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Current experiments investigating radiation reaction employ high energy electron beams together with
tightly focused laser pulses in order to reach the quantum regime, as expressed through the quantum
nonlinearity parameter χ. Such experiments are often complicated by the large number of latent variables,
including the precise structure of the electron bunch. Here we examine a correlation between the electron
spatial and energy distributions, called an energy chirp, investigate its significance to the laser-electron
beam interaction and show that the resulting effect cannot be trivially ignored when analyzing current
experiments. In particular, we show that the energy chirp has a large effect on the second central moment of
the electron energy, but a lesser impact on the first electron energy moment or the photon critical energy.
These results show the importance of improved characterization and control over electron bunch
parameters on a shot-to-shot basis in such experiments.
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I. INTRODUCTION

Recent advances in laser wakefield acceleration (LWFA)
have opened up the possibility for all-optical Compton scat-
tering experiments for probing radiation reaction (RR) in
strong laser fields, now bordering the quantum regime [1,2].
This is made possible by the increased control of both the
laser [3–5] and the electron source [6–11], as well as impro-
vements to their combination in collisional setups [12–15].
The strong-field quantum regime is particularly enticing as

it presents a largely unexplored domain [16–18], with several
upcoming experimental campaigns aimed at exploring
this regime [19–24]. The quantum regime is defined through
the quantum nonlinearity parameter χ ¼ jFμνpνj=mcES,
with quantum behavior emerging as χ approaches unity,
where F is the electromagnetic field tensor, p is the
electron four-momentum, ES is the Sauter-Schwinger field

strength [25–27], m is the electron mass and c the speed of
light. Reaching the quantum regimes thus requires a combi-
nation of high field strength and high particle energy, and
upcoming experiments are expected to rely on tight laser
focusing in order to reach sufficiently high field intensities.
One of the first milestones in exploring the quantum

regime experimentally is to measure the effect of radiation
reaction to such accuracy that it becomes possible to
discriminate between different RR models [1,2]. To do
so requires good knowledge of the electron beam and laser
pulse properties, but because these may fluctuate substan-
tially between individual shots it is often not possible to
evaluate the interaction on a shot-to-shot basis [28],
necessitating a more statistical approach [29,30].
There are several theoretical studies that investigate

various aspects of electron-laser experiments directly
related to radiation reaction, describing effects such as
stochastic broadening [31,32], straggling [33–36], and
quenching [37]. A number of studies are aimed at increas-
ing the amount of information gained per shot [38], e.g., by
utilizing an astigmatic spot [39], angular profiling
of radiation emission [40,41] or finding an optimal param-
eter range [42]. Nevertheless, electron-laser experiments
accommodate a large number of unknowns, many of which
are often omitted in numerical and theoretical investiga-
tions in order to maintain a reasonable scope.
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One such aspect relates to the phase space of the electron
beam. While the energy spectrum of the electron beam is
often examined, the same cannot be said for the longitudinal
density profile. Even then, any potential correlation between
longitudinal position and energy has remained largely over-
looked, and most studies model the electron beam as
homogeneous [43]. For many cases this is perfectly valid,
as most parts of the electron beam can often be expected to
experience the same field strengths, albeit at different points
in time.However, and aswe shall show, this is no longer valid
when considering tightly focused laser fields, where the
important parameter is the electron beam length L relative to
the Rayleigh range zR. Moreover, electron beams generated
through LWFA are accelerated across an extended injection
event, which often leads to a relatively broad energy
spectrum that also contains a longitudinal chirp [44,45].
The collision of such an electron bunch with a tightly

focused laser pulse opens the possibility for different spectral
ranges to experience different field strengths. The focus of
this paper is to ascertain the size of this effect on the outcome
of a laser-electron beam interaction and to determine themost
important parameters for the effect. In Sec. II we analyze the
problem analytically by studying the difference in field
strength felt by two longitudinally displaced electrons,
identifying the most important parameters. In Sec. II we
perform a large number of single-particle simulations of
monochromatic microbunches, focusing on mean electron
energy and energy spread, and show the difference between
the most common RR models. In Sec. IV we show how the
energy chirp of a finite-sized electron beam affects the mean
energy, standard deviation and photon critical energy after
interacting with a tightly focused laser pulse.

II. MOTIVATION

In order to determine the conditions under which an
energy chirp may affect the interaction between a laser pulse
and an electron beam, we begin by deriving a simple
analytical estimate. We do this by imagining two electrons
copropagating along the z-axis a distance L apart, and
counterpropagating to a tightly focused laser pulse, as shown
in Fig. 1.
To first approximation, the field strength of a focused

Gaussian laser pulse propagating in the negative z-direction
can be obtained from the paraxial approximation as

E ¼ E0

w0

wðzÞ exp
�
−

r2

wðzÞ2
�
exp

�
−
�zþ ct

cτ

�
2
�
; ð1Þ

where we have left out the phase factor and where

wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

q
; ð2Þ

and zR ¼ πw2
0=λ ¼ 4λf2#=π is the Rayleigh range, r the

transverse distance, λ the laser wavelength, w0 the laser

waist, and f# the f-number. For the two electrons colliding
head-on with the laser pulse the relative difference in
maximum field strength felt by the two, again not account-
ing for the laser phase, is to first order given by

Eback

Efront
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16z2R þ ðLþ 2cΔTÞ2
16z2R þ ðL − 2cΔTÞ2

s
; ð3Þ

where ΔT is the time delay between the electrons’ center of
mass and the laser pulse at optimal focus. Equation (3) is
obtained under the assumption that the laser pulse duration
is negligible (cτ ≪ zR). In the other extreme, where
cτ=zR → ∞, Eback=Efront → 1 as both particles experiences

FIG. 1. Schematic of a tightly focused laser pulse colliding with
two electron microbunches, which are separated by a distance L,
with a synchronization offset of cΔT. The two bunches can have
different energies and since they feel different field strengths,
their relative position will affect the outcome of the interaction.

FIG. 2. Ratio of the maximum field amplitude experienced by
two electrons L distance apart and with a synchronization offset
of cΔT between the center of mass of the two electrons and the
laser pulse. The laser pulse duration is set to cτ ¼ 3zR, which
with f=2-focusing and λ ¼ 0.8 μm is equivalent to 12 μm (40 fs).
Contours are presented for a ratio of

ffiffiffi
2

p
and 2 (solid, white) as

well as for the analytical approximation of Eq. (3) (dotted, white),
the latter corresponding to cτ ¼ 0. The positions of the optima
are also shown for each value of L=zR (solid, black) as well as for
the analytical approximation of Eq. (5) (dotted, black).

J. MAGNUSSON et al. PHYS. REV. ACCEL. BEAMS 26, 104002 (2023)

104002-2



the maximum amplitude at focus and that any envelope
tapering becomes imperceptible. For a laser pulse of finite
duration the relation between zR, cτ, cΔT and L becomes
more complicated, but for common parameter values, as
presented in Fig. 2 with cτ ¼ 12 μm (40 fs) and zR ¼ 1 μm
(f=2), Eq. (3) remain a decent estimate. We can further
derive an expression for the approximate values of cΔT=zR
that maximises Eq. (3) for a given L=zR,

cΔT=zR ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL=2zRÞ2 þ 4

q
; ð4Þ

giving us an expression for the value of this maximum as a
function of the distance between the two electrons L,

max
Eback

Efront
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4zR=LÞ2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð4zR=LÞ2
p

− 1

s
: ð5Þ

For example, assuming perfect synchronization between
the laser pulse and the leading electron (cΔT ¼ −L=2) the
trailing electron will feel an amplitude of Eback ¼ Efront=

ffiffiffi
2

p
for L ¼ 2zR ≈ 8 μm under the laser and focusing con-
ditions specified above.

III. MICROBUNCH SIMULATIONS

To investigate the effect an energy chirp of the electron
bunch has on the resulting particle statistics, we perform a
large number of single-particle Monte Carlo simulations
using the code CIRCE. In order to qualify the effect, we
restrict ourselves to varying two primary parameters of
interest: the electron initial energy (ε0) and the temporal
delay (ΔT) of the laser pulse. More accurately, we simulate
Gaussian-shaped microbunches of electrons with both
length and width of 1 μm (FWHM), a mean initial energy
of ε0 and an energy spread σ0 ¼ 25 MeV (FWHM). Only
head-on collisions are considered, and the impact param-
eter of the bunch is exclusively set to zero.

The spatial dependence of the field is treated as a tightly
focused Gaussian beam with waist size w0 and Rayleigh
length zR ¼ πw2

0=λ. Going beyond the paraxial approxima-
tion, the fields are computed up to fourth-order in the
diffraction angle (w0=zR), following Ref. [46]. Although
the f-number is a principally important parameter that affects
the interaction primarily through zR, we have elected to limit
ourselves to f=2-focusing in order to maintain a reasonable
scope of the paper. Similarly,we restrict ourselves to a typical
laser wavelength of λ ¼ 0.8 μm and laser pulse duration of
cτ ¼ 12 μm(40 fs) FWHM.Furthermore, all simulations are
carried out for a fixed peak a0 ¼ 30, corresponding to a laser
energy of 2.7 J.
The simulations are generally performed for three differ-

ent models of radiation reaction: (1) classical radiation
reaction (CRR) in the form of the Landau-Lifshitz radia-
tion reaction (LL) [47]; (2) semiclassical radiation reaction
(SCRR), in the form of LL but with the Gaunt factor
correction [31,48,49]; and (3) quantum radiation reaction
(QRR), in the form of QED radiation reaction under the
LCFA approximation [50–52].
The results of the simulations are collected in the form of

energy spectra and moments, which for each set of param-
eters in the parameter scan has been averaged over 105 initial
electrons. For the electrons we restrict ourselves to the two
lowest energy moments, the mean energy ε ¼ hεii and the
standard deviation σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðεi − εÞ2i

p
(εi ¼ γimc2 is the

energy of electron i), as they are sufficient to capture most
of the spectral information of the microbunches. We use first
and second (central) moment synonymously with mean and
standard deviation throughout this paper, respectively. We
also capture the generated photon spectra, which will be
analyzed further in the next section.
The mean electron energy and standard deviation can be

seen in Fig. 3 for the three different RR models after the
interaction. Here we see that the energy losses are

FIG. 3. Mean electron energy ε (top panels) and standard deviation σ (bottom panels) after colliding an electron microbunch with a
tightly focused (f=2) laser pulse, presented as functions of pulse delay cΔT and initial (mean) electron energy ε0. The results are shown
for three different models of RR; classical (left panels), semiclassical (middle panels), and quantum (right panels).
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maximized for cΔT ¼ 0 when the microbunch and laser
pulse are perfectly synchronized at focus, as is expected.
The fact that the losses are symmetric, across positive and
negative delays, is a direct consequence of the symmetric
laser pulse envelope. Looking closely, the mean energy loss
of SCRR and QRR appear identical and slightly lower than
that of CRR. However, the main difference between the
three models can be seen in the second central moment,
where QRR is accompanied by a significant broadening
due to quantum stochasticity [31,32] and SCRR by a
radiative cooling [53,54].

With this data, we may now look at the difference in
energy loss between two copropagating microbunches
longitudinally separated by a distance L. The scenario is
identical to that described in Sec. II and shown in Fig. 1.
For simplicity, both microbunches are assumed to have an
initial (mean) energy of ε0 ¼ 1 GeV. The relative differ-
ence in energy loss for the two microbunches is shown in
Fig. 4 as a function of distance L and pulse delayΔT for all
three RR models. Here we see that the dependence on L
and ΔT, unsurprisingly, largely resembles that shown for
the difference in maximum pulse amplitude experienced by
the two bunches, presented earlier in Fig. 2. The main
difference between the three models is that CRR predicts a
greater difference in mean energy loss between the two
bunches, than the semiclassical and quantum models do. In
numerical terms, differences of 20%–30% is common for
moderate bunch distances and synchronization offsets.
The difference in energy spread between the two micro-

bunches is similarly presented in Fig. 5 for the three RR
models. The classical and semiclassical models show a
similar dependence on L and ΔT, but with the SCRR
predicting slightly smaller differences between the two
bunches. The QRR model, on the other hand, predicts even
smaller differences than the SCRR model at moderate
synchronization offsets (cΔT ∼ 3zR), but this difference
extends to much greater pulse offsets (cΔT ≳ 6zR) where
the CRR and SCRR models predicts negligible differences
in energy spread between the two bunches. For moderate
distances and offsets, the difference in energy spread is
typically 5%–10% relative to the initial energy.

IV. THE EFFECT ON A FINITE-SIZED
CHIRPED ELECTRON BEAM

Although comparing the effect of different radiation
reaction models between two spatially displaced

FIG. 4. Difference in mean energy loss between two electron
microbunches with initial mean energy of ε0 ¼ 1 GeV, as a
function of distance L between the bunches and pulse delay ΔT,
and normalized to ε0. The values are symmetric with respect to
ΔT and so CRR is presented on the left of the dashed line and
SCRR/QRR (which are here identical) are shown on the right.
Contour lines are show for values of 0.1, 0.2, and 0.3 (white), as
well as the position of the maximum for each choice of L (black).
Dotted lines on the right show the corresponding CRR values,
mirroring the solid lines and contours on the left.

FIG. 5. Difference in energy standard deviation between two electron microbunches with initial mean energy of ε0 ¼ 1 GeV, as a
function of distance L between the bunches and pulse delay ΔT, and normalized to ε0. The values are symmetric with respect to ΔT and
so CRR is presented on the left, SCRR in the middle, and QRR is shown on the right. Contour lines are show for values of 0.02, 0.04,
0.08, and 0.10 (white), as well as the position of the maximum for each choice of L (black). Dotted lines in the middle and on the right
show the corresponding CRR values, mirroring the solid lines and contours on the left.
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microbunches can be instructive, as was done in the previous
section, such a setup is not readily available experimentally.
In typical high intensity laser-beam interaction experiments,
electron beams are generally both longer and contains a
broader energy spectrum. Furthermore, we have thus far not
fully discussed the role played by the initial energy, apart
from that shown in Fig. 3. While an analysis of how the
difference in initial energy between the two microbunches
affects the interaction outcome could have be made, we have
elected to instead consider a more realistic setup.
By combining several microbunches, as studied in the

previous section, it is possible to effectively construct a
finite sized electron beam of both variable length, longi-
tudinal profile and energy spectrum. Moreover, by corre-
lating the microbunch position (through cΔT) with its
energy, it also becomes possible to impose a tailored energy
chirp, although at the expense of control over the longi-
tudinal profile. For simplicity we here model the electron
beam as being Gaussian in shape, both in position as well as
energy. More accurately, and in order to reduce the number
of confounding factors, we model the beam in position-
energy space according to a bivariate Gaussian distribution

fðx⃗Þ ¼
exp

�
− 1

2
ðx⃗ − μ⃗Þ⊺Σ−1ðx⃗ − μ⃗Þ

�
2π

ffiffiffiffiffiffijΣjp ; ð6Þ

x⃗ ¼
�
x

E

�
; μ⃗ ¼

�
μx

μE

�
; ð7Þ

Σ ¼
�

σ2x ρσxσE

ρσxσE σ2E

�
; ð8Þ

where μx (μE) is the positional (energy) mean of the
electron beam, σx (σE) the longitudinal (energy) standard
deviation, and ρ is a dimensionless chirp parameter on the
range ½−1; 1�. The main benefit of this model for the
electron beam distribution is that its marginal distributions
are entirely independent of ρ. Under the assumption that
both marginal distributions are either known or constant,
this allows us to study the remaining effect due to chirp.
With ρ ¼ 0 energy and position are perfectly uncorrelated
while ρ ¼ �1 indicates a perfect correlation, signifying a
linear chirp.
We here simulate the interaction with a chirped electron

beam and a tightly focused laser pulse, and perform a
parameter scan across both chirp ρ and synchronization
offset ΔT. The electron beam is for the entire scan
simulated with an initial mean energy of ε0 ¼ 1 GeV
and a spectral width of 100 MeV (FWHM). The laser
pulse parameters remain unchanged from the previous
section. The mean electron energy and standard deviation
are computed for each simulation in the parameter scan and
the results are presented in Fig. 6 for all three RR models
and for two different electron beam lengths L of zR (4 μm)

and 3zR (12 μm), both given in FWHM. It should be
noted that because of the symmetry of both the laser and
electron temporal envelopes the results are symmetric for
cΔT → −cΔT, ρ → −ρ. The figure shows that the chirp
almost exclusively affects the second central energy
moment for all three models, and does so about twice as
much in the CRR and SCRR models compared to QRR.
Furthermore, the CRR and SCRRmodels have a substantial
overlap in the outcome space and are only really separable
for very short synchronization offsets (jcΔTj < 12 μm), or
for very short electron beam lengths (L < 4 μm). The QRR
model is more easily distinguishable from the other two,
but primarily through the second central moment as it is
identical to the SCRR model in the first moment.
We also analyse the photon spectrum generated in the

interaction. In order to condense it down to a singular
number, the photon power spectra are fitted to the functional
form x1=3e−ðx=εcritÞC , where εcrit is the photon critical energy
and C is a fitting parameter1 used to compensate for the fact
that the obtained photon spectra are broader than that of a
monoenergetic electron beam. The results are presented in
Fig. 7, as before for all three models, but now in terms of the
mean electron energy and photon critical energy and for two
electron beam lengths L of 3zR (12 μm), and 5zR (20 μm)
(FWHM). Here it can be seen that the chirp has a much

FIG. 6. Contours of the outcome space, in electron energy mean
and standard deviation, for a two-dimensional parameter scan
across chirp ρ and synchronization offset cΔT for three different
radiation reaction models: classical (orange), semiclassical
(green), and quantum (red). Two different electron beam lengths
are shown: 3zR ð12 μmÞ (solid contour) and zR ð4 μmÞ (trans-
parent contour). The inset numbers indicate values of constant
synchronization offset, displayed as the largely vertical dotted
contour lines, in units of micrometers (jcΔTj=μm ¼ 6, 12, 18, 24,
30, 45). Similarly, the largely horizontal solid contour lines
indicate ρ ¼ 0.9 (top), ρ ¼ 0 (middle), and ρ ¼ −0.9 (bottom).
The electron beam has an initial mean energy of ε0 ¼ 1 GeV and
a spectral width of 100 MeV (FWHM) (σ ¼ 42 MeV).

1C is fitted for each spectrum separately.
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smaller effect on the photon critical energy than it did on the
electron second central energy moment. This is also the
motivation for the choice of longer beam lengths, in order to
make the variation more visible. Similarly to before, we also
see that it is primarily for larger synchronization offsets that
the difference between different RR models become indis-
tinguishable. However, unlike for the second central moment,
the photon critical energy is mainly comparable between the
SCRR and QRR models.
Finally, in Fig. 8 we present how a change in the initial

spectral width to 300 MeV (FWHM) affects the outcome.
Unsurprisingly, a broader initial energy spectrum enhances
the effect of the chirp and primarily in the second central

energy moment, such that the QRR model now partially
overlap the outcome space of the CRR and SCRR models.
For synchronization offsets cΔT greater than about 20 μm
it may thus become impossible to distinguish, in the first
and second electron energy moments alone, between the
three models on a shot-to-shot basis, unless more infor-
mation is known about the chirp.

V. CONCLUSIONS

We have investigated the role of energy chirp in the
interaction of a high-energy electron beam and a tightly
focused laser pulse, identified which parameters are the
most significant and demonstrated the variation across
different radiation reaction models, of relevance for current
and future experimental campaigns. We generally find that
the effect of the energy chirp is predominantly expressed
through the second central energy moment. We have also
shown that the strength of the effect is dependent on the
synchronization between the laser pulse and the electron
beam, as well as the length and spectral width of the
electron beam.
For certain parameter choices, e.g., when the synchro-

nization between the laser pulse and electron beam is not
perfect, the outcome space of the different radiation
reaction models begin to overlap. The semiclassical and
quantum models are near identical in first moment, but
shows significant separation in the second central moment
up to moderate synchronization offsets, so long as the
spectral width of the electron beam is not too large. The two
models also produce some separation in photon critical
energy, but again show significant overlap for greater
synchronization offsets. The classical radiation reaction
model on the other hand, distinguishes itself from the other
two in both the first energy moment and photon critical
energy, although more so through the latter. For greater
synchronization offsets the classical model becomes practi-
cally indistinguishable from the semiclassical model in all
but the photon spectrum.
Taken together, the effect of the chirp is not so large as to

inhibit the distinguishability of the three models, but
sufficiently large to have an impact, in particular on a
shot-to-shot basis and more so the larger the synchroniza-
tion offset. However, these issues can in general be over-
come by gathering statistics across multiple shots or
through more detailed knowledge of the energy chirp, such
that the parameter space can be constrained. Furthermore,
the photon spectrum can be used as an important discrimi-
nator as it is largely unaffected by the chirp.
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