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A new self-consistent semianalytical method for calculating the stationary beam-induced voltage in the
presence of arbitrary filling patterns and impedance sources in electron storage rings is presented. The
theory was developed in space domain with resonator wake functions and in frequency domain with
arbitrary impedance functions. The SIRIUS storage ring parameters were used to benchmark the results,
demonstrating good agreement between the two approaches and with macroparticle tracking simulations.
Additionally, a different approach to simulate the beam-loading compensation of active rf cavities was
investigated in frequency domain, proving to be a more generic description than the methods generally
used. The impact of broadband impedance on the longitudinal equilibrium was straightforwardly evaluated
with the frequency-domain framework, without intermediate steps such as fitting broadband resonators or
convolving short-range wakes with bunch distributions. Finally, a simple study of Touschek’s lifetime
improvement with a passive higher harmonic cavity is presented.
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I. INTRODUCTION

Many developments in semianalytical methods have
been made to calculate the equilibrium longitudinal
bunch distributions in electron storage rings as a faster
alternative to tracking codes. One of the early motivations
was related to the equilibrium of a uniform filling in a
double-rf system, where the effect of a passive higher
harmonic cavity (HHC) was investigated. In this case, the
beam-induced voltage has an analytical formula that can be
added to the main voltage and the bunch distribution can be
obtained. However, the codependence between these two
quantities requires the calculations to be iterated until
convergence. The bunch profile can be accounted for in
the calculation of the beam-induced voltage in passive
HHCs with a real [1] or complex [2] form factor.
Synchrotron light sources often operate with nonuniform

filling patterns for different reasons, for example, to allow
for time-resolved experiments and to mitigate ion and
coupled-bunch instabilities. Time-consuming macropar-
ticle tracking simulations were the first attempt to study

the inhomogeneous beam loading (also referred to as
transient beam loading) in the presence of passive
HHCs. Simplified approaches considered each bunch as
a pointlike macroparticle [3–5] or as macroparticles with
Gaussian real form factors [6]. Initially, semianalytical
methods were also non-self-consistent [7], assuming point-
like bunches to iteratively calculate the induced voltage.
A self-consistent calculation of the inhomogeneous beam
loading was proposed in Ref. [8], with an iterative matrix
formulation based on the linearization of the energy
balance equation in the presence of a passive HHCmodeled
as a resonator. In this solution, complex form factors were
assigned for each bunch.
The problem for arbitrary filling patterns was revisited in

Ref. [9], with the development of explicit formulas for the
induced voltage of a narrowband resonator, resulting in a
system of coupled Haïssinski equations. Newton’s method
was applied to iteratively solve the problem. The theory
was extended in Ref. [10] to include multiple resonators
and an algorithm for compensating the main rf cavity beam
loading was proposed. A discussion on the effect of
cavities’ higher order modes and short-range wakefields
was presented as well. Some difficulties were reported in
the convergence of the Newton iteration scheme for higher
currents when beam-induced voltages are higher. In
Ref. [11], phasor notation was applied to describe the
induced voltage by resonators, and Newton’s iteration
method was also employed to solve the system of equa-
tions. In this case, convergence was improved when, on
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each iteration, the distributions were updated based on a
linear combination of previous and present distributions,
with a random coefficient as weight. The Jacobian-based
iterative solution method proposed in Refs. [9,10] was
reappraised in Ref. [12], where the equations were for-
mulated as a fixed-point problem. Anderson’s acceleration
method was introduced to enhance convergence, proving to
be a robust and fast algorithm for calculating the equilib-
rium bunch distributions for general settings of filling
patterns and resonator wakefields.
In this paper, we present two semianalytical approaches

in space domain (SD) and frequency domain (FD) to obtain
the beam-induced voltage. The SD formulation is similar in
some aspects to the theory presented in Ref. [9]. The main
difference is the fact that we considered the most generic
wake function for a resonator, instead of assuming the
approximated formula for a large Q factor. Additionally,
we employed complex variables to develop the equations
in SD, resulting in compact expressions accessible for
numerical implementation and with simple interpretation.
The main novelty of this work lies in the calculation of the
beam-induced voltage with an FD framework, which
allows for more general impedance models, not restricted
to the resonator case. With this framework, broadband
impedance and higher-order modes of rf cavities can be
easily incorporated. The natural inclusion of broadband
impedance sources is a very important feature since it
allows the usage of impedance models obtained from
analytical and semianalytical calculations, for which the
wake function is not available or difficult to be obtained.
Moreover, the usage of impedance functions helps to
establish a more realistic description of active rf cavities
with a low-level rf (llrf) feedback control and then
evaluate its effects on the beam equilibrium. We will
address the question raised in Ref. [10] on whether the
proposed algorithm was an accurate model of the feed-
back mechanism and discuss its equivalence to a particular
controller type.
The paper is organized as follows: in Sec. II, we present

the theory to calculate the beam-induced voltage with two
approaches. Methods to model active rf cavities and
schemes of beam-loading compensation are discussed in
Sec. III. In Sec. IV, we briefly review the Haïssinski
equation to solve for the longitudinal bunch distributions
given the beam-induced voltage. Section V presents the
application of the developed methods considering the
SIRIUS storage ring parameters. Macroparticle tracking
was used to benchmark the results for a nonuniform filling
pattern. In the Appendix, the theory was applied to the case
of uniform filling and narrowband resonators to reproduce
a well-known formula for the beam-induced voltage.

II. BEAM-INDUCED VOLTAGE

Throughout this report, we will work with a set of global
reference systems for the longitudinal coordinate z of

relativistic electrons in a storage ring, with origin at the
center1 of the corresponding rf bucket n on an arbitrary turn
r, and z > 0 for trailing particles. Besides, the bucket index
is defined such that, if l > n, then bucket l trails bucket n.
In a particular coordinate system where n ¼ 0 and r ¼ 0,
we can express the beam distribution, which extends
through the entire real line and is one-turn periodic, as

λtðzÞ ¼
X∞
k¼−∞

λðzþ kC0Þ; ð1Þ

where C0 is the ring circumference and λðzÞ is the one-turn
distribution, given by

λðzÞ¼ 1

It

Xh−1
l¼0

Ilλlðz−lλrfÞ; with It ¼
Xh−1
l¼0

Il > 0; ð2Þ

where h is the harmonic number of the ring, λrf ¼ C0=h
is the rf wavelength, Il ≥ 0 is the current of the lth
bunch, and λlðzÞ is its distribution, which is assumed to be
nonzero2 only for z∈D ⊂ ½−λrf=2; λrf=2� and normalized
to unity, which implies the one-turn distribution is also
normalized to unity.
With this setup, the longitudinal voltage VðzÞ induced by

this current distribution under the influence of the longi-
tudinal wake function W0

0ðzÞ is [13]

VðzÞ ¼ −ItT0

Z
∞

−∞
dz0λtðz0ÞW0

0ðz − z0Þ; ð3Þ

where T0 ¼ C0=c is the revolution period and c is the
speed of light. Substituting Eq. (1) into Eq. (3) and
assuming the integral converges, we can change the order
of the summation with the integral. Besides, since the
choice of the turn used as origin of the coordinate system is
arbitrary, we can make the following change of the
integration variable z0 → z0 − kC0, which yields

VðzÞ ¼ −ItT0

X∞
k¼−∞

Z
∞

−∞
dz0λðz0ÞW0

0ðz − z0 þ kC0Þ: ð4Þ

Inserting Eq. (2) in the equation above, changing the
order of the summation with the integral and making the
additional change of variables z0 → z0 þ lλrf , we get

1The center of an rf bucket is the synchronous phase consid-
ering only the energy gain by the main rf cavities and the energy
loss by synchrotron radiation.

2The distributions are not exactly zero outside a rf period, but for
electron beams, it typically fall off exponentially for z sufficiently
larger than the bunch length, justifying the assumption.

MURILO B. ALVES and FERNANDO H. DE SÁ PHYS. REV. ACCEL. BEAMS 26, 094402 (2023)

094402-2



VðzÞ ¼ −T0

X∞
k¼−∞

Xh−1
l¼0

Z
∞

−∞
dz0Ilλlðz0Þ

×W0
0ðz − z0 þ kC0 − lλrfÞ: ð5Þ

Since the choice of the reference bucket was arbitrary,
we could get an equivalent result using the center of the nth
rf bucket as a reference for the coordinate system. This is
performed with the change of variables z → zþ nλrf in
Eq. (5), which reads

VnðzÞ ¼ −T0

X∞
k¼−∞

Xh−1
l¼0

Z
∞

−∞
dz0Ilλlðz0Þ

×W0
0ðz − z0 þ kC0 − ðl − nÞλrfÞ; ð6Þ

where we introduced the notation VnðzÞ ¼ Vðzþ nλrfÞ to
denote that the beam-induced voltage is calculated with the
nth bunch as a reference for the coordinate system.

A. Space domain

The most generic longitudinal wake function for a
resonator is given by [13]:

W0
0ðzÞ ¼ 2αRse−αz=cHðzÞ

×
h
cosðω̄Rz=cÞ −

α

ω̄R
sinðω̄Rz=cÞ

i
; ð7Þ

where HðzÞ is the Heaviside step function [14], α > 0, and
ω̄R ≥ 0. When applied to a cavity, these two parameters are
related to the quality factor Q and resonant frequency ωR

by the expressions α ¼ ωR=2Q and ω̄R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − α2

p
,

where we note that Q must be larger than ½.
Let GðzÞ be a complex function defined as

GðzÞ ¼ HðzÞe−κz; κ ¼ ðα − iω̄RÞ=c; ð8Þ

then the wake function of Eq. (7) can be rewritten as

W0
0ðzÞ ¼ 2αRs

�
Re½GðzÞ� − α

ω̄R
Im½GðzÞ�

�
: ð9Þ

Substituting this resonator model into Eq. (6), we have

VnðzÞ ¼ −2αRsT0

X∞
k¼−∞

Xh−1
l¼0

Z
∞

−∞
dz0Ilλlðz0Þ

×

�
Re½GðζklnÞ� −

α

ω̄R
Im½GðζklnÞ�

�
; ð10Þ

where ζkln ¼ z − z0 þ kC0 − ðl − nÞλrf was introduced.
Since the distributions λlðzÞ are real, if we define the

following complex function

KnðzÞ ¼
X∞
k¼−∞

Xh−1
l¼0

Z
∞

−∞
dz0Ilλlðz0ÞGðζklnÞ; ð11Þ

then the beam-induced voltage for the nth bunch can be
compactly written as

VnðzÞ ¼ −2αRsT0

�
Re½KnðzÞ� −

α

ω̄R
Im½KnðzÞ�

�
: ð12Þ

The causality property of the wake function is encoded in
the function GðzÞ by means of the Heaviside step function.
Nevertheless, this property should be explicitly manifested
in the integration and summation limits to further simplify
our expressions. This can be done with the following
arguments: (i) The bunch distributions λlðzÞ are assumed to
be zero outside the interval ½−λrf=2; λrf=2�, so the limits of
integration in Eq. (11) could be restricted to this range.
With this consideration, we note that ζkln < 0 for k < 0
and the summation overturns can be reduced to non-
negative values of k. (ii) For l ¼ n and k ¼ 0, i.e., the
self-induced voltage of a particular bunch in the present
turn, causality is obeyed when z0 ≤ z, limiting the integra-
tion domain to ð−∞; zÞ. (iii) Taking l < n, which means
the source bunch l leads the trailing bunch n, then k ¼ 0
should be considered in the summation. For l > n, only
k > 0 should be accounted.
Applying these considerations to Eq. (11) results in

KnðzÞ ¼ e−κz
�
InSnðzÞ þ

Xh−1
l¼0

MnlAnlIl

�
; ð13Þ

where SnðzÞ is related to the effect of the bunch n on itself
in the present turn (k ¼ 0), given by

SnðzÞ ≔
Z

z

−∞
dz0λnðz0Þeκz0 ; ð14Þ

the terms Anl are given by

Anl ≔
X∞

k¼f0;l<n
1;l≥n

νk ¼
� 1

1−ν ; l < n
ν

1−ν ; l ≥ n
; ð15Þ

where ν ¼ e−κC0 and Mnl is defined as

Mnl ≔ eκðl−nÞλrf
Z þ∞

−∞
dz0λlðz0Þeκz0 ; ð16Þ

which depends on the bilateral Laplace Transform [15] of
the bunch distribution evaluated at −κ, which in turn can be
identified as SlðzÞ in the limit that z tends to infinity.
Moreover, since λlðzÞ is zero outside the interval
D ⊂ ½−λrf=2; λrf=2�, then the following is valid:
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lim
z→∞

SlðzÞ ¼ Slðλrf=2Þ:

Equation (13) has a straightforward numerical imple-
mentation when we consider a uniformly discretized z
domain for each bucket:

zj ¼
λrf
a

�
j
N
−
1

2

�
; j ¼ 0;…; N − 1; ð17Þ

where 1 ≤ a∈R and N ∈N should be chosen appropri-
ately, depending on the typical bunch length, resonator
frequency, and damping rate.
Numerical problems related to floating-point over-

flow may arise in calculations when high-frequency
(ωR≳100GHz) low-Q resonators are involved, due to
the exponential with the positive real argument in Mnl
when l > n. In these cases, it is recommended to use the
identity gðxÞex ¼ elog½gðxÞ�þx to avoid such problems, thus
MnlAnl ¼ elogðMnlÞþlogðAnlÞ and the term−κC0 compensates
κðl − nÞλrf . For even higher frequencies, the calculation of
SnðzjÞmayhave similar issues and the same approach can be
used for the integrand. Besides, the integral can be suitably
truncated once the integrand approaches zero, which will
generally be the case, given that the bunch distributions fall
off faster than the exponential term eκz

0
.

It is also straightforward to include an arbitrary number
of resonators in the calculations, since, by linearity, the
induced voltages for each resonator can be added.
However, the calculation time grows linearly with the
number of resonators, given that all quantities from
Eqs. (12) and (13) must be reevaluated as the resonator
parameters change.
It is possible to further simplify3 Eq. (13) for a conven-

ient interpretation of the beam-induced voltage:

KnðzÞ¼ e−κz
�
InSnðzÞþ

Xh
l¼1

νl=h

1−ν
Sn−lðλrf=2ÞIn−l

�
: ð18Þ

In this expression, we note that the voltage acting on the
nth bunch is the sum of its own action on the current turn
and the effect of previous passages of all bunches, includ-
ing itself, with an appropriate phase and decay factor. It also
facilitates to check the continuity of the voltage between
adjacent buckets:Knðλrf=2Þ ¼ Knþ1ð−λrf=2Þ. Interestingly,
Eq. (18) is free from the numerical issues related to positive
arguments in exponential.

B. Frequency domain

An arbitrary longitudinal wake functionW0
0ðzÞ is related

to a longitudinal impedance ZðωÞ by the inverse Fourier
transform [13]:

W0
0ðzÞ ¼

1

2π

Z
∞

−∞
dωZðωÞe−iωz=c: ð19Þ

Inserting this relation into Eq. (4) reads

VðzÞ ¼ −
ItT0

2π

X∞
k¼−∞

Z
∞

−∞
dz0

Z
∞

−∞
dωλðz0Þ

× ZðωÞe−iωðz−z0þkC0Þ=c: ð20Þ

Rearranging the exponential terms, we can apply the
Poisson sum formula to the summation over turns:

Xþ∞

k¼−∞
e−ikωT0 ¼ ω0

Xþ∞

p¼−∞
δðωþ pω0Þ; ð21Þ

where δð·Þ is the Dirac delta distribution and ω0 ¼ 2π=T0.
With this change, the integral over ω can be easily
performed. The expression simplifies to

VðzÞ ¼ −It
Xþ∞

p¼−∞
Z�ðpω0Þeipω0z=c

×
Z

∞

−∞
dz0λðz0Þe−ipω0z0=c; ð22Þ

where we used the property Zð−ωÞ ¼ Z�ðωÞ, with �
denoting the complex conjugate.
The numerical implementation of Eq. (22) requires

truncation of the infinity sum over harmonics p. Two
alternative approaches will be presented to properly select
the harmonics. One is based on the discrete Fourier trans-
form (DFT) of the one-turn distribution, which considers all
harmonics up to a specific threshold. The other is based on a
selection of the most relevant harmonics, depending on the
filling pattern and impedances under consideration. While
the first method is generally much faster, since it benefits
from the use of the fast Fourier transform (FFT) algorithm,
the second one is better suited when the impedance is
composed of a few narrowband peaks.

1. Implementation with DFT

Consider the case of the discretized z coordinate from
Eq. (17) for each bucket with a ¼ 1, thus z covers one rf
period withN points. This z coordinate can be used for all h
buckets in one turn, concatenating it h times to form a
discretized coordinate with hN elements, extending to the
domain T ¼ ½−λrf=2; C0 − λrf=2� in which the one-turn
distribution λðzÞ is defined. For a sufficiently small spacing
Δz ¼ λrf=N, we can approximate the integral from Eq. (22)
by quadrature to

3The calculation steps are as follows: (i) insert the explicit
expressions for Mnl and Anl into Eq. (13); (ii) rewrite
ν ¼ e−κC0 ¼ e−κhλrf ; (iii) separate the terms l < n and l ≥ n
in the summation; (iv) for the sum with l ≥ n, re-index the
summation variable l0 ¼ l − h; (v) use the property Il�h ¼ Il
and λl�hðzÞ ¼ λlðzÞ; (vi) identify that both summands are equal
and unify the sums; and (vii) re-index the summation variable
l0 ¼ n − l.
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Z
T
dz0λðz0Þe−ipω0z0=c ≈ eπip=hΔz

XhN−1

j¼0

λðzjÞe−2πi
pj
hN: ð23Þ

To establish notation, the DFT of a sequence of N real
numbers x ¼ ½x0; x1;…; xN−1� and the inverse discrete
Fourier transform (IDFT) are defined as

Xk ¼Ffxgk ¼
XN−1

n¼0

xne−2πikn=N; ∀ k∈Z; ð24Þ

xn ¼ F−1fXgn ¼
1

N

XbN=2c

k¼−bðN−1Þ=2c
Xke2πikn=N; ð25Þ

where b·c is the floor operation. Note that, even though
the DFT is defined for all k∈Z, only a sequence of N
consecutive terms is needed to compute the IDFT.
With those definitions, the summation in Eq. (23) can be

identified as the DFT of the sequence ½λðzjÞ�. HenceZ
T
dz0λðz0Þe−ipω0z0=c ≈ eπip=hΔzF fλðzÞgp:

Applying this result to Eq. (22) for the discretized
coordinate zn, we obtain

VðznÞ ¼ −ItΔz
X∞
p¼−∞

Z�ðpω0ÞFfλðzjÞgpe2πi
pn
hN; ð26Þ

where the phase terms e�πip=h nicely canceled each other.
Considering that the grid spacing was properly chosen,

the minimum and maximum frequencies calculated by the
DFT, −bðhN − 1Þ=2cω0 and bhN=2cω0, should be large
enough so the bunch distribution does not have any
significant contribution from frequencies outside this inter-
val. With that in mind, we can truncate the infinite sum over
p in Eq. (26) to the limits of the IDFT, yielding

VðznÞ ¼ −ItC0F−1fZ�ðpω0ÞFfλðzjÞgpgn; ð27Þ

where hNΔz ¼ C0 was applied since Δz ¼ λrf=N.

2. Relevant harmonics selection

Starting from Eq. (22), we can apply the definition of the
one-turn distribution from Eq. (2) and rearrange the
exponential terms to get

VnðzÞ ¼ −
Xþ∞

p¼−∞
Z�ðpω0Þeipω0ðzþnλrfÞ=c

×
Xh−1
l¼0

Z
∞

−∞
dz0Ilλlðz0Þe−ipω0ðz0þlλrf Þ=c: ð28Þ

Observing that the terms in the sum over p become their
conjugate for p → −p and considering that only a subset

P ⊂ ½0;∞Þ will be kept in the sum, Eq. (28) can be
transformed into

VnðzÞ ¼ −2Re
�X
p∈P

Z�ðpω0Þeipω0z=ce2πipn=h

×
Xh−1
l¼0

Ilλ̂
�
lðpω0Þe−2πipl=h

�
; ð29Þ

where

λ̂lðωÞ ≔
Z þ∞

−∞
dz0λlðzÞeiωz0=c ð30Þ

is the Fourier transform of the longitudinal distribution.
The determination of a subset P that keeps the truncation

error small can be done as follows: (i) calculate the DFT of
the filling pattern Ib ¼ ½I0; I1;…; Ih−1�, (ii) sample the
impedance at harmonics p∈Pmax ¼ ½0; 1;…; pmax�, where
pmax must be larger than the maximum relevant frequency,
depending on the distribution and impedance under con-
sideration, and (iii) determine the subset

P ¼ fp∈PmaxjξðpÞ ≥ ξming; ð31Þ

where ξðpÞ ¼ jZðpω0ÞFfIbgpj and ξmin ∈R is a mini-
mum threshold. Including the filling pattern frequency
spectrum is important because for arbitrary fills, the beam
samples, the impedance at revolution harmonics, and the
most relevant modes might be nontrivial. The threshold can
be set as ξmin ¼ max ½ξðPmaxÞ�ε, where ε can be made as
small as needed so that no considerable change is observed
in the equilibrium solution.
One drawback of this implementation, compared to the

DFT approach, is that the Fourier transform of h bunch
distributions for all p∈P must be evaluated via numerical
integration. This process has a time complexity of
OðhNjPjÞ, where jPj denotes the cardinality of P, while
the computation of the one-turn distribution DFT has a
complexity of O½hN logðhNÞ�. On the other hand, the
harmonics selection approach allows a free choice of the
discretization interval [any a ≥ 1 in Eq. (17)], which can
improve accuracy for some cases. Note that the calculations
with the SD framework have a time complexity of
OðhNNRÞ, where NR is the number of resonators.4

III. ACTIVE rf CAVITIES

For active rf cavities, the total voltage inside the cavity,
V t, is the sum of the generator voltage, Vg, supplied by an
external power source, and the beam-induced voltage, Vb,
commonly called beam-loading. In general, Vg is varied

4Time complexity discussions are appropriate for the limit of
large numbers. In this case, for large values of N, h, NR, and jPj.
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through the action of feedback loops such that V t is kept
close to a constant reference value, Vr, in a narrow
bandwidth around the center frequency ωc. We will assume
in the next steps that ωc is a multiple of the revolution
frequency, but not necessarily a multiple of the main rf
frequency ωrf.
In tracking simulations, it is common to simulate the

beam-loading compensation scheme with realistic models
of the feedback system [16,17]. However, in equilibrium
simulations, the time dependence of the system is neglected
and very idealized models are generally used, which do not
take into account the system delays or the effect of the
system on neighboring revolution harmonics. In this
section, we will discuss some conventional methods to
simulate the beam-loading compensation and present an
approach, with straightforward implementation in the FD
framework, which allows for realistic simulation of llrf
feedback systems that are typically used to control the
voltage in active cavities.

A. Least squares minimization

A scheme to calculate the generator voltage parameters is
to minimize the following difference for each bucket:

χ2n ¼
Z

λrf=2

−λrf=2
dz½Vg;nðzÞ þ Vb;nðzÞ − Vr;nðzÞ�2; ð32Þ

where Vb;nðzÞ is the beam-loading voltage for bucket n,
which can be calculated using the impedance or wake-
function model for the cavity and the techniques presented
in Sec. II. The reference and generator voltages are given by

Vr;nðzÞ ¼ Re½V̂reiωcðzþnλrf Þ=c�;
Vg;nðzÞ ¼ Re½V̂geiωcðzþnλrfÞ=c�;

where we made use of the notation introduced in Eq. (6) to
take bucket n as a reference. Note that, if ωc is a multiple of
ωrf , then both voltages have the same phase relation for all
buckets. The phasors are defined by the respective ampli-
tudes and phases with

V̂r ¼ Vreiðπ=2−ϕrÞ and V̂g ¼ Vgeiðπ=2−ϕgÞ; ð33Þ

where ϕr is the reference phase.
The minimization of Eq. (32) with respect to the

amplitude and phase of the generator voltage can be
rewritten as a linear problem with

Vg;nðzÞ¼A sin

�
ωc

c
ðzþnλrfÞ

�
þB cos

�
ωc

c
ðzþnλrfÞ

�
;

where A ¼ Vg cosðϕgÞ and B ¼ Vg sinðϕgÞ are free param-
eters. With this setup, the minimization problem can be
formally written as

ðÃ; B̃Þ ¼ argmin
ðA;BÞ

Xh−1
l¼0

χ2l: ð34Þ

The numerical implementation of this method is straight-
forward and will not be presented here.5

B. Phasor compensation

The beam-loading voltage phasor at the center frequency
ωc can be calculated as

V̂bðωcÞ ¼
2

C0

Xh−1
l¼0

Z
λrf=2

−λrf=2
dzVb;lðzÞe−iωcz=c; ð35Þ

where we observe that the combination of the sum with the
integral is equivalent to an integration along the whole
storage ring, which guarantees that only the harmonic p ¼
ωc=ω0 will influence the phasor. Note that the numerical
implementation of Eq. (35), as well as Eq. (32), requires
a ¼ 1 in the discretization defined by Eq. (17). In that way,
no other harmonic of the beam loading influences the
compensation scheme.
With the phasors for induced and reference voltages

calculated, the generator voltage phasor can be set as

V̂g ¼ V̂r − V̂bðωcÞ: ð36Þ

It is possible to demonstrate that this method is equivalent
to the least squares minimization method presented
previously.

C. Closed-loop impedance

While the two previous methods of calculating the beam
loading of active cavities can be implemented either in SD
or FD, the next one is particular for the FD approach. In this
framework, it is possible to set Vg ¼ Vref and simulate the
compensation by using the effective impedance of the
cavity seen by the beam in the presence of a llrf control
loop [17–19]:

ZclðωÞ ¼
V tðωÞ
IbðωÞ

¼ ZðωÞ
1þ TðωÞZðωÞ ; ð37Þ

where ZðωÞ is the open-loop impedance of the cavity,
which can be modeled as the impedance of an equivalent
RLC circuit [13]

5An equivalent approach was used in Ref. [10], with the
derivation of analytic expressions for the Jacobian taking into
account the beam response in front of the changing parameters of
the generator. In our implementations, we noted that a simple
numeric estimation of the Jacobian, without accounting for the
changes in Vb, was enough to reach convergence.
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ZðωÞ ¼ Rs

1þ iQðωR
ω − ω

ωR
Þ ; ð38Þ

where Rs andQ are the cavity shunt impedance and quality
factor. TðωÞ is the rf plant transfer function apart from the
cavity impedance. Thus, the overall open-loop transfer
function is LðωÞ ¼ TðωÞZðωÞ.
A simple model for ZclðωÞ is obtained by letting

TðωÞ → δðω − ωcÞ, which assumes perfect compensation
of the beam-loading component at the control loop fre-
quency, since ZclðωcÞ¼ 0, and the loop is transparent for all
other frequencies (ZclðωÞ ¼ ZðωÞ; ∀ ω ≠ ωc). It can be
shown that thismodel is equivalent to themethods presented
previously if only static beam loading is considered.6

To simulate a more realistic feedback, one can consider
the following model for the rf plant transfer function:

TðωÞ ¼ CðωÞKe−iðωτd−ϕÞ; ð39Þ

which consists of overall gain K and delay τd, a controller
CðωÞ, and a phase ϕ that can be adjusted such that
ϕ ¼ ωcτd, i.e., the overall phase is zero at the control
frequency ωc.
Considering purely proportional feedback, CðωÞ ¼ kp, it

is possible to show that the flat response for the closed-loop
system is obtained by setting the feedback gain to [20]:

1

kp;fK
¼ 2

π

�
R
Q

�
ωrfτd; ð40Þ

which will result in ZclðωcÞ ¼ 1=ðkp;fKÞ.
The proportional-integral (PI) controller is widely used

in digital llrf systems. Generally, these systems down-
convert the rf signal and then adjust the generator voltage
amplitude and phase by applying the control law on the
digitized quadrature components of the signal in the
baseband. There are several techniques to accomplish this,
whose detailed modeling and description are beyond the
scope of this work. However, a very simplified model of
this type of controller, which does not take into account
nonlinear effects nor the analog-to-digital and digital-to-
analog conversions, is presented below:

CðωÞ ¼ kp þ
ki

iðω − ωcÞ
; ω ≥ 0; ð41Þ

where ki is another free parameter. The domain restriction
to non-negative frequencies and the term ðω − ωcÞ are
related to the upconversion of the integrator applied in the
baseband. The relation Cð−ωÞ ¼ C�ðωÞ must be used to
evaluate the transfer function for negative frequencies. This
controller model also strongly suppresses the beam loading
at the control frequency, but, different from the previous
methods, it allows for the evaluation of the control system
impact on neighboring revolution harmonics. In practice,
this effect will largely depend on the specificities of each
system, such as the strength of kp and ki, the filters that are
used to limit the bandwidth of the controller or even other
factors such as the unmodeled dynamics. However, in
principle, it should be possible to improve the model of the
rf plant of interest and use the corresponding closed-loop
impedance on the FD framework to have a reasonable
characterization of the effect of llrf control loop on
equilibrium parameters.

IV. EQUILIBRIUM BUNCH DISTRIBUTIONS

The equilibrium longitudinal distribution of bunch n,
λnðzÞ, in an electron storage ring is given by the Haïssinski
equation [21]:

λnðzÞ ¼ An exp

�
−
Φnðλ; zÞ
αcσ

2
δ

�
; with ð42Þ

Φnðλ; zÞ ¼ −
1

E0C0

Z
z

0

dz0½eV t;nðλ; z0Þ − U0�; ð43Þ

where λ ¼ λðzÞ is the equilibrium one-turn distribution,
given by Eq. (2), σδ is the equilibrium relative energy
spread, An is a normalization constant, αc is the momentum
compaction factor, E0 is the ring nominal energy, e > 0 is
the elementary charge, U0 is the energy loss per turn from
synchrotron radiation and

V t;nðλ; zÞ ¼ Vg;nðzÞ þ Vb;nðλ; zÞ

is the total voltage, written in terms of the generator voltage
and the beam-induced voltage at the nth bunch, given
by Eq. (6).
Equation (42) can be solved numerically by different

methods, for example, calculating the self-consistent dis-
tribution with fixed-point algorithms [12] or with a
Jacobian-based algorithm as Newton’s method [9–11]. In
this work, we employed Anderson’s algorithm to enhance
fixed-point iterations, and we refer to Ref. [12] and its
references for more information on this subject.
To determine the convergence of the iterative process, it

is convenient to define a functional Δ∶ RhN ×RhN → R
(N is the number of points on the z grid) that measures the
difference of two one-turn distributions λðz0Þ and ηðz0Þ by

6Dynamic beam loading will also contain frequencies that are
not multiple of revolution harmonics, such as multiples of the
synchrotron frequency, which will contribute to the calculation of
the cost function defined in Eqs. (32) and (34) and the phasor of
Eq. (35) since these components are not orthogonal to the ωc
component in the integration and summation domains. On the
other hand, they would not be accounted for the generator voltage
in this closed-loop impedance method. This scenario, however, is
outside the scope of this work since we are concerned only with
the equilibrium state.
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Δðλ; ηÞ ¼ max
n

Δnðλn; ηnÞ; with ð44Þ

Δnðλn; ηnÞ ¼
Z

λrf=2

−λrf=2
dz0jλnðz0Þ − ηnðz0Þj: ð45Þ

The iterative process can be terminated at iteration k if
the last two distributions are sufficiently close, i.e., if
ΔðλðkÞ; λðk−1ÞÞ < Δmin is satisfied, where Δmin is a con-
vergence parameter.

V. APPLICATIONS FOR SIRIUS

We will discuss in this section some interesting cases to
benchmark the formulas presented previously and also to
highlight the advantages of using the FD over the SD
approach. The numerical implementation was carried out
in PYTHON3 and the code is open to access [22]. The solution
of the Haïssinski equation was computed with fixed-point
iterations accelerated by Anderson’s algorithm [12].
Gaussian distributions for all bunches were always taken
as the initial condition. The results from semianalytical
methods for a nonuniform filling pattern were benchmarked
against a macroparticle tracking code that was also imple-
mented in PYTHON3 [22]. The implementation is similar to
the one described inRef. [7], computing the time evolution of
the longitudinal dynamic variables of several macroparticles
in each rf bucket in the presence of resonatorwakefields,with
the effects of radiation damping and quantum excitation
taken into account.We followed the strategyof tracking just a
few macroparticles per bunch at the initial turns to speed up
computing time. Then the number was gradually increased
by oversampling the existing particles with a small random
variation of their coordinates.
In all semianalytical simulations reported in this work,

we used N ¼ 2001 and a ¼ 1 in Eq. (17) to discretize the z
coordinate. The relaxation parameter in Anderson’s accel-
eration method was fixed at the value of 0.1 and provided
fast convergence for all evaluated cases. It was sufficient to
consider a linear combination of three previous distribu-
tions to update the distribution for the next iteration. In
the notation established in Ref. [12], we set m ¼ 3 and
βk ¼ 0.1. It was checked that the convergence criteria of
Δmin ¼ 10−8 was a good tradeoff to obtain a reliable fixed-
point solution while reducing the total number of iterations.
Regarding the tracking simulations, we adhered to the
following schedule for increasing the number of particles:
100 particles per bunch in the first 50,000 turns; then 1000
particles per bunch in the following 20,000 turns; and
10,000 particles per bunch in the final 10,000 turns. All
calculations were performed on the same personal com-
puter with quite modest hardware configurations: an eighth
generation Intel Core i7 processor, 32 GB of RAM
memory, and no graphics processing unit capabilities.
The SIRIUS storage ring, a fourth-generation synchro-

tron light source built and operated by the Brazilian

Synchrotron Light Laboratory (LNLS) in Campinas,
Brazil [23], was used to exemplify the application of
the formulas developed in the previous sections. The main
parameters for the machine are described in Table I. We
could not compare the presented simulated results with
experimental data since the SIRIUS storage ring is
operating with a temporary normal conducting PETRA
seven-cell rf cavity and the third-harmonic cavity (3HC) is
not installed yet. The definitive rf system for SIRIUS will
have two superconducting CESR-B MCs and a super-
conducting passive 3HC, according to the parameters
presented in Table I.

A. Benchmarking

1. Uniform filling

First, we simulated the case of nominal current in
uniform filling with a superconducting passive 3HC mod-
eled as a resonator, following the parameters from Table I.
Under these conditions, all bunches are equivalent and
there is an analytical formula for the beam-induced voltage
in the resonator, given by Eq. (A9), which was used to
benchmark the calculations. We considered that formula in

TABLE I. Main parameters for SIRIUS storage ring.

Parameter Symbol Value

Energy E0 3 GeV
Nominal current It 350 mA
Circumference C0 518.39 m
Harmonic number h 864
Momentum compaction factor α 1.645 × 10−4

Energy loss per turn (with IDs) U0 870 keV
Relative energy spread σδ 8.436 × 10−4

Natural rms bunch length σz;0 2.6 mm

rf frequency frf 499.667 MHz
Number of MCs NMC 2
MCs total voltage NMCVMC 3.0 MV
MC geometric factor ðR=QÞMC 89 Ω
MC unloaded quality factor Q0;MC 2 × 109

External quality factor Qext 1.58 × 105

Cavity coupling factor βc 12657
MC detuninga ΔfMC −4.9 kHz
Number of HHCs NHHC 1
HHC rf harmonic ωHHC=ωrf 3
HHC geometric factor ðR=QÞHHC 87.5 Ω
HHC quality factor Q0;HHC 4 × 108

HHC flat-potential
voltage ratio

VHHC=NMCVMC 0.317

HHC detuningb ΔfHHC 45 kHz
aCalculated to minimize the reflected power.
bTo provide the flat-potential harmonic voltage in uniform

filling.
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the fixed-point iteration to solve for the corresponding
longitudinal distribution, which we will denote as λAðzÞ.
The resulting distribution centroid is −0.23 mm and the
rms bunch length is 11.88 mm, yielding a bunch length-
ening factor of 4.6 with respect to the natural bunch
length. The main contribution to the induced voltage in
the 3HC comes from its impedance at the fundamental
harmonic 3ωrf . The result computed with the FD frame-
work taking only the 3ωrf mode into account has an
agreement of ΔðλA;λ3ωrf

FD Þ≈7×10−12, which was expected
given that both models are very similar in terms of the
approximations involved. For the result from implemen-
tation with DFT, the agreement is ΔðλA; λDFTFD Þ ≈ 1.5 ×
10−3 and for the result from SD method ΔðλA; λSDÞ≈
1.7 × 10−3. The equivalence between all equilibrium
bunch profiles for uniform fill was confirmed in our
results even though it was never assumed a priori.
A small systematic difference between the SD and FD

frameworks was observed, with value of ΔðλSD;λDFTFD Þ≈
3×10−4. In our tests, this difference seems to be insensitive
to the number of points considered in the z discretization
and its origin is not clear. Nevertheless, we believe that this
level of disagreement between methods is too small to have
a considerable impact for practical purposes.
The computation time is also an important metric for the

comparison of the several approaches discussed here.
Considering the hardware described previously, the evalu-
ation of the analytical formula for the induced voltage took
20 ms=step. For the FD framework, the method of selecting
the most relevant harmonics (only one, in this case) was
slightly faster (70 ms=step) than the implementation with
DFT (100 ms=step). The SD calculation was also quite fast
(130 ms=step), since just one resonator was considered.
The numerical iterations of Anderson’s acceleration algo-
rithm contribute to approximately 270 ms=step. The ana-
lytical implementation and the FD with mode selection
converged after 56 iterations. The calculation with FD
using DFT converged in 52 iterations and for the SD
framework convergence was achieved after 72 iterations.
Overall, each simulation took less than 30 s to run. It is
worth mentioning that the implementation of the FD
approach with DFT is independent of the number of
impedance sources or on the filling pattern, while the other
methods are expected to have a strong dependency on the
computation time on these factors.

2. Hybrid filling

The nonuniform filling pattern considered here7 consists
of a high-charge bunch of 2 mA at bucket 432, two gaps of
50 buckets (100 ns gap) around it, and the remaining 763

buckets evenly filled to add up to the total current of 350mA.
In this example, the equilibrium solution was calculated
with the SD framework and three different conditions
for the FD approach: including 1, 10, and 100 modes in
the summation of Eq. (29). The relevant harmonics were
selected by means of Eq. (31) as illustrated in Fig. 1, where
the normalized spectrum, ξðωÞ=max ½ξðωÞ�, is shown. The
3HC remained adjusted to the detuning for flat potential in
uniform filling.
As more harmonics are included in the calculation of

the beam-induced voltage with the FD framework, it is
expected that its results become more similar to the
one from the SD framework. This behavior was verified
and it is shown in Fig. 2. When only 1 mode is included,
the beam-induced voltage contains only the contribution
from the impedance at 3ωrf and the distributions are
analogous to the uniform filling case, missing the
inhomogeneous beam-loading features. Including ten
modes, all of which are revolution harmonics still around
3ωrf , most of the inhomogeneous pattern is captured.
With 100 modes, the criteria defined in Eq. (31) indicate
that other rf harmonics are more relevant to the induced
voltage than some revolution harmonics around 3ωrf . In
this case, the solution from the FD approach shows good
agreement with the results obtained from the SD method
and from tracking as well. The calculation in FD using the
DFTapproach proved to have the same level of agreement
but is not shown in Fig. 2. In terms of computing time, the
macroparticle tracking simulation for this example took
3.6 h to run. The calculations with the SD framework and
the FD approach using DFT reached the equilibrium
solution within 30 s, the same computing time reported
for the uniform filling case. The slowest semianalytical
calculation was with the FD framework considering 100
selected modes, which took 2 min to reach the equilib-
rium solution.

FIG. 1. Spectrum ξðωÞ ¼ jZðωÞF ðIbÞj normalized by its
maximum value for the hybrid filling pattern and 3HC imped-
ance. Horizontal dashed lines represent the thresholds for
including 1, 10, and 100 modes.

7This specific hybrid filling pattern is used only as a case study.
It does not reflect any plan for operation in the SIRIUS storage
ring.
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B. Effect of llrf feedback

The beam loading from MCs may have a substantial
influence on the longitudinal equilibrium, especially for
nonuniform fillings. We used the hybrid filling pattern
described in the previous section to illustrate this effect.
The equilibriumdistributions calculated considering only the
passive 3HC were compared with the case where the MCs
beam loading is included as well. Different compensation
schemeswere also tested. In the FD framework,8 we used the
model for the llrf feedback given by Eq. (39). For simplicity,
we set the overall gain to K ¼ 1. The overall delay
considered was τd ¼ 1.9 μs, which is the measured value
for the current SIRIUS rf plant. In this scenario, two types of
controllers were investigated: one purely integral, with ki ¼
0.01 Ω−1 s−1 and other purely proportional, with kp ¼ kp;f ,
where kp;f ¼ 2.96 × 10−6 Ω−1 is the flat-response gain from
Eq. (40) for SIRIUS parameters. In the SD framework, we
applied the phasor compensation scheme. It was verified that
the least squares minimization method provided equivalent
results, as expected, with the disadvantage of being slower
than the phasor method.
The absolute values for the MCs open-loop and closed-

loop impedance for each llrf feedback setting are shown in
Fig. 3. The integral (I) controller heavily suppresses the
impedance at the fundamental frequency and acts only on a
very narrow bandwidth around it, since a low integrator gain
was chosen. The proportional (P) controller does not

compensate the beam-loading contribution from ωrf per-
fectly, but it does reduce the absolute impedance in a
considerably broad range of frequencies around ωrf . For
the cases presented here, neither controller has considerable
influence at frequencies of neighboring revolution harmon-
ics. This is commonly the casewhenonly digital llrf is used to
control the generator voltage, due to the action of low-pass
filters on the measured cavity signal. However, when fast
proportional analog feedbacks or more complex topologies
are used, the llrf system may impact the beam equilibrium
and also the beam stability through its influence on the
impedance close to revolution harmonics [18–20].

FIG. 2. Equilibrium bunch distributions obtained for the hybrid
filling pattern with macroparticle tracking, SD and FD approaches
for increasing number of modes in the FD framework. The 3HC
detuning was set to Δf ¼ 45 kHz. Empty buckets are omitted.
Bunch centroids hzni and bunch lengths σzn are shown in the top
plot. In the bottom plot, the profiles for three bunches (high-charge
bunch in the middle) are compared to tracking results (dots).

FIG. 3. Absolute value of impedance for the MCs in open loop
and closed loop for two llrf settings, integral (I), and proportional
(P) controllers. Revolution harmonics are represented by vertical
gray dashed lines.

FIG. 4. Equilibrium bunch distributions for the hybrid filling
pattern for different impedance configurations. 3HC only (blue)
and 3HC plus active MCs with beam-loading compensation in
three scenarios: with llrf parameters in FD with proportional
(green) and integral controller (orange), and phasor compensation
in SD (dashed red). Bunch profiles for three buckets are shown in
the bottom plot.

8The implementation with DFT was used to obtain the results
from FD framework that are reported in the present and
subsequent subsections.
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Figure 4 shows the results for equilibrium bunch
centroids and rms bunch lengths for all cases studied. It
is clear the equivalence between the solution obtained with
the SD framework and the one from the FD approach using
a purely integral controller. We also note that, with the
inclusion of MCs beam loading, the bunch lengthening is
systematically reduced for all buckets. With a proportional
gain on llrf feedback, the absolute value for the MC closed-
loop impedance at rf frequency is about 1 MΩ. The
residual real part of this impedance causes an additional
energy loss which induces a negative shift on all bunch
centroids and its imaginary part slightly changes the rms
bunch length along buckets.

C. Broadband impedance

Figure 5 shows the model of the longitudinal impedance
budget of the SIRIUS storage ring and a fitting done with
several broadband resonators (BBRs), whose parameters
are listed in Table II [24]. The bellows and bellows and
beam position monitors (BPMs) are the main contributors
for the real part of the impedance and the second most
relevant sources to the imaginary part. The narrow peaks at
frequencies close to 9 and 12 GHz are related to trapped
modes in the bellows cavity and the broader peak around
18 GHz is due to BPMs. SIRIUS vacuum chamber is
mostly composed of a copper cylindrical tube with 12 mm
of inner radius and coated with nonevaporable getter (NEG)
[25]. The finite resistivity of these chambers is responsible
for most of the imaginary part of the impedance budget.
This feature is captured by the BBR fitting via the first two
resonators from Table II, which have a very high resonant

frequency and low quality factor. Figure 5 highlights the
contribution of these two resonators to the overall fitting.
The inclusion of a full broadband impedance model in

the FD framework is straightforward. It is sufficient to get
the impedance of each contribution at the revolution
harmonics, add them, and use Eq. (29) to calculate the
total beam-induced voltage. Besides, the computational
time in this case does not depend on the number of sources.
On the other hand, one possible way of achieving the same
result for the SD formulation is to use BBRmodels to fit the
impedance, calculate the induced voltage for each one of
them using Eq. (12), and then sum the contributions.
Drawbacks of this procedure include not capturing the
exact impedance budget, having a time complexity linear
with the number of BBRs and invoking nonphysical
constructions to represent a physical impedance source.
As an example, take the first two BBRs of Table II, which
reproduce the inductive impedance of the resistive-wall
wake at low frequencies but have no physical connection to
the original impedance source. Besides, these high fre-
quency resonators are somewhat difficult to simulate due to
the numerical problems discussed. Another method to
include the effect of broadband impedance in the SD
framework is to directly convolve the total wake function
with each bunch distribution [11,12]. This approach,
however, would not be correct for wakes that span over
a few buckets, such as the ones captured by the last three
BBRs of Table II. Even though a combination of the
previous methods can be employed or even other well-
known impedance models can be used to fit the budget
(such as a purely inductive wake), there is no elegant and
simple way of including broadband impedances when
using the SD framework.
The effect of the SIRIUS broadband impedance on

equilibrium is presented in Fig. 6, where we simulated
the case for nominal current in uniform filling, in the
presence of MCs with beam-loading compensation by an
integral controller. The 3HC will be essential for reaching

FIG. 5. SIRIUS longitudinal impedance for the full budget, 12
BBRs and without the first two BBRs from Table II.

TABLE II. Fitted parameters to capture the main features of the
SIRIUS longitudinal impedance budget.

fR [GHz] Rs ½kΩ� Q ωR=2Q [GHz]

716.2 30.0 0.7 3216.1
206.9 6.5 1.3 500.0
138.4 2.0 4.0 108.7
79.6 2.0 1.0 250.1
57.3 2.5 4.5 40.0
35.0 2.5 3.0 36.6
17.8 1.7 1.0 55.9
17.5 3.0 24 2.29
11.9 4.0 24 1.56
9.2 20.0 100 0.29
0.9 7.0 261 0.011
0.2 6.0 263 0.002
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the nominal current in the real machine due to components
heating issues, but we decided to not include it in this
simulation to highlight the effect of the broadband imped-
ance on the beam. Considering the bunch length from
Table I, the beam interacts with the impedance up to
approximately 40 GHz. However, with a bunch lengthening
factor of 4 provided by the 3HC, the spectrum would have
considerable power only up to 10 GHz. Therefore, it is
expected that with a 3HC, the broadband impedance impact
on the equilibrium and even on time-dependent effects will
be reduced.
For the simulations with the SD framework, we did not

include the first two BBRs from Table II. Their high
resonant frequency would require a much finer discretiza-
tion of the z domain than the one we used throughout this
section. Additionally, the absence of these high frequency
resonators helps to emphasize the advantages of the FD
framework over the SD approach and their effect on the
bunch distribution. We note that the FD simulation with all
12 BBRs is sufficient to reproduce the bunch profile
obtained with the full budget, which confirms that the

fitting does capture the main features of the impedance.
This example indicates that at nominal current, the SIRIUS
impedance budget would increase the natural bunch length
by 18%, from 2.57 to 3.04 mm, cause a shift of −0.74 mm
in the bunch centroid and make the bunch profile more
asymmetric. This rather small bunch lengthening would not
sufficiently reduce the heating load at the design current,
which justifies the need for a HHC.

D. Touschek lifetime improvement with a 3HC

In this last example, the bunch lengthening provided by
the superconducting passive 3HC that is planned to be
installed in the SIRIUS storage ring will be studied for
some filling patterns. With the FD framework, we obtained
the longitudinal equilibrium for a beam at nominal current,
in the presence of the full broadband impedance budget, a
passive 3HC, and two active MCs. The beam-loading
compensation was simulated with a llrf feedback with PI
controller. The proportional gain was set to the flat-
response value and the integrator gain was adjusted to
ki ¼ 0.01 Ω−1 s−1. Equilibrium distributions were calcu-
lated for 21 sequentially decreasing 3HC detunings from 50
to 30 kHz, taking the solution from the previous detuning
as the initial condition for the next one. All calculations
took about 10 min to run and no convergence issues were
experienced.
The Touschek loss rate is proportional to the integrated

square of the longitudinal bunch distribution. Hence, the
relative difference in Touschek lifetimes for two distribu-
tions λaðzÞ and λbðzÞ can be calculated as [1]:

τb
τa

≈
R
dzλ2aðzÞR
dzλ2bðzÞ

; ð46Þ

where it is assumed that other parameters that affect
Touschek lifetime are the same for the two cases.

FIG. 6. Effect of broadband impedance on longitudinal bunch
distribution for uniform filling in the presence of MCs. All results
from FD were computed with the DFT implementation.

FIG. 7. Longitudinal bunch distribution for different 3HC detunings (left) and the relative lifetime improvement (right) with respect to
the case without the 3HC, represented by τ0. The harmonic voltage for flat-potential condition was obtained with Δf3HC ¼ 45 kHz and
the corresponding distribution is highlighted as a dashed blue curve. The maximum lifetime improvement was obtained with Δf3HC ¼
38 kHz and the bunch profile for this condition is emphasized as a dashed red curve.
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Figure 7 shows the bunch distributions on the left
and the Touschek lifetime increase with respect to the case
without the 3HC on the right, for the simulated 3HC
detunings. It was observed that the MCs beam loading has a
negligible effect on the equilibrium at uniform filling. This
was expected due to the heavy suppression of the MCs
impedance at ωrf provided by the llrf feedback. Moreover,
the influence of the broadband impedance is also reduced in
the presence of the 3HC, as discussed in the previous
section. With these considerations, the longitudinal bunch
distribution is determined mostly by the combination of the
generator voltage and the 3HC beam-induced voltage. An
interesting result is that the maximum lifetime improve-
ment of 5.3 happens at Δf3HC ¼ 38 kHz, while at flat-
potential condition, a factor 4 is expected. At this optimal
condition for lifetime, the bunch is overstretched and the
peak harmonic voltage is 1.03 MV, which is 8% higher than
the flat-potential voltage.
Figure 8 shows the equilibrium results for the hybrid

filling pattern and the same set of 3HC detunings from
Fig. 7. The lifetime improvement factor9 was calculated
with respect to the case without the 3HC and the same
filling pattern. Note that for lower detunings, the inhomo-
geneous beam-loading effects are more pronounced. The
lifetime ratio is better for bunches in the middle of the train
(bucket indices 820 to 120). Large bunch centroid shifts
and degradation of bunch lengthening for bunches closer to
the gaps are observed. The lifetime improvement for the

high-charge bunch in the center (index 432) showed a
similar qualitative behavior with the reduction of the 3HC
detuning, as presented in the right plot of Fig. 7. From these
results, it is clear that simply reducing the 3HC detuning is
an ineffective approach to improve the overall lifetime for
hybrid filling patterns and other strategies should be
employed. A better solution can be the introduction of
guard bunches to compensate for the inhomogeneous beam
loading caused by gaps [4,8,9,11].

VI. CONCLUSION

In this paper, we derived two approaches to compute the
equilibrium beam-induced voltage in the presence of
arbitrary filling patterns and impedance sources. The
calculation in the SD framework is limited to resonator
wake functions. The theory found in the literature [8–12],
was revisited, extended to consider the most general
resonator model, and formulated in a compact equation,
convenient for numerical implementation in a uniformly
discretized grid. A different approach, based on the FD
analysis, allowed the generalization upon arbitrary imped-
ance sources and offered a straightforward process for
computing the beam-induced voltage in terms of the low
computational cost. The low computational cost of the FD
framework is noteworthy, as it has the benefits from FFT
algorithms and its time complexity is constant besides the
number of impedance elements. We benchmarked the
results using the parameters of the SIRIUS storage ring,
a fourth-generation synchrotron. For uniform filling and
narrowband resonators, it was analytically and numerically
demonstrated that the two proposed frameworks reduce to a
well-known formula for the beam-induced voltage. For
nonuniform filling, the methods were benchmarked against
macroparticle tracking and the results exhibited excellent
agreement.
The beam-loading compensation of active rf cavities

was addressed with the concept of closed-loop impedance.
This approach can only be applied in the FD framework
and is conceptually different from other methods based on
phasor compensation or least square minimization. In the
latter, the parameters of the external voltage are adjusted
to compensate the beam loading, while the former
changes the impedance model of the cavity so that the
beam-induced voltage is intrinsically compensated. We
observed that the stationary beam-loading compensation
methods as described in Ref. [10] are equivalent to a
closed-loop impedance of an integral controller with low
gain. The proposed approach allows more realistic sim-
ulations of active rf cavities and is flexible to model
several llrf system topologies.
Another advantage of the FD over the SD framework

was illustrated with the simulation of the SIRIUS broad-
band impedance budget. This was easily accomplished in
FD by taking the full impedance budget as a direct input for
the calculations. In contrast, in SD, the inclusion of

FIG. 8. Bunch centroids and lifetime improvement factor for
the hybrid filling pattern with the full impedance model for
SIRIUS. The colors indicate different 3HC detunings, following
the frequency values from Fig. 7. Bunch profiles for three
bunches are shown in the bottom plot.

9We plot the Touschek lifetime improvement factors in Fig. 8
because the rms bunch length is not an appropriate metric for
overstretched distributions since the bunch profile is a compo-
sition of two shorter bunches.
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broadband impedance requires additional steps, such as
fitting BBRs or convolving short-range wake function
with longitudinal distributions [10–12]. These approaches,
however, may introduce several numerical issues that
must be handled and typically require a case-by-case
analysis to define how each impedance contribution should
be simulated.
We also studied the effect of different detunings of a

passive superconducting 3HC on Touschek lifetime, taking
into account the complete impedance budget for the
SIRIUS storage ring. For uniform filling, the maximum
Touschek lifetime improvement was obtained with an
overstretched bunch profile, increasing it by a factor of
5.2, while the flat-potential condition is expected to
increase lifetime by a factor of 4. The more involved case
of nonuniform filling pattern was briefly discussed only to
illustrate the flexibility of the tool. Further investigations
and more accurate metrics should be considered to compare
performances in this case.
It is important to mention that the existence of equilib-

rium in simulation does not imply stability in the real
machine. The map for reaching the steady state in simu-
lations is based on robust fixed-point algorithms, while the
real dynamics depends on the intricate balance between
damping and coherent excitation. As an example, to
provide bunch lengthening, HHCs must operate at ac
Robinson unstable detunings [13]. Fortunately, MCs can
often be adjusted to a Robinson stable detuning and provide
enough damping. However, for small HHC detunings as
presented in this paper, this balance should be carefully
checked. Other time-dependent effects introduced by
HHCs that can limit the achievable bunch lengthening
may include, in particular, the recently predicted [26] and
observed [27] mode-1 instability and, more generally, some
instability induced by the reduction of the average inco-
herent synchrotron frequency as the longitudinal potential
is flattened. A complete study covering time-dependent
effects was beyond the scope of this work. Nevertheless,
the developed framework can be useful in such studies for
computing the unperturbed bunch distributions, which are
essential inputs for single-bunch and multibunch instability
thresholds calculation [26,28–30].
In summary, the proposed FD methods proved to be

more general, numerically stable, and faster than the SD
framework. This makes it a helpful tool during the design
phase of a storage ring when different specifications are
being explored and the impact of machine components
impedance on beam parameters should be quantified.
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APPENDIX: LIMIT CASE OF UNIFORM FILLING
AND PASSIVE NARROWBAND RESONATOR

In this Appendix, we will apply the equations derived in
Sec. II to check its limit for a specific scenario: uniform
filling pattern and high-Q resonator.
Consider the case of h bunches in a ring evenly filled

with the same current per bunch Il ¼ It=h. In the equi-
librium state, the longitudinal distributions and beam-
induced voltage will be equivalent for all bunches.
Without loss of generality, we will take the rf bucket 0
as reference for the derivation.

1. Frequency domain

Applying the uniform filling considerations to Eq. (29)
reads

V0ðzÞ ¼ −2ðIt=hÞRe
�Xþ∞

p¼0

Z�ðpω0Þeipω0z=c

× λ̂�0ðpω0Þ
Xh−1
l¼0

e−2πipl=h
�
: ðA1Þ

The geometric series sum over l yields

Xh−1
l¼0

e−2πipl=h ¼ hδp;qh for q∈N ðA2Þ

where δp;qh is the Kronecker delta. Thus, the beam samples
the impedance only at rf harmonics, which is expected from
the symmetry of uniform filling.
Assuming a high-Q narrowband resonator impedance

sharply peaked close to the mth rf harmonic, the major
contribution to the beam-induced voltage is related to the
term q ¼ m. Applying Eq. (A2) into Eq. (A1) and retaining
only the contribution from ωm ≔ mωrf :

V0ðzÞ ¼ −2ItRe½Z�ðωmÞλ̂�0ðωmÞeiωmz=c�: ðA3Þ

A convenient parametrization for the Fourier transform
of longitudinal bunch distribution is

λ̂0ðωÞ ¼ F0ðωÞeiΦ0ðωÞ ðA4Þ

where, to respect the property λ̂0ð−ωÞ ¼ λ̂�0ðωÞ, F0ðωÞ
must be a real-valued even function and Φ0ðωÞ, a real-
valued odd function. With this parametrization, Eq. (A3)
can be arranged as

V0ðzÞ ¼ −2ItF0ðωmÞRe½Z�ðωmÞei½ωmz=c−Φ0ðωmÞ��: ðA5Þ

The model for resonator impedance is given by the RLC
circuit impedance from Eq. (38), rewritten as

MURILO B. ALVES and FERNANDO H. DE SÁ PHYS. REV. ACCEL. BEAMS 26, 094402 (2023)

094402-14



ZðωÞ ¼ Rs

1þ 2iQδω
; ðA6Þ

with the resonator relative detuning defined as

δω ≔
1

2

�
ωR

ω
−

ω

ωR

�
:

For frequencies close to resonance ω ≈ ωR, the approxi-
mated formula δω ¼ Δω=ωR with Δω ¼ ωR − ω is com-
monly used. The present analysis refers to ωm ≈ ωR.
With the RLC impedance model, we are able to cast the

wake voltage in the form

V0ðzÞ¼−2ItRs
F0ðωmÞ

1þ4Q2δ2ω
½cosθ0ðzÞ−2Qδω sinθ0ðzÞ�;

ðA7Þ
where θ0ðzÞ ¼ ωmz=c −Φ0ðωmÞ.
Defining

tanψ ≔ 2Qδω; ðA8Þ

then Eq. (A7) can be further simplified to

V0ðzÞ¼−2ItF0ðωmÞRs cosψ cos ½ωmz=cþψ −Φ0ðωmÞ�
ðA9Þ

which is a well-known formula for the equilibrium beam-
induced voltage in uniform filling with a passive narrow-
band resonator, including the so-called complex bunch
form factor [2].

2. Space domain

For high-Q resonators, we shall consider that the I0S0ðzÞ
contribution in Eqs. (13) and (18) is negligible as compared
to the summation part since S0ðzÞ only accounts for the
self-induced voltage of a bunch on itself on the present turn.
In this case and considering uniform filling, Eq. (18) can be
simplified to

K0ðzÞ ¼ ðIt=hÞe−κz
S0ðλrf=2Þ
1 − ν

Xh
l¼1

νl=h. ðA10Þ

We can approximate α=c ≪ 1 for long-range wakefields
and take e−αz=c ≈ 1. Moreover, since α=ωR ¼ 1=2Q ≪ 1, it
follows that ω̄R ≈ ωR. Therefore, e�κz ≈ e∓iωRz=c. In this
scope, the Laplace transform can be replaced by the Fourier
transform:

S0ðλrf=2Þ ¼
Z

λrf=2

−λrf=2
dz0λ0ðz0Þeκz0 ≈ λ̂�0ðωRÞ:

The sum over bunches l is the sum of h − 1 terms of a
geometric series with common ratio ν1=h, hence

Xh
l¼1

νl=h ¼ ν1=h
1 − ν

1 − ν1=h
.

Recall that ν1=h ¼ e−κC0=h ¼ e−κλrf . Applying those par-
tial results into Eq. (A10) yields

K0ðzÞ ¼ ðIt=hÞeiωRz=c
λ̂�0ðωRÞ
eκλrf − 1

: ðA11Þ

Following the method applied in Ref. [9], let ðρ;ψÞ be
polar variables in the complex plane such that

1

eκλrf − 1
¼ ρeiψ : ðA12Þ

With λrf ¼ 2πc=ωrf , then eκλrf ¼ e2πα=ωrfe−2πiωR=ωrf .
Considering that the resonant frequency is close to the
mth rf harmonic, the detuning is Δω ¼ ωR −mωrf . From
this, e−2πiωR=ωrf ¼ e−2πiΔω=ωrf follows. Besides, assuming a
small detuning such that Δω=ωrf ≪ 1, the exponential can
be approximated in first order to

eκλrf − 1 ≈ ð1þ 2πα=ωrfÞð1 − 2πiΔω=ωrfÞ − 1

≈
1

frf
ðα − iΔωÞ;

where the second-order term proportional to αΔω=ω2
rf was

neglected. Therefore

ρ ¼
				 1

eκλrf − 1

				 ≈ frfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ Δω2

p ; ðA13Þ

and the phase can be calculated with

ψ ¼ arg

�
1

eκλrf − 1

�
¼ − arg ðeκλrf − 1Þ

¼ arctan ðΔω=αÞ: ðA14Þ

Note that tanψ ¼ 2QΔω=ωR, which is the same relation
between the detuning phase ψ and resonator parameters
defined in Eq. (A8).
With those approximations and using Eq. (A4) for the

bunch spectrum, Eq. (A11) simplifies to

K0ðzÞ ¼
ðIt=hÞfrfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ Δω2

p F0ðωRÞei½ωRz=cþψ−Φ0ðωRÞ� ðA15Þ

Applying this result to Eq. (12) reads, after some
manipulations,
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V0ðzÞ ¼ −2ItF0ðωRÞRs cosψ

×

�
cos γ0ðzÞ −

α

ωR
sin γ0ðzÞ

�
; ðA16Þ

where γ0ðzÞ ¼ ωRz=cþ ψ −Φ0ðωRÞ.
The sine term in Eq. (A16) can be neglected since

α=ωR ≪ 1. Additionally, approximating the resonant fre-
quency to its closest rf harmonic ωR ≈ ωm, then Eq. (A16)
is equivalent to the formula in Eq. (A9).
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