδts1.
We add measurement noise w⃗0

t by using

V⃗ 0
t ¼ V⃗t þ w⃗0

t ð7Þ
in the system identification process. We assume it is
uncorrelated, has magnitude σm, and is characterized
by Efw⃗0

tw⃗0⊤
s g ¼ σ2mδts1.

III. SYSTEM IDENTIFICATION

Now we turn to the task of extracting ω12Δt and ΔωΔt
from continuously measured voltages V⃗ 0

t and currents I⃗þt .
In order to isolate the sought parameters, we rewrite Eq. (6)
in the form

V⃗ 0
tþ1 ¼ ð1þFÞV⃗ 0

tþBI⃗þt with F¼
�−ω12Δt −ΔωΔt

ΔωΔt −ω12Δt

�

ð8Þ

and B ¼ ωEΔtR1. After reorganizing this equation to

V⃗ 0
tþ1 − V⃗ 0

t − BI⃗þt ¼ FV⃗0
t ð9Þ

we rewrite FV⃗ 0
t on the right-hand side as

FV⃗ 0
t ¼ −ω12Δt

�
V 0
r

V 0
i

�
t
þ ΔωΔt

�−V 0
i

V 0
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�
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−V 0
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�
: ð10Þ

We now introduce the abbreviations

Gt ¼
�−V 0

r −V 0
i

−V 0
i V 0

r

�
t
and y⃗tþ1 ¼ V⃗ 0

tþ1− V⃗ 0
t−BI⃗þt ð11Þ

and stack Eq. (9) for consecutive times on top of each other.
In this way, we obtain a growing system of equations to
determine ω12Δt and ΔωΔt
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that we solve in the least-squares sense with the Moore-
Penrose pseudoinverse [25]

q⃗T ¼
�
ω12Δt
ΔωΔt

�
T
¼ ðU⊤

T UTÞ−1U⊤
T

0
BBBBB@

y⃗2
y⃗3

..

.

y⃗Tþ1

1
CCCCCA: ð13Þ

Here we introduce the abbreviation q⃗T to denote the
estimated parameters at time step T.
We can avoid lengthy evaluations by calculating Eq. (13)

recursively. With the definition P−1
T ¼ U⊤

T UT , its initial
value P0 ¼ p01, and the definition of UT from Eq. (12), we
express PTþ1 through PT in the following way:

P−1
Tþ1 ¼U⊤

Tþ1UTþ1

¼ p01þG⊤
1 G1þG⊤

2 G2þ� � �þG⊤
T GT þG⊤

Tþ1GTþ1

¼P−1
T þG⊤

Tþ1GTþ1: ð14Þ

We note that for all time steps t

G⊤
t Gt ¼ ðV 02

r þ V 02
i Þt1 ¼ V⃗ 02

t 1 ð15Þ

is proportional to the unit matrix 1. This renders the fit into
two orthogonal and independent parts; one for each of the
fit parameters. To proceed, we introduce the scalar quantity
pT with PT ¼ pT1 and find that it obeys

p−1
Tþ1 ¼ p−1

T þ V⃗ 02
T : ð16Þ

Taking the reciprocal leads to

pTþ1 ¼
�

1

1þ pTV⃗
02
T

�
pT: ð17Þ

Note that we need to initialize this recursion with a nonzero
value and set p0 ¼ 1 in the simulations. Despite being
numerically unity, we carry p0 through all equations,
because it carries the inverse units of V⃗2

T .
We now turn to finding q⃗Tþ1 by writing Eq. (13) for

T þ 1

q⃗Tþ1 ¼ pTþ1ðG⊤
1 y⃗2þG⊤

2 y⃗3þ� � �þG⊤
T y⃗Tþ1þG⊤

Tþ1y⃗Tþ2Þ

¼
�

1

1þpTV⃗
02
T

�
pT

�XT
t¼1

G⊤
t y⃗tþ1þG⊤

Tþ1y⃗Tþ2

�

¼
�

1

1þpTV⃗
02
T

�
ðq⃗T þpTG⊤

Tþ1y⃗Tþ2Þ: ð18Þ

Equations (17) and (18) constitute the algorithm to con-
tinuously update estimates for the two components of q⃗,
the bandwidth qð1Þ ¼ ω12Δt, and the detuning qð2Þ ¼
ΔωΔt, as new voltage and current measurements—both
enter in GTþ1 and y⃗Tþ2—become available. We refer to the
MATLAB [26] code on github [27] for the details of the
implementation.
In Eqs. (17) and (18), new information from measure-

ments are used to continuously improve the estimate of the
fit parameters, but in situations where they change, we have
to introduce a way to forget old information. Therefore, in
order to emphasize newly added information, we follow
[22,28] and introduce a “forgetting factor” α ¼ 1 − 1=Nf
where Nf is the time horizon over which old information is
downgraded in the last equality of Eq. (14), which now
reads

P−1
Tþ1 ¼ αP−1

T þ G⊤
Tþ1GTþ1: ð19Þ

We see that we only have to replace PT by PT=α, or
equivalently pT by pT=α, in the derivation of Eqs. (17) and
(18) and find for the update of pT

pTþ1 ¼
�

1

αþ pTV⃗
02
T

�
pT ð20Þ

and for the update of the estimated parameters q⃗T

q⃗Tþ1 ¼
�

1

αþ pTV⃗
02
T

�
ðαq⃗T þ pTĜ

⊤
Tþ1y⃗Tþ2Þ ð21Þ

that are capable of following time-dependent system
parameters. These expressions can be evaluated very
efficiently. We find that the calculations in Eq. (20) involve
four multiplications and one inverse, whereas the calcu-
lations in Eq. (21) involve ten multiplications if we reuse
the expression in the square bracket. Thus, in total, 14
multiplication and one, computationally more expensive,
inverse are required. This is about 10 times the computa-
tional effort needed for a proportional integral (PI) con-
troller that typically requires three multiplications. The
processing delay of the system identification algorithm
should therefore be correspondingly longer. The details of
the timing depend of course on the hardware used to
implement these algorithms. In particular, on a field-
programmable gate array, many operations can be done
in parallel.
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IV. SIMULATIONS

We base our simulations on parameters for the prototype
spoke-cavity module [29] for the European Spallation
Source [2], which operates at 352 MHz, has an external
QE [30] in the range of 1.75 × 105–2.85 × 105. One of the
measured cavities exhibited a loaded Q of QL ¼ 1.8 × 105

[31] while it was operating at a high gradient. The resulting
bandwidth is f12 ¼ ω12=2π ≈ 1000 Hz. The cavity showed
Lorentz-force detuning on the order of a few hundred
Hz [31–33]; for our simulations, we typically use
Δf ¼ Δω=2π ¼ 500 Hz. Moreover, we use a process
noise level of σp ¼ 10−4 × Vmax and a measurement noise
level of σm ¼ 10−3 × Vmax, where Vmax is the peak voltage
inside the cavity. We report the voltages and currents
normalized to the values without detuning and denote
them by vr, vi and ir, ii, respectively. The peak voltage
and current in those conditions then become unity.
Furthermore, we assume that the data-acquisition system
operates at a rate of 10 Msamples=s, resulting in
Δt ¼ 100 ns. We found that the forgetting horizon Nf

scales with the relative noise levels σp and σm. We use
Nf ¼ 100, unless explicitly specified, because it gave
good results.
The left-hand side in Fig. 1 shows the normalized

currents and voltages over the first 1000 iterations
(100 μs), where the currents are turned on after 100
iterations. We observe that the real part of the current
(black line) assumes its new value at that point, whereas
the imaginary part (red line) stays zero. The voltages,
shown on the upper panel slowly starts rising as the cavity
is filled. Even the imaginary part of the voltage deviates
from zero, owing to the finite value of the detuning. The
right-hand side of Fig. 1 shows the fit parameters f12 ¼
ω12=2π and Δf ¼ Δω=2π over the same 1000 iterations.
We observe that during the first few hundred iterations, the
estimated fit parameters are very noisy but settle on their
correct value after this initial period. After about iteration
600, they meander quite closely around their “true” values.

We can understand this behavior by noting that pT is
proportional to the diagonal element of the empirical
covariance matrix PT ¼ ðU⊤

T UTÞ−1 of the least-squares
fit in Eq. (13). Therefore the square root of pT is propor-
tional to the error bars of the fit parameter. Figure 2 shows
pT for a simulation with Nf ¼ 100 (black solid) and Nf ¼
10 (red dashes) for 5000 iterations. We observe that both
curves initially increase during the period that the fit is
noisy but then approach a constant value that determines
the achievable error bars of the fit parameters. This value
can be derived from Eq. (20) by setting pTþ1 ¼ pT ¼ p∞

and solving for p∞ ¼ 1=NfV⃗
02
∞. Here V⃗0

∞ is the voltage
inside the cavity. For the error bars of both components of

q⃗, we thus find σm=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NfV⃗

02
∞

q
, a value that corresponds to

the rms deviations of the fit parameters, shown, for
example, on the second half in Fig. 1. Furthermore, by
construction, the off-diagonal elements of the matrix PT ¼
pT1 are zero, which indicates that the fit of the bandwidth
and the detuning are orthogonal and that makes the
algorithm very robust. Moreover, we found that instead
of operating an open loop, using a PI-controller to control

FIG. 1. Left: the normalized currents (bottom) and the voltages (top) after starting to fill the cavity for 1000 iterations (100 μs).
Right: the reconstructed fit parameters, the bandwidth f12 (black), and the detuning Δf (red). Note that the parameters are found despite
the noise level (σp ¼ 10−4 and σm ¼ 10−3 of peak voltage) used in the simulation.

FIG. 2. The variable pT as a function of the iterations for Nf ¼
100 (solid) and Nf ¼ 10 (dashes).
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the cavity voltage does not significantly alter the perfor-
mance of the system identification process.
We now explore the algorithm’s ability to identify

parameter changes during steady state operation. The
left-hand side in Fig. 3 illustrates the effect of microphonics
on the currents and voltages. We simulate this by an
oscillation of Δf with an amplitude of f12=2 and frequency
of 1 kHz. Especially vi reveals this oscillation, though also
vr oscillates. The right-hand side of Fig. 3 shows how the
algorithm correctly identifies f12 and both the amplitude
and oscillation frequency of Δf.
Increasing the oscillation frequency to 20 kHz results in

Fig. 4 where we have reduced the duration of the simulation
to 104 iterations in order to improve the visibility of
oscillations on the plot. We see that the oscillations are
still resolved, albeit at a lower amplitude, which is a
consequence of the forgetting horizon Nf ¼ 100. It implic-
itly introduces averaging over Nf iterations and thus
behaves like a low-pass filter with a time constant of
NfΔt ¼ 10 μs or a cutoff frequency on the order of

100 kHz that already causes some attenuation of the
20-kHz oscillation.
In Fig. 5, we explore a rapid increase of the bandwidth,

for example, due to a quench. In the simulation, we simply
double the value of ω12 after 5000 iterations. The plots in
the top left of Fig. 5 show the currents and voltages and on
the top right the fit parameters. We find that the fitted
bandwidth (black) is indeed doubled and that the
reconstruction of the detuning is unaffected. The plot on
the bottom-left shows an enlarged view of the fit parameters
around the time of the step. It shows that the doubled value
is approached within about 2 × Nf ¼ 200 iterations. If we
run the same simulation with a 10 times reduced value of
Nf ¼ 10, we obtain the plot on the bottom right. We find
that the changed value is approached within a few tens of
iterations, albeit at the expense of an increased noise level,
which is consistent with the discussion regarding Fig. 2.
Balancing the noise level and the response is just a matter of
adjusting the value ofNf, the topic of the following section.

V. SIGNAL TO NOISE

In Sec. IV, we already found that the asymptotic noise
level N for constant parameters is given by

N ¼ 1ffiffiffiffiffiffi
Nf

p σm
V 0
∞
; ð22Þ

where we denote the magnitude of V⃗ 0
∞ by V 0

∞. We now
consider a situation where the system has reached a
quasistationary state and that perturbations of the ω12

and Δω are so small that they affect V 0
∞ very little. We

can therefore also use it to write p∞ ¼ 1=NfV 02
∞ despite

temporally varying ω12 and Δω. Replacing pT by p∞ in
Eq. (21) then leads to

q⃗Tþ1 ¼ αq⃗T þ 1

NfV 02
∞
G⊤

Tþ1y⃗Tþ2: ð23Þ

FIG. 4. The reconstructed fit parameters for a 20-kHz mechani-
cal oscillation of the detuning Δf. The oscillations are still seen,
but the amplitude is significantly reduced. This can be partially
alleviated by decreasing Nf , albeit at the expense of an increased
noise level.

FIG. 3. The currents and voltages (left) and the fit parameters (right) for 105 iterations (10 ms) while the detuningΔf oscillates with an
amplitude of 500 Hz and with a mechanical-mode frequency of 1 kHz. The oscillations are clearly visible on both phases of the voltage
and the correctly reconstructed fit parameters.
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Using Eqs. (9) and (10), we rewrite y⃗Tþ2 as

y⃗Tþ2 ¼ GTþ1

�
ω12Δt
ΔωΔt

�
hw
; ð24Þ

where the vector on the right-hand side with the subscript
hw are the “true” values of the hardware. Combining these
equations, utilizing Eq. (15), and replacing V 0

T by V 0
∞, we

arrive at

q⃗Tþ1 ¼ αq⃗T þ 1

Nf

�
ω12Δt
ΔωΔt

�
hw
: ð25Þ

In the next step, we use α ¼ 1 − 1=Nf and reshuffle terms
to obtain

q⃗Tþ1 − q⃗T
Δt

¼ −
1

NfΔt
q⃗T −

1

NfΔt

�
ω12Δt
ΔωΔt

�
hw
: ð26Þ

Introducing τf ¼ NfΔt, replacing the finite difference
by a differential, and Laplace-transforming the resulting
equation, we find

�
sþ 1

τf

�
˜q⃗ ¼ 1

τf

�
ω̃12Δt
Δω̃Δt

�
hw
; ð27Þ

where s is the Laplace variable and we denote the Laplace
transform of a variable by a tilde. We obtain the time
dependence by replacing s ¼ iω ¼ 2πif

˜q⃗ ¼ 1

1þ iωτf

�
ω̃12Δt
Δω̃Δt

�
hw

ð28Þ

and find that the reconstructed system parameters ˜q⃗ are
given by the hardware parameters passed through a low-
pass filter with time constant τf.
Of particular interest is the absolute value of the

amplitude of the detuning Δω̃ at frequency ω, which is
given by

S ¼ Δω̃ ¼ Δω̃hwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωτfÞ2

q : ð29Þ

This constitutes the signal we strive to measure. For the
signal-to-noise ratio S=N, we then find

S=N ¼ Δω̃hwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2πNffΔtÞ2

q
ffiffiffiffiffiffi
Nf

p
ðσm=V 0

∞Þ
; ð30Þ

where all parameters are explicitly written out in order to
explore the tradeoff among them. Apparently, it depends

FIG. 5. The currents and voltages (top left) and fit parameters (top right) for 104 iterations (1 ms) as the bandwidth f12 is doubled at
iteration 5000. The bottom row shows an enlarged view of fit parameters around the time of the change. On the left, we use Nf ¼ 100

and on the right, we use Nf ¼ 10.
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not only on the magnitude (amplitude) of the detuning
Δω̃hw and the relative accuracy of the voltage measurement
σm=V 0

∞ but also on the attenuation of an oscillation due
to the forgetting time horizon Nf. As long as S=N is
sufficiently large, say 5 or so, the oscillation is discernible.

VI. CONCLUSIONS

We worked out an algorithm to determine the cavity
bandwidth f12 and the detuning Δf by correlating the
signal from a directional coupler before the cavity and the
voltages inside the cavity. The calculations are very
efficient and given by Eqs. (17) and (18) for static
parameters and by Eqs. (20) and (21) for time-varying
parameters. These recursion equations are very compact
and require only moderate resources, for example, on a
field-programmable gate array.
Despite the absence of low-pass filtering, the RLS

algorithm is resilient to noise of the measured voltages,
because the forgetting horizon implicitly introduces a low-
pass filter whose time constant is τf ¼ NfΔt. We can tailor
the performance by selecting a large value of Nf, which
reduces the noise of the reconstructed parameters, whereas
smaller values of Nf make the algorithm more responsive
to parameter changes on faster timescales. The tradeoff
between achievable frequency resolution, Nf, and meas-
urement noise σm can be explored with the help of Eq. (30).

ACKNOWLEDGMENTS

Discussions with Tor Lofnes, Uppsala University, are
gratefully acknowledged.

[1] S. Henderson et al., The Spallation Neutron Source
accelerator system design, Nucl. Instrum. Methods Phys.
Res., Sect. A 763, 610 (2014).

[2] A. Jansson et al., The status of the ESS project, in
Proceedings of IPAC 2022, Bangkok (JACoW, Geneva,
Switzerland, 2022), p. 792.

[3] B. Norum, J. McCarthy, and R. York, CEBAF—a high-
energy, high duty factor electron accelerator for nuclear
physics, Nucl. Instrum. Methods Phys. Res., Sect. B 10–
11, 337 (1985).

[4] W. Decking et al., A MHz-repetition-rate hard X-ray free-
electron laser driven by a superconducting linear accel-
erator, Nat. Photonics 14, 391 (2020).

[5] A. Bartnik, N. Banerjee, D. Burke, J. Crittenden, K.
Deitrick, J. Dobbins et al., CBETA: First multipass super-
conducting linear accelerator with energy recovery, Phys.
Rev. Lett. 125, 044803 (2020).

[6] P. Ostroumov et al., Beam commissioning in the first
superconducting segment of the Facility for Rare Isotope
Beams, Phys. Rev. Accel. Beams 22, 080101 (2019).

[7] H. Goutte and A. Navin, Microscopes for the physics at the
Femtoscale: GANIL-SPIRAL2, Nucl. Phys. News 31, 5
(2021).

[8] W. Barth et al., Advanced basic layout of the HElmholtz
LInear ACcelerator for cw heavy ion beams at GSI,
in Proceedings of 14th International Particle Accele-
rator Conference, IPAC-2023, Venice, Italy (JACoW, Geneva,
Switzerland, 2023), 10.18429/JACoW-IPAC2023-TUPA186.

[9] C. Behre et al., First lasing of the IR upgrade FEL at
Jefferson lab, Nucl. Instrum. Methods Phys. Res., Sect. A
528, 19 (2004).

[10] B. Aune et al., Superconducting TESLA cavities, Phys.
Rev. ST Accel. Beams 3, 092001 (2000).

[11] O. Kononenko, C. Adolphsen, Z. Li, C. Ng, and C. Rivetta,
3D multiphysics modeling of superconducting cavities
with a massively parallel simulation suite, Phys. Rev.
Accel. Beams 20, 102001 (2017).

[12] G. Davis et al., Microphonics testing of the CEBAF
upgrade 7-cell cavity, in Proceedings of the 19th Particle
Accelerator Conference, Chicago, IL, 2001 (IEEE, Piscat-
away, NJ, 2001), p. 1152.

[13] A. Neumann, W. Anders, O. Kugeler, and J. Knobloch,
Analysis and active compensation of microphonics in
continuous wave narrow-bandwidth superconducting
cavities, Phys. Rev. ST Accel. Beams 13, 082001 (2010).

[14] M. Liepe, Superconducting multicell cavities for linear
colliders, Ph.D. thesis, Universität Hamburg, 2001.

[15] T. Powers, Theory and practice of cavity RF test systems,
in Proceedings of the 12th International Workshop on RF
Superconductivity, Cornell University, Ithaca, NY (LEPP,
Cornell University, 2007), p. 30.

[16] T. Schilcher, Vector sum control of pulsed accelerating
fields in Lorentz force detuned superconducting cavities,
Ph.D. thesis, Universität Hamburg, 1998.

[17] T. Plawski et al., Digital cavity resonance monitor-alter-
nativeway to measure cavity microphonics, in Proceedings
of the 12th International Workshop on RF Superconduc-
tivity, Cornell University, Ithaca, NY (LEPP, Cornell
University, 2007), p. 616.

[18] R. Rybaniec et al., Real-time estimation of superconduct-
ing cavities parameters, in Proceedings of the 5th Inter-
national Particle Accelerator Conference, IPAC-2014,
Dresden, Germany (EPS-AG, Dresden, 2014), p. 2456.

[19] T. Czarski, Superconducting cavity control based on
system model identification, Meas. Sci. Technol. 18,
2328 (2007).

[20] A. Bellani et al., Online detuning computation and quench
detection for superconducting resonators, IEEE Trans.
Nucl. Sci. 68, 385 (2021).

[21] P. Echevarria, B. Arruabarrena, A. Ushakov, J. Jugo, and
A. Neumann, Simulation of quench detection algorithms
for Helmholtz Zentrum Berlin SRF cavities, in Proceed-
ings of the 10th International Particle Accelerator
Conference, Melbourne, Australia (JACoW, Geneva, Swit-
zerland, 2019), p. 2834.

[22] K. Åström and B. Wittenmark, Adaptive Control (Dover
Publications, Mineola, 2008); especially Sec. II.2.

[23] I. Ziemann and V. Ziemann, Noninvasively improving the
orbit-response matrix while continuously correcting the
orbit, Phys. Rev. Accel. Beams 24, 072804 (2021).

[24] T. Lai and C. Wei, Least squares estimates in stochastic
regression models with applications to identification and
control of dynamic systems, Ann. Stat. 10, 154 (1982).

SIMULATIONS OF REAL-TIME SYSTEM … PHYS. REV. ACCEL. BEAMS 26, 112003 (2023)

112003-7

https://doi.org/10.1016/j.nima.2014.03.067
https://doi.org/10.1016/j.nima.2014.03.067
https://doi.org/10.1016/0168-583X(85)90264-2
https://doi.org/10.1016/0168-583X(85)90264-2
https://doi.org/10.1038/s41566-020-0607-z
https://doi.org/10.1103/PhysRevLett.125.044803
https://doi.org/10.1103/PhysRevLett.125.044803
https://doi.org/10.1103/PhysRevAccelBeams.22.080101
https://doi.org/10.1080/10619127.2021.1881363
https://doi.org/10.1080/10619127.2021.1881363
https://doi.org/10.18429/JACoW-IPAC2023-TUPA186
https://doi.org/10.1016/j.nima.2004.04.010
https://doi.org/10.1016/j.nima.2004.04.010
https://doi.org/10.1103/PhysRevSTAB.3.092001
https://doi.org/10.1103/PhysRevSTAB.3.092001
https://doi.org/10.1103/PhysRevAccelBeams.20.102001
https://doi.org/10.1103/PhysRevAccelBeams.20.102001
https://doi.org/10.1103/PhysRevSTAB.13.082001
https://doi.org/10.1088/0957-0233/18/8/006
https://doi.org/10.1088/0957-0233/18/8/006
https://doi.org/10.1109/TNS.2021.3067598
https://doi.org/10.1109/TNS.2021.3067598
https://doi.org/10.1103/PhysRevAccelBeams.24.072804
https://doi.org/10.1214/aos/1176345697


[25] R. Penrose, A generalized inverse for matrices, Math. Proc.
Cambridge Philos. Soc. 51, 406 (1955).

[26] Mathworks web site at www.mathworks.com.
[27] Github repository for the software accompanying this

report: https://github.com/volkziem/SysidRFcavity.
[28] V. Ziemann, Operational improvements for an algorithm to

noninvasively measure the orbit response matrix in storage
rings, arXiv:2303.11216.

[29] P. Duchesne, S. Bousson, S. Brault, P. Duthil, G. Olry,
D. Reynet, and S. Molloy, Design of the 352 MHz, beta
0.50, double-spoke cavity for ESS, in Proceedings of
SRF2013, Paris, France (JACoW, Geneva, Switzerland,
2013), p. 1212.

[30] H. Li, A. Miyazaki, M. Zhovner, L. Hermansson,
R. Santiago Kern, K. Fransson, K. Gajewski, and R.
Ruber, Progress and preliminary statistics for the ESS
series spoke cryomodule test, in Proceedings of SRF2021,
East Lansing, MI (JACoW, Geneva, Switzerland, 2021),
p. 512.

[31] H. Li, A. Miyazaki, R. Santiago Kern, L. Hermansson, T.
Lofnes, K. Gajewski, K. Fransson, R. Wedberg, and R.
Ruber, RF performance of the spoke prototype cryomodule
for ESS, FREIA Report No. 2019/08, 2019.

[32] H. Li, M. Jobs, R. Santiago Kern, V. A. Goryashko, L.
Hermansson, A. Bhattacharyya, T. Lofnes, K. Gajewski,
K. Fransson, and R. Ruber, Characterization of a β ¼ 0.5
double spoke cavity with a fixed power coupler,
Nucl. Instrum. Methods Phys. Res., Sect. A 927, 63
(2019).

[33] R. Santiago Kern, C. Svanberg, K. Fransson, K. Gajewski,
L. Hermansson, H. Li, T. Lofnes, M. Olvegå rd, I.
Profatilova, M. Zhovner, A. Miyazaki, and R. Ruber,
Completion of testing series double-spoke cavity cryo-
modules for ESS, in Proceedings of the 21st International
Conference on Radio-Frequency Superconductivity, SRF-
2023, Grand Rapids, MI (JACoW, Geneva, Switzerland,
2023), see also https://arxiv.org/abs/2306.11333.

VOLKER ZIEMANN PHYS. REV. ACCEL. BEAMS 26, 112003 (2023)

112003-8

https://doi.org/10.1017/S0305004100030401
https://doi.org/10.1017/S0305004100030401
www.mathworks.com
www.mathworks.com
www.mathworks.com
https://github.com/volkziem/SysidRFcavity
https://github.com/volkziem/SysidRFcavity
https://arXiv.org/abs/2303.11216
https://doi.org/10.1016/j.nima.2019.02.003
https://doi.org/10.1016/j.nima.2019.02.003
https://arxiv.org/abs/2306.11333
https://arxiv.org/abs/2306.11333
https://arxiv.org/abs/2306.11333

