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In recent eþe− colliders, a collision scheme with a large crossing angle has been designed and
adopted. In two colliding beams, mode coupling between beam-beam oscillation modes is discussed in
this paper. The typical σ and π modes are extended to include longitudinal motion. The tune shifts of
the l ¼ 0 and l ¼ �1 modes are presented explicitly. The behavior of beam-beam modes is analyzed
for different Piwinski angles. The instability due to the vacuum pipe impedance is discussed in terms of
mode coupling between these beam-beam modes. Beam-beam simulations based on the strong-strong
model have shown that a vertical beam-beam instability is induced by crosstalk between the beam-beam
collision and the impedance. It is shown that the mode coupling theory for colliding beams reproduces
the results of the beam-beam simulation. The impact of hourglass effects on the instability is also
studied by simulation.
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I. INTRODUCTION

There are various modes for inner bunch oscillation. We
focus on the vertical motion correlated to longitudinal
motion. The target of this study is solving for the transverse
dipole amplitude y in the longitudinal phase space [yðz; δÞ]
in collider accelerators. The bunch oscillates with betatron
tune νβ in the vertical while rotating with the synchrotron
tune in the longitudinal phase space z − δ. The vertical
amplitude has periodicities in azimuthal on the longitudinal
phase space. The amplitude is expressed by the Fourier
component on the azimuthal angle, yðz; δÞ ¼ yleilϕ. A
bunch with this structure oscillates in the vertical with
tune νβ þ lνs.
Transverse mode coupling instability (TMCI) is caused

by the merging of two of these oscillation modes [1]. A
typical case is that tunes of modes with l ¼ 0 and l ¼ −1
shift from νβ þ lνs due to interaction with the beam pipe
environment: that is impedance. The two tunes merge into a
value at a certain beam intensity, and then the appearance of
an imaginary part of the tune results in an instability.
Considering colliding beams, the oscillation modes of

the two beams are coupled. σ and π modes with yðþÞ ¼ yð−Þ

and yðþÞ ¼ −yð−Þ are well known. Considering longitudinal
direction, σ and π modes with yðþÞðzÞ ¼ yð−ÞðzÞ and

yðþÞðzÞ ¼ −yð−ÞðzÞ are discussed recently. Horizontal
beam-beam instability has been studied for the modes
[2–4]. The horizontal instability has been discussed only
for the beam-beam interaction with a large crossing angle.
The vertical beam-beam instability has begun to be
explored with coupling to the vacuum pipe impedance
recently [5–8]. In the horizontal, coupling of a mode with
the wrapped mode at the half-integer [2,3] causes the
instability. eþe− colliders operated at a horizontal tune
closed to a half-integer. The wrapped mode occurs because
the beam-beam force is localized and the tune is folded at
half-integer. On the other hand, the vertical tune is far away
from a half-integer. The azimuthal mode numbers, that
cause coupling, are higher than horizontal. We discuss here
the coupling between lower azimuthal modes as a com-
bined effect of the beam-beam and impedance.
Historically, the beam-beam mode in head-on collision

has been discussed in Ref. [9] and mode coupling of the
beam-beam modes has been discussed in Ref. [10]. The
new aspect of this paper is the extension of this theory into
recent/future colliders operated with a large crossing angle.
We first discuss beam-beam modes only under the beam-

beam interaction. The cross-wake force is used to analyze
the beam-beam modes. Instability does not appear in low
azimuthal modes, because the cross-wake impedance is
pure imaginary. Then beam-beam modes including imped-
ance from the vacuum environment are discussed taking
care of how instability occurs in the beam-beam modes.
Strong-strong simulation results, which focus on the
instability theory, are presented combined with a beam-
beam collision with a large crossing angle and transverse
conventional wake force.
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II. TRANSVERSE MODE ANALYSIS FOR
COLLIDING BEAMS

We discuss beam-beam mode for colliding e� beams
using the cross-wake force. The transparency condition
is assumed for simplicity: i.e., energy transparency

NðþÞγðþÞ ¼ Nð−Þγð−Þ, equal beam sizes σðþÞ
x;y;z ¼ σð−Þx;y;z, and

equal tunes νðþÞ
x;y;z ¼ νð−Þx;y;z.

During the collision, the equation of motion for the
dipole amplitude distribution yðzÞ; pyðzÞ is expressed by

δpðþÞ
y ðzÞ ¼

Z
WðþÞ

y;crsðz − z0Þρð−Þðz0Þdz0

× ½yðþÞðzÞ − yð−Þðz0Þ�; ð1Þ

where Wy;crs, which is called the cross-wake force, repre-
sents a longitudinal correlation in the overlap area of the
two beams with a half-crossing angle θ [2,3,7],

WðþÞ
y;crsðzÞ ¼ −

Nð−Þre
γðþÞ

∂FyðθzÞ
∂y

≈ −
Nð−Þre
γðþÞ

1

σxσyðsÞ
exp

�
−
θ2Pz

2

4σ2z

�
; ð2Þ

where θP ¼ θσz=σx is known as the Piwinski angle [11]. It
is a normalized crossing angle, which is the ratio of the
bunch length and overlap area in collision. The correspond-
ing impedance is expressed by

ZcrsðωÞ ¼ i
Z

Wy;crsðzÞe−iωz=cdz=c

¼ −i
Nð−Þre
γðþÞ

1

σxσyðsÞ

ffiffiffiffiffiffi
4π

p
σz

cθP
exp

�
−
ω2σ2z
c2θ2P

�
: ð3Þ

Here the hourglass effect due to the vertical beta variation
and beam disruption during the collision is neglected.
We introduce beam-beam modes of σ and π modes,

which satisfy yðþÞðzÞ ¼ yð−ÞðzÞ and yðþÞðzÞ ¼ −yð−ÞðzÞ.
Equation (1) is expressed as single beam equation,

δpyðzÞ ¼
Z

Wy;crsðz − z0Þρðz0Þdz0½yðzÞ ∓ yðz0Þ�; ð4Þ

where ∓ corresponds to σ=π mode.
This equation is the same as that for traditional wakefield

containing quadrupole component (WQ) induced by
monopole moment ρðzÞ and dipole component (WD)
induced by dipole moment ρyðzÞ ¼ yðzÞρðzÞ.
Considering the wake force induced by the vacuum

pipe environment,Wy andWy;Q, the wake forces of quadru-
pole and dipole components are WQ ¼ −Wy;crs þWy;Q,
WD ¼ �Wy;crs þWy.

The dipole amplitudes are extended as functions
of longitudinal canonical variables, (z, δ) or (J;ϕ).
yðzÞ ¼ R

yðz; δÞψðz; δÞdδ= R ψðz; δÞdδ, where ψðz; δÞ is
the distribution function in the longitudinal phase space.
Equation (1) is extended by keeping the same form because
it does not contain δ. The dipole amplitudes, which are
normalized by β�y (beta function at the interaction point),
are expanded into azimuthal modes

y�ðz;δÞffiffiffiffiffi
β�y

p ¼
X∞
l¼−∞

ylðJÞeilϕ;
ffiffiffiffiffi
β�y

q
p�
yðz;δÞ¼

X
l

plðJÞeilϕ: ð5Þ

For the longitudinal motion with an elliptic trajectory, the
relation between (z, δ) and (J;ϕ) is z ¼ ffiffiffiffiffiffiffiffiffiffi

2βzJ
p

cosϕ and

δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2J=βz

p
sinϕ. The equation for azimuthal modes is

expressed as

δplðJÞ ¼ −β�y
�X

l0
W̄ll0 ðJÞyl0 ðJÞ

þ
Z X

l0
Wll0 ðJ; J0ÞψðJ0Þyl0 ðJ0ÞdJ0

�
; ð6Þ

where

W̄ll0 ðJÞ ¼
1

2π

Z
ψðJ0ÞdJ0dϕdϕ0WQðz − z0Þe−iðl−l0Þϕ; ð7Þ

Wll0 ðJ; J0Þ ¼
1

2π

Z
dϕdϕ0WDðz − z0Þe−ilϕþil0ϕ0

: ð8Þ

The integration regions are 0 to 2π for ϕ;ϕ0, and 0 to ∞
for J0. Equation (6) is regarded as a matrix equation
discretized in J. The revolution matrix containing the wake
forces is constructed by combining the transfer matrix of
the arc as a function of νy and νs. The matrix size is
2 × ð2lmax þ 1Þ × nJ, where the summation is truncated to
l ¼ �lmax and an integral is performed with nJ steps.
Here we consider a simple radial mode as in [1]

ylðJÞ ¼ yl0Ĵ
jlj=2=

ffiffiffiffiffiffi
jlj!

p
; ð9Þ

where Ĵ ¼ J=ε is normalized by the longitudinal emittance.
The modes are drawn as a flat disk with an undulation with
waves of l periods azimuthally in z − δ − y space. The
matrix relation for the azimuthal modes is expressed by

δpl0 ¼
X
l0
MW;ll0yl00: ð10Þ

The matrix is expressed by
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MW;ll0 ¼
iβ�y

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffijlj!jl0j!p

Z
dω

×

�
il−l

0
ZQðωÞ

Z
dJe−JJðjljþjl0jÞ=2Jl−l0 ðkσrÞe−k2σ=2

þ ijlj−jl0jZDðωÞðkσ=
ffiffiffi
2

p
Þjljþjl0je−k2σ

�
; ð11Þ

where r ¼
ffiffiffiffiffi
2Ĵ

p
. The size of the matrix is 2 × ð2lmax þ 1Þ.

The diagonal term of the matrix gives the tune shift for
each azimuthal mode. We first take a look at the tune shift
caused by the cross-wake force in Eqs. (2) and (3). The tune
shift for l ¼ �n mode is given by

Δνy;�n ¼
β�y
4π

i
2πn!

Z
dωZcrsðωÞ

× ½n!Lnðk2σ=2Þ ∓ ðkσ=
ffiffiffi
2

p
Þ2n�e−k2σ ; ð12Þ

where kσ ¼ ωσz=c. Ln is the nth order Laguerre poly-
nomial. The tune shifts of l ¼ 0 and �1 modes are
expressed by

Δνy;0 ¼
ξ

2

�
0

2
Δνy;1 ¼

ξ

2

� θ2P=2þ1

1þθ2P

1
; ð13Þ

where upper/lower are values of σ=π mode, respectively. ξ
is so-called the beam-beam parameter (tune shift),

ξ ¼ β�y
2π

Nre
γ

1

σxσy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ2P

p : ð14Þ

Considering the wake force from the vacuum environ-
ment, the tune shift is the summation of this tune shift with
Wy;crs and the ordinary current dependent tune shift.

A. Beam-beam modes of colliding beams

Beam-beam modes of colliding beams are obtained by
solving the eigenvalue problem for the revolution matrix
constructed from Eq. (6) and the arc transfer matrix, which
is described by νβ and νs. The radial mode is expanded
using, for example, Laguerre polynomials in traditional
works [1]. It does not seem that the polynomials are
suitable in our case, thus the radial mode is directly
represented by discretized J. Here the integration with
respect to J is performed in the region of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jmax=εz

p ¼ffiffiffi
6

p ¼ 2.45 in nJ ¼ 40 or 80 steps.
Parameters used are based on those of SuperKEKB at

2022: ξ ¼ 0.07 at the bunch populations Nþ=− ¼
9.3=5.3 × 1010 for the positron/electron beam, where the
energies are Eþ=− ¼ 4=7 GeV. The vertical and synchro-
tron tunes are νy ¼ 0.592 and νs ¼ 0.023. The Piwinski
angle is θP ¼ 12, where the bunch length σz ¼ 6 mm. βy is

1 mm, so the ratio of βy and the overlap area during
collision is βyθ=σx ¼ βyθP=σz ¼ 2.3. Actually, the param-
eters used in the analysis are ξ, θP, and the tunes.
Figure 1 presents tune variation of beam-beam σ modes

as functions of bunch population, where ξ ¼ 0.07 for
N=N0 ¼ 1. Eigenvalues are calculated for five values of
θP. Plots (a)–(d) show tune, which is the real part of the
eigenvalues divided by 2π, for θP ¼ 12, 1.0, 0.5, 0.0,
respectively. The tune behavior for θP ¼ 3, which is not
presented here, is almost the same as that of θP ¼ 12. βy
and εy are chosen so that ξ and σz are kept while changing
θP. The imaginary part of the eigenvalues, which are the
growth rate of the eigenmodes, is zero: that is stable for the
cross wake. The imaginary part (growth) can appear as
mode coupling with wrapped modes at half or integer tune
[2] as is discussed in Sec. I. We here treat the azimuthal
modes lmax ¼ 4 to avoid the wrapped mode. The azimuthal
mode number is 5 or more for νy ¼ 0.592, νs ¼ 0.023,
which leads to the coupling of a mode with the wrapped
mode at the half-integer can cause the instability theoreti-
cally. Actually, instabilities have not been seen for beam-
beam simulations without vacuum environment wake in the
present parameter space. Perhaps the wrapped modes are
smeared because of the high azimuthal mode number.
Detailed discussions are seen in Ref. [7].
For zero crossing angle, the cross-wake force is con-

stant in z. All radial modes with the same azimuthal mode
number are degenerated as shown in plot (d). The tune
is constant for ξ in l ¼ 0 mode, while Δν ¼ ξ=2 in
l ≠ 0 modes.
There are nJ points for each azimuthal mode in each

N=N0. The eigenvectors showed that each point corre-
sponded to a certain J. Namely, the tunes continuously

FIG. 1. Tune variation of beam-beam σ modes for the beam-
beam cross wake as functions of bunch population. Plots (a)–
(d) show tune variation for θP ¼ 12, 1, 0.5, 0, respectively. The
blue dots are given for the flat mode in Eqs. (9) and (11). Lines for
ξ=2 (green) and ξ=4 (cyan) are drawn.
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distributed as a function of J. The tune of all azimuthal
modes spreads for increasing ξ as shown in plots (a)–(c).
The eigenvectors also showed that tune and/or tune shift is
larger for smaller J. The spread is narrower for decreasing
θP and disappear at θP ¼ 0 discussed above.
There is an isolated mode at νy independent of ξ in plots

(a)–(c). Another isolated mode with the tune νy − νs is seen
in plots (a) and (b). The mode tune increases proportionally
to ξ=4 at small bunch population N=N0 ≤ 0.2. The behav-
ior is consistent with Eq. (13). After that, the tune increases
slowly compared to ξ=4 and splits from other modes for
increasing N=N0.
The mode analysis is also performed using the flat radial

mode in Eq. (9). The matrix in Eq. (11) is used for solving
eigenmodes. The eigenvalues are plotted in Fig. 1 as blue
points. For l ¼ 0 and −1modes, the tunes completely agree
with those of the isolated modes. It is shown that the
isolated modes at l ¼ 0 and l ¼ −1 correspond to the flat
modes y00 and y−10 in Eq. (9). There are some discrepan-
cies in l ¼ −2 or lesser modes. It is likely that those modes
are deviated from a flat distribution in Eq. (9).
Figure 2 presents examples of eigenvectors of the modes

with l ¼ −1. The vertical amplitude yðz; δÞ in the longi-
tudinal phase space (�2.45σ) is reconstructed by the
eigenvector. Plot (a) was obtained from an eigenvector
in J around the middle of the distributed tune in Fig. 1(a).
The distribution contains a thin skin component along the
circumference in the corresponding J. The left and right
sides are deviated in negative and positive y. Plot (b) was
obtained from the eigenvector of the isolated mode. The
dipole amplitude distributes smoothly from negative to
positive from left to right. Such a smooth distribution can
be seen in the smallest tune of l ¼ −1 mode at θP ≥ 0.5.
Although not shown here, the isolated l ¼ 0 mode exhibits
a uniform dipole amplitude distribution.
Figure 3 presents the tune variation of beam-beam π

modes as functions of bunch population. nJ points corre-
sponding to J are seen for each azimuthal number in each
N=N0. The isolated mode seen in l ¼ 0 is the so-called π
mode with flat radial distribution. Several isolated modes
are seen in side bands. The isolated modes appear at the

upper side of the tune spread for θP ¼ 12. The tune
variation deviates from a straight line because it is obtained
by solving for eigenvalues of the matrix.

B. Combined effect of wake/impedance
from a vacuum environment

The wake force induced by a vacuum boundary is added
in the beam-beam cross-wake force. The magnitude of the
wake force is characterized by the tune shift as a function of
the bunch population. The tune shift is 0.015 at the positron
bunch population N0 ¼ 9.3 × 1010 which corresponds to
ξ ¼ 0.07 for the collision. The threshold of the transverse
mode coupling instability (TMCI) is N=N0 ¼ 1.4, where
νs ¼ 0.023. Mode analysis is performed for various θP with
keeping the tune shift Δν=ξ ¼ 0.015/0.07.
Figure 4 presents the tune variation of beam-beam σ

modes for the total wake force of beam-beam and vacuum
pipe environment. A similar tune variation as Fig. 1 is seen.
Important is the variation of an isolated mode. The isolated
mode at l ¼ 0 experiences a negative tune shift due to the
wake force from the vacuum environment. The other
isolated mode at l ¼ −1 does not change so much for
the additional wake force at low bunch population
N=N0 ≤ 0.5. This is a well-seen behavior in TMCI.
Mode coupling appears at N=N0 ¼ 0.8 for θP ¼ 12. For
other θP, mode coupling is seen, but modes separate at a
higher population.
The mode analysis is again performed using simple

radial mode in Eqs. (9) and (11). The eigenvalues are
plotted in Fig. 4 as blue points. For l ¼ 0 and −1 modes,
the tunes completely agree with those of the isolated
modes. There are some discrepancies in l ≤ −2 modes
for the same reason as Fig. 1.

FIG. 2. Dipole amplitude distributions in the longitudinal phase
space (�2.45σ) calculated by eigenvectors. Plots (a) and (b) are
drawn for an intermediate tune and for the isolated mode,
respectively.

FIG. 3. Tune variation of beam-beam π modes for the beam-
beam cross-wake force as functions of bunch population. Plots
(a)–(d) show tune variation for θP ¼ 12, 1.0, 0.5, 0.0, respec-
tively. Lines for ξ (green) and ξ=2 (cyan) are drawn.
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A similar analysis is performed for π modes as shown in
Fig. 5. The tune range plotted is narrowed to visualize
in more detail and the bunch population is increased to
N=N0 ¼ 1.5 to observe instability. A tune shift of the
isolated π mode with l ¼ 0 which is somewhat small due to
the impedance tune shift. No clear mode coupling is seen in
the isolated modes, though the tunes cross each other for
θP ¼ 12 and 1. For θP ≤ 0.5, mode coupling between l ¼ 0
mode and þ1 mode is seen.
Figure 6 presents the growth rate for θP ¼ 12, 3.0, 1.0,

0.5, 0.0. Plot (a) depicts growth for σ mode. For smaller θP,

mode coupling appears at lower population and stabilized
at higher population. It makes sense that the threshold
would be lower for smaller θP, considering the flat mode
tune shift varying from ξ=4 to ξ=2 in Eq. (13). The growth
is faster for larger θP under the condition of vacuum pipe
impedance Δν=ξ ¼ 0.015=0.07. The condition is not strict
and depends on the accelerator design, so the growth rate
should be seen as a reference. Unstable modes arise from
the coupling between smooth modes as seen in Fig. 2(b) but
not between continuous modes.
Plot (b) depicts growth for π mode. There are many cross

points between modes as shown in Fig. 5. For θP ≤ 1, a
clear growth, which corresponds to the mode coupling seen
in Figs. 5(c) and 5(d), appears. For θP ¼ 12, a growth with
a weak rate of ∼0.001 appears at N=N0 ¼ 0.55. This bunch
population corresponds to that at which the flat 0 mode
crosses the distributed þ1 mode (0.55, 0.63) in Fig. 5(a).
The growth depends on the integration step nJ. This
instability can be said to be an artifact of discretizing J,
but it can also be said to be a result in a model that assumes
coherence in the discretized region.
Figure 7 presents eigenvectors for the unstable π modes.

Plot (a) is drawn for the weak growth mode in the coupling
between the isolated 0 mode and continuously distributed
þ1 mode as seen in Fig. 5(a), where ν ¼ 0.643, N ¼ N0,
and θP ¼ 12. The dipole distribution contains smooth
dipole and thin skin components. Plot (b) is drawn for
the clear growth mode in the coupling between isolated
modes as seen in Fig. 5(c), where ν ¼ 0.646, N=N0 ¼ 1.2,

FIG. 4. Tune variation of beam-beam σ modes for the total
wake force of beam-beam and vacuum pipe environment as
functions of bunch population. Plots (a)–(d) show tune variation
for θP ¼ 12, 1.0, 0.5, 0.0, respectively. The blue dots are given for
the flat mode in Eqs. (9) and (11).

FIG. 5. Tune variation of beam-beam π modes for the total
wake force of beam-beam and vacuum pipe environment as
functions of bunch population. Plots (a)–(d) show tune variation
for θP ¼ 12, 1.0, 0.5, 0.0, respectively.

FIG. 6. Growth as functions of bunch population and β�y. Plots
(a) shows the evolution of the vertical beam size for various
bunch populations ξ and plot (b) shows the growth rate as a
function of the bunch population for βyθP=σz ¼ 1 and 2, where
ξ ¼ 0.07 for N=N0 ¼ 1.
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and θP ¼ 0.5. The dipole distribution contains both smooth
dipole and þ1 modes as seen in the offset of the scale.
By the way, this smooth mode at the lower side of the
tune spread does not exist only with the beam-beam
interaction. The mode is formed by the wake force for
only small θP < 1.
It seems that whether the instability becomes obvious

depends on whether the coupled modes are smooth or not.
Such smooth modes are isolated from the continuous
spectrum in this model. In order to form a smooth mode,
the dipole moment must be correlated throughout the
longitudinal phase space. On the other hand, the tune
spread will inhibit that correlation. This can be a visuali-
zation of Landau damping.

III. BEAM-BEAM SIMULATION CONSIDERING
VACUUM ENVIRONMENT IMPEDANCE

Strong-strong beam-beam simulations have been per-
formed to study the combined effects of beam-beam and
vacuum pipe impedance. Vertical beam size blowup has
been seen below the TMCI threshold [7]. The instability is
understood as mode coupling between 0 and −1 mode as
discussed in the previous section. We here present strong-
strong simulation results to sharpen the understanding of
the beam-beam mode coupling.
The parameters used in the simulations are the same as

those used in the analysis in Sec. II. The crossing angle θ is
41.5–13.8 mrad also with changing the horizontal size
(σx ¼ 18–69 μm). βx and εx are chosen so that the
horizontal beam-beam instability [2] does not occur. The
other parameters are chosen so that ξ and σz ¼ 6 mm are
kept while changing θP. The wake/impedance is added in
both (e�) rings with an equal tune shift for ξ. The IP vertical
beta function normalized by the overlap area is θβ ≡
β�yθP=σz ¼ 2.3 (β�y ¼ 1 mm) at the reference condition.
Figure 8 presents the oscillation of two beams, hyi=σy

and hyzi=σyσz, at the appearance of the instability. Both
beams oscillate at the same betatron phase in both f hyi and
hyzi with considerable amplitudes ∼0.1σy. This means that
σ mode of beam-beam instability occurs. The threshold of

the instability was N=N0 ¼ 0.7 for θP ¼ 12, which is in
close agreement with the mode analysis. The growth rate
was 0.007 forN ¼ N0, which was 1=3 of the mode analysis
result 0.02. The nonlinear beam-beam force probably slows
down the growth.
The instability should be independent of the vertical tune

under the condition that the tunes of the two beams are
equal. Figure 9(a) shows the growth rate of dipole ampli-
tude scanning νy ¼ 0.555–0.595 and does not change for
νy > 0.56 as expected. The growth is lower at νy ¼ 0.555
and 0.56. There may be some reason to suppress the
instability at the low tune. Figure 9(b) shows the growth
rate of dipole amplitude as a function of the normalized
beta for the overlap area, βyθP=σz, where θP ¼ 12. The
normalized beta characterizes the hourglass effect in
collision with θP ≥ 1. For βyθP=σz ¼ 0.77, the growth
rate decreases 10%. The hourglass effect on this instability
is weak for βyθP=σz ≥ 1.
We next discuss the growth as a function of the

bunch population for θP ¼ 1 seen in Fig. 6(a). Figure 10
presents the growth of the instability for βyθP=σz ¼ 2

and 1. Plot (a) shows the evolution of σy for various
N=N0. The instability is seen at a range ofN=N0 ¼ 0.5–0.7
for βyθP=σz ¼ 2, while is seen at N=N0 ¼ 1 for
βyθP=σz ¼ 1. An incoherent emittance growth is also seen
for βyθP=σz ¼ 1. Plot (b) shows the growth rate as a
function of N=N0, where ξ ¼ 0.07 at N=N0 ¼ 1. For
βyθP=σz ¼ 1, the growth of the instability increases mono-
tonically. The incoherent emittance growth occurs due to
the hourglass effect. It seems that the instability appears at
N=N0 ¼ 1 since the emittance growth reduces the beam-
beam parameter effectively.

FIG. 7. Dipole amplitude distributions in the longitudinal phase
space (�2.45σ) calculated by eigenvectors of unstable π modes.
Plot (a) is drawn for the mode coupling at ν ¼ 0.643, N ¼ N0,
and θP ¼ 12. Plot (b) is drawn for the mode coupling at
ν ¼ 0.646, N=N0 ¼ 1.2, and θP ¼ 0.5.

FIG. 8. Vertical oscillation amplitude of both beams, hyi=σy
and hyzi=σyσz in the instability occurence.

FIG. 9. Growth rate as functions of (a) vertical tune and (b) βy
for θP ¼ 12.
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IV. CONCLUSIONS

We have discussed the beam-beam mode and instability
for collision with a crossing angle in the presence of
vacuum environment wake/impedance. The beam-beam
mode is defined by expanding the dipole amplitudes
in the longitudinal phase space to azimuthal and radial
directions. The modes of colliding beams were first
obtained by considering only the beam-beam interaction.
Applying the transparency condition, σ and π modes can
be treated with independent equations. The tune of each
mode was calculated as eigenvalues for the dipole ampli-
tude of two beams correlated by the cross-wake force.
There were continuously distributed radial modes with tune
νlðJÞ for the longitudinal amplitude J in each azimuthal
mode l. The tune spread for J is wider for larger θP. All
radial modes are degenerated at θP ¼ 0. Clear isolated σ
modes for l ¼ 0 and −1 are seen at θP > 1. Isolated modes
are also found in π mode. In such isolated modes, the dipole
amplitude is smoothly distributed in the longitudinal
phase space.
The beam-beam interaction does not cause instability in

low azimuthal (synchrotron side band) modes, though
tunes of the modes cross each other with increasing bunch
population. This is due to the cross-wake force is sym-
metric for z and the impedance is pure imaginary.
The wake/impedance from the vacuum environment

deforms the mode. The total wake is not now symmetric
for z which means the impedance contains real part. The
isolated dipole mode l ¼ 0 also experiences a negative tune
shift due to the wake/impedance.
The breaking of the symmetry and the negative tune shift

have a strong impact on TMCI in σ mode. The isolated
modes l ¼ 0 and l ¼ −1merge at a lower bunch population
then mode coupling instability occurs. We conclude that the
beam-beam interactions lower the threshold of TMCI.
The threshold of the mode coupling between the isolated

modes (0 and −1) is lower when θP is smaller. This is
because the tune shift of the isolated l ¼ −1 mode is ξ=2
when θP is small, and ξ=4when θP is large. The growth rate
depends on the accelerator design.
For π mode, mode coupling between isolated modes

occurs at a higher bunch population than in σ mode. A
isolated 0 mode couples to an isolated þ1 mode which is
induced by the vacuum environment wake force.

There are continuously distributed modes νðJÞ as func-
tion of J. Mode coupling between distributed modes is
weak or nonexistent.
Strong-strong simulations including vacuum environ-

ment impedance showed some results validating the mode
analysis: (i) σ mode was seen in hyi and hyzi, when the
instability occurred; (ii) the instability threshold was
N=N0 ¼ 0.7 for θP ¼ 12, which is in close agreement
with the mode analysis (N=N0 ¼ 0.8); (iii) the growth rate
of 0.007 was 1=3 of the mode analysis 0.02, but consid-
ering the nonlinearity of the beam-beam force, it was
reasonable; (iv) the growth of the instability was indepen-
dent of νy, except for lower tune νy ∼ 0.55; (v) hourglass
effect, which was not considered in the mode analysis,
basically had little effect on the instability for βyθP=σz ≥ 1;
and (vi) emittance growth caused by the hourglass effect
could result in the instability due to the corresponding
reduction of ξ only for small θP ≤ 1.
Considering high azimuthal modes, tunes are wrapped at

the half-integer and coupled to nonwrapped modes.
Instability can occurs even only beam-beam interaction as
shown in the horizontal [7]. Strong-strong simulations do not
show the instability. Perhaps the instability is smeared by the
strong nonlinear force of the beam-beam interaction.
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