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Steady-state microbunching (SSMB) storage rings are an appealing option for high-power extreme
ultraviolet (EUV) light sources. In this paper, we propose a generalized longitudinal strong focusing (GLSF)
scheme to boost the average power of short-wavelength radiation from an SSMB source with a technical
demand within the present reach. This scheme employs transverse-longitudinal coupling dynamics to
produce steady-state ultrashort bunches and reduces the required modulation laser power significantly by
exploiting the low vertical beam emittance in a planar ring. Linear beam dynamics are studied in detail,
including bunch compression, modulation cancellation, and vertical-longitudinal decoupling. An instance of
a linear lattice layout is given, and kW-level quasicontinuous-wave 13.5-nm EUV radiation can be achieved
in a GLSF SSMB storage ring with 1-MW modulation laser power. We believe that the GLSF scheme can
also be used in conventional storage rings for various purposes concerning beam manipulation.
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I. INTRODUCTION

The reduction of light wavelength in lithography plays
a crucial role in minimizing the feature size of integrated
circuit designs, bringing about significant breakthroughs
in computer chip fabrication [1]. Throughout its evolution
from 436, 365, 248, and 193 nm, the cutting-edge wave-
length resides at 13.5 nm within the extreme ultraviolet
(EUV) range. The industry is eagerly seeking light
sources capable of delivering EUV radiation of over 1 kW
to enable high-volume microchip manufacturing. While
ASML-delivered systems have achieved a power of
330 W [2], exploring the potential of accelerator-based
light sources still holds great promise for producing high-
power EUV radiation.
The power of radiation from an accelerator source relies

on the coherence and repetition rate of the radiation. These
factors can be effectively enhanced through a cost-effective
method called steady-state microbunching (SSMB) [3],
which allows for the emergence and stable maintenance of
microbunching in a storage ring. Laser modulators con-
sisting of lasers and undulators are employed to achieve

bunching, instead of radio-frequency (rf) cavities typically
utilized in conventional rings. By reducing the modulation
wavelength by 6 orders of magnitude, the equilibrium bunch
length is decreased substantially, enabling the generation of
coherent short-wavelength radiation. It should be noted that
the undulator used in SSMB is relatively short and does not
involve a free-electron-laser (FEL) mechanism. As a result,
the beam remains almost intact and can radiate at high
repetition rates on a turn-by-turn basis.
As an appealing option for high-power EUV sources,

SSMBhasmade notable progress in recent years [4–11]. One
of the key areas of research focuses on addressing the gap
between the bunch length attainable (a few tens of nano-
meters, as illustrated in the next section) in the SSMB storage
ring and that required (a few nanometers) for generating
coherent 13.5-nm EUV radiation, as shown in Fig. 1.
Scenarios have been proposed to achieve further com-

pression of bunches to nanometer scale within the radi-
ation section, including longitudinal weak focusing
(LWF) and longitudinal strong focusing (LSF) [4]. It
should be noted that the ultrashort bunch length at the
radiator should be an eigenstate and can be achieved
repeatedly, distinguishing it from bunch compression
schemes used in single-pass devices.
This paper proposes a generalized longitudinal strong

focusing (GLSF) scheme. GLSF incorporates transverse-
longitudinal coupling, inspired by previous works [12–14],
and exploits the intrinsic low vertical emittance in a planar
horizontal-vertical-uncoupled storage ring. By implement-
ing the GLSF scheme in an SSMB storage ring, it is
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expected that a steady-state bunch length of 3 nm can
be achieved at the radiator, enabling the generation of
kW-level quasi-continuous-wave 13.5-nm EUV radiation.
The required modulation laser power is estimated to be
1 MW, which is a challenging but realizable value using
optical cavities operating in continuous-wave mode.
The paper is structured as follows: First, we introduce

the generalized longitudinal strong focusing scheme and
highlight its distinctions from the existing longitudinal
weak focusing and longitudinal strong focusing schemes.
Then, we delve into bunch compression schemes tailored
for storage rings based on transverse-longitudinal cou-
pling. We propose a general lattice layout and two specific
types: symmetric and reversible. Moving forward, we
investigate the linear beam dynamics involved in the
GLSF scheme, including bunch compression, modulation
cancellation, and transverse-longitudinal decoupling. In
addition, we provide an exploration of the strategies
employed to realize a practical linear lattice for GLSF,
presenting the parameters and performance of one exam-
ple linear lattice. Finally, we briefly discuss relevant topics
such as the nonlinear dynamics.

II. GENERALIZED LONGITUDINAL
STRONG FOCUSING

In this section, schemes to achieve a steady-state bunch
length of 3-nm level in storage rings are inspected. Before
diving into generalized longitudinal strong focusing, two
existing schemes (longitudinal weak focusing and longi-
tudinal strong focusing) are reviewed first.

A. Longitudinal weak focusing (LWF)

In conventional storage rings equipped with an rf cavity,
the equilibrium bunch length given by Sands [15] is
as follows:

σs ¼ σδβsC0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

Es

2πeV0 cosðϕsÞ
η

hr

s
; ð1Þ

where σδ represents the natural energy spread, βs is the
ratio of the speed of the synchronous particle to the speed
of light, C0 denotes the ring circumference, Es stands
for the energy of the synchronous particle, e represents
the elementary charge, V0 represents the rf voltage, ϕs
represents the synchronous phase, η represents the ring
phase slippage factor, and hr represents the rf harmonic
number. The rf harmonic number is defined as the ratio of
the rf (modulation) frequency ωrf to the revolution
frequency ω0 at which a synchronous particle revolves.
In other words, hr ¼ ωrf

ω0
.

Please note that the diffusion of particle longitudinal
position can also arise from the stochastic nature of the
location where photon emission occurs. It can be quantified
by a parameter called local phase slippage [16–18].
Although this effect is typically not dominant in conven-
tional rings, it should be treated with caution when
attempting to further reduce the bunch length.
The equilibrium bunch length in conventional rings is

approximately 6 orders of magnitude larger than the desired
value for coherent EUV radiation. Although certain param-
eters such as Es, σδ, C0, and V0 are relatively constrained,
reducing the value of η=hr can be an effective approach to
decrease the bunch length.
In an SSMB ring, a typical choice of phase slippage

factor is η ¼ 5 × 10−7, which is relatively small but still
feasible. The rf cavity is replaced by a laser modulator with
a wavelength of λm ¼ 1 μm. Other parameters are set as
follows: Es ¼ 400 MeV, σδ ¼ 2.5 × 10−4, C0 ¼ 150 m,
and V0 ¼ 250 kV (corresponding to 1-MW laser power).
It is worth noting that efforts are made to control and
minimize bunch lengthening resulting from local phase
slippage, ensuring that it remains nondominant [19].
Consequently, the equilibrium bunch length along the ring
is approximately 40 nm.
Achieving a bunch as short as 3 nm would require further

reducing η=hr by 2 orders of magnitude, which is beyond
the current state-of-the-art feasibility.
The cases discussed above can be categorized into

longitudinal weak focusing rings as shown in Fig. 2.
In contrast to the longitudinal strong focusing cases

discussed later, the longitudinal weak focusing cases
exhibit a synchrotron tune (νs) that is significantly smaller
than 1 (νs ≪ 1). The longitudinal focusing in these cases is
considered “weak” due to the moderate modulation and the
absence of strong variations in the bunch length along the
ring. The evolution of the position-dependent longitudinal
beta function [20] (βz), which is an indicator of the bunch
length (σzðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵzβzðsÞ

p
where ϵz is the longitudinal

emittance), is relatively insignificant. In other words, the
longitudinal alpha function αz along the ring is close to 0.
In an LWF ring, the laser modulator, labeled as Mod0

in Fig. 2, fulfills a function comparable to that of an rf
cavity in a conventional ring. It establishes for electrons
a stable region within the longitudinal dimensions.

FIG. 1. Diagram showing the gap between the bunch length
attainable (tens of nanometers) in the SSMB ring and that
required (nanometers) for coherent 13.5-nm EUV radiation.
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This region, similar to the concept of an “rf bucket,” could
be referred to as the “laser-bucket’ in the context of
SSMB beam dynamics.

B. Longitudinal strong focusing (LSF)

The concept of longitudinal strong focusing has then
been introduced [4,21]. In this approach, instead of using
one single component with moderate strength, multiple
intensified laser modulators are incorporated into the ring
to serve as the longitudinal focusing and defocusing
elements, analogous to the role of quadrupoles in transverse
focusing. The momentum compaction factor, denoted
as r56, is considered as the longitudinal equivalent of a
drift space. It should be noted that r56 can have either a
positive or negative value. Due to the significantly stronger
modulation strength, the synchrotron tune can now be
comparable to or even greater than 1.
An example showing an LSF ring with two modulation

modules in the radiation section is sketched in Fig. 3.
It is possible to generate the desired short bunches

for radiation [σzðRadÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵzβzðRadÞ

p
] by reducing the

longitudinal emittance ϵz and the beta function at the
radiator βzðRadÞ. Unlike in LWF rings, the beta function

βz and equilibrium bunch length σz undergo significant
changes throughout the ring. This means that the bunch
length at other locations in the ring may not be as short
as that at the radiator.
An example of an LSF ring is illustrated [21]. In this

particular case, two laser modulators are used to suppress
the beta function in the radiator. The bunch length at
the radiator is σzðRadÞ ¼ 2 nm, while at the opposite
location to the radiator around the storage ring, it is
σzðR0Þ ¼ 28 nm. The bunch length compaction factor,

defined as Rc ¼ σzðR0Þ
σzðRadÞ, is 14. Notably, the bunch length

experiences significant variation when passing through the
radiation section.
Achieving a short bunch using the LSF approach comes

with, unfortunately, the tradeoff of increased modulation
strengths, which leads to higher laser power requirements.
In this specific case [21], a power of 300 MW is demanded
for a 1-μm laser. However, the power of modulation lasers
in continuous-wave mode is limited to the MW level by
state-of-the-art technology. This limitation poses a chal-
lenge for the LSF scheme to generate kW-level average
power of EUV radiation in storage rings, as the optical
cavity can only operate in pulsed mode.

C. Generalized longitudinal strong focusing (GLSF)

A generalized longitudinal strong focusing (GLSF)
approach is proposed to relieve the demand for modulation
laser power by involving transverse-longitudinal coupling
dynamics and exploiting the low vertical emittance in a
planar horizontal-vertical-uncoupled ring.
A vital distinction between the LWF and LSF schemes

lies in the nature of the manipulation in the longitudinal
phase space. The manipulation is mild in weak focusing
cases and becomes more intense in strong focusing cases,
as illustrated in Figs. 2 and 3. The strong manipulation
in the longitudinal phase space often leads to significant
variations in the bunch length, thereby enabling the gen-
eration of ultrashort bunches.
The GLSF scheme builds upon the spirit of the LSF

approach, which involves bunch compression through
phase space manipulation. The number of dimensions
included in GLSF manipulation, however, has been
expanded from two (longitudinal alone) to four (transverse-
longitudinal coupled) or even six.
The reason for considering transverse-longitudinal cou-

pling dynamics can be clarified as follows: Bunch length
can be seen as the projection of eigenemittances onto the
coordinate z in phase space. Therefore, it is preferable to
project the eigenemittance with the smallest value in order
to reduce the bunch length. In a planar ring, for instance,
among the three eigenemittances of the uncoupled beam
(ϵx, ϵy, ϵz), ϵy is relatively small compared to ϵz and ϵx. By
introducing vertical-longitudinal coupling and carefully
manipulating the beam, the bunch length at the radiator

FIG. 3. Diagram showing the components of a longitudinal
strong focusing (LSF) ring with two laser modulators (Mod1,
Mod2). Ovals in orange show the beam distribution evolution in
the longitudinal phase space.

FIG. 2. Diagram showing the components of a longitudinal
weak focusing (LWF) ring with one laser modulator (Mod0).
Ovals in orange show the beam distribution evolution in the
longitudinal phase space.
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can be expressed as σzðRadÞ ∝ ffiffiffiffi
ϵy

p instead of σzðRadÞ ∝ffiffiffiffi
ϵz

p
. As a result, the required modulation strength in the

GLSF approach can be significantly reduced compared to
the LSF scheme. Additionally, this reduction in modulation
strength leads to a decrease in the laser power requirement,
as the power of the modulation laser, denoted as Plaser, is
proportional to the square of the modulation strength,
represented by h, i.e., Plaser∝h2. Assuming ϵy¼1 pmrad,
the GLSF scheme only requires a modulation laser power
of 1 MW or lower to generate a 3-nm bunch. By operating
at such a low power level in comparison to the LSF scheme,
it becomes feasible to achieve quasicontinuous generation
of EUV radiation, which in turn allows for an increase in
the average radiation power. Hence, this is the motive we
explore the application of the GLSF approach in SSMB
storage rings in this paper.
It is worth noting that in general both ϵz and ϵy contribute

to bunch length σz in most regions where vertical-
longitudinal coupling is present. The exclusive reliance
of σz on ϵy at the radiator, however, is a unique case
resulting from deliberate lattice design. On the other hand,
the GLSF approach is not subject to the concept of double
emittance exchange. At the center of the radiator, while
the vertical emittance ϵy alone shapes the bunch length,
coupling effects can still affect other beam parameters,
including bunch size, divergence, and energy spread, as
illustrated in the subsequent sections.
In practice, the laser modulator is typically positioned

at a dispersive location to intentionally introduce the
desired transverse-longitudinal coupling. However, in order
to preserve a small transverse eigenemittance, which is
essential for the success of the GLSF approach, it is
necessary to eliminate the coupling between the transverse
and longitudinal dimensions once the coherent radiation
has been produced.
GLSF can be realized through various approaches. An

example showing a GLSF ring with two laser modulators in
the radiation section is sketched in Fig. 4.
The storage ring depicted in Fig. 4 has been designed for

operation under LWF conditions, where the beam distri-
bution in the longitudinal phase space does not vary much
throughout the ring (except in the radiation section). In this
setup, a laser modulator (Mod0) is employed to create
stable regions for electrons and prebunch the beam, as
explained in Sec. II A. Since Mod0 has a weak modulation
strength and the longitudinal alpha function (αz) is negli-
gible, the energy chirps at the entrance and exit of the
radiation section are disregarded. While the laser-
prebunched beams have the potential to enhance the output
radiation power, it is important to emphasize that the GLSF
approach is also capable of accommodating rf-prebunched
or coasting beams.
In the radiation section, the bunch length exhibits

noticeable variations. Neglecting the influences of radiation
damping and quantum diffusion, it is important to note that

the overall 6D phase space volume of the beam remains
conserved according to Liouville’s theorem [20]. However,
the projected phase space area in the longitudinal plane can
vary and is not necessarily constant along the trajectories. It
is possible to achieve a short bunch length at the radiator
without a significant increase in energy spread. This
characteristic distinguishes the GLSF approach and high-
lights one of its differences from LSF rings.
Now a brief comparison can be made among the three

schemes discussed above.
(i) LWF: minor variation in the bunch length within the

storage ring; manipulation in the longitudinal phase
space. (ii) LSF: notable variation in the bunch length
within the storage ring; manipulation in the longitudinal
phase space. (iii) GLSF: notable variation in the bunch
length within the radiation section, while minor variation
in the ring; manipulation in the transverse-longitudinal-
coupled phase space.
Several transverse-longitudinal coupling schemes have

been proposed for high harmonic generation in FELs.
Some of these schemes involve the use of deflecting
rf cavities or TEM01 mode lasers [12,22–24], as well as
wave-front tilted seed lasers or dual-tilted-laser modula-
tion [25–28]. However, these approaches may not be the
most suitable choices for an SSMB storage ring due to
their high requirements, especially when aiming for a low
modulation laser power of 1 MW [29]. On the other hand,
schemes based on normal rfs or TEM00 mode lasers are
still feasible even with 1-MW modulation lasers [30].
These include phase-merging enhanced harmonic gen-
eration (PEHG) [13,31–33] and angular dispersion-
induced microbunching (ADM) [14,34–36]. They have
provided inspiration for achieving the desired transverse-
longitudinal coupling in an SSMB storage ring.

FIG. 4. Diagram showing the components of a generalized
longitudinal strong focusing (GLSF) ring with two laser
modulators (Mod1, Mod2) in the radiation section and one
in the ring (Mod0). Transverse-longitudinal coupling is inten-
tionally introduced at the entrance of the radiation section and
subsequently eliminated at the exit of the radiation section.
Beam distribution evolution in the longitudinal phase space is
sketched in orange ovals.
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In the PEHG and ADM schemes, the relationship
between the final bunch length (σzf ) and the initial vertical
beam parameters can be expressed as σPEHGzf ∝ σyi and
σADMzf ∝ σy0i, where σyi and σy0i represent the initial vertical
beam size and divergence, respectively. Meanwhile, the
compressed bunch length in the GLSF scheme is derived
from the projection of the vertical eigenemittance ϵy of the
beam and is therefore proportional to ffiffiffiffi

ϵy
p . Thus, PEHG

and ADM can be seen as specific scenarios that fit within
the overarching category of the GLSF scheme. It is
important to note that, unlike PEHG and ADM, the
GLSF approach goes beyond single-pass bunch compres-
sion. Instead, it aims to provide a steady-state eigensolution
applicable to storage rings. The intricate beam dynamics
involved, including the mechanisms for debunching,
decoupling, and returning of the beam into the storage
ring to achieve steady-state microbunching, will be
explored in the subsequent sections.

III. VERTICAL-LONGITUDINAL COUPLING
SCHEMES FOR GLSF

The vertical-longitudinal coupling case is analyzed as an
example, considering the typically low vertical emittance.
In this section, two categories of lattice layouts are
proposed, specifically designed as insertion units within
storage rings. These layouts aim to facilitate the bunching
and debunching process on a turn-by-turn basis.

A. Vertical-longitudinal coupling schemes

To start with, a bunch compression unit manipulating the
longitudinal dimensions alone is presented. This unit can be
broken down into two functional features: (i) an energy
chirp (h) to correlate δ with z, and (ii) momentum com-
paction (ξ) to correlate z with δ.
Here δ and z are the energy deviation and longitudinal

displacement relative to the synchronous particle. A matrix
analysis may help to explain:

Mi ¼
�
1 0

h 1

�
; Mii ¼

�
1 ξ

0 1

�
: ð2Þ

Here the phase space coordinates are ðz; δÞ. Mi and Mii
represent the transfer matrix of the two features defined
above. In Mi, the sinusoidal modulation has been linear-
ized around the zero-crossing phase. The transfer matrix of
the bunch compression unit is then:

Mbc ¼ MiiMi ¼
�
1þ hξ ξ

h 1

�
: ð3Þ

By adjusting the values of h and ξ, it is possible to make
the particle position at the end of the unit, denoted as zf ,

independent of its position at the entrance, represented
as zi. And when the condition 1þ hξ ¼ 0 is satisfied, it
follows that σzf ¼ jξjσδi ¼ σδi=jhj. However, a significant
modulation strength jhj is still needed to mitigate the
bunch length contribution stemming from the initial energy
spread σδi. As a result, generating 3-nm bunches with
SSMB parameter sets would require a modulation laser
power of approximately 300 MW.
It is possible to remove the impact of δi on zf . A bunch

compression scheme employing vertical-longitudinal cou-
pling is depicted in Fig. 5.
In this scheme, two dispersive components are incorpo-

rated. This layout can be broken down into four functional
features: (i) dispersion (r36 ¼ D1 and r46 ¼ D0

1) to corre-
late y and y0 with δ, (ii) an energy chirp (r65 ¼ h),
(iii) momentum compaction (r56 ¼ ξ), and (iv) dispersion
(r53 ¼ −D0

2 and r54 ¼ D2) to correlate z with y and y0.
In this setup, the initial energy spread δi is converted into

y and y0 as the beam passes through component (i).
Subsequently, through the coupling provided by compo-
nent (iv), it is converted back to z. This additional
contribution to zf arising from δi can be adjusted to
effectively cancel out the term zf ¼ ξδi. A matrix analysis
may help to explain:

M1¼

0
BBB@

1 0 0 D1

0 1 0 D0
1

−D0
1 D1 1 0

0 0 0 1

1
CCCA; M2¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 h 1

1
CCCA;

M3¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 ξ

0 0 0 1

1
CCCA; M4¼

0
BBB@

1 0 0 D2

0 1 0 D0
2

−D0
2 D2 1 0

0 0 0 1

1
CCCA: ð4Þ

In this context, the phase space coordinates are denoted
as ðy; y0; z; δÞ. The transfer matrices for the four features
defined above are represented asM1,M2,M3, andM4. It is
important to note that the matrices are presented in their
simplest form, including only relevant elements and fun-
damental relations like the symplectic conditions [20]. The
transfer matrix for a vertical-longitudinal coupling bunch
compression unit can be expressed as follows:

FIG. 5. Schematic layout of a bunch compression scheme based
on vertical-longitudinal coupling.
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Mbc0 ¼ M4M3M2M1 ¼

0
BBB@

1 − hD0
1D2 hD1D2 hD2 D1 þD2;

−hD0
1D

0
2 1þ hD1D0

2 hD0
2 D0

1 þD0
2:

−D0
2 −D0

1ð1þ hξÞ D2 þD1ð1þ hξÞ 1þ hξ D0
1D2 −D1D0

2 þ ξ

−hD0
1 hD1 h 1

1
CCCA: ð5Þ

The bunch compression conditions are then:

1þ hξ ¼ 0

D0
1D2 −D1D0

2 þ ξ ¼ 0: ð6Þ

As discussed above, the contributions to zf from vertical-
longitudinal coupling, ðD0

1D2 −D1D0
2Þδi, and from

momentum compaction, ξδi, can now cancel each other.
Applying Eq. (6), there is:

zf ¼ −D0
2yi þD2y0i: ð7Þ

Here ðyi; y0iÞ represents the initial vertical position and
slope. In the scenario where the beam at the entrance of
the unit is assumed to be decoupled in the vertical and
longitudinal dimensions and follows a Gaussian distribu-
tion, the matrix representing the second-order moments of
the beam takes the form:

Σi ¼

0
BBB@

ϵyβyi −ϵyαyi 0 0

−ϵyαyi ϵyγyi 0 0

0 0 ϵzβzi −ϵzαzi
0 0 −ϵzαzi ϵzγzi

1
CCCA: ð8Þ

In this context, ϵy and ϵz represent the eigenemittances
of the beam, which are invariant quantities in a linear
symplectic lattice. ðα; β; γÞ correspond to the Courant-
Snyder functions. Then the bunch length at the exit of
the bunch compression unit is expressed as follows:

σzf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵyðD02

2 βyi þ 2D2D0
2αyi þD2

2γyiÞ
q

¼
ffiffiffiffiffiffiffiffiffiffi
ϵyHy

q
: ð9Þ

In this vertical-longitudinal coupling scheme, the gen-
erated bunch length at the exit is determined solely by the
vertical emittance, as opposed to the longitudinal emit-
tance. The contribution from the vertical emittance to the
bunch lengthening is quantified by the Hy function, which
will be explained in the subsequent section.
As clarified in Sec. II C, the PEHG and ADM schemes

can be regarded as specific instances of the above general
relations. In the case of PEHG, in addition to Eq. (6), the
conditions D0

1 ¼ 0 and D2 ¼ 0 need to be satisfied. This

leads to the expression σPEHGzf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵyD02

2 βyi

q
¼ jD0

2jσyi.

Meanwhile, in the ADM scheme, the extra requirements
are D1 ¼ 0 and D0

2 ¼ 0. Consequently, the bunch length at

the exit is given by σADMzf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵyD2

2γyi

q
¼ jD2jσy0i.

In a planar horizontal-vertical-uncoupled storage ring,
it is possible to achieve a vertical emittance ϵy as low as
1 pm rad. To generate a bunch with a length of 3 nm, a
value of Hy of 9 μm is required. This level of Hy can be
attained through careful lattice design and optimization.
It is important to note that at this stage, there is no

explicit relationship between the bunch length and the
modulation strength h. However, the constraint on h will
soon become evident when considering the degradation of
the bunching factor due to the sinusoidal nonlinearity of
the modulation waveform, as explained in the upcoming
section. This indicates that the choice of h, and therefore
the power of the modulation lasers, will be influenced by
the desired level of bunching factor or the power of the
coherent radiation to be achieved.
Up to this point, the above vertical-longitudinal coupling

scheme is ready for single-pass bunch compression.
However, when considering its implementation in a storage
ring as an insertion unit, an important aspect to address is
how to prepare the beam state as it exits the radiator to
reenter the ring while maintaining a small vertical emit-
tance. To achieve a steady-state microbunched beam at the
radiator, which behaves as an eigenstate of the ring, two
categories of lattice layouts are proposed as solutions in
the following.

B. Symmetric lattice layout

To debunch and decouple the beam, one strategy is to
complete the beamline with a symmetric layout. The idea is
that symmetry may assist the beam in reproducing its initial
state at the exit. A schematic representation of a symmetric
lattice layout is depicted in Fig. 6.

FIG. 6. Schematic layout of a symmetric lattice approach. Blue
blocks are dispersive lattices. Components following the radiator
are the mirror of their counterparts ahead.
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Components are added as the mirror of their counter-
parts. The corresponding transfer matrices are as follows:

M4s ¼

0
BBB@

1 0 0 −D2

0 1 0 D0
2

−D0
2 −D2 1 0

0 0 0 1

1
CCCA M3s ¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 ξ

0 0 0 1

1
CCCA

M2s ¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 h 1

1
CCCA M1s ¼

0
BBB@

1 0 0 −D1

0 1 0 D0
1

−D0
1 −D1 1 0

0 0 0 1

1
CCCA:

ð10Þ

HereMis is the mirror ofMi (i ¼ 1, 2, 3, 4). The mirror of
an energy chirp (h) or momentum compaction (ξ) remains
the same. The transfer matrix of the symmetric lattice unit
is Msym ¼ M1sM2sM3sM4sM4M3M2M1:

Msym ¼
�
A B

C E

�
: ð11Þ

Here A, B, C and E are 2 × 2 submatrices of Msym.
Applying 1þ hξ ¼ 0, there is:

B¼
�

2D1D2D0
2h

2 2D1½1þD0
2hðD1þD2Þ�

−2D0
2hð−1þD2D0

1hÞ −2D0
2½−1þD0

1hðD1þD2Þ�

�
:

In order to maintain a small vertical emittance, it is
necessary for the beam to be initially uncoupled at the
entrance of the unit and remain uncoupled at the exit.
To achieve this, the submatrix B needs to be set to 0.
This requirement implies that the following conditions
should be satisfied:

D1 ¼ 0;

D0
2 ¼ 0: ð12Þ

The introduction of symmetry in the lattice layout cancels
out certain coupling terms but also doubles the remaining
terms, requiring additional constraints to be applied. By
applying Eqs. (6) and (12), the total transfer matrix can be
derived as follows:

Msym ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 −1 2ξ

0 0 0 −1

1
CCCA: ð13Þ

Once the coupling terms have been canceled out, the
beam is prepared to be reintroduced into the ring to
continue its circular trajectory.

This symmetric approach is effective for a linear modu-
lation given by Δδ ¼ hz. However, when a sinusoidal
modulation is used, represented by Δδ ¼ h

k sinðkzÞ (k is
the wave number), the performance is compromised. The
nonlinear terms in zf and δf at the exit of the unit can be
derived:

znonf ¼1

3
k2z3i þoðz3i Þ;

δnonf ¼1

3
k2ðhz3i þz2i δi−2ξziδ2i þ4ξ2δ3i Þþoðzji δ3−ji Þ: ð14Þ

The clean form of Eq. (13) holds only when the
modulation is perfectly linear. In cases where the modu-
lation deviates from perfect linearity, the nonlinearities of
the two modulators fail to cancel each other completely, as
shown in Eq. (14). As a result, there remains a residual term
that can introduce distortions in the dynamic stable region
and even lead to the destruction of the steady state. This
inherent nature of the symmetric lattice layout approach
highlights its limitations and challenges.

C. Reversible lattice layout

An alternative way to debunch and decouple the beam
involves incorporating “reverses” after the radiator. The
idea is to reverse the effects imposed on the beam so that it
can restore its initial state. A schematic representation of
the reversible lattice layout is depicted in Fig. 7.
Components are added as the reverse of their counter-

parts. The corresponding transfer matrices are as follows:

M4r ¼

0
BBB@

1 0 0 −D2

0 1 0 −D0
2

D0
2 −D2 1 0

0 0 0 1

1
CCCA M3r ¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 −ξ
0 0 0 1

1
CCCA

M2r ¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 −h 1

1
CCCA M1r ¼

0
BBB@

1 0 0 −D1

0 1 0 −D0
1

D0
1 −D1 1 0

0 0 0 1

1
CCCA:

ð15Þ

HereMir is the reverse ofMi (i ¼ 1, 2, 3, 4). The reverse
of an energy chirp (h) or momentum compaction (ξ) flips

FIG. 7. Schematic layout of a reversible lattice approach. Blue
blocks are dispersive lattices. Components following the radiator
are the reverse of their counterparts ahead.
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the sign. The transfer matrix of the reversible lattice unit is
Mrev ¼ M1rM2rM3rM4rM4M3M2M1:

Mrev ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð16Þ

It is an I-map, allowing the beam to recover its initial
status. In addition to debunching and decoupling, this
approach achieves perfect cancellation of the two modu-
lations, not just for linear energy chirp but for modulations
of any waveform. The modulations directly add up and
cancel each other, as the lattice in between is transparent.
This inherent nature of the reversible lattice layout
approach could assist with addressing nonlinear issues.

D. General case

Both the symmetric and reversible lattice layouts have
effectively eliminated the influence imposed on the beam
in linear beam dynamics, as demonstrated by the map of
the unit in Eqs. (13) and (16). It is important to note that
modulation cancellation is not always required or essential.
A matrix analysis may help to explain:

Mtot ¼
�
A B

C E

�
: ð17Þ

Here A, B, C, and E are 2 × 2 submatrices of the transfer
map of the whole unit Mtot. The decoupling requirement
states that B ¼ 0 and C ¼ 0. Regarding A and E, they are
allowed to be functions of the modulation strength h. In this
case, a more general layout of the lattice can be designed, as
depicted in Fig. 8.
Here, the lattice between the modulators is treated as a

single entity and its transfer matrix is represented by:

Mmid ¼

0
BBB@

1 0 0 a

0 1 0 b

−b a 1 c

0 0 0 1

1
CCCA: ð18Þ

Here ða; bÞ and c represent the dispersive terms and
momentum compaction, respectively. For the lattices at the
entrance and exit of the unit, the corresponding transfer
matrices are given by:

Ment¼

0
BBB@

1 0 0 f

0 1 0 g

−g f 1 0

0 0 0 1

1
CCCA; Mext¼

0
BBB@

1 0 0 p

0 1 0 q

−q p 1 0

0 0 0 1

1
CCCA: ð19Þ

Similarly, ðf; gÞ and ðp; qÞ represent the dispersive
terms. In these matrices, elements that do not contribute
to coupling effects are simplified. Additionally, for the
modulators, their transfer matrices are as follows:

Mh1¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 h1 1

1
CCCA; Mh2¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 h2 1

1
CCCA: ð20Þ

Here h1 and h2 represent the modulation strengths of the
corresponding modulators.
To achieve the decoupling of the whole unit, whose

transfer matrix is Mtot ¼ MextMh2MmidMh1Ment, the
following four conditions need to be satisfied:

−ðh1 þ h2 þ ch1h2Þ ¼
b
q
h1 ¼

a
p
h1 ¼

b
g
h2 ¼

a
f
h2: ð21Þ

The symmetric and reversible lattice layouts are two
specific scenarios within the general approach above. In
both cases, the conditions a ¼ 0, b ¼ 0, and h1 þ h2 þ
ch1h2 ¼ 0 are satisfied. In the symmetric layout, the choice
is made to set h2 ¼ h1 and ch1 ¼ −2. While the reversible
layout involves h2 ¼ −h1 and c ¼ 0.
The general lattice layout approach offers a wide range

of solutions. This flexibility can be beneficial for designing
practical lattices.

IV. LINEAR BEAM DYNAMICS OF GLSF

This section will focus on studying the linear beam
dynamics within the context of the GLSF approach.
Specifically, bunch compression, modulation cancellation,
and vertical-longitudinal decoupling will be explored.
The case of vertical-longitudinal coupling is examined

as an exemplification of transverse-longitudinal coupling
schemes. The concept of the reversible lattice layout
approach mentioned in Sec. III C is partially employed,
where the modulations are canceled.
The GLSF unit is inserted in the radiation section of the

ring, as shown in Fig. 9. It can be decomposed into four
lattice segments, each separated by two modulators and one
radiator. In contrast to the simplified matrices used for
algebraic manipulation in the previous section, here the
matrices are presented accurately to ensure practical appli-
cability. In addition to Mod1 and Mod2, there is a laser
modulator, Mod0, situated outside the GLSF unit withinFIG. 8. Schematic layout of a general lattice approach.
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the storage ring. The purpose and parameters of Mod0 are
discussed in Secs. II C and V B.

A. Bunch compression

Bunch compression is performed in the first half of the
GLSF unit, which consists of part 1, Mod1, and part 2. The
corresponding transfer matrices are as follows:

Mpart 2 ¼

0
BBB@

n33 n34 0 n36
n43 n44 0 n46
n53 n54 1 n56
0 0 0 1

1
CCCA MM1 ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 h 1

1
CCCA

Mpart 1 ¼

0
BBB@

m33 m34 0 m36

m43 m44 0 m46

m53 m54 1 m56

0 0 0 1

1
CCCA: ð22Þ

Here, the letters m and n are used as labels for part 1 and
part 2, respectively. The symplectic conditions on the
matrix elements [20] are as follows:

r33r44 − r34r43 ¼ 1;

r36r43 − r33r46 ¼ r53;

r36r44 − r34r46 ¼ r54: ð23Þ

The transfer matrix from the entrance of the unit to the
radiator is given by Mt ¼ Mpart 2MM1Mpart 1, with the
following elements:

t55 ¼ 1þ hn56;

t56 ¼ m36n53 þm46n54 þ n56 þm56ð1þ hn56Þ: ð24Þ

The bunch compression conditions are therefore:

1þ hn56 ¼ 0;

m36n53 þm46n54 þ n56 ¼ 0: ð25Þ

These conditions are consistent with Eq. (6) when the
momentum compaction n56 is substituted for ξ and the
dispersive terms (m36, m46, n53, n54) are used in place of
(D1, D0

1, −D0
2, D2).

When Eq. (25) is satisfied, the particle position at the
radiator zrad can be expressed as follows:

zrad ¼ t53yi þ t54y0i: ð26Þ

Here, t53 and t54 are composed of the dispersive terms:

t53 ¼ m33n53 þm43n54;

t54 ¼ m34n53 þm44n54: ð27Þ

The bunch length at the radiator σzðRadÞ is then:

σzðRadÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵyHyðRadÞ

q
;

HyðRadÞ ¼ t253βyi − 2t53t54αyi þ t254γyi: ð28Þ

It is worth noting that the bunch length at the radiator
is solely determined by the vertical emittance ϵy and a
lattice-specific function Hy, which will be explained in
detail in Sec. IV B.
The bunching factor, denoted as b, quantifies the extent

of the bunching of particles. The power of coherent
radiation, represented by Prad, is directly proportional to
the square of the bunching factor, i.e., Prad ∝ b2.
For a beam with a Gaussian distribution and an rms

bunch length of σzðRadÞ, the bunching factor b0 at
radiation wavelength λr is given by:

b0 ¼ e−
1
2
k2r σ2zðRadÞ: ð29Þ

Here kr ¼ 2π
λr

represents the wave number of the radia-
tion. The bunching factor b0 varies between 0 and 1 and
decreases as the bunch length σzðRadÞ increases, indicating
a deterioration in both the bunching behavior and radia-
tion power.
Note that the bunching factor in Eq. (29) assumes a

Gaussian-distributed beam at the radiator. When consider-
ing the nonlinear nature of the sinusoidal modulation at
Mod1, however, this assumption no longer holds true. The
bunch lengthening that occurs at Mod1 causes a degrada-
tion of the bunching factor for a prebunched beam. To
quantify this reduction in the bunching factor, a reduction
factor R is introduced [30]:

R ¼
�����
X∞
p¼−∞

JpðnÞe−1
2
ðn−pÞ2k2mσ2zðModÞ

�����: ð30Þ

Here, σzðModÞ represents the bunch length at the
modulator Mod1, km ¼ 2π

λm
is the modulation wave number,

FIG. 9. Diagram showing a storage ring with a GLSF unit.
The GLSF unit consists of four lattice segments (parts 1–4), two
modulators (Mod1, Mod2), and one radiator (Rad).
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λm is the modulation wavelength, n ¼ kr
km

¼ λm
λr

is the
harmonic number, and Jp is the pth order Bessel function
of the first kind. The reduction factor R decreases as the
bunch length at Mod1 σzðModÞ increases. The upper and
lower limits of R are 1 and jJnðnÞj, respectively.
Due to the dispersive placement of Mod1, the bunch

length at Mod1 is determined by both the longitudinal and
vertical emittances, which is expressed as follows:

σzðModÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2z zðModÞ þ σ2z yðModÞ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵzβzm þ ϵyHyðModÞ

q
: ð31Þ

Here βzm and HyðModÞ represent the longitudinal beta
function and H function at Mod1.
The bunching factor at the radiator in a GLSF SSMB

storage ring, denoted as b, is then given by the product of
b0 and R [30]:

b ¼ e−
1
2
k2r σ2zðRadÞ

�����
X∞
p¼−∞

JpðnÞe−1
2
ðn−pÞ2k2mσ2zðModÞ

�����: ð32Þ

To achieve a large bunching factor, it is necessary to
have short bunch lengths at both the radiator and Mod1.
However, the reduction of σzðModÞ and σzðRadÞ is limited
since their product must satisfy the inequality [30]:

σz yðModÞσzðRadÞ ≥
ϵy
jhj : ð33Þ

Here jhj is the modulation strength. Based on Eq. (31),
which states σz yðModÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵyHyðModÞp
, and given that

σzðRadÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵyHyðRadÞ

p
, the lower limit of HyðModÞ can

be determined as 1
h2HyðRadÞ.

Through the vertical eigenemittance ϵy, a connection is
established between the bunch lengths σz (and therefore the
bunching factor b and power of coherent radiation Prad) and
the modulation strength jhj (and power of the modulation
laser Plaser). Alternatively, Eq. (33) can be expressed as
jhj ≥ ϵy

σz yðModÞσzðRadÞ. This implies a reduction in the demand

for modulation laser power when considering a given
power of coherent radiation by exploiting the nature of
low vertical eigenemittance of a planar horizontal-vertical-
uncoupled storage ring. This is the exact gist of the
GLSF scheme.
For parameter estimation, assuming a modulation laser

power of Plaser ¼ 1 MW, the modulation strength jhj is
approximately 4000 m−1 for a modulation wavelength
of λm ¼ 1 μm and a beam energy of Es ¼ 400 MeV.
Considering ϵy¼1 pmrad, λr¼13.5 nm, and σz zðModÞ ¼
50 nm, the variation of the bunching factor at the radiator b,
its components b0 and R, and the bunch length at

Mod1 σzðModÞ with respect to the bunch length at the
radiator σzðRadÞ is illustrated in Fig. 10, while setting
σz yðModÞ to its minimum defined by Eq. (33) with
HyðModÞ ¼ 1

h2HyðRadÞ.

It is observed in Fig. 10 that the bunching factor b
remains relatively constant until σzðRadÞ reaches 0.6 nm.
Beyond this point, the bunching factor increases, peaking at
2 nm of σzðRadÞ, and then declines as σzðRadÞ continues
to rise. Both b0 and R exhibit negligible changes and
approach their limits when σzðRadÞ is reduced to 0 and
σzðModÞ becomes significant. It explains the plateau in b
before reaching σzðRadÞ ¼ 0.6 nm. Once it is surpassed,
noticeable changes occur in b0 and R, with increasing
σzðRadÞ resulting in a decrease in σzðModÞ, b0, and an
increase in R. Consequently, the overall bunching factor
initially increases and subsequently decreases.
In this illustrative case, a bunching factor greater than 0.1

can be achieved with a low modulation laser power of
1 MW. This indicates the significant potential for generat-
ing kW-level quasicontinuous-wave 13.5-nm EUV radia-
tion in a GLSF SSMB storage ring, as demonstrated later in
this paper.

B. H function

The H function holds great importance in the GLSF
approach, particularly in obtaining a short bunch length at
the radiator. This subsection begins by examining the two
expressions of theH function, followed by an investigation
into its evolution rule and exploration of methods to
achieve a small value for it.

FIG. 10. The variation of the bunching factor at the radiator b
(solid), its components b0 (dashed) and R (dash-dotted) (left y
axis, blue), and the bunch length at Mod1 σzðModÞ (dotted, right
y axis, orange) as functions of the bunch length at the radiator
σzðRadÞ, assuming Plaser¼1MW, jhj¼4000m−1, Es¼400MeV,
ϵy¼1 pmrad, λm ¼ 1 μm, λr¼13.5 nm, σz zðModÞ ¼ 50 nm,
HyðModÞ¼ 1

h2HyðRadÞ.
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Consider a general lattice with vertical dispersion and no
laser modulators positioned within it. The transfer matrix in
the ðy; y0; z; δÞ dimensions can be represented as follows,
where the elements ðr35; r45; r63; r64; r65Þ are eliminated
due to the absence of the coupling induced by energy
modulation:

Mgeneral lattice ¼

0
BBB@

r33 r34 0 r36
r43 r44 0 r46
r53 r54 1 r56
0 0 0 1

1
CCCA: ð34Þ

Subscripts are used to represent parameters at the
entrance of the lattice (denoted as i) and at the exit (denoted
as f). The deduction of the bunch length at the exit, denoted
as σzf , involves the following equations:

zf ¼ r53yi þ r54y0i þ zi þ r56δi;

σ2zf ¼ ϵyHy 1 þ ϵzβzf ;

Hy 1 ¼ r253βyi − 2r53r54αyi þ r254γyi: ð35Þ

Here, Hy 1 represents the first kind of expression of the H
function, which is consistent with the form presented in
Eq. (28). It quantifies the bunch lengthening resulting from
the vertical emittance.
Starting from Hy 1, an alternative expression of the H

function, denoted as Hy 2, can be derived by replacing
ðr53; r54; αyi; βyi; γyiÞ with ðr36; r46; αyf ; βyf ; γyfÞ. The sub-
stitution law is given by:

ðr53; r54; αyi; βyi; γyiÞ⊺ ¼ Xðr36; r46; αyf ; βyf ; γyfÞ⊺;

X ¼

0
BBBBBB@

r43 −r33 0 0 0

r44 −r34 0 0 0

0 0 r33r44 þ r34r43 r43r44 r33r34
0 0 2r34r44 r244 r234
0 0 2r33r43 r243 r233

1
CCCCCCA
:

ð36Þ

The symplectic condition r33r44 − r34r43 ¼ 1 is used in
simplification. Then there is:

Hy 2 ¼ r246βyf þ 2r36r46αyf þ r236γyf : ð37Þ

Furthermore, assuming dispersion-free conditions at the
entrance of the lattice, the parameters ðr36; r46Þ can be
redefined as the dispersion functions at the lattice exit,
denoted as ðDf ; D0

fÞ. Consequently, the second form
of the H function can also be expressed as Hy 2 ¼
D02

f βyf þ 2DfD0
fαyf þD2

f γyf . Moreover, at any given

position s within the lattice, the corresponding H function
can be represented as:

Hy 2ðsÞ ¼ ðD02βy þ 2DD0αy þD2γyÞs: ð38Þ

The introduction of multiple forms of the H function
serves the purpose of facilitating a deeper understanding
and offering flexibility in the selection of the most
appropriate and convenient expression for a given situation.
In general, Hy 1 is inherently intuitive and applicable
across a wide range of circumstances, including cases
involving laser modulators as demonstrated in previous
sections. On the other hand, Hy 2 proves valuable for
comprehending the evolution of the H function from the
perspective of normalized dispersion coordinates, as illus-
trated later in this subsection.
While Hy 1 quantifies the extent of bunch lengthening

caused by the vertical emittance, Hy 2ðsÞ is commonly
referred to in the community as a coefficient specifying the
excitation of vertical betatron oscillation amplitude resulting
from energy changes during photon emission [37]. Both
expressions capture the coupling effects between dimensions,
with one acting from ðy; y0Þ to z and theother from δ to ðy; y0Þ.
These cross-plane couplings are intricately intertwined by
symplecticity-imposed constraints [20]. In essence, they
represent two sides of the same coin in beam dynamics.
The deduction above of Hy 2¼Hy 1 assumes the absence

of laser modulators in the lattice. However, with the
introduction of laser modulators, the relationship between
ðr53; r54Þ and ðr36; r46Þ becomes more complex due to the
symplectic condition requirements. Consequently, the gen-
eral validity of Hy 2 ¼ Hy 1 is compromised.
Fortunately, in the context of the GLSF unit, the

expression Hy 2 remains applicable for quantifying bunch
lengthening at the radiator. This is because the bunch
compression condition 1þ hn56 ¼ 0 effectively eliminates
the influence of part 1 on both bunch lengthening and Hy.
Considering a hypothetical component that is placed
immediately after the laser modulator Mod1 and provides
a lumped momentum compaction of n56, the corresponding
transfer matrix is:

Mn56 ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 n56
0 0 0 1

1
CCCA: ð39Þ

The transfer matrix of the lattice, comprising in sequence
part 1, Mod1, and the hypothetical component, can be
expressed as Mr ¼ Mn56MM1Mpart 1 with elements:

r53 ¼ m53ð1þ hn56Þ ¼ 0;

r54 ¼ m54ð1þ hn56Þ ¼ 0: ð40Þ
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As mentioned earlier, there is no contribution to bunch
lengthening and Hy from ðm53; m54Þ of part 1. In other
words, the bunch length at the radiator σz (Rad) is solely
determined by part 2:

HyðRadÞ ¼ n253βym − 2n53n54αym þ n254γym

¼ n246βyr þ 2n36n46αyr þ n236γyr: ð41Þ

Here, ðαym; βym; γymÞ and ðαyr; βyr; γyrÞ are, respectively,
the Courant-Snyder functions evaluated at Mod1 and the
radiator. Notably, since part 2 does not involve any laser
modulators, the validity of Hy 2 is restored within this
specific context.
According to Eq. (28), achieving a short bunch length of

3 nm at the radiator requires a value as low as 9 μm for the
Hy function, assuming an ϵy of 1 pm rad. To accomplish
this, the evolution of Hy is investigated in magnets,
including dipoles and quadrupole channels (alternately
arranged quadrupoles and drifts). As mentioned earlier,
the expression Hy 2 is employed in the analysis.
It is worth noting that there is a resemblance between the

expression Hy 2ðsÞ and the Courant-Snyder invariant ϵu
(u ¼ x, y):

HyðsÞ ¼ ðD02βy þ 2DD0αy þD2γyÞs;
ϵu ¼ u02βu þ 2uu0αu þ u2γu: ð42Þ

This resemblance suggests that the application of normal
or canonical form could also be employed here to clarify
the beam dynamics in the evolution of the H function. The
Hy function can be expressed as follows:

HyðsÞ ¼ ðv2 þ p2
vÞs;

ðv; pvÞ ¼
�

Dffiffiffiffiffi
βy

p ;
αyDþ βyD0ffiffiffiffiffi

βy
p

�
: ð43Þ

A transformation from the physical coordinates ðD;D0Þ
to the normalized coordinates ðv; pvÞ is performed:

�
v

pv

�
¼ A

�
D

D0

�
; AðsÞ ¼

0
B@

1ffiffiffiffiffiffiffiffi
βyðsÞ

p 0

αyðsÞffiffiffiffiffiffiffiffi
βyðsÞ

p ffiffiffiffiffiffiffiffiffiffiffi
βyðsÞ

p
1
CA:

ð44Þ

Here, the matrix AðsÞ denotes a static coordinate trans-
formation. Thus, the Hy function represents the square of
the Euclidean norm of the vector ðv; pvÞ in the normalized
phase space. The evolution of ðv; pvÞ is therefore crucial for
measuring Hy.
To account for the complete beam dynamics, the matrix

R is introduced:

R ¼
�

cosψ sinψ

− sinψ cosψ

�
: ð45Þ

This matrix R denotes the clockwise rotation of the
vector ðv; pvÞ in the normalized phase space, where the
rotation angle ψ corresponds to the betatron phase advance.
Then a transfer map in ðy; y0Þ dimensions, spanning from
the initial point s1 to the final point s2, can be decomposed
as follows:

Mðs2js1Þ ¼ A−1ðs2ÞRAðs1Þ: ð46Þ

In other words, the effect ofMðs2js1Þ can be interpreted as
three sequential steps: first, a transformation from the
physical coordinates ðD;D0Þ to the normalized coordinates
ðv; pvÞ by Aðs1Þ at position s1; then, a rotation in the
normalized coordinate space by R; and finally, a trans-
formation from the normalized coordinates ðv; pvÞ back to
the physical coordinates ðD;D0Þ by A−1ðs2Þ at position s2.
It is important to note that the transformation A is static,
while the dynamics are encapsulated within the parameter
ψ of the rotation matrix R.
The evolution of the vector ðv; pvÞ in magnets is

investigated, considering the following cases: (a) a quadru-
pole channel, (b) a dipole, and (c) a unit with two dipoles
and one quadrupole channel. The relationship between the
vectors at the beginning point s1 and the end point s2 is
depicted in Fig. 11 and Eqs. (47), (48), and (51).

�
v

pv

�
2

¼ Aðs2Þ
�

D

D0

�
2

¼ Aðs2ÞMðs2js1Þ
�

D

D0

�
1

¼ RAðs1Þ
�

D

D0

�
1

¼ R

�
v

pv

�
1

: ð47Þ

�
v

pv

�
2

¼ Aðs2Þ
�

D

D0

�
2

¼ Aðs2Þ
�
Mðs2js1Þ

�
D

D0

�
1

þ
�
ρð1 − cos θÞ

sin θ

��

¼ R

�
v

pv

�
1

þ Dv: ð48Þ

The investigation begins with the case of a quadrupole
channel. As shown in Fig. 11(a) and Eq. (47), the evolution
of the normalized vector ðv; pvÞ involves rotation solely.
This observation suggests that the Hy function remains
invariant throughout quadrupole channels, as no additional
dispersion is imposed.
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The case of dipoles, however, is different compared to
quadrupole channels. Dispersion-induced driving terms
Dv, as shown in Eq. (48), are generated:

Dv ¼

0
B@

1ffiffiffiffi
βy

p ρð1 − cos θÞ
αyffiffiffiffi
βy

p ρð1 − cos θÞ þ ffiffiffiffiffi
βy

p
sin θ

1
CA: ð49Þ

Here, ðρ; θÞ represent the bending radius and angle of a
dipole, while ðαy; βyÞ are the Courant-Snyder functions at
the exit. Based on Fig. 11(b) and Eq. (48), it is evident that
the vector ðv; pvÞ at the end of a dipole is obtained by
combining the rotating term originating from the initial
ðv; pvÞ and the driving term Dv. In general, Hy changes
over a dipole.
It should be noted that the analysis above specifically

addresses sector dipoles with no longitudinal gradient. The
edge effect of rectangular dipoles can be handled in nearby
quadrupole channels, while dipoles with gradients can be
divided into slices with constant field strengths.
Once the evolution rule of the H function has been

established for both quadrupole channels and dipoles, it
becomes possible to explore more complex scenarios. In
this regard, a case involving two dipoles and a quadrupole
channel is investigated, as illustrated in Fig. 11(c). By
applying the rules outlined in Eqs. (47) and (48), the
evolution of the vector ðv; pvÞ can be described as follows:

�
v

pv

�
4

¼ RB

�
v

pv

�
3

þ DvB;

�
v

pv

�
3

¼ RQC

�
v

pv

�
2

;

�
v

pv

�
2

¼ RA

�
v

pv

�
1

þ DvA: ð50Þ

In this context, the subscripts (A, B, QC) refer to the first
dipole, the second dipole, and the quadrupole channel in
between, respectively. Then there is:
�

v

pv

�
4

¼ RBRQCRA

�
v

pv

�
1

þRBRQCDvA þDvB:

ð51Þ
The H function at the end of this unit is then determined
by the initial vector ðv; pvÞ, the driving terms Dv of both
dipoles, and the rotation angles of the rotation matrices R
for all three components.
As mentioned earlier, a value of 9 μm is required for the

H function at the radiator HyðRadÞ. The simplest solution
involves incorporating a single dipole in part 2 of the GLSF
unit, as shown in Fig. 11(b) and Eq. (48). Since quadrupole
channels do not contribute,HyðRadÞ depends solely on the
driving term Dv of this dipole. To simplify the analysis, the
thin-lens approximation is applied, leading to the reduction
of Eq. (49) to:

Dv ¼
�

0ffiffiffiffiffi
βy

p
θ

�
: ð52Þ

Consequently, there is Hy ¼ kDvk2 ¼ βyθ
2. In this

scenario, attaining aHy value of 9 μm can present practical
challenges due to the demand of a short dipole length.
Alternatively, part 2 can employ a lattice layout with

two dipoles and one quadrupole channel, as described in
Fig. 11(c) and Eq. (51), for a potential solution. As there is
no generation of Hy prior to this unit, the final vector
ðv; pvÞ in Eq. (51) simplifies to:

�
v

pv

�
¼ RBRQCDvA þ DvB: ð53Þ

FIG. 11. Sketch showing the evolution of ðv; pvÞ in the normalized phase space in (a) a quadrupole channel, (b) a dipole, and (c) a unit
with two dipoles and one quadrupole channel.
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The idea is to achieve cancellation between the two
vectors, RBRQCDvA and DvB, to ensure that their
residual contribution to Hy is sufficiently low. The
cancellation is true when the following conditions
are met:

kDvAk ¼ kDvBk;
ϕDvA − ψQC − ψB ¼ ϕDvB þ π þ 2kπ:

ðk ¼ 0;�1;�2; � � �Þ ð54Þ

Here, ðϕ;ψÞ represent the phase angle of the vector
ðv; pvÞ in normalized coordinates and the rotation
angle of the rotation matrix R, respectively. While the
rotation angle ψ is clockwise, the phase angle ϕ ¼
arctan pv

v is defined in a counterclockwise manner. It is
worth noting that Eq. (54) serves as a general guideline
for minimizing the value of the H function in a lattice
containing two dipoles, such as a double-bend achromat
(DBA) unit.
For instance, consider two dipoles with identical

bending angles but opposite bending directions. By apply-
ing the thin-lens approximation to these dipoles, it can
be observed that kDvAk ¼ ffiffiffiffiffiffiffi

βyA
p jθj, kDvBk ¼ ffiffiffiffiffiffiffi

βyB
p jθj,

jϕDvA − ϕDvB j ¼ π, and ψB ¼ 0. Therefore, conditions in
Eq. (54) can now be expressed as:

βyA ¼ βyB;

ψQC ¼ 2kπ:

ðk ¼ 0;�1;�2; � � �Þ ð55Þ

Although Eq. (55) is derived based on the thin-lens
approximation of the dipoles, these conditions are still
approximately satisfied in some practical cases when
attempting to minimize the Hy function.

C. Modulation cancellation

While the modulation introduced by Mod1 facilitates
bunch compression, it is advantageous to cancel out its
effects by employing Mod2. This cancellation enables the
demodulation and debunching of the beam while elimi-
nating the nonlinearities caused by the sinusoidal modu-
lation. The lattice between the two modulators, involving
part 2 and part 3, is specifically designed to achieve
modulation cancellation.
Derived from the reversible lattice layout, the modula-

tion of Mod2 should be the reverse of Mod1’s. The
manipulation functions of Mod1 and Mod2 can be denoted
as f1 and f2, satisfying the equation f1ðzÞ þ f2ðzÞ ¼ 0.
Specifically, for the linear chirp of Mod1 in Eq. (22),
f1ðzÞ ¼ hz. Then f2ðzÞ ¼ −hz, and the corresponding
transfer matrix of Mod2 is given as:

MM2 ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 −h 1

1
CCCA: ð56Þ

For a perfect cancellation, the longitudinal positions
of particles at Mod1 and Mod2 must be identical,
denoted as zM1 ¼ zM2. This indicates that the lattice
between Mod1 and Mod2 should be transparent to particles
in the z dimension. The corresponding transfer matrix
Mw ¼ Mpart 3Mpart 2 should take the following form:

Mw ¼

0
BBB@

w33 w34 0 0

w43 w44 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð57Þ

To ensure zM1 ¼ zM2, the constraints w53 ¼ w54 ¼ w56 ¼ 0
and w55 ¼ 1 are imposed. Additionally, applying the
symplectic condition of Eq. (23) yields w36 ¼ w46 ¼ 0.
From Eq. (57), it is evident that the lattice between the

two modulators is both achromatic and isochronous. It is
important to note that Mw is not necessarily an I-map. In
this case, transportation in the ðy; y0Þ phase space is
unrestricted, as it does not affect the modulation cancella-
tion. The strict constraint of paired reverse components is
relaxed to simplify lattice design. Nevertheless, modulation
cancellation through transparency in z is maintained.
Mpart 2 has already been given by Eq. (22). The transfer

matrices of part 3 and its mirror can be defined as:

Mpart 3 ¼

0
BBB@

e44 e34 0 −e54
e43 e33 0 −e53
−e46 −e36 1 e56
0 0 0 1

1
CCCA;

Mpart 3 mir ¼

0
BBB@

e33 e34 0 e36
e43 e44 0 e46
e53 e54 1 e56
0 0 0 1

1
CCCA: ð58Þ

Here, part 3 is denoted by the letter e, and the symplectic
condition in Eq. (23) is satisfied. The motivation behind
presenting Mpart 3 as shown in Eq. (58) and introducing
Mpart 3 mir is to simplify the algebraic derivation of Mw.
Focusing on the elements of interest, there are:

w53 ¼ ðn36 − e36Þn43 − ðn46 þ e46Þn33;
w54 ¼ ðn36 − e36Þn44 − ðn46 þ e46Þn34;
w55 ¼ 1;

w56 ¼ ðn56 þ e56Þ − ðn46e36 þ n36e46Þ: ð59Þ
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The definition of Mpart 3 in Eq. (58) allows the pairing
of ðe36; e46Þ with ðn36; n46Þ in w53 and w54. Due to the
requirement of symplecticity (n33n44 − n34n43 ¼ 1), it is
impossible to have n33 ¼ n34 ¼ 0 or n43 ¼ n44 ¼ 0. To
achieve w53 ¼ w54 ¼ 0, the following must be met:

n36 − e36 ¼ 0;

n46 þ e46 ¼ 0: ð60Þ

With Eq. (60), there is n46e36 þ n36e46 ¼ 0. Then w56 ¼ 0
can be rewritten as:

n56 þ e56 ¼ 0: ð61Þ

Therefore, Eqs. (60) and (61) represent the conditions
for modulation cancellation or achieving an achromatic
and isochronous lattice between modulators. The con-
ditions in Eq. (60) can also be explained through the
continuity of dispersion functions at the radiator, assum-
ing it is dispersion-free at the far ends of part 2 and
part 3.
Analyses above are based on two assumptions: (i) The

lattice between Mod1 and Mod2 is assumed to be perfectly
linear; (ii) the manipulation functions ðf1; f2Þ of modu-
lators perfectly cancel each other, i.e., f1ðzÞ þ f2ðzÞ ¼ 0.
However, in reality, these assumptions may not hold

true because of the presence of nonlinearity in the lattice
and distortion of ðf1; f2Þ caused by the intrinsic momen-
tum compaction of undulators. Consequently, achieving
perfect cancellation of modulation can be challenging
even when the conditions in Eqs. (60) and (61) are
satisfied. At the end of the paper, the nonlinear dynamics
involved are briefly discussed.

D. Vertical-longitudinal decoupling

To maintain a low vertical emittance in the ring, which is
necessary for bunch compression, it is essential to eliminate
the introduced vertical-longitudinal coupling within the
GLSF unit. This decoupling is specifically achieved in the
final part, part 4.
The remaining coupling terms are examined first. The

transfer matrix of the components preceding part 4, denoted
as Mv, is given by:

Mv ¼ MM2MwMM1Mpart 1

¼

0
BBB@

v33 v34 0 v36
v43 v44 0 v46
v53 v54 1 v56
0 0 0 1

1
CCCA; ð62Þ

with:

�
v36
v46

�
¼

�
e44 e34
e43 e33

��
n33 n34
n43 n44

��
m36

m46

�
: ð63Þ

Since the remaining coupling terms are related to
dispersion, the objective of part 4 is to ensure an achromatic
GLSF unit. The transfer matrices of part 4 and its mirror
counterpart are given by:

Mpart 4 ¼

0
BBB@

i44 i34 0 −i54
i43 i33 0 −i53
−i46 −i36 1 i56
0 0 0 1

1
CCCA;

Mpart 4 mir ¼

0
BBB@

i33 i34 0 i36
i43 i44 0 i46
i53 i54 1 i56
0 0 0 1

1
CCCA: ð64Þ

Here, part 4 is denoted by the letter i. The symplectic
condition in Eq. (23) is satisfied. By employing the
approach used in Eqs. (59) and (60), the conditions to
achieve an achromat are:

v36 − i36 ¼ 0;

v46 þ i46 ¼ 0: ð65Þ

With Eq. (65) fulfilled, the GLSF unit achieves vertical-
longitudinal decoupling.
Flip the direction in which the beam travels. The route

(part1→Mod1→ part2→Rad→ part3→Mod2→ part4)
now becomes (part 4 flip → Mod2 → part 3 flip → Rad →
part 2 flip → Mod1 → part 1 flip), as shown in Fig. 12.
Here, “part X flip” represents the mirror of part X (where
X ¼ 1, 2, 3, 4). The mirrors of Mod1 or Mod2 remain
unchanged.
It can be proven that the conditions of bunch compres-

sion, modulation cancellation, and vertical-longitudinal
decoupling remain valid in the flipped lattice. In other
words, the GLSF unit can be inserted in either direction into
the SSMB storage ring. This duality arises from the
achromatic nature of the GLSF unit.

FIG. 12. Sketch illustrating the two ways in which the beam
passes through the GLSF unit. Here, part X flip represents the
mirror of part X (where X ¼ 1, 2, 3, 4).
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E. Linear conditions of the GLSF unit lattice

Listed below is a summary of the linear conditions in the
lattice design of a GLSF unit given by Fig. 9:
(i) Bunch compression:

1þ hn56 ¼ 0;

m36n53 þm46n54 þ n56 ¼ 0;

HyðRadÞ ¼
σ2zðRadÞ

ϵy
;

HyðModÞ ¼ 1

h2HyðRadÞ
:

(ii) Modulation cancellation:

e36 − n36 ¼ 0;

e46 þ n46 ¼ 0;

e56 þ n56 ¼ 0:

(iii) Vertical-longitudinal decoupling:

i36 − v36 ¼ 0;

i46 þ v46 ¼ 0:

These conditions can be categorized for each part of
the unit:
(i) Part 1

m36n53 þm46n54 þ n56 ¼ 0;

HyðModÞ ¼ 1

h2HyðRadÞ
:

(ii) Part 2

1þ hn56 ¼ 0;

HyðRadÞ ¼
σ2zðRadÞ

ϵy
:

(iii) Part 3

e36 − n36 ¼ 0;

e46 þ n46 ¼ 0;

e56 þ n56 ¼ 0:

(iv) part 4

i36 − v36 ¼ 0;

i46 þ v46 ¼ 0:

In practical lattice design, achieving precise equality
as stated in these conditions can be challenging. It is
necessary to analyze the impact of deviations from equal-
ity on beam dynamics, including the bunching factor and
residual modulation. The tolerance for deviations can thus
be estimated.

V. LINEAR LATTICE REALIZATION

With beam dynamics clarified and the required con-
ditions established, a linear lattice can be realized in
practice as a GLSF unit. This section aims to offer details
regarding the strategies and settings involved in lattice
realization, as well as the parameters and performance of
one specific instance of a practical linear lattice.

A. Strategies and settings

In each part of the unit, a pair of dipoles is positioned
between three quadrupole channels, resembling a dogleg
configuration. The dipoles bend in opposite directions
with identical bending radii and angles, resulting in the
beam traveling parallel to its initial direction after passing
through. The quadrupole channels offer flexibility for
optimization. This configuration enables the generation
of the required lattices in a simple and flexible manner.
The GLSF unit is then partitioned into modules com-

prising quadrupole channels, dipoles, and modulators, as
illustrated in Fig. 13. This layout is afterward employed for
the realization of the practical lattice.
The realization of the lattice is performed step by step, as

handling all the variables and goals of the overall lattice in a
single run is impractical. The sequence of part 2, part 3,

FIG. 13. Sketch showing the modules that compose the GLSF unit. The blocks indicate modules of various kinds, including
quadrupole channels (yellow), dipoles (blue), modulators (green), and the radiator (orange).
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part 1, and part 4 is followed, considering the necessary
conditions and prerequisites of each part.
For the quadrupole channels, a pattern of (quad-quad-

� � � -quad-quad) is initially tested before converting it
into an equivalent (drift-quad- � � � -quad-drift) configura-
tion. This approach enables a quasicontinuous distribution
of “kick” strength and offers flexibility during the early
stage of optimization.
The optimization process employs a multiobjective

genetic algorithm based on NSGA-II. The optimization
variables include (i) bending angle and radius of the dipoles,
(ii) strength of the quadrupoles, and (iii) Courant-Snyder
functions at the chosen reference point.
The optimization goals are classified into two groups:

(i) linear conditions and (ii) indicators of lattice nonlinearity.
The integral Γ¼ R

γðsÞds of the Courant-Snyder gamma
function γ serves as an indicator for the average path length
shift of a particle [Δz ≈ − 1

4
ðϵxΓx þ ϵyΓyÞ] contributed from

betatron oscillation [20] induced by lattice nonlinearity.
Including such indicators is beneficial as the linear lattice
design forms the foundation for nonlinear optimization.
Additionally, pursuing a low value of Γ helps avoid cases
where the Courant-Snyder functions become excessively
large or small or even infeasible.

B. One specific instance

In this subsection, an example of a linear lattice is
presented, comprising 8 dipoles and 38 quadrupoles. The
beta and dispersion functions for this specific instance of
the GLSF unit are shown in Fig. 14. The linear conditions
are fulfilled. It is worth mentioning that this is a demon-
stration case and can be further optimized if needed.
The realization of HyðRadÞ ¼ 9 μm in both part 2 and

part 3 mir follows the cancellation rules of driving terms

outlined in Eq. (55). One difference, however, lies in the
fact that for part 2, the phase advance of the quadrupole
channel between the dipoles is ψQC → 0, whereas it is
ψQC → 2π for part 3 mir. This diversity arises from the
opposite signs of n56 and e56.
This specific instance of the GLSF unit is subsequently

tested for “tracking,” where the particle coordinates of a
launched beam are iterated turn-by-turn. To complete a
GLSF storage ring as shown in Fig. 9, a laser modulator
Mod0 is placed within the ring. Here Mod0 serves as a
prebunching component, which has been explained in
Sec. II C. The assumed wavelength of the modulation laser
is 1 μm, and a laser power of 150 kW, rather than 1 MW, is
sufficient to achieve the desired equilibrium bunch length
of 50 nm in the storage ring. It is worth noting that while the
wavelength of the modulation laser remains consistent for
all three laser modulators, the required laser power for
Mod0 is significantly lower compared to Mod1 and Mod2
in the GLSF unit.
The tracking process undertaken here is intended to

validate the effectiveness of the concept and linear design
of the GLSF unit. Here, linearity is assumed for all lattice
components. This implies that the two halves of the storage
ring outside the GLSF unit, together with parts 1–4 within
the GLSF unit, are represented by their respective linear
transfer maps. And for the laser modulators, the manipu-
lation function of Mod0 is sinusoidal [Δδ ¼ f0ðzÞ ¼
V0 sinðkmzÞ], while Mod1 and Mod2 [f2ðzÞ ¼ −f1ðzÞ]
employ both linear (f1ðzÞ ¼ hz) and sinusoidal [f1ðzÞ ¼
V1 sinðkmzÞ] manipulation functions in sequence. The test
bunch is launched at the center of Mod0, with initial
parameters obtained from the equilibrium beam status

FIG. 14. Beta (βx blue solid, βy orange solid) and dispersion
(ηy yellow dashed) functions of an instance GLSF unit.

TABLE I. Beam parameters of the launched bunch.

Parameters Quantities

Horizontal emittance: ϵx 50 pm rad
Vertical emittance: ϵy 1 pm rad
rms bunch length: σz 50 nm
rms natural energy spread: σδ 2.5 × 10−4

Number of particles: Npar 1 × 104

TABLE II. Beam parameters observed at the center of the
radiator. The modulation of (Mod1, Mod2) is linear.

Parameters Quantities

Horizontal rms bunch size: σx 7.07 μm
Horizontal rms bunch slope: σx0 7.06 μrad
Vertical rms bunch size: σy 14.3 μm
Vertical rms bunch slope: σy0 7.35 μrad
rms energy spread: σδ 4.79 × 10−4

rms bunch length: σz 3.03 nm
Bunching factor at 13.5 nm: b 0.372

GENERALIZED LONGITUDINAL STRONG FOCUSING … PHYS. REV. ACCEL. BEAMS 26, 110701 (2023)

110701-17



within an SSMB storage ring (see Table I). The steady-state
beam distribution within the GLSF unit can thus be
determined in the context of linear beam dynamics. The
observation point is positioned at the center of the radiator.
To start with, a linear modulation is applied to Mod1

and Mod2. The observed beam parameters are listed in
Table II, and the beam distribution in the longitudinal
phase space is depicted in Fig. 15. The obtained results
indicate that a steady-state bunch length of 3 nm can be
achieved at the radiator in a GLSF SSMB storage ring
when employing linear modulations in Mod1 and Mod2.
The modulation strength is specified as jhj ¼ 4000 m−1,
and the corresponding power of the modulation laser
is 1 MW.
Afterward, a sinusoidal modulation is loaded at Mod1

and Mod2. The observed beam parameters are listed in
Table III, and the beam distribution in the longitudinal
phase space is depicted in Fig. 16. The nonlinear nature
of the sinusoidal modulation introduces distortions to the
beam distribution, leading to a reduced bunching factor at
the radiator.

The estimation of the power of the EUV radiation can be
determined based on the given parameters below. The beam
energy is 400 MeV, and the average beam current is 1 A.
The radiator has a period number of 160 and a period
length of 1.25 cm. By utilizing the six-dimensional particle
coordinates at the center of the radiator, the radiation power
at a specific wavelength can be calculated [21]. For a
wavelength of 13.5 nm within a �2% bandwidth, the
average radiation power Prad is determined to be 1.2 kW.
The power of the modulation laser is 1 MW, which is

sufficiently low to operate in continuous-wave mode for
optical cavities. This indicates that achieving kW-level
quasicontinuous-wave 13.5-nm EUV radiation is feasible
in a GLSF SSMB storage ring with a modulation laser
power in the MW range.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we first introduced the concept of the
generalized longitudinal strong focusing (GLSF) scheme.
We emphasized its effectiveness in generating ultrashort
bunches while simultaneously reducing the demand for
modulation laser power. This is accomplished by involving
transverse-longitudinal coupling and exploiting the low
vertical emittance in a planar storage ring.
Following that, we investigated a bunch compression

scheme based on transverse-longitudinal coupling. It was
specifically designed for storage rings, serving as an
insertion unit to facilitate the bunching and debunching
processes on a turn-by-turn basis. We proposed two
categories of lattice layouts: symmetric and reversible,
with the latter being favored in subsequent designs due
to its capability to cancel out the nonlinearity introduced by
the modulations.

TABLE III. Beam parameters observed at the center of the
radiator. The modulation of (Mod1, Mod2) is sinusoidal.

Parameters Quantities

Horizontal rms bunch size: σx 7.07 μm
Horizontal rms bunch slope: σx0 7.08 μrad
Vertical rms bunch size: σy 14.3 μm
Vertical rms bunch slope: σy0 7.27 μrad
rms energy spread: σδ 4.14 × 10−4

Bunching factor at 13.5 nm: b 0.153

FIG. 15. Beam distribution in the longitudinal phase space
observed at the center of the radiator. A linear modulation is
applied at (Mod1, Mod2). Dashed lines mark the positions of
z ¼ �3 nm.

FIG. 16. Beam distribution in the longitudinal phase space
observed at the center of the radiator. A sinusoidal modu-
lation is applied at (Mod1, Mod2). Dashed lines mark the
positions of z ¼ �3 nm.
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Additionally, we studied in-depth the linear beam
dynamics within the GLSF approach, which includes
various aspects such as bunch compression, modulation
cancellation, and vertical-longitudinal decoupling. We
performed calculations to determine the bunching factor
at the radiator, providing evidence to support the claim that
the GLSF scheme can effectively reduce the requirement
for laser power. Furthermore, we examined the multiple
expressions of theH function and investigated its evolution
in magnets.
Finally, we explored the strategies and settings to realize

in practice a linear lattice for the GLSF unit. We provided
parameters and performance analysis for a specific instance
of the linear GLSF lattice. With a beam energy of 400 MeV
and an average current of 1 A, we showed that the average
radiation power for a wavelength of 13.5 nm within a �2%
bandwidth is 1.2 kW when the power of the modulation
laser is 1 MW. This demonstrates the feasibility of
achieving kW-level quasicontinuous-wave 13.5-nm EUV
radiation in a GLSF SSMB storage ring with MW-level
modulation laser power.
We believe that the GLSF scheme can also be applied

in conventional storage rings for various purposes related
to beam manipulations. For instance, it may provide a
novel approach to generate coherent THz radiation and
ultrashort pulses.
The analysis of nonlinear dynamics in this paper is in

general absent and requires further investigation in future
studies. Here is a brief sketch. The nonlinearity of the
lattice between the two modulators within the GLSF unit
gives rise to a deviation in the longitudinal position of
particles from their ideal positions in a perfect linear
lattice. This deviation Δz can be transformed into Δδ and
amplified by the modulations. In contrast to conventional
storage rings, the analysis of nonlinear dynamics in GLSF
rings incorporates all six dimensions, including the
longitudinal dimension z. As the longitudinal dynamics
play a crucial role in SSMB, a comprehensive optimiza-
tion of the nonlinear dynamics in all six dimensions is
necessary. For laser modulators, their intrinsic momentum
compaction leads to distortions in the standard sinusoidal
modulation. These distortions behave differently for
Mod1 and Mod2 due to their opposite modulation signs.
Even with a linear lattice in between, the perfect cancel-
lation of modulations is disrupted, introducing undesired
and disturbing transverse-longitudinal coupling. In con-
clusion, theories and methodologies are much needed to
address the challenges posed by nonlinear dynamics in
GLSF SSMB storage rings.
Besides optimizing nonlinear beam dynamics, future

research could further explore various aspects, including,
for instance, the mitigation of timing and phase errors in the
modulation laser system, as well as the investigation of
coherent synchrotron radiation and other collective effects
within the GLSF unit [38–40].
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