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This study investigated an unknown instability in the crab-crossing scheme, which is caused by the
interaction between beam loading on crab cavities and the coherent beam-beam force at the
interaction point (IP). We developed an analysis method by formulating the transfer functions of
the beam loading on the crab cavities and the related rf control loops, considering the beam-beam
force on the colliding beams. The analysis was first applied to simple cases with no control loops to
demonstrate the intrinsic stability of crab cavities under the beam loading and the beam-beam force,
which corresponds to the Robinson stability for accelerating cavities. Furthermore, analysis with the
control loops was applied to analyze unexpected oscillation phenomena observed in the crab-crossing
operation in KEKB. The results obtained from the analysis were consistent with the observed
phenomena at the following points: First, a time-domain simulation based on this analysis reproduced
the observed coherent oscillation. Second, the relative orbit displacement between the colliding beams
estimated in the analysis of the measured oscillation amplitude was consistent with the saturation
effect of the beam-beam force at the IP. Third, rf-related parameter dependencies of stability obtained
in the analysis were consistent with those in the measurements. The mechanism investigated in this
study explained its essential function in the instability observed during the KEKB crab-crossing
operation.
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I. INTRODUCTION

A crab-crossing scheme was proposed in 1988 for linear
colliders to recover head-on collisions in a finite-angle
crossing scheme at the interaction point (IP) [1]. It has been
shown that this scheme is also applicable to storage-ring
colliders with a large crossing angle at the IP without the
excitation of synchrotron-betatron resonances [2]. In later
simulation works, the possibility of achieving a high beam-
beam parameter ξy > 0.1was demonstrated by adopting this
scheme [3,4]. Based on these studies, the crab-crossing
scheme was first applied in KEKB to increase luminosity.
KEKB is an asymmetric-energy double-ring collider com-
prising an 8-GeV electron ring (high-energy ring, HER)
and a 3.5-GeV positron ring (low-energy ring, LER) [5].
The crab-crossing operation in KEKB for physics experi-
ments started in 2007 and continued until 2010, when
the operation was terminated to upgrade KEKB to
SuperKEKB. The luminosity record of KEKB was obtained
by crab crossing [6,7]. Crab-crossing and related systems

have been considered and are under development in a wide
number of accelerators, including upgradation of LHC to
HL-LHC, the Electron-Ion Collider, the linear colliders, and
the generation of short-pulse x-rays in storage-ring-based
light sources.
In the crab-crossing scheme, the bunches are tilted using

radio-frequency (rf) deflecting cavities (crab cavities) to
facilitate head-on collision at the IP despite a finite-angle
crossing of the beam orbits, as shown in Fig. 1. Two super-
conducting crab cavities were fabricated for KEKB and

FIG. 1. Schematic of the crab-crossing scheme. The single crab
cavity scheme is shown, where one crab cavity section is located
in each ring. The eþe− bunches are tilted by transverse kick at the
crab cavities. The betatron phase advance from the crab cavity to
the IP is adjusted to π=2þ nπ, where n is an integer. The crab
voltage is adjusted to compensate for the crossing angle of beam
orbits at the IP such that the beams collide head-on.
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installed in the LER and the HER, with one in each ring [8].
They successfully operated during the crab-crossing oper-
ation, contributing to an increase in luminosity.
However, an unexpected problem was encountered in

the KEKB crab-crossing operation with high-current
colliding beams. Large-amplitude coherent oscillation
of the beams and crabbing field was observed, which
caused unstable collision of beams and a reduction in
luminosity. The cause was not fully understood; how-
ever, it was suspected to be related to beam loading on the
crab cavities and the beam-beam force at the IP [9].
This problem was mitigated not to cause luminosity
reduction by adjusting rf-related parameters to appro-
priate values that were experimentally determined during
operation [9,10].
In this study, we investigated the instability driven by the

interaction between the beam loading on the crab rf system
and the beam-beam force at the IP. Although this study was
motivated by the phenomena observed in the KEKB
operation, the aim was to render the analysis applicable
to other cases to the best extent possible. In Sec. II, we
develop an analytical method by formulating the transfer
functions (TF) of the crab rf system with beams, compris-
ing the beam loading on crab cavities, beam-beam force at
the IP, and rf control loops. In Sec. III, the analysis is
applied to simple cases without control loops to derive an
“intrinsic” stability criterion for a crab cavity with colliding
beams, which corresponds to the Robinson stability for the
accelerating cavities [11]. In Sec. IV, the analysis is applied
to the KEKB operation with control loops. The calculation
results were compared with the measurements to examine
their consistency. Related discussions are presented in
Sec. V and we conclude the study in Sec. VI.

II. FORMULATION OF ANALYSIS METHOD

Crab crossing as shown in Fig. 1 is a single crab cavity
scheme wherein one crab cavity section is located in each
ring, and the bunches are tilted all around the ring. In a
different crab-crossing scheme, two crab-cavity sections
are located on both sides of the IP, and the bunch tilt is
localized between the cavities (local crab scheme). The
crossing plane can be either horizontal or vertical.
Although the following analysis was conducted for the
single crab cavity scheme with a horizontal crossing, it is
applicable to the local crab scheme or the vertical crossing
case with minor modifications.
To study the stability of the system, we first considered

the steady state of the crab rf system with colliding beams
under a set of operating conditions. We assumed that the
following conditions are satisfied in steady state: (i) The
beam in each ring (�) passes the crab cavity at the crabbing
phase ϕc

�, which is the relative phase between the crabbing
voltage Vc

� and beam, (ii) The beam does not necessarily
pass on axis of the crab cavity. It may pass at an orbit
displaced horizontally by Δxcr� from the cavity field

center, (iii) The amplitude and phase of Vc
� are maintained

by control loops in the low-level rf (LLRF) system, and
(iv) The relative horizontal orbit displacement of the
two beams at the IP (Δx�þ − Δx�−) is adjusted to keep
the collision by using, for example, a collision feedback
system.
It is noted that the time constant of the collision feedback

was assumed much slower than the oscillation period of the
instability. In KEKB, the collision feedback was performed
based on the beam-beam kick measured by beam position
monitors around the IP, and the typical time constant of the
feedback was 1 s [12], which was much slower than the
observed oscillation period (∼2 ms). So the only role of
the collision feedback here is to set the operating beam orbit
appropriately in steady state, and its dynamical effect is not
considered in our analysis. Hereafter, the superscript or
subscript of � representing the ring may be omitted if it is
clear or unnecessary in context.
Next, the effect of small signal fluctuations from the

steady state was analyzed using TFs. Figure 2 shows a
block diagram of a crab rf system with colliding beams. In
the case of crab cavities, in contrast to the case in
accelerating cavities, the beam loading on the cavity is
proportional to Δxcr, as described in Sec. II A. The TFs
corresponding to the beam loading from Δxcr onto the
amplitude and phase of Vc are represented by Gxa

B and
Gxp

B, respectively. Δkcr� is the deviation of the kick at the
bunch center in the crab cavity. The TFs from Δkcr of ring

FIG. 2. Block diagram of crab rf system with colliding beams.
Bkx

MN is the TF from the kick on the bunch center at crab cavity
Δkcr of the ringM to the orbit displacement at crab cavityΔxcr of
the ring N.Gxa

B and Gxp
B are the TFs corresponding to the beam

loading, from Δxcr to the amplitude and phase of Vc, respec-
tively. The TFs from rf generator to the cavity (Gαβ

G) and the
amplitude and phase control functions (Ca and Cp) are also
included. By focusing on Δxcr� and Δkcr�, the system can be
grouped into three parts, Txk

þ, Txk
−, and a set of Bkx

MN , as
surrounded by dotted lines.
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M toΔxcr of ringN are represented as Bkx
MN , whereM and

N are þ or −. The form of Bkx
MN was determined from

the coherent beam-beam force at the IP and the optical
parameters of the rings, as described in Sec. II B. In
addition to beam loading, each crab rf system includes
the TFs from rf generator to the cavity (Gαβ

G, where α and
β are either a or p) and the TFs of amplitude and phase
control functions (Ca and Cp). These are described in
Sec. II C.
Note that the phase and amplitude deviations of Vc affect

both Δkcr and the bunch tilt. However, a small change in
the bunch tilt does not significantly affect the beam loading
or coherent beam-beam kick at the IP. Consequently, the tilt
change was not considered in our analysis, and the
corresponding TFs from Vc to the tilt are not represented
in the block diagram.
By focusing on Δxcr� and Δkcr�, the system can be

grouped into three parts, Txk
þ, Txk

−, and a set of Bkx ’s, as
surrounded by dotted lines in the figure. The characteristic
equation (CE) for these TFs is

0 ¼ 1 − Txk
þBkx

þþ − Txk
−Bkx

−−

þ Txk
þTxk

−ðBkx
þþBkx

−− − Bkx
þ−Bkx

−þÞ: ð1Þ

A. Beam loading on the crab cavity

First, we formulated the TFs for the beam loading on the
crab cavities Gxa

B and Gxp
B. This was performed in a

manner similar to that for accelerating cavities studied by
Pedersen [13]. The following differences were considered:
(i) The beam-induced voltage in the crab cavity is depen-
dent on the horizontal beam orbit in the cavityΔxcr and that
in the accelerating cavity is not. (ii) The beam-induced
voltage in the crab cavity (accelerating cavity) is in the
transverse (longitudinal) direction, thus its phase on reso-
nance is �90° (180°) with respect to the beam. (iii) The
longitudinal position of beam is determined by the accel-
erating cavities, thus the synchronous phase ϕs is not
involved in this analysis. Instead, the crabbing phase ϕc
plays an important role.
Figure 3 shows the vector relation representing the beam

loading on the crab cavity. The x-axis represents the
reference phase defined by the timing of the bunch center
passing the crab cavity, that is, the beam phase. The
projection of Vc vector on the x-axis (y-axis) gives
the kick voltage (tilt force) to the bunch center. Here,
we consider the case wherein the phase advance from the
crab cavity to the IP is close to π=2þ 2nπ, where n is an
integer. (The case of 3π=2þ 2nπ can be treated similarly.)
As the bunch head (tail) passes the cavity earlier (later) than
the bunch center does, the bunch head (tail) is kicked in the
inward (outward) direction of the ring compared to the
bunch center. The signs of Δxcr� and Δkcr� are defined as
positive when they are directed inside the ring. The beam

loading current I�b is related to the dc beam current Ib: for
small values of jΔxcrj, jI�bj ¼ IbkrfjΔxcrj, where krf is the
rf wave number. The vector I�b lies along the vertical axis
in the figure and is directed downward (upward) when
Δxcr > 0 (Δxcr < 0). The same vector relationship can be
used regardless of the sign of the charged particles.
From the vector relation, the relationship between the

amplitude and phase deviations of the generator current Ig:
tðag; pgÞ, beam loading current I�b:

tðab; pbÞ, and crabbing
voltage Vc: tðav; pvÞ is expressed as

�
av
pv

�
¼ G

�
Ig
IT

RðθgÞ
�
ag
pg

�
þ I�b
IT

RðθbÞ
�
ab
pb

��
; ð2Þ

where G corresponds to the cavity impedance, which is
expressed as

G ¼
�

Gs Gc

−Gc Gs

�
; ð3Þ

with

GsðsÞ ¼
σsþ σ2 sec2ψ

s2 þ 2σsþ σ2 sec2ψ
; ð4Þ

GcðsÞ ¼
σs tan ψ

s2 þ 2σsþ σ2 sec2ψ
; ð5Þ

FIG. 3. Vector relation for the beam loading current I�b, the
generator current Ig, and the crabbing voltage Vc, representing
the beam loading on crab cavities. I�b is dependent onΔxcr and its
phase is �90° with respect to the beam phase. ϕc is the crabbing
phase, the phase of Vc with respect to the beam phase. ϕL is the
loading angle, the relative phase between Ig and Vc. ψ is the
tuning angle, the relative phase between IT and Vc, where
IT ¼ Ig þ I�b. The impedance (the ratio of voltage to current) is
set 1.5 on this diagram.

INSTABILITY IN CRAB CROSSING CAUSED BY … PHYS. REV. ACCEL. BEAMS 26, 112001 (2023)

112001-3



where σ and ψ are the damping rate and the tuning angle,
respectively, of crab cavity. IT is the total current:
IT ¼ Ig þ I�b. Ig ¼ jIgj, IT ¼ jITj, and I�b ¼ IbkrfΔxcr ¼
jI�bj for Δxcr > 0 (¼ −jI�bj for Δxcr < 0). R denotes the
rotation matrix as

RðθÞ ¼
�

cos θ sin θ

− sin θ cos θ

�
; ð6Þ

and θb ¼ π=2þ ϕc − ψ and θg ¼ ϕL − ψ , where ϕL is the
loading angle, which is the relative phase between Ig and
Vc. Also from the vector relation, the relationships between
IT , Ig, and I�b are expressed as

Ig
IT

¼ cosψ
cosϕL

ð1þ Y� sinϕcÞ; ð7Þ

I�b
IT

¼ Y� cosψ ; ð8Þ

where Y� is represented as

Y� ¼
�
R
Q

�
QLI�b=Vc ¼

�
R
Q

�
QLIbkrfΔxcr=Vc; ð9Þ

where R=Q and QL are the R=Q and loaded Q values of
crab cavity, respectively. Here, the definition of R=Q ¼
V2
c=ωrfU was used, where ωrf is the angular rf frequency

and U is the stored energy. The transformation from vector
tðab; pbÞ to tðav; pvÞ yielded the TFs from I�b to Vc.
Because ab is proportional to Δxcr, we focused on the TFs
from Δxcr to Vc, which were obtained using the coef-
ficients in Eq. (9), Y 0 ≡ Y�=Δxcr, as:

Gxa
B ¼−σY 0 sinϕc · sþ σ2Y 0ðtanψ cosϕc− sinϕcÞ

s2þ 2σsþ σ2 sec2ψ
; ð10Þ

Gxp
B ¼−σY 0 cosϕc · s−σ2Y 0ðtanψ sinϕcþ cosϕcÞ

s2þ2σsþσ2 sec2ψ
: ð11Þ

Note that the beam phase is determined by the accel-
erating rf system, and the accelerating and crab rf systems
are independently controlled. In addition, the crab kick is
in the transverse direction and does not affect the longi-
tudinal motion. Consequently, the deviation of the phase of
I�b (pb) is not important in this analysis, and the corre-
sponding TFs from pb to Vc, Gpp

B and Gpa
B, were not

used in the subsequent analysis. (One exceptional case is
discussed in Sec. V.)

B. Effective orbit response to crab kick
with beam-beam force at the IP

Next, we formulated Bkx values, which are the TFs from
the kick Δkcr to orbit displacement Δxcr, considering the

beam-beam force at the IP. Let the kick step change at
the 0th turn from steady state to Δkcr�, and we tracked
the horizontal orbit changes in the crab cavities Δxcr�. The
transformation of the vector tðΔxcrþ;Δx0crþ;Δxcr−;Δx0cr−Þ
from the Nth turn to the (N þ 1)th turn is expressed as

0
BBB@
Δxcrþ

Δx0crþ

Δxcr−

Δx0cr−

1
CCCA

ðNþ1Þ

¼ T ×

0
BBB@
Δxcrþ

Δx0crþ

Δxcr−

Δx0cr−

1
CCCA

ðNÞ

þ

0
BBB@

0

Δkcrþ

0

Δkcr−

1
CCCA: ð12Þ

The 4 × 4 matrix T for the transformation is expressed as

T ¼
�
M21

þ 0

0 M21
−

�
× R ×

�
M12

þ 0

0 M12
−

�
; ð13Þ

whereM12
� andM21

� are 2 × 2 transfer matrices from the
crab cavity to the IP and from the IP to the crab cavity,
respectively, and R is a 4 × 4 matrix that describes the
beam-beam transformation at the IP.
To express R, we used the formula obtained from the

analysis of coherent dipole oscillation mode in a rigid
Gaussian model presented in Ref. [14]. The coherent beam-
beam kick was parametrized by the coherent beam-beam
parameter Ξx

� defined as

Ξx
� ¼ N∓re

γ�
βx

��

2πΣxðΣx þ ΣyÞ
; ð14Þ

where re is the classical radius of the particles, N is the
number of particles in a bunch, γ is the Lorentz energy
factor, and βx

� is the horizontal beta function at the IP.

Σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσþx Þ2 þ ðσ−x Þ2

p
and Σy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσþy Þ2 þ ðσ−y Þ2

q
are the

horizontal and vertical effective beam sizes at the IP,
respectively, where σ�x and σ�y are the beam sizes of each
beam at the IP. In our coordinate system, R is expressed as

R ¼ I þ 4π

0
BBBBBB@

0 0 0 0

− Ξx
þ

βx
�þ 0 Ξx

þ
βx

�þ

ffiffiffiffiffiffiffi
βx

�−
βx

�þ

q
0

0 0 0 0

Ξx
−

βx
�−

ffiffiffiffiffiffiffi
βx

�þ
βx

�−

q
0 − Ξx

−

βx
�− 0

1
CCCCCCA
; ð15Þ

where I denotes a unit matrix. The new steady state with
Δkcr� is obtained by setting N → ∞ as follows:

0
BBB@

Δxcrþ

Δx0crþ

Δxcr−

Δx0cr−

1
CCCA

ð∞Þ

¼ ðI − TÞ−1 ×

0
BBB@

0

Δkcrþ

0

Δkcr−

1
CCCA: ð16Þ
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To determine Bkx, we assumed that the following two
conditions are satisfied: (1) Machine operation is per-
formed below the well-known beam-beam limit for the
coherent σ-and π-mode instability of colliding beams,
which is determined from the trace of the matrix T. In
this case, the disturbed beam orbit converges to a new
steady state after the radiation damping time τrad. (2) The
filling time of the crab cavity τf is much longer than the
time of one-turn revolution period τrev. In this case, beam
loading is evaluated by integrating the beam-induced
voltage for multiple turns with the decay time constant
τf. Because the beam-induced voltage is proportional to
Δxcr, as described in the previous section, it is equivalent to
evaluating the “effective” orbit response, which is the
integrated orbit response for multiple turns with a decay
time constant τf.
These assumptions were satisfied in the KEKB case: the

first point was evident from the operational parameters.
The second condition was satisfied because τf of the LER
(HER) crab cavity was 12.5 τrev (10.0 τrev), where
τrev ∼ 10 μs. The justification for using an effective orbit
response instead of a turn-by-turn response should be
noted here. In another work at KEKB, coherent excitation
of the σ-and π-mode oscillations via the application of
sinusoidal rf phase modulation was studied experimen-
tally and by simulation [15]. The modulation frequencies
were chosen 40–50 kHz to resonantly excite these modes.
The turn-by-turn change in the horizontal orbit at these
high frequencies was considered; however, the beam
loading on the crab cavities was outside the scope of
their study. In our study, however, coherent excitation
with a heavy beam-loading effect was a concern. The
typical time constant of the observed oscillation was on
the order of 200 τrev, which is much longer than τf. This is
a rather static phenomenon from the perspective of turn-
by-turn change. Therefore, these two separate studies
address different issues, and it is justified to use an
effective orbital response in our analysis.
The orbital response to a step-kick change was simulated

for the KEKB case. Because the horizontal tune νx was
chosen to be closed to a half integer, the orbit oscillated
turn-by-turn with a period of approximately two turns after
the kick change until it converged in τrad (∼4000 turns).
However, the effective orbit converged significantly faster,
as shown in Fig. 4. The effective orbit responses in the LER
cavity to a step-kick change applied to the LER (HER)
cavity at the 0th turn are plotted as red (blue) real lines. The
corresponding new steady orbits after τrad were calculated
using Eq. (16) and are indicated by dotted straight lines.
The effective orbits almost converged to the new steady
orbits in around τf. Although the turn-by-turn change with
a period of two turns was still observed in the effective
orbits, it was considerably smaller than the change to the
new steady orbit. The convergence would be even faster
owing to the bunch-by-bunch transverse feedback system.

In the KEKB operation, the damping time of the feedback
system was nominally set around 500 μs (50 turns) [16].
Consequently, Bkx values were formulated with an

effective orbit response and can be modeled with the
matrix ðI − TÞ−1 and the first-order delay function with
a time constant τf as

Bkx
mn ¼ Bkx;0

mn ×
1

1þ τfs
; ð17Þ

Bkx;0
mn ¼ ½ðI − TÞ−1�ðn;mþ1Þ; ð18Þ

where ½X�ða;bÞ denotes the ða; bÞ component of matrix X
and the þ beam is represented by m ¼ n ¼ 1 and the −
beam by m ¼ n ¼ 3. When the timescale of the phenome-
non is significantly slower than τf, Bkx;0

mn can be used
instead of Bkx

mn.

C. rf system with control loops

As shown in Fig. 2, Txk includes the rf control part, in
addition to the beam loadingGxa

B andGxp
B. The rf control

part includes the control functions of the amplitude control
loop (ACL) Ca and phase-lock loop (PLL) Cp and the TFs
from the generator to the cavity Gαβ

G, where α and β are a
or p. The forms of Ca and Cp are determined according to
the control loop circuits specific to the system. Gαβ

G was
obtained by transforming tðag; pgÞ into tðav; pvÞ in Eq. (2);
the results are presented in Appendix A. They are similar to
those of accelerating cavities [13,17], with differences in
the beam loading coefficients and phase between the rf and

FIG. 4. Response of the beam orbit in the LER crab cavity to a
step change of kick applied in the LER (HER) cavity at the 0th
turn, plotted in red (blue). The effective orbits, obtained by
integrating the orbit for multiple turns with a decay time constant
τf (12.5 turns), are plotted in real lines. The new steady orbits
calculated using Eq. (16) are plotted by dotted lines. The
horizontal axis is the turns.
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beam. The TF from the phase and amplitude of Vc to the
kick Apk and Aak, respectively, are expressed as

Apk ¼ −
eVc

E
sinϕc; and Aak ¼

eVc

E
cosϕc: ð19Þ

where e denotes the electric charge and E denotes the beam
energy.
By combining these components according to Fig. 2 and

performing appropriate transformations, or equivalently by
applying Mason’s rule, Txk can be represented as

Txk ¼
Gxp

B½ð1þ CaGaa
GÞApk − CpGpa

GAak� þ Gxa
B½ð1þ CpGpp

GÞAak − CaGap
GApk�

1þ CaGaa
G þ CpGpp

G þ CaCpðGaa
GGpp

G −Gap
GGpa

GÞ ; ð20Þ

where Gxα
B, Gαβ

G, and Aαk, with α and β being a or p, are
shown in Eqs. (10) and (11), Eqs. (A1) and (A2), and
Eq. (19), respectively.
For later discussion, Txk for three simple cases with no

loops, only the PLL, and only the ACL are derived. Without
loops (Ca ¼ Cp ¼ 0), Eq. (20), using Eqs. (10) and (11), is
reduced to a simple form as follows:

Txk ¼ Txk;0 × tanψ ; ð21Þ

where

Txk;0 ≡ σ2Y 0

s2 þ 2σsþ σ2 sec2ψ
×
eVc

E
: ð22Þ

In this case, Txk depends on ψ and not on ϕc or Δxcr. In
contrast, in cases with only the PLL (Ca ¼ 0) or only the
ACL (Cp ¼ 0), Eq. (20) reduces to

Txk ¼ Txk;0 ×
sinψ − Cp½sinðϕc − ψÞ þ Y� cosψ � cosϕc

cosψð1þ CpGpp
GÞ

ð23Þ

or

Txk ¼ Txk;0 ×
sinψ þ Ca cosðϕc − ψÞ sinϕc

cosψð1þ CaGaa
GÞ ; ð24Þ

respectively. Thus, with feedback loops, Txk is dependent
on ψ , ϕc, Δxcr, and the parameters related to Ca and Cp.
It is noted that the tuning control is usually performed

based on the loading angle ϕL. The measured phase in
the tuning control system is ϕL and not ψ . The rela-
tionship between ϕL and ψ is obtained from the vector
relationship as

tanψ ¼ ð1þ Y� sinϕcÞ tanϕL þ Y� cosϕc: ð25Þ

In the case of crab cavities, the difference between ψ and
ϕL is typically small, because Y� (¼ Y 0Δxcr) is much
smaller than one. Therefore, we used ψ in the following
analysis unless ϕL was required in this context. In addition,
the TF for the tuning control loop was not explicitly

included in our analysis because its time constant is usually
slow compared to the typical time constant of beam
oscillation. Regarding the rf power required to maintain
Vc at ϕL with a non-negligible value of Y�, a formalism has
been reported elsewhere [18].

III. INTRINSIC STABILITY

The analysis described in the previous section was first
applied to simple cases without control loops. In other
words, we discuss the intrinsic stability of the crab system,
which is determined by the interaction between the beam
loading on the crab cavities and the beam-beam force at
the IP. This corresponds to the Robinson stability for the
accelerating cavities, wherein stability under the beam
loading on accelerating cavities without control loops
was studied [11].
First, we examined a special case wherein every machine

parameter, except the charge sign, is identical for the two
rings. This facilitated easy extraction of the essence of
intrinsic stability with less complicated mathematics. In this
case, Txk

þ ¼ Txk
−ð¼ TxkÞ, Bkx

þþ ¼ Bkx
−−ð¼ BkxÞ, and

Bkx
þ− ¼ Bkx

−þ. Subsequently, the CE represented in
Eq. (1) becomes

0 ¼ ½1 − TxkBkxð1 − ηÞ� × ½1 − TxkBkxð1þ ηÞ�; ð26Þ

where η is defined as follows:

η≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bkx

þ−Bkx
−þ

Bkx
þþBkx

−−

s
: ð27Þ

Thus, CE is reduced to two simple equations:

0 ¼ 1 − TxkBkxð1� ηÞ: ð28Þ

We considered the case of slow dynamics compared with
τf, that is, Bkx;0 [Eq. (18)] was used instead of Bkx

[Eq. (17)]. In this case, with Txk obtained for the no-
control loops [Eqs. (21) and (22)], CE are converted to two
quadratic equations:

s2 þ 2σsþ σ2½sec2ψ − Y 0κBkx;0 tanψð1� ηÞ� ¼ 0; ð29Þ
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where κ ¼ eVc=E. The four solutions to these two equa-
tions are obtained as follows:

s ¼ −σ � σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tan2ψ þ Y 0κBkx;0 tanψð1� ηÞ

q
: ð30Þ

The system is stable when the real parts of the four
solutions are all negative. The stability criterion results
in different forms depending on η < 1 or η > 1 as
follows:

Y 0κBkx;0 sin 2ψ <
2

1þ η
for 0 < η < 1; ð31Þ

−
2

η − 1
< Y 0κBkx;0 sin 2ψ <

2

1þ η
for η > 1: ð32Þ

To indicate the stability criteria more specifically,
Bkx;0 and η were evaluated using Eqs. (13), (15), and
(18) for the identical two rings. A more detailed
derivation is provided in Appendix B and the results
are represented as

Bkx;0 ¼
βcrfsinϕ0 − 4πΞx½cos ε12 cos ε21 − cos2ðϕ0=2Þ�g

2ð1 − cosϕ0 þ 4πΞx sinϕ0Þ
ð33Þ

and

η ¼
���� 4πΞx½cos ε12 cos ε21 þ cos2ðϕ0=2Þ�
fsinϕ0 − 4πΞx½cos ε12 cos ε21 − cos2ðϕ0=2Þ�g

����; ð34Þ

where βcr is the beta function at the crab cavity, and the
betatron phase advances are defined as ðπ=2þ ε12Þ from
the crab cavity to the IP, ðπ=2þ ε21Þ from the IP to the
crab cavity, and ϕ0 ¼ 2πνx ¼ π þ ε12 þ ε21 for one-turn
of the ring, respectively. In a typical crab-crossing
operation, jε12j ≪ 1, jε21j ≪ 1, and ϕ0 is close to π.
In this case, as Ξx increases, Bkx;0 and η approach
−πΞxβcr and 1, respectively.
The stability criteria obtained using Eqs. (31) and (32)

are shown in Fig. 5. The horizontal and vertical axes
represent Y 0κBkx;0 and ψ , respectively. The two cases for
η ¼ 0.8 and η ¼ 1.2 are indicated in red and blue,
respectively. The stable and unstable regions are marked
for these two cases. Here, Y 0κBkx;0 is approximately
proportional to Ib2 until Ξx reaches the beam-beam limit
because Y 0 ∝ Ib and Bkx;0 ∝ Ξx. Moreover, the stable
region for ψ is dependent on the sign of Bkx;0. As shown
in Eq. (33), the sign of Bkx;0 can differ between small and
large values of Ξx. The sign of Bkx;0 is also dependent on
the relative charge sign of the two beams. When the two
beams have opposite (same) charge sign, the beam-beam
force at the IP is attractive (repulsive). In the expressions

for R in Eq. (15), it was implied that the two beams had
opposite charge signs. Therefore, the results obtained in
this section can be used for the same charge sign case by
replacing Ξx with −Ξx. For large values of Ξx, Bkx;0 < 0

(Bkx;0 > 0) with the opposite (same) charge sign case.
Next, the KEKB case was examined as an example of

a general case for two rings with different parameters.
Bkx;0 was used instead of Bkx also in this case. The
fourth-order CE [Eq. (1)] was solved for different values
of the tuning angle of LER ψL and that of HER ψH. The
beam currents in LER (IbðLÞ) and HER (IbðHÞ) were
changed with a fixed ratio IbðLÞ=IbðHÞ ¼ 2. The other
parameters were set to those used in the operation, which
are presented in the next section. The maximum LER
beam current (IbðLÞmax), for which the real parts of the
four solutions were all negative, was obtained at the
given values of ψL and ψH. Figure 6 shows IbðLÞmax as a
function of ψL (horizontal axis) and ψH (vertical axis). It
is seen that IbðLÞmax decreased for lower values of ψL or
ψH. This tendency was similar to that of the two identical
ring case shown in Fig. 5 with Y 0κBkx;0 < 0.
As described previously, the two parameters Y 0κBkx;0

and ψ are essential for the intrinsic stability of the crab
system. Regarding intrinsic stability, the system is always
stable at ψ ¼ 0 for the two identical ring cases (Fig. 5)
and the system is stable with IbðLÞ ¼ 2 A and IbðHÞ ¼ 1

A for any value of jψLj < 30° and jψHj < 30° in the
KEKB case (Fig. 6). However, the stability with the
control loops can be affected by other rf parameters and
control loops. In addition, in real machines, stability can
be degraded by a variety of nonideal conditions such as
machine errors and nonlinearities. The following sections
discuss these points.

FIG. 5. Intrinsic stability of the crab system without control
loops for the case wherein every machine parameter is identical
for the two rings. The horizontal and vertical axes are Y 0κBkx;0
and ψ , respectively. Unstable regions for the two cases of η ¼ 0.8
(red) and η ¼ 1.2 (blue) are shown.
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IV. CRAB-CROSSING OPERATION IN KEKB

A. Observed oscillation phenomena

Table I lists the machine parameters for the crab-crossing
operation in KEKB as of June 2007 [6,9]. The parameters
in this period were chosen because intensive observations
of the oscillation phenomena and related machine studies
were conducted during this period. The numbers in
parentheses indicate those at the final stage of operation
in 2010 [7]. During the operation, the amplitude of the

crabbing voltage Vc was adjusted to provide the required
kick for head-on collisions with a crossing angle of 22 mrad
of the beam orbits. The nominal crabbing phase ϕc ¼ 90°,
where the bunch center passed the cavity at the zero cross
of Vc, was determined by measuring the beam orbit change
by crabbing on and off. The beam orbit in the cavity was
adjusted on axis of the crabbing field to minimize the beam
loading current I�b by measuring rf power as a function of
the dc beam current Ib. These conditions were fine-tuned to
optimize the luminosity and beam performances. The beam
operation was always performed at beam currents suffi-
ciently lower than the well-known limit for the coherent σ-
and π-mode instability of colliding beams, as mentioned in
Sec. II B. Further details of the system description and
operation status have been reported elsewhere [6–9].
Figure 7 shows an example of the oscillations observed

in the LER cavity. The amplitude and phase of Vc oscillated
at approximately 550 Hz. Oscillation was also observed in
the HER cavity; the oscillation phase was almost antiphase
with respect to the LER cavity. The oscillating input power
suggests that the rf control loops were involved in this
phenomenon. Oscillation resulted in unstable horizontal
orbits of the two beams at the IP and considerable
luminosity degradation. This phenomenon occurred only
when high-current beams were stored in both rings, and
never occurred with a single beam or low-current beams.
During operation, it was suspected that this phenomenon

might be related to the possible interaction between the
beam loading on the crab cavities and the beam-beam force
at the IP. Subsequently, the effect of changing rf-related
parameters, such as ϕc, ψ , and Vc, as well as the feedback
parameters, on stability was studied. Shifting the ϕc and ψ
from their nominal values (ϕc ¼ 90° and ψ ¼ 0°) signifi-
cantly affected the stability. Specifically, setting ϕc ¼ 100°

TABLE I. Machine parameters with the crab-crossing operation
in KEKB as of June 2007 [6,9]. The numbers in parenthesis show
those at the final stage of operation in 2010 [7].

Parameter Unit LER HER

Beam particles eþ e−

Beam energy (GeV) 3.5 8.0
Beam current (mA) 1150 (1637) 620 (1188)
No. of bunches 1389 (1585)
β�x at IP (m) 0.9 (1.2) 0.9 (1.2)
βx at crab (m) 80 (51) 170 (122)
σ�x (μm) 116 147
σ�y (μm) 1.1 (0.94) 1.1 (0.94)
νx 0.505 0.509
Crossing anglea (mrad) 22
rf frequency (MHz) 508.9
Revolution freq. (kHz) 99.4
No. of crab cavities 1 1
R=Q of cavity (Ω) 47 47
Loaded-Q (QL) (×105) 2.0 1.6
Crab voltage (MV) 0.90 (0.97) 1.43 (1.45)

aCrossing angle of beam orbits.

FIG. 7. An example of the observed oscillation in the KEKB
crab-crossing operation. The input power, Vc amplitude, and the
crabbing phase ϕc in the LER cavity are shown. They all oscillate
coherently with a frequency of approximately 550 Hz. The data is
reproduced from Ref. [9].

FIG. 6. Threshold beam current for the intrinsic stability in the
KEKB case, as an example of two rings with different parameters.
The maximum LER beam current is shown, with a fixed ratio
IbðLÞ=IbðHÞ ¼ 2. The horizontal and vertical axes are ψL and ψH,
respectively.
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and ψH ¼ 10° could effectively mitigate the oscillation.
Thus, a practical remedy to avoid oscillations was found,
although the cause was not fully understood [9]. Following
the introduction of the remedy, the oscillation problem did
not deteriorate the luminosity performance with the crab
crossing. These phase shifts were increased further when
the beam currents were increased [10].
In addition to the oscillation problem, the LER tuning

system exhibited abnormal behavior; the tuning phase ψL
exhibited a large fluctuation of approximately �15° [8].
The cause of the poor performance of LER tuning system
was not clear; one suspected cause was mechanical
problems in the tuning system. The abnormal behavior
of the LER tuner was also observed in the tuner movement
tests performed after assembling the cryostat [19,20]. The
tuning method adopted in the KEKB crab cavities [8]
involved the adjustment of the insertion depth of the inner
conductor of the coaxial coupler, which was originally
attached to dampen the lower-order frequency mode [21],
into the cavity cell using a stepping motor and piezo. The
HER tuning system functioned normally with this tuning
method, and ψH was controlled within �1° of the set value
of the loading angle. However, in the LER tuning system,
the coupler moved back and forth, passing the set point of
the loading angle, resulting in a large periodic fluctuation of
ψL with a period of approximately 30 s. The Vc phase was
well-controlled by the PLL with an accuracy of �0.1°
regardless of the periodic fluctuation of ψL [9]. This is
considered in the following analysis.

B. Application of the analysis

The analysis developed in Sec. II was applied to under-
stand the oscillation phenomena observed in KEKB. In the
following, the þ and − marks for indicating the rings were
replaced with L (LER) and H (HER), respectively.

1. Simulation in time domain

First, a time-domain simulation using MATLAB/
Simulink [22] was performed based on the formalism
developed in the analysis. It aimed to visualize the
oscillations of various physical quantities and their relative
phases. The consistency between the CE and simulation
was confirmed in another study on the stability of the
accelerating mode, which has been reported elsewhere [17].
The input data for the simulation were composed based on
the system shown in Fig. 2 by identifying each component
in Txk and Bkx of the two rings. The rf control system used
in the operation was reflected as accurately as possible in
the input data for the simulation.
Figure 8 presents an example of the simulation results.

The responses of Vc amplitude, ϕc, and Δxcr to a step
change applied to the phase reference at t ¼ 0 are plotted in
(a), (b), and (c), respectively. Data for the LER (HER)
cavity are plotted in red (blue). The vertical axis represents
arbitrary units, and the data in (b) and (c) are plotted with

offsets with respect to (a) for visibility. In (a), the input
power V in in the LER cavity is also plotted (green). They
oscillated coherently and grew after the step change. It can
be clearly observed that the oscillations were out-of-phase
for the two rings. A small phase delay of Vc with respect to
V in was also observed. These characteristics were consis-
tent with the observed oscillations during the operation,
including the data shown in Fig. 7.

2. Oscillation amplitude and saturation

Next, the measured data in the machine studies were
analyzed. Here, four datasets operated at ϕc (in both rings)
¼ 90̊ and 100° with ψH ¼ −10° and þ10° were used.
Table II shows the quantities measured in the observation
[listed in (i)] and the quantities calculated from the data
using the analysis [listed in (ii)]. As described above, ψL
fluctuated by approximately �15° in each case, and the
values of ψL listed in the table were those obtained when
recording the measured data. ΔV in=V inðLÞ, ΔVc=VcðLÞ, and
ΔϕcðLÞ are the oscillation amplitudes in the LER cavity in
peak-to-peak values, and ΔϕcðHÞ=ΔϕcðLÞ is the ratio of the
ϕc oscillation amplitudes in the HER to LER.
From the measured data, the quantities listed in (ii) were

calculated following the analysis developed in Sec. II. First,
Δkcr was calculated using ΔVc=Vc, Δϕc, and Eq. (19).
Subsequently, Δxcr and Δx� were calculated using Bkx;0

values determined by Eq. (18), employing the optics and
beam-beam force parameters. Furthermore, by assuming

FIG. 8. An example of the time domain simulation performed
for KEKB. The responses of Vc amplitude, ϕc, and Δxcr to a step
change applied to the phase reference at t ¼ 0 are plotted in (a),
(b), and (c), respectively. The vertical axis is in arbitrary unit. The
data in the LER (HER) cavity are plotted in red (blue) in each
graph. The input power in the LER cavity (green) is also plotted
in (a). They all oscillate coherently and grow after the step
change.
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that the centers of the oscillating orbits were the same as
those in the steady state, the relative displacement of the
two beams at the IP Δx�ðL−HÞ was evaluated from the

difference between Δx�L and Δx�H. The variation in the
beam-induced voltage on resonance ΔVbr was also calcu-
lated from Δxcr.
The oscillation amplitude remained relatively constant at

several degrees of peak-to-peak in ϕc for each case and did
not increase further. In addition, the calculated values of
Δx�ðL−HÞ for the four measurements from �67 to �120 μm
were of the same order as the effective beam size Σx
calculated using σ�x in Table I. These features are consistent
with the saturation of the nonlinear beam-beam force. In the
linear analysis, once instability occurs, the oscillation
grows exponentially with time without limitations, as
shown in the simulation results (Fig. 8). However, the
linear function of the beam-beam force represented in
Eq. (15) is only valid for small values of Δx�ðL−HÞ. As
Δx�ðL−HÞ increases, the beam-beam force becomes smaller

than the linear function. It attains a maximum value at
approximately Δx�ðL−HÞ ¼ 1.3 Σx for a rigid Gaussian flat

beam and decreases at further distances. Consequently, the
growth of the oscillation stops at certain value of Δx�ðL−HÞ
where the kick in the crab cavity and the beam-beam force
at the IP become balanced, with the growth rate being
reduced to zero. An accurate evaluation of the saturation
point is difficult because of uncertainties in beam sizes at

the IP with dynamic effects as well as the non-Gaussian
distribution of beams. However, the calculated Δx�ðL−HÞ
from the measured oscillation amplitudes were, at least
qualitatively, consistent with the nonlinear behavior of the
coherent beam-beam force at the IP.

3. Loop characteristic analysis

Loop characteristic analysis was performed to study the
rf-related parameter dependencies of stability. In Fig. 2, the
open-loop overall TF of system Goval can be defined by
selecting, for example, pointΔxcrþ in the LER. By opening
the direct transmission from Δxcrþ at the right edge to
Δxcrþ at the left edge, Goval was defined as the TF between
these two points. The sign ofGoval was reversed for analogy
to ordinary feedback loop analysis, such that the CE was
expressed as 1þGoval ¼ 0. Goval comprised the TFs of
Txk

L, Txk
H, and a set of Bkx. The forms of Bkx

LL, Bkx
LH,

Bkx
HL, and Bkx

HH, which are the TFs from Δkcr to Δxcr,
were obtained from Eqs. (17) and (18). The forms of Txk

L

and Txk
H, which are the TFs from Δxcr to Δkcr, are

represented by Eq. (20). In Cp and Ca of Txk, the time
constants and gains of the PLL and ACL used in the
operation were set. Subsequently, the Bode diagrams of
Goval were obtained for the different parameter sets used in
the measurements.
There exist certain concerns related to the LER cavity-

tuning problem. In addition to the large fluctuation of ψL,
the abnormal movement of the coaxial coupler might have
caused other issues, such as the distortion of the crabbing
field, displacement of the beam orbit with respect to the
field axis, and uncertainty of the measured ψL. No further
experiments could be conducted to examine these uncer-
tainties because the hardware system had already been
disassembled. Therefore, we only discussed the depend-
encies of stability on ϕc and ψH at a fixed value of ψL ¼ 5°
because many measurements were conducted in the
machine study at this value.
Figure 9 shows the calculated ϕc dependence of the loop

gain (a) and phase (b) of Goval, where ϕc was changed from
86° to 100°. Other parameters were set as IbðLÞ ¼ 2 A,
IbðHÞ ¼ 1 A, ψL ¼ 5°, and ψH ¼ 0°, and the frequency
range from 1 to 104 Hz is plotted. The extremely low gain
in the low-frequency region shown in (a) indicates that a
possible fluctuation ΔxcrðLÞ is well suppressed by the
feedback loops included in Goval. This remark is made
to avoid confusion with an ordinary feedback loop analysis
case, wherein a high open-loop gain in the low-frequency
region is usually required to stabilize the closed loop. In the
high-frequency region (> 103 Hz), the loop gain rapidly
decreased with frequency because of the time constant of
the cavities τf in Bkx and that of Cp and Ca in Txk.
We mainly focused on the frequency range of

102–103 Hz, where the loop gain was relatively high.
In this region, the loop characteristics are sensitive to

TABLE II. Four typical datasets of the observed oscillation in
the KEKB crab-crossing operation: (i) measured quantities in the
observation and (ii) calculated quantities from the measured data
by applying the analysis in Sec. II.

Observed data

Quantity Unit (a) (b) (c) (d)

(i): Measured quantities in the observation
ϕcðL;HÞ (deg) 90 90 100 100
ψH (deg) −10 þ10 −10 þ10
ψL (deg) −2 þ6 þ4 þ18
ΔV in=V inðLÞ (p − p) 0.05 0.07 0.14 0.31
ΔVc=VcðLÞ (p − p) 0.1 0.1 0.14 0.35
ΔϕcðLÞ (p − p) (deg) 2.8 2.8 6.0 8.4
ΔϕcðHÞ=ΔϕcðLÞ −1=2 −1=3 −1=2 −1=3

(ii): Calculated quantities by applying the analysis
ΔxcrðLÞ (p − p) (μm) −220 −200 −360 −340
ΔxcrðHÞ (p − p) (μm) 260 230 430 390
Δx�L (p − p) (μm) 100 100 160 170
Δx�H (p − p) (μm) −50 −34 −82 −57
Δx�ðL−HÞ

a (μm) �75 �67 �120 �110

ΔVbrðLÞ (p − p) (kV) −26 −23 −42 −39
ΔVbrðHÞ (p − p) (kV) 13 11 21 20

aDefined as ðΔx�L − Δx�HÞ=2.
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rf-related and control parameters. As shown in Fig. 9(b), for
ϕc ¼ 86° (blue), the loop phase rotated by approximately
360°, passing �180° through the high-gain region.
However, for the ϕc ¼ 90°, 96°, and 100° cases, the loop
phase remained within approximately �100° and did not
pass �180° in this frequency region. In Fig. 9(a), the case
wherein no beam was stored in the HER is also plotted
(purple). As evident, the loop gain with the HER beam
increased by 20–40 dB compared to the case without the
HER beam. This is because Bkx

LL and Bkx
HL increased

with the HER beam by almost the same factor owing to the
beam-beam force at the IP, as well as the contribution from
the HER loops. Thus, the effect of the loop phase shift on
loop performance was largely enhanced by the colliding
beams. Consequently, we conclude that the system is more
stable in the ϕc ¼ 90°, 96°, and 100° cases than in the ϕc ¼
86° cases.
Similarly, the ψH dependence of the stability was

examined. Figure 10 shows the calculated loop gain (a)
and phase (b) of Goval. In (a), ψH was changed to −10°
(green), 0° (orange), andþ10° (blue), where ϕc ¼ 100° and
ψL ¼ 5°. The case without an HER beam is shown in red.
The other parameters were the same as those in Fig. 9.

The loop gain is relatively high in the frequency range of
102–103 Hz, and an enhancement of the loop gain with the
HER beam by approximately 30 dB was also observed. In
(b), four datasets with changing ψH and ϕc are plotted:
ψH ¼ −10° with ϕc ¼ 90° (green), ψH ¼ þ10° with ϕc ¼
90° (blue), ψH ¼ −10° with ϕc ¼ 100° (red), and ψH ¼
þ10° with ϕc ¼ 100° (orange). In the ψH ¼ −10° with
ϕc ¼ 90° case (green), the loop phase changed signifi-
cantly, passing �180° through the high-gain region. In
contrast, in the ψH ¼ þ10° cases [with ϕc of either 90°
(blue) or 100° (orange)], the phase change was relatively
modest. Consequently, we conclude that the system is more
stable with ψH ¼ þ10° than with ψH ¼ −10°.
In addition, by comparing the two cases marked by green

and red in (b), the system is more stable with ϕc ¼ 100°
than with ϕc ¼ 90° at the same value of ψH ¼ −10°. This
does not conflict with the ϕc dependence of stability
discussed previously in Fig. 9.
To understand the loop phase change depending on ϕc

and ψ , it is helpful to recall the forms of Cp and Ca for
simple cases wherein only the PLL or ACL is implemented,

FIG. 10. ψH dependence of the gain (a) and phase (b) for the
open loop TF Goval. The horizontal axis is frequency from 1 to
104 Hz. The vertical axes are the gain in dB (a) and phase in
degrees (b), respectively. In (a), ψH ¼ −10° (green), ψH ¼ 0°
(orange), and ψH ¼ 10° (blue) are plotted. The no HER beam
case (red) is also plotted. ϕc ¼ 100° and ψL ¼ 5° for all these
data. In (b), ψH ¼ −10° with ϕc ¼ 90° (green), ψH ¼ 10° with
ϕc ¼ 90° (blue), ψH ¼ −10° with ϕc ¼ 100° (red), and ψH ¼ 10°
with ϕc ¼ 100° (orange) are plotted. ψL ¼ 5° for all these data.

FIG. 9. ϕc dependence of the gain (a) and phase (b) for the open
loop TF Govel. The horizontal axis is frequency from 1 to 104 Hz.
The vertical axes are the gain in dB (a) and phase in degrees (b),
respectively. ϕc ¼ 86° (blue), ϕc ¼ 90° (orange), ϕc ¼ 96°
(green), and ϕc ¼ 100° (red) are plotted. ψH ¼ 0° and ψL ¼ 5°
for all data. The no HER beam case (purple) is also plotted
in (a).
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as presented in Sec. II C. Because ϕc is close to 90°, the
sign of the coefficient of Cp in Eq. (23) is sensitive to ϕc.
Similarly, the sign of the coefficient of Ca in Eq. (24) is
sensitive to (ϕc − ψ).
Figure 11 presents a comparison of the calculation and

measurement results of ϕc (horizontal axis) and ψH
(vertical axis) dependencies of stability. The calculated
results are plotted by classifying the data into two groups
according to their phase patterns: unstable (blue crosses)
and stable (blue open circles). The measurement data are
plotted and classified into three groups: instability was
observed (red crosses), not observed (red circles), or
marginal (red triangles). In both the calculations and
measurements, the data were obtained at a fixed value of
ψL ¼ 5°. As evident, the ϕc and ψH dependencies obtained
in the loop characteristic analysis and the measured values
were consistent.

V. DISCUSSIONS

We investigated the stability of the crab rf systems with
colliding beams. We developed an analysis method by
formulating the TFs of a crab system, comprising the beam-
beam force at the IP, beam loading on crab cavities, and rf
control loops. The analysis was first applied to simple cases
without control loops, and the intrinsic stability criteria
were identified as functions of Y 0κBkx;0 (or Ib) and the
tuning angle ψ .
Next, the analysis, including the control loops, was

applied to study the oscillation phenomena observed during
the crab-crossing operation in KEKB. The calculations and

measurements were consistent with the following points:
First, the time-domain simulation reproduced the char-
acteristics of the observed oscillations. Coherent oscilla-
tions of Vc amplitude, ϕc, and Δxcr were observed, and the
relative phase between these quantities in the two rings
were consistent with that in the measurements. Second,
Δx�ðL−HÞ estimated from the measured oscillation amplitude

by applying the analysis was consistent with the saturation
effect of the beam-beam force at the IP. Third, the ϕc and
ψH dependencies of the stable and unstable conditions
obtained by the loop characteristic analysis were consistent
with those in the measurements.
Although these consistencies indicated the validity of

the analysis, there were certain discrepancies between the
calculations and measurements. First, during operation,
instability was usually observed at lower beam currents,
that is, a factor of approximately two, compared to the
calculated threshold currents. Second, the measured oscil-
lation frequency was roughly fixed at 550 Hz regardless of
the different values of the rf parameters, such as ϕc and ψ ,
and the control loop parameters.
To understand the cause of these discrepancies, the

possible effects of the two known coherent phenomena
and bunch-gap transient were examined. One is ordinary
coupled-bunch instability (CBI) arising from crab cavities.
Owing to the high transverse impedance of the crab
cavities, a transverse CBI can be excited by the off-peak
of the impedance spectrum around the rf frequency, reach-
ing the driving frequency of the instability. The growth rate
of the coupled-bunch mode m, τ−1ðmÞ, is expressed as

τ−1ðmÞ ¼
eIbfrevβcr

2E
ðReZþ

ðmÞ − ReZ−
ðmÞÞ; ð35Þ

where frev ¼ 1=τrev is the revolution frequency, and ReZ
þ
ðmÞ

(ReZ−
ðmÞ) is the real part of the impedance of the crab cavity

at the driving (damping) frequency of mode m. ReZ�
ðmÞ is

represented as

ReZ�
ðmÞ ¼

1
2
ðRQÞkrfQL

1þ ½tanψ � 2π
σ ðmþ Nβ þ νβÞfrev�2

; ð36Þ

where Nβ and νβ are the integer and fractional parts of the
transverse tune, respectively.
Two modes, m0 ≡mþ Nβ ¼ 0 (00 mode) and −1 (−10

mode), whose driving frequencies are close to the rf
frequency, can exhibit a high growth rate. The growth rate
was calculated using the parameters of KEKB-LER listed
in Table I except that the beam current was set to 2 A, which
is considerably higher than the operating current. The
results are presented in Fig. 12, where τ−1 of the two
dominant modes 00 and −10 are plotted as blue and red real
lines, respectively, as a function of ψL. Even with the
fluctuation of ψL by �15° caused by the tuning problem,
the operation was always performed in the range of

FIG. 11. Comparison between the calculation and measurement
results of the ϕc and ψH dependencies of stability. The horizontal
and vertical axes are ϕc and ψH , respectively. The calculated
results are plotted according to their phase patterns: unstable
(blue crosses) and stable (blue open circles). The measurement
results are plotted according to whether the instability was
observed (red crosses), not observed (red circles), or marginal
(red triangles).
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jψLj < 30°. Larger values of jψLj would increase the input
power needed to maintain Vc. In this range of ψL, τ−1 was
less than the radiation damping rate (∼25 s−1).
The CBI discussed for a single ring should be modified

for colliding beams because of the beam-beam force at the
IP. This effect was approximated as a shift of νβ on the
order of the coherent tune shift Ξx. In Fig. 12, τ−1 modified
with Δνβ ∼ 0.1 is plotted as dashed lines. Although τ−1 of
the −10 mode (red dashed line) increased for ψL > 0, τ−1 <
10 s−1 for jψLj < 30°. Even if τ−1 were to increase by
certain unknown effects, such as machine errors or other
instability sources, it would be probably sufficiently lower
than the damping rate of the transverse bunch-by-bunch
feedback system implemented in KEKB, which is of the
order of 103 s−1.
Another possibility is the effect of the coherent synchro-

tron frequency shift caused by the beam loading on the
accelerating cavities. As described in Sec. II A, the beam
phase is determined by the accelerating rf system. When
coherent synchrotron oscillation occurs, the beam phase
changes accordingly and the crabbing field Vc is affected
by the TFs from pb to Vc. However, this effect was not
considered in this analysis. The coherent synchrotron
frequency fs was calculated with the parameters listed
in Table I, by using a simulation tool developed for the
accelerating rf system [17]. The results showed that fs in
the LER (HER) shifted from 2.44 (2.08) kHz at zero current
to 2.05 (1.47) kHz at the operating currents. The frequen-
cies were significantly higher than the observed oscillation
frequency of approximately 550 Hz. Consequently, the
coherent synchrotron frequency shift did not appear to be
related to the observed instability.

Next, the effect of the bunch-gap transient was exam-
ined. In KEKB, a gap with empty buckets occupying
approximately 5% of the ring was introduced in the bunch
train to allow for the rise time of the beam abort kicker.
Owing to the gap transient effect, the bunch-pass timing
(i.e., the synchronous phase ϕs) changes bunch-by-bunch
along the train. The collision point shifts longitudinally
according to the relative displacements of the colliding
bunches in the two beams. This results in the relative
horizontal displacement of the colliding bunches Δx�ðL−HÞ
in a finite-angle crossing scheme. The effect of the bunch-
gap transient was studied for noncrab finite-angle crossings
in KEKB, which has been reported elsewhere [23,24]. Δϕs
and Δx�ðL−HÞ in the KEKB operation were estimated to be
several degrees and of the order of 10 μm, respectively.
In the crab-crossing case, two points should be added to

the argument above. First, the longitudinal collision point
shift by itself does not result in a relative horizontal
displacement because of head-on collisions owing to the
crab crossing. However, different bunch-pass timings in the
crab cavity cause different horizontal kicks Δkcr ∼ κΔϕs;
therefore, Δxcr and Δx� change bunch-by-bunch along the
train. Using Eq. (16) with the KEKB parameters, Δxcr was
estimated to be of the order of 100 μm, andΔx� was several
tens μm. In most parts of the train, Δx� of the colliding
bunches were in the same direction between the two beams,
which reduced Δx�ðL−HÞ to a few tens μm by canceling it
out. Second, the beam loading on the crab cavity of a bunch
train should be calculated by superposing that of a single
bunch with factors cosΔϕs and Δxcr for each bunch. In the
KEKB case, this superposition can be approximated by
using the average values of Δxcr and ϕs along the train. In
addition, the time constant of the gap transient effect is
typically τrev (10 μs), which is significantly shorter than the
oscillation period (∼200 τrev). Based on these consider-
ations, we conclude that the bunch-gap transient effect was
not related to the instability observed in KEKB.
Regarding the instability arising at beam currents lower

than the calculated predictions, it may be argued that, as
shown in Figs. 9 and 10, a gain margin exists even at the
frequency where the loop phase crosses �180°. However,
from experience in machine operations, the gain margin can
be lost owing to a variety of factors that impede the ideal
situation, such as nonlinearities in the rf system, unknown
fluctuations in the hardware system, and the degradation of
beam dynamics caused by machine errors. For example, in
the early stage of the KEKB operation without crab
cavities, the −1-mode longitudinal instability associated
with the accelerating mode occurred at approximately half
of the beam current predicted via calculations [25].
According to the loop performance analysis, the stability

can be degraded in the frequency range of approximately
400–700 Hz because of the relatively high loop gain caused
by the beam loading on the crab cavities and the beam-
beam force at the IP. The frequency where the loop phase

FIG. 12. The growth rate τ−1 of ordinary coupled-bunch
instability (CBI) caused by a crab cavity in KEKB-LER as a
function of ψL. Two modes, m0 ≡mþ Nβ ¼ 0 (00 mode) and −1
(−10 mode), whose driving frequencies are close to the rf
frequency, are plotted as blue and red, respectively. The dashed
lines consider the tune shift Δνβ ∼ 0.1 to simply model the effect
of coherent beam-beam force at the IP on the CBI.
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reaches �180° could change in this frequency range,
depending on the values of the different parameters.
Thus, the observed frequency, which was roughly fixed
at 550 Hz, cannot be explained by the loop performance
alone. One emerging possibility is that an unknown
oscillation source at approximately 550 Hz may have
existed in the rf system, power supply, or crab cavity,
which did not affect the stability in the case of a noncrab
collision operation. A relatively high noise floor was often
observed around this frequency during operation, even at a
low beam current. Although the noise source was not
identified, it could have been enhanced by the loop
performance with the interaction between the beam loading
on crab cavities and the beam-beam force at the IP, as
studied in our analysis.

VI. SUMMARY

We investigated the coherent instability in the crab-
crossing collision, which is caused by an interaction
between the beam loading on the crab cavities and the
beam-beam force at the IP. We developed an analysis
method to study the stability by formulating TFs for a crab
rf system with colliding beams, comprising the beam
loading on crab cavities, beam orbit response to the crab
kick with the beam-beam force at the IP, and rf control
loops for the amplitude and phase of Vc.
The analysis was first applied to simple cases without

control loops to derive the intrinsic stability. This corre-
sponds to the Robinson stability for accelerating cavities.
Two cases were examined: The first was the case wherein
every machine parameter was identical for the two rings.
The second was with the KEKB parameters as an example
of a more general case wherein the machine parameters
were different between the two rings. Stability criteria were
identified for both cases.
Furthermore, analysis with the control loops was applied

to study the instability observed during the crab-crossing
operation in KEKB. The calculation and measurement

results were consistent with the following points. First, a
time-domain simulation based on the analysis reproduced
the coherent oscillation in the two rings observed during
operation. Second, the relative beam orbit displacement at
the IP estimated from the measured data by applying the
analysis was consistent with the saturation effect of the
beam-beam force. Third, the ϕc and ψH dependencies of
the stable and unstable conditions were consistent between
the loop characteristic analysis and the measurements.
However, there were certain discrepancies between the

calculations and measurements. In the operation, instability
usually occurred at beam currents lower than those pre-
dicted by the calculation, and the oscillation frequency
was approximately fixed. Nevertheless, in the mechanism
studied here, the interaction between the beam loading on
the crab cavities and the beam-beam force at the IP could
increase the effect of certain noise sources, if any, by more
than 30 dB. In addition, nonlinearities in the rf system,
fluctuations in the hardware system, and beam dynamics
issues that are caused by machine errors could affect the
loop performance. Considering these factors, we confirmed
the validity of the analysis developed in this study and its
essential function in the instability observed in the crab-
crossing operation in KEKB.
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APPENDIX A: TF FROM GENERATOR
TO CAVITY

The TFs from the generator to the crabbing voltage were
obtained from the transformation of tðag; pgÞ into tðav; pvÞ
in Eq. (2) as

Gpp
G ¼ Gaa

G ¼ σð1þ Y� sinϕcÞ · sþ σ2½sec2ψ þ Y�ðsinϕc − tanψ cosϕcÞ�
s2 þ 2σsþ σ2 sec2ψ

; ðA1Þ

Gap
G ¼ −Gpa

G ¼ σð− tanψ þ Y� cosϕcÞ · sþ σ2Y�ðcosϕc þ tanψ sinϕcÞ
s2 þ 2σsþ σ2 sec2ψ

: ðA2Þ

Note that they are similar to those for accele-
rating cavities [13,17], with differences in the beam-
loading coefficients and relative phase between the
rf and beam: Y� in Eqs. (A1) and (A2) are given by
Eq. (9), whereas Y, which appears in the form of

accelerating cavities, is defined as Y ¼ ðR=QÞQLIb=Vc.
In addition, ϕc used in Eqs. (A1) and (A2) is the
crabbing phase, whereas for the accelerating cavities,
ϕc is replaced by ϕs þ π=2, where ϕs is the synchro-
nous phase.
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APPENDIX B: Bkx;0 FOR TWO RINGS
WITH THE IDENTICAL PARAMETERS

Using Eqs. (13) and (15) in Sec. III, the 4 × 4 matrix
I − T is expressed as

I − T ¼
�
I 0

0 I

�
−
�
M11 0

0 M11

�
− fb

�−W W

W −W

�
;

ðB1Þ

where M11 is the one-turn matrix at the crab cavity,
fb ¼ 4πΞx=β�x, and

W ¼
�
M21ð1;2ÞM12ð1;1Þ M21ð1;2ÞM12ð1;2Þ
M21ð2;2ÞM12ð1;1Þ M21ð2;2ÞM12ð1;2Þ

�
: ðB2Þ

Let the matrix ðI − TÞ−1 be represented by 2 × 2 matrices
as

ðI − TÞ−1 ¼
�
A B

C D

�
;

then from Eq. (B1) we obtain

A ¼ ðI −M11 þ 2fbWÞ−1 × ½fbWðI −M11Þ−1 þ I�;
B ¼ ðI −M11 þ 2fbWÞ−1 × ½fbWðI −M11Þ−1�:

From the optics parameters at the crab cavity and the IP,
the components of ðI −M11Þ−1 and W in Eq. (B2) are
expressed as

ðI −M11Þ−1 ¼
1

4sin2ðϕ0

2
Þ

×

�
1 − cosϕ0 þ αcr sinϕ0 βcr sinϕ0

−γcr sinϕ0 1 − cosϕ0 − αcr sinϕ0

�
;

Wð1;1Þ ¼ β� cos ε21ð− sin ε12 þ αcr cos ε12Þ;
Wð1;2Þ ¼ β�βcr cos ε21 cos ε12;

Wð2;1Þ ¼
β�

βcr
ðsin ε21 þ αcr cos ε21Þðsin ε12 − αcr cos ε12Þ;

Wð2;2Þ ¼ β� cos ε12ð− sin ε21 − αcr cos ε21Þ:

The components of H≡ ðI −M11 þ 2fbWÞ−1 are
obtained as

hHð1;1Þ ¼ 1 − cosϕ0 þ αcr sinϕ0

− 2fbβ� cos ε12ðsin ε21 þ αcr cos ε21Þ;
hHð1;2Þ ¼ βcr sinϕ0 − 2fbβ�βcr cos ε21 cos ε12;

hHð2;1Þ ¼ −γcr sinϕ0 − 2fb
β�

βcr
ðsin ε21 þ αcr cos ε21Þ

× ðsin ε12 − αcr cos ε12Þ;
hHð2;2Þ ¼ 1 − cosϕ0 − αcr sinϕ0

− 2fbβ� cos ε21ðsin ε12 − αcr cos ε12Þ;

with h≡ det H−1 being

h ¼ 2ð1 − cosϕ0 þ β�fb sinϕ0Þ:
Finally,A andB are calculated, yielding Eqs. (33) and (34),
as follows:

Bkx;0 ¼ Að1;2Þ; ðB3Þ

η ¼ Bð1;2Þ=Að1;2Þ: ðB4Þ
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