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When a charged-particle bunch in a storage ring is kicked to a large transverse offset, the time series
describing the dynamics of the bunch centroid is determined both by the lattice focusing and by the Fourier
transform of the 1D density profile of the bunch projected along the angle of the kick. In the presence of
nonlinear focusing, we show that this fact can be exploited to enable 2D phase space reconstruction of the
bunch (computational tomography) based only on turn-by-turn beam position monitor data. We
demonstrate various tomography methods based on this principle, including machine learning methods,
and discuss their advantages and disadvantages, and measure of reliability. We also mention a possible
extension to 4D phase space computational tomography.
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I. INTRODUCTION

Information regarding the particle beam phase-space
density can be essential for understanding and solving
various beam dynamics issues that an accelerator physicist
may encounter during accelerator operation. In addition,
detailed knowledge of the beam phase-space density is
essential to the success of advanced phase space manipu-
lation techniques in FEL light sources [1], to characterizing
beam halo and predicting beam loss in high-intensity
proton linacs and rings [2,3], and to implementing effective
diagnostics in storage rings with complex nonlinear
dynamics [4].
The cornerstone of our tomography method lies in the

theoretical finding that is described in this paper and a
previous work [5]. It shows that, in the limit of substantial
kick strength, the temporal evolution of the beam centroid
can be directly related to the Fourier transform of the 1D
beam profile along the angle of the applied kick. Here, a
kicked beam refers to single or multiple bunches of
particles that have been given a one-time transverse
momentum kick by an external force. Consequently,
employing a multishot measurement involving multiple
kicks at various angles within the phase-space domain

yields two-dimensional (2D) phase-space density distribu-
tion of the beam. However, the theoretical prediction is
limited to large kicks that can result in the loss of the beam
hitting the beam pipe. In cases where the kicks are
sufficiently small to avoid inducing beam loss, the con-
nection between beam profile and the temporal evolution of
the beam centroid becomes too complex for theoretical
analysis. In such a complex data relationship, machine
learning method is often suited.
Most of the existing transverse beam phase-space

reconstruction methods rely on measurements of camera
images of a beam on a phosphor screen [6,7], or on beam
profiles obtained using a thin metallic [8] or laser [9] wire
scanner. These methods often require multiple shots (i.e.,
measurement of an image on a screen or a profile orthogonal
to thewire) at varying quadrupole settings to rotate the beam
to various angles in the phase-space. Each shot can poten-
tially disrupt the beam and consume several minutes of
valuable beam time [10]. When considering the cumulative
effect of multiple shots, the time expenditure can stretch to
tens of minutes.
In addition to the beam time cost, conventional methods

are susceptible to the accumulation of discrepancies between
the physicsmodel and the realmachine. The efficacy of beam
phase-space tomography techniques heavily relies on the
physicsmodel governingbeam transport along the beam line.
This is because the model is responsible for predicting the
rotation angles in the beam phase-space. The modeling
becomes more intricate and error-prone, particularly when
accounting for non-negligible nonlinear optics. Any discrep-
ancy between the physics model and the actual machine
undermines the precision of phase-space reconstruction.
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This discrepancy becomes larger when the measurement
location of the beam image or profile is distant from the point
of interest for tomographic reconstruction due to the accu-
mulation of model errors (resulting frommisalignment, field
calibration, etc.) through the beam transportation. This
implies that if there are multiple locations of interest situated
far from a specific measurement device, such as a wire
scanner, it might be necessary to remeasure using nearby
instruments for each location of interest.
The tomography methods discussed in this paper involve

analyzing the turn-by-turn (TBT) beam position monitors
(BPMs) data of a kicked beam until the beam decoheres. The
decoherence of the kicked beam refers to the decay of beam
centroid due to nonlinear phasemixingwhich usually takes a
few thousand turns over the storage ring or a few seconds
assuming microseconds per turn. BPMs employ broadband
capacitive pickups to capture beam centroidwith a resolution
of the order of 100 MHz, which is significantly faster than
wire-scanners (althoughwire-scannermeasurement contains
much richer information), and in a nondestructive manner
[11]. Due to their affordability, compact design, and con-
tinuous and nondestructive measurement capability, BPMs
are significantlymore densely distributed along the beamline
compared to phosphor screens or wire scanners. This means
that if there are multiple locations of interest for tomography,
one can exploit the closest BPM data for each location to
minimize the accumulation of model error. This allows us to
measure the required data for tomography simultaneously at
these locations of interest.
Because the TBT BPM measurement time is expected to

be a few seconds, the primary limitation lies in the computa-
tional time required by the specific tomography method
employed. If the computational time cost of the tomography
method is less than or comparable to the measurement time-
cost, the tomography methods based on BPM data could be
an order of magnitude faster than methods relying on wire-
scanner-based measurements. In this paper, we try various
techniques includingmachine learningmethods.We find that
neural-network (NN) supervised learning with a model
reliability metric is a promising method.
The layout of this paper is as follows. In Sec. II, we start

with a common analytical method that may be used as a
benchmark. In Sec. II A and in corresponding appendices,
we show how the projected beam profile may be analyti-
cally reconstructed in terms of the kicked beam TBT BPM
data and optics parameters, in the limit of large kick
strength. This is extended to the 2D beam phase space
using the inverse radon transformation in Sec. II B. In
Sec. III, we try to solve the problems associated with the
theoretical profile estimation by using a Gaussian mixture
model. In Sec. IV, we try to solve the computational
complexity problem of the Gaussian mixture model by
using a simple differentiable physics model of the particles.
In Sec. V, we train a neural network model which can not
only predict the beam phase-space, but is also able to

estimate the reliability of the prediction. In Sec. VI, we
present a proof-of-concept test of methods we presented on
a highly nonlinear Hamiltonian system. Finally, the con-
clusion follows in Sec. VII.

II. ANALYTICAL METHOD

A. Projected beam profile recovery

The evolution of the canonical variables ðx; pÞ describ-
ing particle dynamics in a 2D phase space takes the
following form for a regular orbit, when expressed in
normal form:

xðtÞ − ipðtÞ ¼ ðx0 − ip0Þeiωt ¼
ffiffiffiffiffiffiffi
2J0

p
eiωt−iθ; ð1Þ

where x0 ¼ xðt ¼ 0Þ, p0 ¼ pðt ¼ 0Þ, are the initial phase-
space coordinates in normal form, J0 ¼ ðx20 þ p2

0Þ=2 is the
action, ωðJÞ is the action dependent frequency and θ is the
initial phase. When a beam is kicked to an offset x ¼ x0 and
p ¼ 0 at the time t ¼ 0, the evolution of the beam centroid
follows:

hx − ipit ¼
Z

ðx − ipÞeiωtρðx − x0; pÞ dx dp; ð2Þ

where the bracket denotes the ensemble average over the
particles of the beam, and ρðx; pÞ is the initial density of the
beam phase-space. Now, let us assume that the oscillation
frequency ω varies slowly over the beam phase space area.
In this case, we can expand ω about the action value at the
initial (offset) location of the beam centroid as:

ωðΔJÞ ¼ μ0 þ μ1ΔJ… ¼ μ0 þ μ1x0Δx…; ð3Þ

where μ0 ≡ ωjJ¼J0 is the angular frequency at the kick
action J0 ¼ x20=2, μ1 ≡ ∂JωjJ¼J0 is the nonlinear detuning
parameter at the kick action, ΔJ ≡ J − J0, and
Δx≡ x − x0. We also assume that the kick action is large
compared to the beam emittance ϵ:

x0=ϵ ≫ 1. ð4Þ

(Throughout this paper, we work in normalized units such
that the beam emittance and betatron functions are ϵ ¼ 1 and
β ¼ 1.) Then, it can be shown (see Appendices A and B) that
the discrete Fourier transform of periodically sampled beam
centroid data reads:

XT
t¼0

e−ikthx − ipit ¼
x0
2
þ πx0
jμ1x0j

λ

�
k − μ0
μ1x0

�

þ iP
Z

x0λðΔxÞ
μ0 þ μ1x0Δx − k

dΔx; ð5Þ

where P represents the Cauchy’s principal value and
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λðxÞ ¼
Z

ρðx; pÞ dp ð6Þ

is the projected beam profile in the direction of the kicked
beam offset. Therefore, one can reconstruct the projected
beamprofile usingTBTbeamcentroid data from theBPMby
inverting (5),

λðxÞ ¼ jμ1x0j
π

�
ℜ
XT
t¼0

e−iðμ1x0xþμ0Þt hx − ipit
x0

−
1

2

�
: ð7Þ

To be more general, when the kick angle θ is arbitrary, and
when the beam momentum centroid data hpit is not
available, then under some additional but general assump-
tions, the projected beam profile at the kick angle θ can be
written, by (see Appendix B):

λθðsÞ ¼ 2
jμ1j
π

ℜ
XT
t¼0

eiθe−iðμ1
ffiffiffiffiffi
2J0

p
sþμ0Þthxit

−
jμ1j
π

ffiffiffiffiffiffiffi
2J0

p
cos2θ; ð8Þ

where λθ is the projected beam profile along the kick angle, s
is the function argument of λθ, thereby it is the rotated
coordinate along the kick angle, and hxit is the BPM data in
normal coordinates.
This allows us to estimate the beam profile along the kick

offset direction, provided that Eq. (3) and Eq. (4) are
satisfied, optics parameters μ0, μ1 are known, and the kick
strength J0 and angle θ are also known.
If the beam phase-space density is same for all the fresh

beam (that is not yet kicked for the profile estimation), we
can also estimate the beam profiles along various angles
fθg in phase-space by kicking the fresh beam to the
corresponding angles. It is important to emphasize that
this requires a multishot measurement of the TBT BPM
data. See Appendix C for illustration of the nonlinear
decoherence of the kicked beam and application of Eq. (8)
for beam profile prediction on a toy-model.

B. Inverse radon transformation

Recall that we can measure the beam profile along the
kicked beam offset direction under some assumptions. This
motivates us to reconstruct the 2D phase-space by applying
the inverse radon transform (IRT) [12–14] to multiple beam
profiles measured along various angles fθg. The IRT is an
analytical method often used in medical computerized
tomography (CT) to reconstruct (higher dimensional)
images [15] from projected (lower-dimensional) images.
Figure 1 illustrates a phase-space density reconstruction
using the inverse radon transformation. We start with a
complex initial beam phase-space density and use simu-
lated BPM data using the toy-model in Appendix C. The
original beam phase-space density, in normal coordinates,

is shown on the top-right subplot and also in Fig. 11. Note
that the image is relatively well constructed for the case of a
large number of angular slices and a large initial kick
(bottom-left plot of Fig. 1). This illustration also points
out a few things: (1) There is limited angular resolution, as
seen in the images on the right side of Fig. 1when the number
angular slides are limited, (2) the requirement of large initial
kick (top left of Fig. 1), and (3) the requirement of knowledge
of the opticsμ0, andμ1 and kick actionfJ0g, and anglefθg to
calculate the projected beam profiles from Eq. (8).

III. GAUSSIAN MIXTURE MODEL

Recall that the kicked beam turn-by-turn BPM data
depends on the beam phase-space density as in Eq. (2).
When the initial beam density is an isotropic Gaussian, the
integration in Eq. (2) can be analytically carried out [16]
without the large initial offset assumption J0=ϵ ≫ 1:

ℜ
Z

ðx − ipÞeiωtN ðx − x0;
ffiffiffi
ϵ

p
IÞ dxdp

¼ x0ð1 − τ2Þ þ 2p0τ

ð1þ τ2Þ2 exp

�
−
J0
ϵ

τ2

1þ τ2

�
cos Ψ

−
2x0τ − p0ð1 − τ2Þ

ð1þ τ2Þ2 exp
�
−
J0
ϵ

τ2

1þ τ2

�
sin Ψ; ð9Þ

FIG. 1. Inverse Radon transform using estimated beam profiles
over equally spaced angles. Top left: small kick strength such that
kick action is equal to the beam emittance J0 ¼ ϵ, Bottom row:
large kick strength J0 ¼ 20ϵ, Left column: 32 kicks at equally
spaced distinct angles, Right column: 8 kicks at equally spaced
distinct angles. The case of 32 large kicks agrees well with the
ground truth that is on top-right and also shown in Fig. 11.
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where N ðx; σIÞ is the Gaussian kernel of mean x≡ fx; pg
and covariance

ffiffiffi
ϵ

p
I, with I being the 2-by-2 identity

matrix, τ≡ ϵμ1t and Ψ≡ μ0t −
ðJ0=ϵÞτ3
1þτ2

. This motivates us
to build the initial beam phase-space model ρGMM by using
a linear mixture of isotropic Gaussian kernels, referred to as
a Gaussian mixture model (GMM) [17]. That is:

ρGMMðx; pÞ ¼
1

G

XG
g¼1

N ðx −mg; σgIÞ: ð10Þ

Our goal is to fit the model so that ρGMM agrees with the
true initial beam phase-space density ρ in the sense that:

hxiGMM;t ¼ hxit; ð11Þ

where

hxiGMM;t ¼ ℜ
Z

ðx − ipÞeiωtρGMMðx − x0; p − p0Þ dxdp:

ð12Þ
The parameters we want to fit for Eq. (11) are the optics
parameter β, μ0, and μ1, the kick information fJ0g, and fθg
and the GMM parametersmg, and σg. Note that this method
overcomes the weaknesses of the IRT because the optics
and the initial offset parameters are not required to be
known, and the presence of an analytic solution for Eq. (2)
eliminates the requirement of a large initial kick. However,
the high numerical complexity resulting from the large
number of parameters is the main disadvantage. In order to
mitigate this problem, we tried various tricks that we defer
to Appendix D. Figure 2 illustrates a phase-space density
reconstruction using a GMM whose parameters are fit to
satisfy Eq. (11) using maximum a posteriori (MAP)
estimation. Note that the isotropic Gaussian kernels are
visible in the low density areas. The limited resolution,

resulting from the finite number of Gaussian kernels, is in
compromise with the numerical complexity. We used 100
Gaussian kernels, and the result took about 12 hours of
computation time using a single CPU core. (The compu-
tation time may be reduced by many factors by using an
efficient GPU implementation and gradient descent fitting
with a numerical automatic differentiation technique.) To
be consistent with the illustration of the IRT in Fig. 1, the
simulated BPM data used 8 different kicked beams based on
the toy-model in Appendix C. The same tune ω0 and
nonlinear detuning parameters ω1 and ω2 are used. The
same kick angles fθg are used. The difference is the kick
strengths fJ0g. Here, we used eight equally spaced kicks
J0;k=ϵ ¼ 2þ 2ðk=7Þ (with ϵ ¼ 1 in normalized units). The
different values of kick strength were needed to find the
nonlinear detuning parameter μ1. This is because the action
variable can be estimated from the first few turns ofBPMdata
assuming known optics parameter β, and the frequency of
each kick from TBT BPM data. Note also that these choices
of the kick strength do not satisfy J0=ϵ ≫ 1, so as to illustrate
one of the advantages of GMM compared to the IRT.

IV. PARTICLE MODEL

The main issue with the GMM from Sec. III is the high
computational complexity associated with the parameter
fitting. Recently, Ref. [18] illustrated 5D phase-space
tomography using a numerically differentiable particle
tracking simulator for beam transport in a quadrupole
channel. The differentiable simulation enabled a gradient
decent optimization to be used for fast parameter fitting. In
the same spirit, we used a simple differentiable particle
tracking simulator that is based on Eq. (1) with a simple
frequency model:

ω ¼ μ0 þ μ1ΔJ; ð13Þ

where μ0 ¼ ωjJ¼J0 , and ΔJ ¼ J − J0. Then the particle
locations, optics parameters μ0 and μ1, and initial offsets
fJ0g and fθg are optimized. For simplicity, we will refer
this model as the particle model (PM). We use the same
virtual BPM data from 8 different kicks as was used in the
GMM case (Sec. III). With the aid of the differentiable
simulator and the gradient descent method, the optimiza-
tion was about 10 times faster (on a single CPU core) than
the GMM case. This also allowed us look into the model
uncertainty using an approximate Bayesian ensemble
method. Details of these techniques are elaborated in
Appendix E. We used 8 ensemble models which cost
about 10 hours on a single CPU core, that is about 1 hour
for each model. This can be further reduced with a GPU
implementation. Figure 3 shows the tomography result.
Note that the resolution issue of the GMM is resolved. In
addition, the evolution of the fitted nonlinear detuning
parameter μ1 over the course of the model training is shown
in Fig 4. Note that we obtained better accuracy for μ1

FIG. 2. Tomography using a Gaussian mixture model (GMM).
The ground truth phase-space density is shown on the right and in
Fig 11. Eight equally spaced kicks J0;k=ϵ ¼ 2þ 2ðk=7Þ (with
ϵ ¼ 1 in normalized units) and θk ¼ πðk=8Þwith k∈ f0; 1;…; 7g
are applied. The corresponding (ground truth) 8 BPM data are
simulated using the toy-model described in Appendix C. We
added white noise of σ ¼ 0.1 to the BPM data to mimic
virtualization of a real measurement.
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estimation after training, when compared to the prior
estimate, which is based on a (single) Gaussian beam
assumption. The better accuracy is reasonable, since the
beam distribution that we used here is not Gaussian.

V. NEURAL NETWORK MODEL

The tomography methods using GMM or PM do not
require large training datasets, using only a single input
dataset (that is composed of the multishot kicked beam
TBT BPM data with multiple different kicks). These
methods train the model on the fly by fitting physical
model parameters to the data. However, computational
complexity can still be an issue. For this reason, we also try

supervised learning with a neural network (NN) model.
Figure 5 illustrates the NN data flow. The input consists of
the theoretically estimated projected beam profiles in
Eq. (8), together with the first 4 turns of the beam centroid
data. The theoretically estimated projected beam profiles
may not correctly predict the true projected beam profiles
because: (i) the large kick strength assumption can be
violated, and (ii) the optics parameters and the kick
parameters used in Eq. (8) may not be precisely known.
Nevertheless, the NN may make corrections to predict the
true beam phase-space, in spite of the incorrect projected
beam profiles provided as input. The first few turns of BPM
data are added to the input of the NN, because these contain
useful information about the kick strength and the angles.
Further details regarding the data preparation and training
of the NN are provided in Appendix F.
The outputs are the phase-space density plot and the

reconstructed projected beam profiles. An AutoEncoder-
like structure for the reconstructed output is added for
model reliability quantification. It may also allow the latent
space to be trained in a more meaningful way, so that the
model may better generalize. More precisely, the model
may extrapolate better to data out of (the training data)
distribution (OOD) [19]. The argument for using the
reconstruction loss as an indication of model reliability
follows: The ensemble method that is often used for
uncertainty quantification is based on the expectation that
the variance of the model prediction is larger when the input
data is farther from the training data. In the same way, the
reconstruction loss should be larger when the input data is
farther from the training data. This fact is also often utilized
for anomaly detection [20].
Once the model is trained, we checked the model

performance on several sets of test data. Figure 6 shows
a few random samples of NN predictions from test data,

FIG. 3. Tomography using a differentiable particle model (PM).
The ground truth phase-space density is on the left and shown in
Fig 11. The mean prediction is shown in the colored density plot.
The model uncertainty is visualized in the projected beam profile
plots on top and right by shade (the black line is the mean
prediction).

FIG. 5. Sketch of the input and output data flow of the NN used.
Orange blocks represent the convolutional layers, green blocks
represent dense layers.

FIG. 4. Evolution of the fitted nonlinear detuning parameter μ1
over the course of the model training. GT is the ground truth. The
prior is based on estimation under a (single) Gaussian beam
assumption. The blue shaded area represents the model uncer-
tainty, while the blue line represent the mean prediction (taken
over the model ensemble).
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with the corresponding ground truth shown for comparison.
All the samples shown appear to agree well with the ground
truth. We validated many other prediction samples using
test data, including a few of the worst (out of all the test
data) predictions in terms of the averaged pixel-by-pixel
mean-squared-error (MSE). In most cases, the qualitative

agreement of the predicted density image with the corre-
sponding ground truth image was visually similar to that
shown in Fig 6. The statistical beam moments, including
the beam emittance, can also be calculated from the image
data. Figure 6 shows that the predicted emittance values
agree with the corresponding ground truth to within
10%–20%.
We also investigated the correlation between the loss of

the density plot image and the loss of the reconstructed
projected beam profile, each computed as the mean-
squared error (MSE). Figure 7 shows these two loss values
for each test data point, together with the fit obtained by
linear regression. Note that they are reasonably correlated
(Pearson’s correlation coefficient was 0.53). This means
that the loss in the reconstructed projected beam profile can
serve as a reliability metric for the NN model prediction of
the image. In order to refine the criteria for acceptance of
the model prediction, it is good to check the retention curve
[21]. Figure 8 shows the statistics of the image and profile
MSE for retained test data based on the profile MSE. It
looks desirable to choose retention criteria based on the
profile MSE value that corresponds to 90% of the test data
retention, as the curve shows a “kink” around this point.
However, since a NN tends to be overconfident [22] of its
predictions, it would be better to be more conservative.
Therefore, one may like to choose retention criteria
corresponding to 80%, 70% or lower of the test data
retention. This corresponds to about 0.002, 0.0015 or lower
profile MSE, respectively, for this example.
For further validation of the retention criteria, we applied

the NN to data that is well out of the training data
distribution (OOD). We generated OOD by using a larger
variance for randomization of the simulation, while fixing
the ground truth distribution used for comparison. More
details are provided in Appendix F. Figure 9 shows
predictions of the phase-space density images for several
samples from OOD. Samples meeting the retention cri-
terion (having profile MSE smaller than 0.0015) are
marked by red frames. Note that the red framed samples
that are retained (based on the profile reconstruction loss)

FIG. 7. Loss (MSE) of the predicted density plot image and loss
(MSE) of the reconstructed projected beam profile, shown
together with a linear fit. The Pearson’s correlation coefficient
is labeled. The unit of the image and profile MSE values are the
variances of the image and profile data, respectively, because we
normalized all data by the standard deviation of the data values.

FIG. 8. Retention curve based on test data for the NN model
described in this section. The horizontal axis denotes the retention
percentage of the test data. The two horizontal dashed lines mark
the profile MSE values at 0.0015 and 0.002. The vertical dashed
line denotes 90% retention.

FIG. 6. Tomography using a neural network (NN) model.
Prediction samples are shown in the second and fourth columns,
and the corresponding ground truth in the first and third columns.
The number shown on the top-right of each prediction is the MSE
of the profile reconstruction. The unit of the MSE is the variance
of the data values, because we normalized all data by the standard
deviation of the dataset. The beam emittance (in normalized
units) is calculated based on the image data, and values are
denoted on the bottom right of each image.
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show density plot images that visually agree well with the
ground truth.

VI. TEST ON NONLINEAR INTEGRABLE OPTICS

In this section, we demonstrate application of these
techniques to a virtual machine. We consider the following
4D Hamiltonian [4,23,24]:

H¼1

2
ðP2

XþP2
YþjZj2Þ−τdnℜ

�
Zffiffiffiffiffiffiffiffiffiffiffiffi
1−Z2

p sin−1ðZÞ
�
; ð14Þ

where Z ¼ X − iY and τdn is a dimensionless parameter
(representing a nonlinear magnet strength). Neglecting
chromatic effects, this Hamiltonian is a model of the
nonlinear integrable optics experiment at Fermilab’s
IOTA storage ring [25]. It is designed, in part, to study
the effects of large intrinsic betatron tune spreads on beam
halo formation and collective instabilities through Landau
damping or decoherence [23]. We choose this Hamiltonian
for its strong nonlinearity, which may represent a worst
possible scenario for the applicability of the tomography
methods we presented (neglecting chromatic aberrations,
the beam kicking device’s field variation over the bunch
length, large BPM noise, bunch-by-bunch jitter, etc.).

The independent dynamical (time) variable for the
Hamiltonian (14) is the phase advance associated with
an underlying “bare” linear lattice. We refer to the bare
phase advance over a single turn as μdn, so this parameter
represents the frequency at τdn ¼ 0 for both horizontal and
vertical betatron oscillations. As we will mention later, all
our 2D tomography methods failed on this test as stated,
due to the strong nonlinear transverse coupling in some
regions of the phase space. However, with a simple tweak
of the horizontal detuning, our tomography methods
performed reasonably well.
We use vertical kicks because the horizontal aperture in

(14) is more limited due to the singular points of the potential
at X ¼ �1. In order to find the transformation to normal
form, at least to leading order, we expand Eq. (14) to second
order in Y, considering the vertical dynamics only:

HjX¼PX¼0 ¼
1

2
ðP2

Y þ Y2Þ þ τdnY2 þOðY4Þ: ð15Þ

Using the following type II generating function to define a
canonical transformation [26],

G2 ¼ ð1þ 2τdnÞ1=4Ypy ð16Þ

the transformed Hamiltonian becomes:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 2τdnÞ

p
2

ðp2
y þ y2Þ þOðy4; p4

yÞ: ð17Þ

Therefore, we have the following linear part of the normal
form transformation:

y ¼ ð1þ 2τdnÞ1=4Y; py ¼ ð1þ 2τdnÞ−1=4PY; ð18Þ

where y; py are normal coordinates. For simplicity, we will
call X;PX; Y; PY the bare coordinates.
We used 8 vertical kicks given by J0;k=ϵ ¼ 2þ 2ðk=7Þ

and θk ¼ πðk=8Þ with k∈ f0; 1;…; 7g in normal coordi-
nates, as we have done throughout this paper. We manually
sampled the simulation parameters μdn, τdn, and ϵ such that
the betatron frequencies and detuning parameters are not
very far from the NN training data distribution (see Sec. V
and Appendix F). The betatron frequencies and the detun-
ing parameters are calculated by tracking a single particle at
each designed kick action. This made the nonlinear magnet
strength τdn about 4–10 times smaller than the nominal
design value in the IOTA storage ring, which is τdn ¼ −0.4
[27]. Once a kicked beam is prepared in the normal
coordinates, we (linearly) transform the beam into bare
coordinates to track the particles using the Hamiltonian
Eq. (14) and record the virtual BPM data (at every bare
phase advance μdn) for each kick. Finally, we (linearly)
transform the BPM data back to normal coordinates. Once
the data is prepared, we apply the PM and NN tomography
methods to reconstruct the 2D beam phase space.

FIG. 9. Image prediction (second and fourth columns) and the
corresponding ground truth (first and third column), for samples
from OOD. The samples with beam profile losses smaller than
0.0015 are marked by red rectangular frames. The ground truth
sample beam sizes vary because we randomized the emittance.
The purpose was to follow the domain randomization technique
used to adapt simulated data to a real machine. See Appendix F
for details.
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However, both the PM and NN methods failed to predict
a beam phase-space density that agrees reasonably well
with the ground truth. In the case of the NN method, large
reconstruction losses are observed for all the samples with
different simulation parameter settings: μdn, τdn, and ϵ. This
is mainly because of the nonlinear coupling between x and
y, which we did not include in the model Eq. (13). In order
to address this problem, one approach is to include the
coupling effect on the vertical frequency ωy as follows, and
thus to extend the problem from 2D to 4D tomography:

ωy ¼ μy;0 þ μy;1ΔJy þ μx;1Jx: ð19Þ

This is reasonable unless the detuning term μy;1ΔJy
dominates over the coupling term (which may happen
for very large kick J0=ϵ ≫ 1). Although such an extension
can be done, it requires significant effort, and it is outside
the scope of this paper.
In order to avoid the significant effects of nonlinear

coupling, we added an artificial offset to the horizontal tune
by advancing the betatron phase by Δμx;0=2π ¼ 0.11 each
turn. Although the nonlinear coupling is still present, its
effectmay be less significant since the horizontal and vertical
motions are well-separated in the frequency domain. This is
not an unreasonable assumption, because most storage rings
are designed to have different horizontal andvertical betatron
frequencies to avoid resonances. With the addition of the
artificial detuning, we prepared a few samples of the

simulation parameters: μdn, τdn, and ϵ, and ran the NN
model that we trained with a simple toy model Eq. (C1).
Figure 10 shows the ground truth andmeanNNprediction of
the tomography images for these samples. Note, again, we
see good agreement for samples having small reconstruction
loss. The samples with large reconstruction loss likely
correspond to OOD samples, which may result from non-
linear transverse coupling, the unknown nonlinear trans-
formation to normal form, or from optics parameters fμ0g or
μ1 that are far from the training data.

VII. CONCLUSION

Phase-space tomography methods in 2D using kicked
beam turn-by-turn BPM data were developed and tested on
simulated environments. This was motivated by our work
on theoretical reconstruction of the beam profile along the
kick angle in the limit of large kick offset (compared to the
beam emittance). This theoretical profile reconstruction
requires prior knowledge of the kick action and angle, the
betatron frequency, and the first-order nonlinear detuning
parameter at the value of the kick action. We presented the
theoretical formula and its derivation. A CT method is then
presented, using IRT to combine the estimated profiles
along various angles in the phase-space. However, this
method is again limited by the large kick assumption and
the requirement of prior knowledge. Such limitations can
be alleviated with the methods presented in this paper. First,
we used parameter fitting on simple machine learning and
physics models. We used two models to represent the
beam: The Gaussian mixture model (GMM) and the
particle model (PM), using a finite number of macro-
particles. For both representations of the beam, the dynam-
ics are modeled using a simple but general amplitude
dependent phase rotation [28]. By fitting the model
parameters on the simulated kicked beam TBT BPM data
(based on the amplitude dependent phase rotation model)
we could reconstruct the 2D beam phase-space. However,
the computational speed was shown to be not fast enough
for online applications. Second, we used a supervised
learning method to train a NN model that can predict
the 2D beam phase-space together with a model reliability
metric, based on an Auto-Encoder like input
reconstruction. The theoretically estimated profiles at
chosen angles in phase-space are used as input to the
NN. This method could reconstruct the 2D beam phase-
space quickly and successfully on the simulated kicked
beam TBT BPM data (based on the amplitude dependent
phase rotation model). For a more general test, we used the
highly nonlinear Danilov-Nagaitsev Hamiltonian system
[23] which is a model of one operating mode for the IOTA
storage ring. In this test, we found that 2D tomography is
insufficient when the horizontal and vertical betatron
frequencies are close to each other and the kick action is
not very large compared to the beam emittance. Therefore,
4D tomography that assumes a 4D amplitude dependent

FIG. 10. Tomography images for DN Hamiltonian system with
added horizontal detune. The predictions on the second and
fourth columns and the ground truths on the first and third
columns. The number on top right of the prediction plots are the
profile reconstruction MSE.
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frequency model would be needed. The extension to 4D
would be natural. However, instead of extending the current
work to 4D, we added an artificial horizontal detuning
which can separate the nonlinear transverse coupling effect
in the frequency domain. (Most storage rings are designed
to have different horizontal and vertical betatron frequen-
cies.) With this artificial detuning, we could reconstruct the
phase-space density successfully using the tomography
methods based on physics model fitting (both GMM and
PM) and the NN (trained in a supervised way using the data
from simple amplitude dependent phase rotation model).
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APPENDIX A: DISCRETE FOURIER
TRANSFORMATION KERNEL

Using a regularization trick, the kernel of the discrete
Fourier transformation becomes:

lim
ϵ→0þ

X∞
t¼0

e−ikt−ϵt ¼ 1

2
− lim

ϵ→0þ

i
2
cot

�
k − iϵ
2

�
: ðA1Þ

Using

1

2
cot

�
k
2

�
¼ 1

k
−OðkÞ ðA2Þ

and Sokhotsky’s formula [29],

lim
ϵ→0

1

k� iϵ
¼ ∓iπδðkÞ þ P

1

k
; ðA3Þ

where P represents the Cauchy principal value, we have,
for jkj ≪ 1,

lim
ϵ→0þ

i
2
cot

�
k − iϵ
2

�
¼ −πδðkÞ þ iP

1

k
þOðkÞ: ðA4Þ

Therefore, in the sense of distributions:

X∞
t¼0

e−ikt ¼ 1

2
þ πδðkÞ − iP

1

k
for jkj ≪ 1: ðA5Þ

APPENDIX B: PROJECTED BEAM PROFILE
AT AN ARBITRARY KICK ANGLE

When the beam centroid is kicked to an offset x ¼ x0 and
p ¼ p0 (in normal coordinates) at t ¼ 0, the evolution of
the beam centroid is

hx − ipit ¼
Z

ðx − ipÞeiωtρðx − x0; p − p0Þ dxdp: ðB1Þ

Let ρθðx; pÞ be the phase-space distribution function
viewed from a rotated angle θ such that,

ρθðx; pÞ ¼ ρðx cos θ − p sin θ; p cos θ þ x sin θÞ: ðB2Þ

Also, let the rotation angle be equal to the initial beam
offset angle such that,

x0 − ip0 ¼
ffiffiffiffiffiffiffi
2J0

p
e−iθ: ðB3Þ

Plugging Eqs. (B2), (B3) into Eq. (B1), the beam centroid
reads

hx − ipit ¼
Z

ðx − ipÞe−iθeiωtρθðΔx; pÞdxdp; ðB4Þ

where Δx≡ x −
ffiffiffiffiffiffiffi
2J0

p
. Now, using Eq. (A5) and plugging

in the following,

ωðΔx; pÞ ¼ μ0 þ μ1
ffiffiffiffiffiffiffi
2J0

p
Δxþ � � � ðB5Þ

the beam centroid motion in the frequency domain
becomes:

XT
t¼0

e−ikthx − ipit

¼
ffiffiffiffiffiffiffi
2J0

p
2

e−iθ

þ πe−iθffiffiffiffiffiffiffi
2J0

p jμ1j
� ffiffiffiffiffiffiffi

2J0
p

þ k − μ0
μ1

ffiffiffiffiffiffiffi
2J0

p
�
λθ

�
k − μ0
μ1

ffiffiffiffiffiffiffi
2J0

p
�

þ ie−iθP
Z ð ffiffiffiffiffiffiffi

2J0
p þ ΔxÞλθðΔxÞ
μ0 þ μ1

ffiffiffiffiffiffiffi
2J0

p
Δx − k

dΔx; ðB6Þ

where

λθ ðxÞ≡
Z

ρθ ðx; pÞ dp ðB7Þ

is the projected beam profile along the initial offset angle.
Therefore, in the limit of large initial offset j ffiffiffiffiffiffiffi

2J0
p

=ϵj ≫ 1,
the projected beam profile can be written as:
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λθðxÞ¼
jμ1j
π

ℜ
XT
t¼0

eiθe−iðμ0þμ1
ffiffiffiffiffi
2J0

p
xÞthx− ipit−

jμ1j
π

ffiffiffiffiffiffiffi
2J0

p
2

; ðB8Þ

where ℜ is the real part operator.
On the other hand, when the beam centroid momentum hpi is not available, we find the following:

XT
t¼0

e−ikthxit ¼
ffiffiffiffiffiffiffi
2J0

p
4

e−iθ þ πe−iθ

2
ffiffiffiffiffiffiffi
2J0

p jμ1j
� ffiffiffiffiffiffiffi

2J0
p

þ k− μ0
μ1

ffiffiffiffiffiffiffi
2J0

p
�
λθ

�
k− μ0
μ1

ffiffiffiffiffiffiffi
2J0

p
�
þ i

e−iθ

2
P
Z ð ffiffiffiffiffiffiffi

2J0
p þΔxÞλθðΔxÞ
μ0 þ μ1

ffiffiffiffiffiffiffi
2J0

p
Δx− k

dΔx

þ
ffiffiffiffiffiffiffi
2J0

p
4

eiθ þ πeiθ

2
ffiffiffiffiffiffiffi
2J0

p jμ1j
� ffiffiffiffiffiffiffi

2J0
p

−
kþ μ0
μ1

ffiffiffiffiffiffiffi
2J0

p
�
λθ

�
−

kþ μ0
μ1

ffiffiffiffiffiffiffi
2J0

p
�
− i

eiθ

2
P
Z ð ffiffiffiffiffiffiffi

2J0
p þΔxÞλθðΔxÞ
μ0 þ μ1

ffiffiffiffiffiffiffi
2J0

p
Δxþ k

dΔx. ðB9Þ

Therefore, in the limit of j ffiffiffiffiffiffiffi
2J0

p
=ϵj ≫ 1, and λθð−x − 2μ0

μ1
ffiffiffiffiffi
2J0

p Þ → 0, the projected beam profile can also be written in
terms of hxit as,

λθðxÞ ¼ 2
jμ1j
π

ℜ
XT
t¼0

eiθe−iðμ1
ffiffiffiffiffi
2J0

p
xþμ0Þthxit −

jμ1j
π

ffiffiffiffiffiffiffi
2J0

p
cos2θ: ðB10Þ

which is re-written in Eq. (8). Note that the variable x is
measured along the kick angle, while hxit is the BPM data
in normal form.

APPENDIX C: ILLUSTRATION OF KICKED
BEAM NONLINEAR DECOHERENCE AND

PROFILE MEASUREMENT ON A TOY MODEL

Here we illustrate the application of Eq. (8) to a toy
model which assumes a polynomial action dependent
frequency:

ω ¼ ω0 þ ω1J þ ω2J2=2; ðC1Þ

where ω0 ¼ 2π × 0.2222, ω1 ¼ ω0=500, and ω2 ¼
ω1=500 with J being dimensionless (normalizing all
lengths by the rms beam size).
Given the initial phase-space distribution shown in

Fig. 11, we applied a kick offset and tracked each particle
using the assumed frequency model. Due to phase-mixing,
the beam centroid decays over time as shown in Fig. 12. We

FIG. 11. A randomly generated phase-space density using
multiple Gaussian kernels of randomly chosen means and
covariance matrices. The emittance is ϵ ¼ 1, and dimensionless
(all other length scale variables are normalized accordingly). The
color bar represents the density.

FIG. 12. Illustration of the phase-mixing of the kicked beam.
The kick offset x0 ¼ ϵ is applied, and then each particle is tracked
using the polynomial action dependent frequency ω ¼ ω0 þ
ω1J þ ω2J2=2. On top right of the each plot, t represents the
turn number.
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also added Gaussian noise of the form N ð0; 0.1ϵÞ to the
centroid data.
Figure 13 shows the beam profile prediction using kick

angles θ ¼ 0 and θ ¼ π=2. We tried both large J0=ϵ ¼ 20
and small J0=ϵ ¼ 1 kick strengths. Here, we assumed the
kick strengths, kick angles, frequency and detuning param-
eters are known upon application of Eq. (8). Note that the
prediction is not reliable when the kick strength is not large
compared to the initial beam emittance.

APPENDIX D: DETAILED PROCEDURE
FOR FITTING GMM

Although a large number of Gaussian kernels are good
for better expressibility of the GMM, too many kernels may
not only overfit but also increase numerical complexity.
The parameters we fit are the optics β (the betatron
amplitude), μ0, and μ1, the initial offsets fJ0g and fθg,
and the GMM parameters mg. (We fix σg to reduce the
problem dimension.) We use 100 Gaussian kernels and 8
different kicks that are equally spaced in θ∈ ½0; π� and
J0 ∈ ½2ϵ; 4ϵ�. The procedure we used to realize the high-
dimensional fitting follows.

1. Single Gaussian kernel

First, we used a single isotropic Gaussian kernel to
estimate the optics parameters β, fμ0g and μ1, and the initial
offsets fJ0g and fθg. The nonlinear detuning parameter μ1 is
estimated by using a linear fit over ðJ0; θÞ pairs of 8 kicks.
The following objective is minimized using a global opti-
mizer called differential evolution [30]:

X8
k¼1

XT
t¼0

ð
ffiffiffi
β

p
hxi1;k;t − hXik;tÞ2: ðD1Þ

Here the capital X represents the physical coordinate (in
contrast to the normal coordinate x), the index 1 represents a
singleGaussian kernel, k represents the index of the kick, and

hxi1;k;t ≡ℜ
Z

ðx − ipÞeiωtN ðx − xk; IÞdxdp ðD2Þ

is the analytically expressible centroid with xk representing
the initial offset of the kth kick. The number of turnsT for this
fit is chosenwhen the envelope of the BPM data has decayed
by half due to the nonlinear decoherence. For tomography
based on theGMMmodel, we use the resulting estimate (that
is obtained under the single Gaussian kernel assumption) as
the starting point of the following procedure for fast fitting
through a local minimization algorithm (specifically, the
Nelder-Mead algorithm [31]). In addition, we used this initial
guess to construct prior belief for MAP estimation.

2. Matching to theoretically estimated profiles

Second, we used 100 Gaussian kernels to build the GMM
model. In order to reduce the number of parameters, we fixed
the covariance σg for half of the Gaussian kernels to the
estimated beam size obtained from the procedure in the
previous subsection. The covariance for the remaining
Gaussian kernels was set to one-quarter of this value. This
is because we expected the large covariance kernels to
capture the overall shape of the beam density, while the
small covariance kernels may resolve finer details in the
density. We start with the estimated parameters β, fμ0g and
μ1, and the initial offsets fJ0g and fθg fixed, and we fit only
the GMM parameters: fmgg on the following objective:

Ekðλθk − λGMM;θkÞ2; ðD3Þ

where Ek represents the average over the kicks, λθk is the
theoretically estimated beam profile along the kick angle θk
using Eq. (8), and λGMM;θk is the beam profile obtained for
the GMM by adding all the kernel’s projections. Although
the kick strengths are not large enough to satisfy Eq. (4), the
resulting estimation of GMM parametersmg can be used for
the starting point of the next procedure for fast fitting using a
local minimization algorithm (specifically, the Nelder-Mead
algorithm).

3. Matching to TBT BPM data

Third, we further tune the mean mg of each Gaussian
kernel while fixing the rest of the parameters, on the
following objective:

Ek;tð
ffiffiffi
β

p
hxiGMM k;t − hXik;tÞ2: ðD4Þ

Finally, we tune all the parameters further using MAP
estimation. We constructed the log of the prior in the
following way,

FIG. 13. Beam profile prediction. The shaded histogram
represents the ground truth beam profile, while the lines represent
the predicted beam profile using Eq. (8). The kick angles θ ¼ 0
and θ ¼ π=2 correspond to the x and p directions, respectively.
Left: small kick strength J0=ϵ ¼ 1. Right: large kick strength
J0=ϵ ¼ 20.
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log Pprior ¼ −Ek
ðμ0 − μ̃0Þ2

2σ2μ
−
ðβ − β̃Þ2
2σ2β

− Ek
ðJ0;k − J̃0;kÞ2

2σ2J
− Ek

ðθk − θ̃kÞ2
2σ2θ

; ðD5Þ

where the tilde represents the prior mean that is estimated
from the procedure of subsection D 1. The normalization
factors σ2μ, σ2β, σ

2
J and σ2θ can be chosen based on one’s

fidelity to this prior mean. Here these values are chosen
based on the decoherence time (since the number of turns
affects the accuracy of the frequency measurement) and the
estimated BPM noise, based on the tail part of the BPM
data. The log of the likelihood is constructed as follows:

logPlike¼−Ek;t
ð ffiffiffi

β
p hxiGMMk;t−hXik;tÞ2

2σ2X
−
log σ2X
2

; ðD6Þ

where σX represents the size of the BPM noise, which we
also regard as a model parameter. Equations (D5) and (D6)
constitute the posterior, and by maximizing it, we finally
estimate the phase-space density as shown in Fig 2.

APPENDIX E: DETAILED PROCEDURE
FOR FITTING PM

In the case of tomography using GMM, we used a point
estimation (through MAP) due to the high computational
complexity required. In the particle model, with the differ-
entiable simulator and gradient decent, we could reduce the
training time by 10 times (for a single model) compared to
the GMM case. Therefore we could train multiple (spe-
cifically 8) models for uncertainty quantification (with 8
times the computational cost). In order to estimate the
prediction mean and model uncertainty in a Bayesian way
[32], we performed the following procedure.

1. Prior samples based on the single
Gaussian kernel assumption

First, as have done in the case of GMM, we use a single
Gaussian kernel assumption for initial model parameter
estimation. For each model, we prepared 1024 initial
particles by random sampling from a normal distribution,
thereby constructing a Gaussian beam. Then we fit the
optics parameters μ0 and μ1 and kick information fJ0g and
fθg for each model using a stochastic global optimizer
(specifically, we used the differential evolution algorithm
[30]) while fixing the particles’ locations. These model
parameters are regarded as a sample from prior belief that is
based on the single Gaussian kernel assumption. For
simplicity, we write a prior sample of the model parameters
as ψ sample, which includes particle locations, optics param-
eters and kick information.

2. Model parameter anchoring around
the prior samples

Now we train each model while regularizing the model
parameters through anchoring [33] as follows:

lossanchor ¼ λanchor
X
ψ

ðψ − ψ sampleÞ2=σψ ; ðE1Þ

where we used the variance of the prior samples for σ2ψ , and
λanchor is a weight for the anchoring loss that we decided
experimentally. In addition, we also added the following
consistency loss:

lossconsistency ¼ λconsistencyðμ1 − slope½fμ0g; fJ0g�Þ2; ðE2Þ

where the ‘slope’ represents the linear regression coeffi-
cient, so that the detuning parameter is consistent with the
slope of the frequencies fμ0g against the kick actions fJ0g,
and λconsistency is a weight for the consistency loss. These
regularization losses are added to the following loss that is
the mean squared difference between the (virtually) mea-
sured and model predicted BPM data.

FIG. 14. Evolution of the fitted frequencies fμ0g at each kick action fJ0g over the course of the NN model training. GT is the ground
truth. The prior is the estimate based on the Gaussian beam assumption. The shaded area represents the model uncertainty.
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lossBPM ¼ Ek;tðhxiPM;k;t − hxiBPM;k;tÞ2 ðE3Þ

where hxiPM;k;t the PM predicted BPM data, k represent the
kick number, and t is the turn number. Once all the model
trained separately, we aggregate them to get mean pre-
diction of optics parameters and phase-space density from
particle locations. The model uncertainty is measured by
looking at the quantiles of predictions. Figures 14 and 4
show the evolution of optics parameters over the course of
the model training. Note that as the training progresses so
that the simulation particles locations move to form near
ground-true phase-space density, the predicted optics
parameters also move close to the ground truth values
starting from the prior samples (that were estimated under
single Gaussian kernel beam assumption).

APPENDIX F: DETAILED PROCEDURE
FOR TRAINING NN

1. Data generation

We train the NN model in a supervised way. The model
performance will strongly depend on the data used for
training. We simulate virtual BPM data using the second
order polynomial frequency toy model given in Eq. (C1). In
order to adapt the NN model, trained using simulation data,
to the real machine measurement data (sim-to-real), we use
the so-called domain randomization technique. For each
dataset, we sample an initial particle distribution (using
multiple Gaussian kernels of randomly-chosen size and
location), and we randomly sample an emittance value. We
then scale the particles’ locations so as to match the
sampled emittance value. We then track the particles to
generate TBT BPM data using the model in Eq. (C1),
where the coefficients ω0, ω1, and ω2 are also randomly
sampled. The kick strengths and angles are also randomly
sampled around the desired value. In summary, the sim-
ulation parameters to generate the training data are ran-
domly sampled in the following way:

ϵ ∼N ð1; σϵÞ; ðF1Þ

ωi ∼N ðω̄i; σωi
Þ; ðF2Þ

J0;k ∼N ðJ̄0;k; σJ0;kÞ; ðF3Þ

θk ∼N ðθ̄k; σθkÞ; ðF4Þ

where N ðm; σÞ represents the normal distribution of mean
m and standard deviation σ. The mean values should be the
expected parameter values for the experiment as designed.
(Here, we choose arbitrary values.) The standard deviations
should be chosen large enough to cover the uncertainty of
one’s belief in the expected parameter values of the
experiment. For example, one may design an experiment
to get input data for the NN model using one of the kick

actions J̄0;k at a kick angle θ̄k. However, the beam kicking
device’s calibration, the beam energy, or the Twiss param-
eters at the BPM and kick locations may not be correctly
known or available by measurement. Such uncertainty must
be covered by the size of σJ0;k or σθk, so that the training
data contains the possible machine status and experimental
design. In this proof-of-concept test, we used the following
values:

ϵ̄ ¼ 1 σϵ ¼ 0.2

ω̄0 ¼ 2π × 0.222 σω0
¼ 0.002

ω̄1 ¼ ω̄0=500 σω1
¼ ω̄1

ω̄2 ¼ ω̄1=500 σω2
¼ 10ω̄2

J̄0;k ¼ 2þ 2ðk=7Þ σJ0;k ¼ 0.02

θ̄k ¼ πðk=8Þ σθk ¼ 2 ðdegreeÞ.

ðF5Þ

(The same mean values are used to generate the assumed
ground truth BPM data in Secs. III and IV.) For each
sample, we generate virtual BPM data (with added white

FIG. 15. Encoder. Numbers represent the array shape of the
layer. Slim arrows denote the links connecting the fully connected
layers. Bold arrows indicate the connections between convolution
layers. We omit the convolution filter, strides, padding size, and
number of filters for simplicity but can be roughly inferred from
the array shape changes. Double-lined arrows represent reshaping
and concatenation.
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noise of size σ ¼ 0.1), and calculate the theoretical estimate
of the projected beam profile. The projected beam profile is
calculated by plugging the nominal parameters (that is,
from Eq. (F5), the expected machine status ω̄i and
experimental design of the kick strengths J̄0;k and angles
θ̄k) into Eq. (8). Note that this estimate does not represent
the true projected beam profile. In addition, the kick
strength is not large enough for Eq. (8) to be reliable.
Nevertheless, this way of preprocessing the variable length
of BPM data in the time domain into a fixed length of
projected beam profile data in the frequency domain makes
the NN input data consistent, regardless of the length of the
TBT BPM data, the exact machine status, and the error of
the kick strengths and angles. Also, for each sample, we
calculate the phase-space density from the particle data to
obtain a density plot for the NN output data. These data (the
estimated profiles for each kick, the first few turns of BPM
data for each kick, and the density plot) constitute the input
and output of NN model training. The total number of
datasets we prepared is 65536. The preparation of such a
large amount of data (which took about a week) was possible
due to the simplicity of the simulation model Eq. (1).

2. NN structure

We tried a few different NN structures, but only the
U-Net [34] like structure worked. The schematic drawing in
Fig. 5 illustrates the shallowest branches of the U-Net.
Figure 15 shows the encoding part of NN. The projected
profiles are processed through the deep convolution layers
and then flattened and concatenated with the first 4 turns of
the BPM data which are also processed through deep fully
connected layers. Note it has 5 different latent layers
represented by green boxes. The latent layers branched
out from different levels of network depth signifying the
U-Net like structure. Figures 16 and 17 show the decoding
part for the phase-space density plot image and projected
profile reconstruction, respectively. The single data pass
over the NN took 0.5 sec with an Intel Xeon 2.2 GHz CPU.

3. NN training

As we have a large amount of data and a complex NN,
we exploited a tensor processing unit (TPU) [35] for a
majority of training and GPU for the last few epochs
through the Kaggle [36] environment. Out of the 65536

FIG. 16. Decoder for the phase-space density plot image. The
green layers on the leftmost column are the same as the rightmost
column shown in Fig. 15. Numbers represent the array shape of
the layer. Slim arrows denote the links connecting the fully
connected layers. Bold arrows indicate the connections between
convolution or transpose convolution layers. We omit the con-
volution filter, strides, padding size, and number of filters
for simplicity but can be roughly inferred from the array
shape changes. Double-lined arrows represent reshaping and
concatenation.

FIG. 17. Decoder for projected profile reconstruction. The green
layers on the leftmost column are the same as the rightmost column
shown in Fig. 15. Numbers represent the array shape of the layer.
Slim arrows denote the links connecting the fully connected layers.
Bold arrows indicate the connections between convolution or
transpose convolution layers. We omit the convolution filter,
strides, padding size, and number of filters for simplicity but
can be roughly inferred from the array shape changes.Double-lined
arrows represent reshaping and concatenation.
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datasets, we used 2048 datasets for testing and another
2048 datasets for validation. We choose a small number of
validation datasets in order to minimize the computational
cost required for validation loss evaluation and implemen-
tation simplicity (due to the limited memory) of training.
Due to implementation difficulties with TPU and limited
memory issues, we used only randomly selected 6144 data
out of 61440 training data for every 64 epochs when
training with TPU. This caused large training loss fluc-
tuation every 64 epochs. However, this could expedite the
training procedure compared to GPU while minimizing
implementation effort. In addition, we used batch sizes of
128 and 16 while using TPU and GPU respectively due to
memory limitations. A larger batch size is desirable to
reduce batch-to-batch distribution shift while a small batch
size can reduce over-fitting through stochasticity of the
gradient. We used ADAM optimization [37] and a learning
rate scheduler for the first 64 epochs which reduced the
learning rate from 4 × 10−5 to 5 × 10−5 within 64 epochs.
This was an implementation mistake as opposed to reduc-
ing the learning rate slowly over the whole training epoch.
After 64 epochs, the learning rate was fixed to 5 × 10−5.
The mean squared loss over normalized data is used for
training criteria. Figure 18 shows training history. The
spike around epoch 64 may be from the training data
change (random selection of 6144 data out of 61440
training data) and implementation mistake regarding the
learning rate scheduler. The last 240 epochs are trained
using GPU using the whole training data, and each epoch in
the last 240 epochs sees 61440=6144 times more data than
the previous epochs. The training and validation loss
increase at the last 240 epochs is not well understood.
Maybe the smaller batch size of 16 (compared to 128 when
using TPU) is leading to training instability.
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