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We consider analytical expressions for beam impedance of round, rectangular, and Π-shaped wave-
guides with anisotropic surface impedance of arbitrary nature. The formulas are given for relativistic and
nonrelativistic cases and the impedance matrix of general form. The field matching technique for layered
structures with layers of uniaxial anisotropy and anisotropic impedance boundary condition at the last
layer is described. The analytical methods are applied to the real structure examples with corrugations,
dielectrics, and anomalous skin effects.

DOI: 10.1103/PhysRevAccelBeams.26.094401

I. INTRODUCTION

The electromagnetic behavior of the vacuum chamber
in many situations can be described by impedance
boundary condition for time-harmonic electromagnetic
field E, H [1,2]:

n × E ¼ −Zs½n × ðn ×HÞ�; ð1Þ

where Zs is a surface impedance tensor and n is a unit
vector normal to the surface of the pipe.
The explicit form of the surface impedance tensor

depends on the material and geometry properties of
the pipe. The resistivity and the roughness are analyzed
in [2–4]. The structures with periodic corrugations of the
walls are considered in [5–8]. The anomalous skin effects
can be treated as in [9,10].
In this paper we consider analytical expressions for

beam impedance [11] of round, rectangular and Π-shaped
waveguides with anisotropic surface impedance of arbitrary
nature.
Equations for round structure with impedance boundary

condition for nonrelativistic charge have been revisited
recently in [3] for monopole and dipole modes. In the
relativistic limit the equations for dipole mode are written
only for the explicit form of the resistive surface impedance
without generalization to an arbitrary one. The equations
for higher order azimuthal modes are not considered there.
The knowledge of the higher order modes is necessary to
analyze the beam behavior near to the walls of the vacuum
chamber. The application of the surface impedance

formalism to flat corrugated structures with one or two
parallel plates was done in [6–8]. But only the relativistic
limit was studied in these papers.
In the publications listed above the surfaces impedance

matrix has only diagonal elements, which are equal. But, for
example, in the case of the corrugated structures with
resistivity a more accurate approximation is to use nonequal
diagonal elements, as it was done for the longitudinal
impedance in [12]. The impedance matrix with nonequal
diagonal elements was used in [13,14] for the analysis of
radiation from the charged particle near a corrugated surface.
Examples of surfaces characterized by fully populated

impedance matrices are discussed in Refs. [15,16]. The
accuracy of the surface impedance boundary conditions for
dielectric layers and conductive metals have been exam-
ined, for example, in [16,17], along with references therein.
Round layered pipes and flat layered parallel plates are

considered in [18] for fully isotropic layers and in [19] for
anisotropic materials. The treatment of the impedance boun-
dary condition in the last layer was not considered there.
In this paper we would like to extend the available results

in several directions. We consider all modes for round,
rectangular, and Π-shaped structures in nonrelativistic and
relativistic cases. We give the equations for impedance
matrix of general form.
In the following we call the structure “round” if it is

axially symmetric. If the structure has a constant width
between two perfectly conducting planes and has rectangular
cross sections then we call such structure “rectangular.”
Figure 1 shows the transverse to z-axis cross sections of
round and rectangular structures. Additionally, a Π-shaped
structure is shown in Fig. 1 as well. It is one plate between
two perfectly conducting plates.
We assume that the charge is moving along a straight line

parallel to the longitudinal axis of the system, and we
neglect the influence of the wakefields on the charge
motion. In the frequency domain all fields will have the
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time dependence eiωt (ω is the angular frequency) which
we will omit in the subsequent equations.
We start in Sec. II A with derivation of the non-

relativistic beam impedance of round metallic pipe with
anisotropic surface impedance. Then the equations for
the relativistic limit are presented. The same is done in
Secs. II B and II C for the rectangular pipe and Π-shape. In
Sec. II D we present the equations for the infinite
and semi-infinite flat plates. Section III describes the field
matching technique for layered structures with uniaxial
anisotropy and anisotropic impedance boundary condition.
The analytical techniques and numerical methods are
applied to the real structure examples with corrugations,
dielectrics and anomalous skin effects in Sec. IV.

II. VACUUM REGION CLOSED BY PIPE
WITH SURFACE IMPEDANCE

Let us start by considering only one vacuum region
closed with a metallic pipe. In this case we will derive
analytical solutions. In Sec. III we discuss how to modify
the field matching method for the pipes with many
homogeneous layers.

A. Round beam pipe with surface impedance

For round structures we will use cylindrical coordinates
r;φ; z. The charge density in the frequency domain can be
expanded in Fourier series

ρðr;φ; z; kÞ ¼ e−ikz=β
X∞
m¼0

ρmδðr − r0Þ cos½mðφ − φ0Þ�;

ρm ¼ q
πvr0ð1þ δm0Þ

; ð2Þ

where r0;φ0 are coordinates of the point charge q,
k ¼ ω=c, β ¼ v=c, c is velocity of light in vacuum, and
δm0 ¼ 1 if m ¼ 1, 0 otherwise.
From the linearity of Maxwell’s equations the compo-

nents of the electromagnetic field can be represented by
infinite sums:

0
BB@

Hφðr;φ; z; kÞ
Erðr;φ; z; kÞ
Ezðr;φ; z; kÞ

1
CCA ¼ e−ikz=β

X∞
m¼0

0
BB@

Hφmðr; kÞ
Ermðr; kÞ
Ezmðr; kÞ

1
CCA cosðmφÞ;

0
BB@

Eφðr;φ; z; kÞ
Hrðr;φ; z; kÞ
Hzðr;φ; z; kÞ

1
CCA ¼ e−ikz=β

X∞
m¼0

0
BB@

Eφmðr; kÞ
Hrmðr; kÞ
Hzmðr; kÞ

1
CCA sinðmφÞ:

ð3Þ

It is a direct consequence of Maxwell’s equations applied
to fields’ decomposition in Eq. (3), that for each modal
numbermwe can write an independent system of equations

m
r
Hzm þ i

k
β
Hφm ¼ iωϵ0Erm;

−i
k
β
Hrm −

∂

∂r
Hz;m ¼ iωϵ0Eφm;

1

r
∂

∂r
ðrHφmÞ−

m
r
Hrm ¼ iωϵ0Ezm þ vρmδðr− r0Þ;

−
m
r
Ezm þ i

k
β
Eφm ¼ −iωμ0Hr;m;

−i
k
β
Erm −

∂

∂r
Ez;m ¼ −iωμ0Hφm;

1

r
∂

∂r
ðrEφmÞ þ

m
r
Er;m ¼ −iωμ0Hzm;

1

r
∂

∂r
ðrHrmÞ−

m
r
Hφ;m − ikHzm ¼ 0;

1

r
∂

∂r
ðrErmÞ þ

m
r
Eφm − ikEzm ¼ ρm

ϵ0
: ð4Þ

The impedance boundary condition, Eq. (1), can be
rewritten as

 
−EzmðaÞ
EφmðaÞ

!
¼
 
ZTM Z12

Z21 ZTE

! 
HφmðaÞ
HzmðaÞ

!
: ð5Þ

Weare interested in beam impedance as defined in [11,18].

Zkðr0;φ0; r;φ; k; γÞ ¼
Ezðr;φ; z; kÞeikz=β

q
; ð6Þ

where the longitudinal field Ez depends on the coordinates
of the source particle r0, φ0 and the product Ezeikz=β is
independent of z. For round pipe the beam impedance can be
presented as expansion in azimuthal modes

FIG. 1. Transverse to z-axis cross sections of round (a),
rectangular (b), and Π-shaped (c) geometries. The point charge
position is shown by red circle.

IGOR ZAGORODNOV and MARTIN DOHLUS PHYS. REV. ACCEL. BEAMS 26, 094401 (2023)

094401-2



Zkðr0;φ0; r;φ; k; γÞ ¼
X∞
m¼0

Zmðk; γÞIm
�
kr0
γβ

�
Im

�
kr
γβ

�
cos½mðφ − φ0Þ� þ Z∞

scðr0;φ0; r;φ; k; γÞ; ð7Þ

Z∞
scðr0;φ0; r;φ; k; γÞ ¼ −

kZ0

2πðγ2 − 1ÞK0

 
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ r2 − 2r0r cosðφ − φ0Þ

p
γβ

!
; ð8Þ

where Im; K0 are modified Bessel functions of complex
argument, γ is the Lorentz factor and we have written
explicitly the space charge contribution Z∞

sc . Function
Zmðk; γÞ is the modal impedance to be found.
From system of first-order equations, Eq. (4), we obtain

the decoupled second-order equations for the longitudinal
field components

1

r
∂

∂r
r
∂

∂r
Ezm −

�
m2

r2
þ ν2

�
Ezm ¼ ik

γ2βϵ0
ρmδðr − r0Þ; ð9Þ

1

r
∂

∂r
r
∂

∂r
Hzm −

�
m2

r2
þ ν2

�
Hzm ¼ 0; ν ¼ k

γβ
: ð10Þ

A general solution of homogeneous hyperbolic Eqs. (9)
and (10) in charge free regions can be written in form

EzmðrÞ ¼ Cm
I ImðνrÞ þ Cm

KKmðνrÞ;
HzmðrÞ ¼ Dm

I ImðνrÞ þDm
KKmðνrÞ; ð11Þ

where Im, Km are modified Bessel functions of complex
argument and Cm

I , C
m
K , D

m
I , D

m
K are unknown constants to

be found.
In the following we numerate the electric field EzmðrÞ

by index “0” for r < r0 and by index “1” for r > r0. The
magnetic field HzmðrÞ has the same representation in the
whole domain. In order to avoid the divergence of
the solution we need to put Cm;0

K ¼ 0, Dm
K ¼ 0. At the

position of the beam r0 the longitudinal component of the
electric field Ez is continuous and we can write

Cm;0
I ¼ Cm1

I þ Cm;1
K

KmðνrÞ
ImðνrÞ

: ð12Þ

If we multiply Eq. (9) by r, integrate it from r0 − Δ to
r0 − Δ and take limit for Δ → 0 then we obtain the jump
condition of the derivative:

∂

∂r
E1
zmðr0Þ −

∂

∂r
E0
zmðr0Þ ¼

ik
γ2βϵ0

ρm: ð13Þ

It follows from Eqs. (11) and (13) that

Cm;1
I

d
dr

Imðνr0Þ þ Cm;1
K

d
dr

Kmðνr0Þ − Cm;0
I

d
dr

Imðνr0Þ

¼ ik
γ2βϵ0

ρm. ð14Þ

As a next step we put Eq. (12) into Eq. (14) and use the
relation ImðxÞ d

dx KmðxÞ − KmðxÞ d
dx ImðxÞ ¼ − 1

x. We obtain

Cm;1
K ¼ −

ikr0
γ2βϵ0

ρmImðνr0Þ: ð15Þ

It is direct consequence of Eq. (7) that the impedance
term can be found as

Zmðk; γÞ ¼
E1
zmðr0Þ − qZm

sc;m

qImðνr0Þ2
¼ Cm;1

I

qImðνr0Þ
; ð16Þ

where we have used the expansion of the space charge
impedance in azimuthal modes

Zscðr0;φ0; r;φ; k; γÞ

¼
X∞
m¼0

Zsc;mðr0; r; k; γÞ cos½mðφ − φ0Þ�; ð17Þ

Zsc;mðr0; r; k; γÞ ¼
ikZ0

πðγ2 − 1Þð1þ δm0Þ
KmðνrÞImðνr0Þ

¼ Cm;1
K

q
KmðνrÞ; r ≥ r0: ð18Þ

In order to find the constants Cm1
I ; Dm

I in Eq. (11) we use
the impedance boundary condition, Eq. (5), with the
azimuthal field components defined through the longi-
tudinal ones as

H1
φm ¼ ik

ν2

�
1

Z0

∂

∂r
E1
zm þ m

βr
Hzm

�
; ð19Þ

E1
φm ¼ −

ik
ν2

�
Z0

∂

∂r
Hzm þ m

βr
E1
zm

�
: ð20Þ

From straightforward symbolic calculations [20]
we derive that the modal impedance in Eq. (7) can be
written as

Zmðk; γÞ ¼
θZTMN

πaImðxÞð1þ δm0ÞD
þ Zpipe;mðk; γÞ;

θ ¼ x
ak

; x ¼ ka
γβ

; ð21Þ

N ¼ ImðxÞ
�

θjZsj
Z0ZTM

−
im
x

�
þ iIm−1ðxÞ; ð22Þ
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D ¼ ImðxÞ2
�ð1 − β2Þm2ZTM

β2x2Z0

−
iθm
x

�
1þ jZsj

Z2
0

þ Z12 − Z21

βZ0

�
þ θ2ZTE

Z0

�

þ ImðxÞIm−1ðxÞ
�
2mZTM

xZ0

þ iθ
�
1þ jZsj

Z2
0

��
− Im−1ðxÞ2

ZTM

Z0

; ð23Þ

Zpipe;mðk; γÞ ¼
ix2Z0KmðxÞ

a2kπImðxÞð1þ δm0Þ
; ð24Þ

where jZsj is the determinant of the matrix Zs:

jZsj ¼ ZTEZTM − Z12Z21: ð25Þ

Here Zpipe;mðk; γÞ is the modal impedance of nonrelativistic
charge in perfectly conducting round pipe.
In relativistic limit, γ → ∞, one obtains

Zkðr0;φ0; r;φ; k; γÞ ¼
X∞
m¼0

ZmðkÞrm0 rm cos½mðφ − φ0Þ�;

ð26Þ

Z0ðkÞ ¼
ZTM

2aπð1þ iak
2

ZTM
Z0
Þ ; ð27Þ

ZmðkÞ ¼
ZTM

a2mþ1πð1þ Z21−Z12

Z0
þ jZsj

Z2
0

þ ð m
ika þ iak

mþ1
Þ ZTM

Z0
Þ
;

m > 0: ð28Þ

B. Rectangular beam pipe with surface impedance
at two opposite sidewalls

In rectangular case we choose a coordinate system with y
in the vertical and x in the horizontal directions as it is
shown in Fig. 1. The z coordinate is directed along the
beam direction. The structures considered in this paper
have constant width 2w in x-direction between two per-
fectly conducting side walls. In the following we consider
only the case where the rectangular structure is symmetric
in the y-direction (up-bottom symmetry).
The charge density can be expanded in Fourier series

along x-coordinate

ρðx; y; z; kÞ ¼ e−ikz=β

w

X∞
m¼1

ρmδðy− y0Þ sinðkxmx0Þ sinðkxmxÞ;

ρm ¼ q
v
; kxm ¼ πm

2w
; ð29Þ

where x0, y0 are coordinates of the point charge. Again it
follows from the linearity of Maxwell’s equations that the
components of electromagnetic field can be represented by
infinite sums:

0
BB@

Hxðx; y; z; kÞ
Eyðx; y; z; kÞ
Ezðx; y; z; kÞ

1
CCA ¼ e−ikz=β

w

X∞
m¼1

0
BB@

Hxmðy; kÞ
Eymðy; kÞ
Ezmðy; kÞ

1
CCA sinðkxmxÞ;

0
BB@

Exðx; y; z; kÞ
Hyðx; y; z; kÞ
Hzðx; y; z; kÞ

1
CCA ¼ e−ikz=β

w

X∞
m¼1

0
BB@

Exmðy; kÞ
Hymðy; kÞ
Hzmðy; kÞ

1
CCA cosðkxmxÞ:

For each modal number kxm we write an independent
system of equations

−kxmHzm þ i
k
β
Hxm ¼ iωϵ0Eym;

−i
k
β
Hym −

∂

∂y
Hzm ¼ iωϵ0Exm;

∂

∂y
Hxm þ kxmHym ¼ iωϵ0Ezm þ vρmδðy − y0Þ;

kxmEzm þ i
k
β
Exm ¼ −iωμ0Hym;

−i
k
β
Eym −

∂

∂y
Ezm ¼ −iωμ0Hxm;

∂

∂y
ðExmÞ − kxmEym ¼ −iωμ0Hzm;

∂

∂y
Hym þ kxmHxm − ikHzm ¼ 0;

∂

∂y
Eym − kxmExm − ikEzm ¼ ρm

ϵ0
: ð30Þ

The surface impedance boundary condition, Eq. (1),
takes the following form

 
EzmðaÞ
−ExmðaÞ

!
¼
 
ZTM Z12

Z21 ZTE

! 
HxmðaÞ
HzmðaÞ

!
: ð31Þ

It is well known that for a rectangular pipe the beam
impedance can be written as expansion in the modal
number kxm [21]

Zkðx0;y0;x;y;kÞ¼
1

w

X∞
m¼1

Zmðy0;y;k;γÞsinðkxmx0ÞsinðkxmxÞ

þZscðx0;y0;x;y;k;γÞ; ð32Þ
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Zscðx0; y0; x; y; k; γÞ

¼ 1

w

X∞
m¼1

Zsc;mðy0; y; k; γÞ sinðkxm; x0Þ sinðkxmxÞ; ð33Þ

Zsc;mðy0; y; k; γÞ ¼ −
ikZ0

2ðγ2 − 1Þkym
e−kymjy0−yj;

kym ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xm þ ν2

q
; ð34Þ

where the modal impedance reads

Zmðy0; y; k; γÞ ¼ Zcc
m ðk; γÞ coshðkymy0Þ coshðkymyÞ

þ Zss
m ðk; γÞ sinhðkymy0Þ sinhðkymyÞ: ð35Þ

Here Zscðx0; y0; x; y; k; γÞ is the impedance between the
two vertical perfectly conducting plates at x ¼ 0 and at
x ¼ 2w. In the limit when the coordinates of the perfectly
conducting plates go to �∞ it reduces to Z∞

sc, Eq. (75).
From system of first-order equations, Eq. (30), we obtain

the decoupled second-order ones

∂
2

∂y2
Ezm − k2y;mEzm ¼ iqδðy − y0Þν2

ωϵ0
; ð36Þ

∂
2

∂y2
Hzm − k2y;mHzm ¼ 0: ð37Þ

The longitudinal field components can be presented as
sums of complex exponents

EzmðrÞ ¼ Cmþekymy þ Cm
−e−kymy;

HzmðrÞ ¼ Dmþekymy þDm
−e−kymy: ð38Þ

Just as in case of round pipe of the previous section we
numerate the electric field EzmðyÞ by index “0” for y < y0
and by index “1” for y > y0. The magnetic fieldHzmðyÞ has
the same representation in the whole domain. If we
integrate Eq. (36) from y0 − Δ to y0 þ Δ and take limit
for Δ → 0 then we obtain the jump in the derivative:

∂

∂y
E1
zmðy0Þ −

∂

∂y
E0
zmðy0Þ ¼

ik
γ2βϵ0

ρm: ð39Þ

The term Zcc
m ðk; γÞ in Eq. (35) can be found from the

solution of the problem in the half of the domain with
magnetic boundary condition at the symmetry plane.
From the condition Hzmð0Þ ¼ 0, Hxmð0Þ ¼ 0 we obtain
Dm

− ¼ −Dmþ, Cm;0
− ¼ Cm;0

þ .
At the position of the beam y0 the longitudinal compo-

nent Ez is continuous and we can write

2Cm;0
þ coshðkymy0Þ ¼ Cm;1

þ ekymy0 þ Cm;1
− e−kymy0 : ð40Þ

The derivative of the field Ez has jump, Eq. (39), and from
Eq. (38) we obtain

Cm;1
þ ekymy0 − Cm;1

− e−kymy0 − 2Cm;0
þ sinhðkymy0Þ

¼ ik
ky;mγ2βϵ0

ρm: ð41Þ

Combining Eqs. (40) and (41) we can derive the relation

Cm;1
þ − Cm;1

− ¼ ik
kymγ2βϵ0

ρm coshðkymy0Þ: ð42Þ

Hence the impedance term Zcc
m ðk; γÞ can be found as

Zcc
m ðk;γÞ¼E1

z;mðy0Þ−qZcc
sc;mðy0Þ

q coshðkymr0Þ2
¼ 2Cm;1

I

q coshðkymr0Þ
; ð43Þ

where

Zcc
sc;mðy0Þ ¼ ½Zsc;mðy0; y0; k; γÞ þ Zsc;mð−y0; y0; k; γÞ�=2:

ð44Þ

In order to find the constants Dmþ, C
m;0
þ , Cm;1

þ , Cm;1
− , we

use Eqs. (40), (42) and the impedance boundary condition,
Eq. (31), where the transversal field components are
defined through the longitudinal ones as

H1
xm ¼ −

ik
ν2

�
1

Z0

∂

∂y
E1
zm þ kxm

β
Hzm

�
; ð45Þ

E1
xm ¼ ik

ν2

�
Z0

∂

∂y
Hzm þ kxm

β
E1
zm

�
: ð46Þ

From straightforward symbolic calculations [20] we find
out that the impedance term Zcc

m ðk; γÞ can be written as

Zcc
m ðk; γÞ ¼ ZTMN

D
þ Zcc

pipe;mðk; γÞ; ð47Þ

N ¼ kym −
ik
β2γ2

jZsj
Z0ZTM

tanh ðakymÞ; ð48Þ

D ¼ −iA sinh ð2akymÞ þ
jZsj
Z2
0

2kym sinh2 ðakymÞ

þ 2kym cosh2 ðakymÞ; ð49Þ

A ¼ γ2ZTMðk2xm − β2k2ymÞ
kZ0

þ iðZ12 − Z21Þkxm
βZ0

þ kZTE

β2γ2Z0

;

ð50Þ

Zcc
pipe;mðk; γÞ ¼

ikZ0½1 − tanh ðakymÞ�
2γ2β2kym

: ð51Þ
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Here Zcc
pipe;mðk; γÞ is the modal impedance of nonrelativistic

charge in perfectly conducting rectangle with the magnetic
boundary condition at the symmetry plane, y ¼ 0.
In the same way the item Zss

m ðk; γÞ can be found from
the solution of the problem in the half of the domain
with electric boundary condition at the symmetry plane.
From the equations Ezmð0Þ ¼ 0, Exmð0Þ ¼ 0 we obtain
Dm

− ¼ Dmþ, Cm;0
− ¼ −Cm;0

þ .
At the position of the beam y0 the longitudinal compo-

nent Ez is continuous and we can write

2Cm;0
þ sinhðkymy0Þ ¼ Cm;1

þ ekymy0 þ Cm;1
− e−kymy0 : ð52Þ

From the jump of the derivative of Ez at y0 we obtain

Cm;1
þ þ Cm;1

− ¼ ik
kymγ2βϵ0

ρm sinhðkymy0Þ: ð53Þ

Hence the impedance term Zss
m ðk; γÞ can be found as

Zss
m ðk; γÞ ¼

E1
zmðr0Þ − qZss

sc;m

q sinhðkymr0Þ2
¼ 2Cm;1

I

q sinhðkymr0Þ
; ð54Þ

where

Zss
sc;m ¼ ½Zsc;mðy0; y0; k; γÞ − Zsc;mð−y0; y0; k; γÞ�=2: ð55Þ

Following the same route of derivation as for Zcc
m ðk; γÞ

we obtain the impedance term Zss
m ðk; γÞ:

Zss
m ðk; γÞ ¼

ZTMN
D

þ Zcc
pipe;mðk; γÞ; ð56Þ

N ¼ ky;m −
ik
β2γ2

jZsj
Z0ZTM

coth ðakymÞ ð57Þ

D ¼ −iA sinh ð2akymÞ þ
jZsj
Z2
0

2kymcosh2ðakymÞ

þ 2kymsinh2ðakymÞ; ð58Þ

Zss
pipe;mðk; γÞ ¼

ikZ0ðcoth ðakymÞ − 1Þ
2β2γ2kym

: ð59Þ

Here Zss
pipe;mðk; γÞ is the modal impedance of nonrelativistic

charge in perfectly conducting rectangle with the electric
boundary condition at the symmetry plane, y ¼ 0.
In the relativistic limit, γ → ∞, the equations reduce to

the following expressions

Zmðy0; y; kÞ ¼ Zcc
m ðkÞ coshðkxmy0Þ coshðkxmyÞ

þ Zss
m ðkÞ sinhðkxmy0Þ sinhðkxmyÞ; ð60Þ

Zcc
m ðkÞ¼ ZTM

2
jZsj
Z2
0

sinh2ðakxmÞþB sinhð2akxmÞþ2cosh2ðakxmÞ
;

ð61Þ

Zss
m ðkÞ¼

ZTM

2
jZsj
Z2
0

cosh2ðakxmÞþB sinh ð2akxmÞþ2sinh2ðakxmÞ
;

ð62Þ

where

B ¼ Z12 − Z21

Z0

þ i
ZTM

Z0

�
k

kx;m
−
kx;m
k

�
: ð63Þ

C. One plate with surface impedance placed
between two perfectly conducting sidewalls

Let us consider the case when there is only one plate with
the impedance boundary condition placed at y ¼ 0 as
shown in Fig. 1. The charge is at the position y0 < 0.
The beam impedance has the same form given by

Eq. (32) but the modal impedance has different represen-
tation

Zmðy0; y; k; γÞ ¼ Zmðk; γÞekymðy0þyÞ: ð64Þ

The electric and magnetic longitudinal fields compo-
nents are presented by the same form, Eq. (38), as for the
rectangular pipe. To avoid divergence of the field at
y ¼ −∞ we have to put Cm;0

− ¼ 0, Dm
− ¼ 0. Again the

HzmðyÞ component has the same representation in the
whole domain and we are looking only for the constants
Cm;0
þ , Cm;1

þ , Cm;1
− , Dmþ. From four equations

E1
zmð0Þ ¼ ZTMH1

xmð0Þ þ Z12Hzmð0Þ;
E1
xmð0Þ ¼ −ZTEHzmð0Þ − Z21H1

xmð0Þ; ð65Þ

E0
zmðy0Þ ¼ E1

zmðy0Þ;
∂

∂y
E1
zmðy0Þ −

∂

∂y
E0
zmðy0Þ ¼

ik
γ2βϵ0

ρm; ð66Þ

we obtain the four constants straightforwardly.
The impedance term will be obtained from the relation

Zmðk; γÞ ¼
E1
zmðy0Þ − qZsc;m

qe2kymy0
¼ Cm;1

þ
qekymy0

: ð67Þ

Hence the modal beam impedance of Π-shaped waveguide
reads

Zmðk; γÞ ¼
ZTMN
D

þ Zpipe;mðk; γÞ; ð68Þ
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N ¼ ky;m −
ikjZsj

β2γ2Z0ZTM
; ð69Þ

D ¼
�jZsj
Z2
0

þ 1

�
kym þ kxm

�
Z12 − Z21

βZ0

−
iγ2ZTMkxm

kZ0

�

þ iβ2γ2ZTMk2ym
kZ0

−
ikZTE

β2γ2Z0

; ð70Þ

Zpipe;mðk; γÞ ¼
ikZ0

2β2γ2kym
: ð71Þ

Here Zpipe;mðk; γÞ is the modal impedance of nonrelativistic
charge in perfectly conducting Π-shaped structure.

In the relativistic limit, γ → ∞, the previous equations
reduce to the following expressions

Zmðy0; y; kÞ ¼ ZmðkÞekxmðy0þyÞ; ð72Þ

ZmðkÞ ¼
ZTM

1þ i ZTM
Z0

ð k
kxm

− kxm
k Þ þ jZsj

Z2
0

− Z21−Z12

Z0

: ð73Þ

D. Infinite and semi-infinite plates

In the case of infinite plates, −∞ < x < ∞, the imped-
ance reads

Zkðx0; y0; x; y; kÞ ¼
1

π

Z
∞

0

Zðy0; y; k; kx; γÞ cosðkxðx0 − xÞÞdkx þ Z∞
scðx0; y0; x; y; k; γÞ; ð74Þ

Z∞
scðx0; y0; x; y; k; γÞ ¼ −

kZ0

2πðγ2 − 1ÞK0

 
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2

p
γβ

!
; ð75Þ

where Zðy0; y; k; kx; γÞ is defined by Eq. (35) for two parallel plates or by Eq. (64) for one plate.
In the case of semi-infinite plates, 0 ≤ x < ∞, the impedance reads

Zkðx0; y0; x; y; kÞ ¼
2

π

Z
∞

0

Zðy0; y; k; kx; γÞ sinðkxx0Þ sinðkxxÞdkx þ Zsemi
sc ðx0; y0; x; y; k; γÞ;

Zsemi
sc ðx0; y0; x; y; k; γÞ ¼ Z∞

scðx0; y0; x; y; k; γÞ − Z∞
scð−x0; y0; x; y; k; γÞ; ð76Þ

where again Zðy0; y; k; kx; γÞ is defined by Eq. (35) for two parallel plates or by Eq. (64) for one plate.

III. MANY HOMOGENEOUS LAYERS CLOSED
BY PIPE WITH SURFACE IMPEDANCE

In this section we describe modification of the field
matching method published in [18,19] to include an imped-
ance boundary condition. Additionally we consider the case
of Π-shaped structure which was not analyzed before.
Let us consider a round pipe sketched in Fig. 2 with

many layers possessing the uni-axial anisotropy. It means

that the permittivity and the permeability tensors are
diagonal and for their elements the following relations hold

ϵrðrÞ ¼ ϵφðrÞ; μrðrÞ ¼ μφðrÞ:

We do not have to assume any particular frequency
dependence. In order to include conductivity and other
losses in numerical code we use the following expressions
(here we consider as example the r-component):

ϵrðr; kÞ ¼ ϵ0rðrÞ½1 − iδϵrðrÞ� − i
σcðrÞ

ω½1þ iωτðrÞ� ;

μrðr; kÞ ¼ μ0rðrÞ½1 − iδμrðrÞ�; ω ¼ kc; ð77Þ

where ϵ0r is the real part of the complex permittivity, μ0r is
the real part of the complex permeability, and the loss can
be introduced with the help of dielectric loss tangent δϵr,
magnetic loss tangent δμr or/and with ac conductivity
following the Drude model [1], where σc is the dc
conductivity of the material and τ its relaxation time.
We use similar expressions for z- components of the
permittivity and the permeability tensors.

FIG. 2. Transverse to z-axis cross sections of “round” and
“rectangular” layered pipes.
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Inside of each layer where the complex permeability and
permittivity are constants (independent from r) a general
solution can be written in form similar to Eq. (11)

EzmðrÞ ¼ Cm
I ImðνϵrrÞ þ Cm

KKmðνϵrrÞ;
HzmðrÞ ¼ Dm

I ImðνμrrÞ þDm
KKmðνμrrÞ;

νϵr ¼ νr
ffiffiffiffiffiffiffiffiffiffi
ϵz=ϵr

p
;

νμr ¼ νr
ffiffiffiffiffiffiffiffiffiffiffi
μz=μr

p
;

ν2r ¼ k2β−2 − ω2ϵrμr; ð78Þ
where Im, Km are modified Bessel functions of complex
argument.
In the following we will numerate the layers by index j

and r ¼ aj defines interface between the layers with
numbers j and jþ 1. In order to find the constants
Cm;j
I ; Cm;j

K ; Dm;j
I ; Dm;j

K in Eq. (78) we use four conditions
at the interfaces between the layers:

Ej
zmðajÞ ¼ Ejþ1

zm ðajÞ; Hj
zmðajÞ ¼ Hjþ1

zm ðajÞ;
ϵjrE

j
rmðajÞ ¼ ϵjþ1

r Ejþ1
rm ðajÞ; μjrH

j
rmðajÞ ¼ μjþ1

r Hjþ1
rm ðajÞ;

ð79Þ
where the radial field components are defined through the
longitudinal ones as

Ej
rmðrÞ ¼ ik

ν2r

�
1

β

∂

∂r
Ej
mz þmcμr

r
Hzm

�
;

Hj
rmðrÞ ¼ ik

ν2r

�
1

β

∂

∂r
Hj

mz þmcϵr
r

Ezm

�
: ð80Þ

From Eqs. (78)–(80) at each interface r ¼ aj we obtain the
relations �

Cm;jþ1
I ; Cm;jþ1

K ;Dm;jþ1
I ; Dm;jþ1

K

�
T

¼ Mj

�
Cm;j
I ; Cm;j

K ; Dm;j
I ; Dmj;

K

�
T
; ð81Þ

where Mj is a complex matrix of order 4. The explicit
expressions for the elements of matrix Mj are given in
Appendix A. They can be written as a combination of
modified Bessel functions and the expressions are similar
to those obtained in [18] for an isotropic case.
The matrix connecting the coefficients from vacuum

layer to the coefficients of the last layer can be found as a
matrix product

M̂ ¼ MN−1MN−2…M1:

The last layer, j ¼ N, is closed with pipe at r ¼ aN
described by surface impedance, Eq. (5). Hence in order to
take into the account the impedance boundary condition we
have to find the matrix

M ¼ MC2F
N M̂;

where MC2F
N is a matrix converting the field coefficients

into the field components:

0
BBBBB@

Ez;mðaNÞ
Hz;mðaNÞ
Eφ;mðaNÞ
Hφ;mðaNÞ

1
CCCCCA ¼ MC2F

N

0
BBBBB@

Cm;N
I

Cm;N
K

Dm;N
I

Dm;N
K

1
CCCCCA: ð82Þ

The explicit form of the elements of the matrix MC2F
N is

given in Appendix A.
From the boundary condition at the axis we obtain

Dm;1
K ¼ 0. The coefficient Cm;1

K is known and given by
Eq. (15). Hence we are looking for the solution of the
following simple system:

0
BBBBB@

M11 M13 Z12 ZTM

M21 M23 −1 0

M31 M33 −ZTE −Z21

M41 M43 0 −1

1
CCCCCA

0
BBBBB@

Cm;1
I =Cm;1

K

Dm;1
I =Cm;1

K

HN
z;m=C

m;1
K

HN
φ;m=C

m;1
K

1
CCCCCA

¼

0
BBBBB@

−M12

−M22

−M32

−M42

1
CCCCCA: ð83Þ

After numerically solving of Eq. (83) the modal longi-
tudinal impedance in Eq. (7) can be found as

Zmðk; γÞ ¼ −
ikZ0

δm0πðγ2 − 1Þ
Cm;1
I

Cm;1
K

:

For rectangular geometries sketched in Fig. 2 we follow
the same approach and the same suggestion of uniaxial
anisotropy (transverse permeability and permittivity are
different from the longitudinal ones). The field in the
homogeneous uniaxially anisotropic layer can be presented
as sum of complex exponents

EzmðrÞ ¼ Cmþek
ϵ
ymy þ Cm

−e−k
ϵ
ymy;

HzmðrÞ ¼ Dmþek
μ
ymy þDm

−e−k
μ
ymy;

kϵym ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xm þ ν2y

ϵz
ϵy

r
;

kμym ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xm þ ν2y

μz
μy

r
;

ν2y ¼ k2β−2 − ω2ϵ2yμ
2
y: ð84Þ
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In the following we consider only the case where the rectangular structure is symmetric in the y-direction (up-bottom
symmetry). In this case Eq. (35) for the modal impedance Zmðy0; y; k; γÞ holds. The item Zcc

m ðk; γÞ can be found from the
solution of the problem in the half of the domain with magnetic boundary condition at the symmetry plane Hz;mð0Þ ¼ 0.
Hence we are looking for the solution of the following system:

0
BBBBB@

M11 þM12 M13 −M14 −Z12 −ZTM

M21 þM22 M23 −M24 −1 0

M31 þM32 M33 −M34 ZTE −Z21

M41 þM42 M43 −M44 0 −1

1
CCCCCA

0
BBBBB@

Cm;0
þ =ðCm;1

− − Cm;1
þ Þ

Dm;0
þ =ðCm;1

− − Cm;1
þ Þ

HN
z;m=ðCm;1

− − Cm;1
þ Þ

HN
x;m=ðCm;1

− − Cm;1
þ Þ

1
CCCCCA ¼

0
BBBBB@

−M12

−M22

−M32

−M42

1
CCCCCA; ð85Þ

where elements of the matrix are described in Appendix B.
After numerical solution of Eq. (85) the item Zcc

m ðk; γÞ can be found as

Zcc
m ðk; γÞ ¼ −

2ikZ0

ðγ2 − 1Þk0y;m
Cm;1
þ

ðCm;1
− − Cm;1

þ Þ ; k0y;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x;m þ k2

γ2β2

s
:

The item Zss
m ðk; γÞ can be found from the solution of another problem in the half of the domain with electric boundary

condition at the symmetry plane Ez;mð0Þ ¼ 0. We are looking for the solution of the following system:

0
BBBBB@

M11 −M12 M13 þM14 −Z12 −ZTM

M21 −M22 M23 þM24 −1 0

M31 −M32 M33 þM34 ZTE Z21

M41 −M42 M43 þM44 0 −1

1
CCCCCA

0
BBBBB@

Cm;0
þ =ðCm;1

− þ Cm;1
þ Þ

Dm;0
þ =ðCm;1

− þ Cm;1
þ Þ

Hm;N
z;m =ðCm;1

− þ Cm;1
þ Þ

Hm;N
x;m =ðCm;1

− þ Cm;1
þ Þ

1
CCCCCA ¼

0
BBBBB@

−M12

−M22

−M32

−M42

1
CCCCCA: ð86Þ

After numerical solution of Eq. (86) the item Zss
m ðk; γÞ can

be found as

Zss
m ðk; γÞ ¼ −

2ikZ0

ðγ2 − 1Þk0y;m
Cm;1
þ

ðCm;1
− þ Cm;1

þ Þ :

Finally let us consider only one plate with the same
structure of layers as shown in Fig. 2. We use Eq. (64) for
the modal impedance Zmðy0; y; k; γÞ and Eq. (84) for the
longitudinal field components. In order to avoid the
divergence of the fields at y ¼ −∞ we have to put
Dm;1

− ¼ 0. Hence we are looking for the solution of the
following system:

0
BBBBB@

M11 M13 −Z12 −ZTM

M21 M23 −1 0

M31 M33 ZTE Z21

M41 M43 0 −1

1
CCCCCA

0
BBBBB@

Cm;1
þ =Cm;1

−

Dm;1
þ =ðCm;1

−

HN
z;m=Cm;1

−

HN
x;m=Cm;1

−

1
CCCCCA

¼

0
BBBBB@

−M12

−M22

−M32

−M42

1
CCCCCA; ð87Þ

where elements of the matrixM ¼ MC2F
N M̂ are the same as

for the rectangular case and described in Appendix B.
After numerical solution of Eq. (87) the item Zmðk; γÞ

can be found as

Zmðk; γÞ ¼ −
ikZ0

ðγ2 − 1Þk0y;m
Cm;1
þ

Cm;1
−

: ð88Þ

IV. APPLICATIONS

In this section we consider several examples of the
application of the analytical techniques described in the
paper to the real structures with corrugations, dielectrics,
and anomalous skin effects. We consider only the relativ-
istic limit γ → ∞.

A. Short-range wakes of corrugated structures

In this section we consider corrugated structures sketched
in Fig. 3: rectangular and round corrugated waveguides. The
corrugations have period p and gap t, which is smaller than
the gap depth h.
The short-range wakefields of two corrugated plates

have been analyzed in [6,7]. These studies have established
that the surface impedance formalism can be employed
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under the condition that the gap depth h exceeds the gap
width t, and the distance to the wall d is greater than the
corrugation period p.
The approximations for one corrugated plate are

obtained in [8] in the limit a → ∞. Let us give a more
accurate formulas for the case of one infinite plate for
arbitrary offsets of the source and the witness particles.
As shown in [7,22] the corrugations can be described by

surface impedance

ZTMðkÞ ¼ Z0

1þ iffiffiffiffiffiffiffi
ksc

p ; sc ¼
π

t
ðαðt=pÞpÞ2;

αðxÞ ¼ −0.07x − 0.465
ffiffiffi
x

p þ 1: ð89Þ

We take the surface impedance ZTEðkÞ≡ 0, since the
surface currents in horizontal direction are not impeded
by the corrugations [12]. If we additionally assume that
k ≫ kx, then the modal impedance, Eq. (73), can be
approximated as

Zðk; kxÞ ¼
ZTM

1þ ik
kx

ZTM
Z0

: ð90Þ

The modal wake function of point charge is given by the
inverse Fourier transform of the impedance

wðs; kxÞ ¼ Z0ckxes=s̄ðkxÞ erfc½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=s̄ðkxÞ

p
�; s̄ðkxÞ

2

sck2x
;

ð91Þ

and for s small compared to s̄ðkxÞ Eq. (91) can be
approximated by exponential function [7]

wðs; kxÞ ¼ Z0ckxe
−kx

ffiffiffiffiffiffiffiffi
ssc=2

p
: ð92Þ

Integrating in kx we obtain the longitudinal wake
function for arbitrary offsets of the source and the witness
particles:

wkðx0; y0; x; y; sÞ

¼ Z0c
π

Z
∞

0

e−kxð
ffiffiffiffiffiffiffiffiffi
0.5ssc

p
−y0−yÞ cos½kxðx − x0Þ�dkx

¼ Z0c
π

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5ssc

p
− y0 − yÞ2 − ðx − x0Þ2h

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5ssc

p
− y0 − yÞ2 þ ðx − x0Þ2

i
2
; ð93Þ

where ðx0; y0Þ are the transverse coordinates of the source
particle, ðx; yÞ are the transverse coordinates of the witness
particle, and s is the distance between them. For the same
horizontal offset of both particles, x ¼ x0, the vertical
component of the transverse wake function reads

wyðy0; y; sÞ ¼
Z0c
π

2s
ð−y − y0Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5ssc

p
− y0 − yÞ2 ; ð94Þ

and the monopole component of the transverse wake
(y ¼ y0) can be written in the form

wyðy0; sÞ ¼
Z0c
π

s
y0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5ssc

p
− 2y0Þ2

: ð95Þ

In order to confirm the accuracy of the obtained equations
we consider an example of plates with the corrugation
parameters from Table I. We consider a rectangular wave-
guide with relatively large aperture, 2a ¼ 4 mm, and large
width, 2w ¼ 12 mm. The Gaussian bunch with longitudinal
density λðsÞ of rms length σz ¼ 10 μm has offset from the
symmetry axis equal to 1.5 mm. It means that the short-range
wake potential of such bunch is equal to the short-range
wake potential of the same bunch flying with offset
y0 ¼ 0.5 mm from one infinite plate. The correctness of
this assumption for the given case was confirmed in [23].
The wake potential at this offset is obtained numerical with
code ECHO [21] through the modal expansion similar to
Eq. (32):

TABLE I. Corrugations parameters used in the calculations.

Parameter Value Units

Period, p 0.5 mm
Longitudinal gap, t 0.25 mm
Depth, h 0.5 mm
Nominal distance to the wall, d 0.5 mm
Aperture (diameter), 2a 4 mm
Width, 2w 12 mm

FIG. 3. Sketches of rectangular (a) and round (b) structures in
front view with corrugations as yellow layers. The parameters of
the corrugations are shown in side view (c). The point charge
position is shown by green circle.
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WyðsÞ ¼
X40
m¼1

Wyðs; kxmÞsin2
�
πm
2

�
; kxm ¼ πm

2w
: ð96Þ

The left plot in Fig. 4 shows dependence of the modal
wake potentialWyðs; kxmÞ from the modal number kxm. The
maximal contribution is done by the mode with the modal
number kx7 ¼ 1.83 mm−1. The right plot in Fig. 4 com-
pares the numerical result from ECHO (solid line) with the
wake potential calculated from Eq. (95) and we see only
small difference between the curves in the plot.
The characteristic wave number for this Gaussian beam

can be estimated as k ¼ 1=σz ¼ 100 mm−1. The left plot
confirms that at the beam offset of 0.5 mm from the plate
the condition kx ≪ k holds for the modal numbers kx which
contribute to the wake potential.
The wake potential for the given wake function wðsÞ and

a normalized charge distribution λðsÞ was obtained by
convolution

WjjðsÞ ¼
Z

∞

0

wjjðs0Þλðs − s0Þds0: ð97Þ

In order to confirm accuracy of the exponential approxi-
mation, Eq. (92), we have compared in the left plot of Fig. 5
the curves from Eq. (91) (solid black line) and Eq. (92)
(dashed red curve) for the modewith the modal number kx7,
which makes the largest contribution to the wake potential
[see Eq. (96)]. The right plot in Fig. 5 compares the curve
from Eq. (95) (dashed red line) with the exponential
approximation obtained in paper [8] (dotted blue line)

wyðy0Þ ¼
Z0c
2πy30

smðy0Þ
�
1 −

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
s

smðy0Þ
r

þ 1

�
e−

ffiffiffiffiffiffiffiffis
smðy0Þ

p �
;

smðy0Þ ¼
8y20
9sc

: ð98Þ

The solid black line presents the wake function obtained
from Eq. (91) without exponential approximation. We
conclude that Eq. (95) gives a better approximation of
the “true” wake function in comparison with Eq. (98)
published in [8].
As a next example let us consider a round pipe of

radius awith corrugations along axis z. Following the same

FIG. 5. The left plot compares the curves from Eq. (91) (solid black line) and Eq. (92) (dashed red curve). The right plot compares the
curve from Eq. (95) (dashed red line) with the exponential approximation from [8], Eq. (98) (dotted blue line). The solid black line
presents the wake function obtained from Eq. (91) without exponential approximation.

FIG. 4. Transverse wake potential of corrugated plate for the Gaussian bunch with rms length of 10 μm moving at 0.5 mm offset
from the plate. The left plot shows dependence of the modal wake potential Wyðs; kxmÞ from the modal number kxm as calculated by
ECHO [21]. The right plot compares the numerical result from ECHO (solid line) with the wake potential calculated from Eq. (95)
(red dashed curve).
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arguments as in previous example we assume that
ZTEðkÞ≡ 0. If we additionally assume that m ≪ ka, then
the modal impedance can be written as

ZmðkÞ ¼
ZTM

a2mþ1π
�
1þ δm0 þ iak

mþ1
ZTM
Z0

� : ð99Þ

The modal wake function of point charge is given by the
inverse Fourier transform of the impedance

wmðsÞ ¼
ðmþ 1ÞZ0c

πa2ðmþ1Þ es=smerfc
� ffiffiffiffiffiffiffiffiffiffi

s=sm
p �

;

sm ¼ 2a2

scðmþ 1Þ2ð1þ δm0Þ2
: ð100Þ

For s small compared to sm Eq. (99) can be approximated
by the exponential function [7]

wmðsÞ ¼
ðmþ 1ÞZ0c

πa2ðmþ1Þ e−
ffiffiffiffiffiffiffi
s=sm

p
: ð101Þ

For arbitrary offsets of the source and the witness
particles the longitudinal wake function can be written as

wkðr0;φ0; r;φ; sÞ ¼
X∞
m¼0

wmðsÞrm0 rm cos ½mðφ − φ0Þ�;

where ðr0;φ0Þ are the transverse coordinates of the source
particle, ðr;φÞ are the transverse coordinates of the witness
particle, and s is the distance between them.
With the exponential approximation, Eq. (101), the

radial component of the transverse wake function reads

wrðr0;φ0; r;φ; sÞ ¼
X∞
m¼1

mwrmðsÞrm0 rm−1 cos½mðφ − φ0Þ�;

ð102Þ

wrmðsÞ ¼ −
Z

s

−∞
wmðxÞdx

≈ −
2ðmþ 1ÞZ0csm

πa2ðmþ1Þ

�
1 −

�
1þ

ffiffiffiffiffiffiffiffiffiffi
s=sm

p �
e−

ffiffiffiffiffiffiffi
s=sm

p �
:

ð103Þ

The number of the modes required in the sum increases
as the beam trajectory nears the wall. In the vicinity of the
wall the used approximation fails as the condition m ≪ ka
is violated.
In order to confirm applicability of the obtained approxi-

mation we have calculated the transverse wake potential for
round pipe with the corrugation parameters listed in Table I
for the Gaussian bunch λðsÞ with rms length σ ¼ 10 μm
and offset r0 ¼ 1.5 mm. The wake potential at this offset is
obtained numerical with code ECHO through the modal
expansion similar to Eq. (26):

WrðsÞ ¼
X20
m¼1

WrmðsÞ: ð104Þ

The left plot in Fig. 6 shows dependence of the modal
wake potential WrmðsÞ from the modal number m. The
maximal contribution is done by the mode with the modal
number m ¼ 4. The right plot compares the numerical
result from ECHO (solid line) with the wake potential
calculated from Eq. (102) and we see only small difference
between the curves.
The characteristic wave number for this Gaussian beam

can be estimated as k ¼ 1=σz ¼ 100 mm−1 and radius of
the structure is a ¼ 2 mm. The left plot confirms that at the
beam offset r0 ¼ 1.5 from the symmetry axis the condition
m ≪ ka holds for the modal numbers m which contribute
to the wake potential.

FIG. 6. Transverse wake potential of round corrugated pipe for the Gaussian bunch with rms length of 10 μm moving at 0.5 mm
offset from the wall. The left plot shows the dependence of the modal wake potential WrmðsÞ from the modal number m as calculated
by ECHO [21]. The right plot compares the numerical result from ECHO (solid line) with the wake potential calculated from Eq. (102)
(red dashed curve).
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B. Resistive wall wakes at cryogenic temperatures

Resistive wall wakefields generated due to finite con-
ductivity of an accelerator vacuum chamber play an
important role in beam dynamics and free electron laser
physics. They are important for small apertures and short
bunches used in modern undulators. For the metal surfaces
at cryogenic temperatures the anomalous skin effect
regime (ASE) has to be considered. The surface impedance
of ASE reads [9]

ZsðkÞ ¼ −Z0i
kl
F
;

F ¼ −
u
π
·
Z

∞

0

log

�
1þ ηþ ζ · κðtÞ

t2

�
dt;

κðtÞ ¼ 2

t3
½ð1þ t2Þ arctanðtÞ − t�;

η ¼ −
�
kl
u

�
2

; ζ ¼ i
α

u3
;

u ¼ 1þ ickτ; α ¼ 3

2

�
l
δ

�
2

;

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Z0σck

s
; l ¼ τvf; ð105Þ

where σc is the metal conductivity, vf is the Fermi velocity,
τ is the relaxation time.
Conductivity of pure metals increases several orders of

magnitude when they are cooled from room temperature to
cryogenic temperatures. A commonly used parameter, the
residual resistivity ratio (RRR), is defined (at 4 K) as
RRR ¼ σcð4 KÞ=σcð293 KÞ. At the room temperature
jζj ≪ 1 and the surface impedance reduces to the simple
model of ac conductivity:

ZsðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ikZ0

u
σc

r
: ð106Þ

Superconducting undulators (SCU) are part of the
European XFEL facility development program [24]. A
total of six SCU modules are planned to be installed
downstream of the SASE2 undulator line at the European
XFEL. The SCU vacuum chamber will have elliptical or
racetrack shape with width 2w ¼ 10 mm and height
2a ¼ 5 mm. In the following we estimate the longitudinal
wakefields of aluminum vacuum chamber at cryogenic
temperature. The material properties of the aluminum
at the room temperature are: σc ¼ 3.66 × 107 S=m,
τ ¼ 7.1 × 10−15 s, vf ¼ 2 × 106 m=s. At cryogenic tem-
perature we assume that RRR ¼ 100.
In the following we assume that the impedance matrix

has only diagonal nonzero elements which are equal
to ZsðkÞ.
In Fig. 7 on the left we compare the longitudinal wake

functions in the round chamber with radius of 2.5 mm. The
blue dashed curve and the red dotted curve present the wake
functions at the room temperature obtained with Eqs. (106)
and (105), correspondingly. The solid black line presents
the wake at the cryogenic temperature with RRR ¼ 100.
The wake functions of ac and ASE models at the room
temperature are quite close and effect of ASE is small. All
three wake functions have the same value at the origin
given by Z0c=ðπa2Þ. The wake at the cryogenic temper-
ature drops faster but has a larger amplitude of oscillations.
The right plot in Fig. 7 presents dependence of the loss

factor hWjji from the rms bunch length σz for the Gaussian
bunch shape. The loss factor is defined as

hWjjðsÞi ¼
Z

∞

−∞
Wjjðs0Þλðs0Þds0: ð107Þ

FIG. 7. The left plot shows the longitudinal wake functions of the round chamber with radius of 2.5 mm. The blue dashed curve and
the red dotted curve present the wake functions at the room temperature obtained with Eqs. (106) and (105), correspondingly. The solid
black line presents the wake at the cryogenic temperature with RRR ¼ 100 The right plot presents dependence of the loss factor hWjji
form the rms bunch length σz for the Gaussian bunch shape for the three cases presented in the left plot.
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In Fig. 8 on the left we compare the longitudinal wake
functions of different vacuum chamber shapes at cryogenic
temperature with RRR ¼ 100. The solid black line presents
the wake of the round shape with radius a of 2.5 mm. The
red dotted curve presents the wake of the elliptical shape
with height 2a ¼ 5 mm and width 2w ¼ 10 mm. For the
elliptical shape we have used the numerical code described
in [25]. The red dotted curve presents the wake of two
parallel plates with height 2a ¼ 5 mm. The reduction
of the wake at the origin is equal to π2=16 for the flat
shape and Fellipð0.5Þ ¼ 0.68 for the elliptical one (see
Appendix C for the definition of Fellip). The right plot in
Fig. 7 presents dependence of the loss factor hWjji form the
rms bunch length σz for the Gaussian bunch and the tree
vacuum chamber cross sections. It is interesting to note that
the other shapes reduce the loss factor (relative to the one of
round pipe) only for very short bunches with rms length
less than 6 μm.

The loss factor can be converted to the heating of the
vacuum chamber walls: P ¼ frephWjjiQ2, where frep is the
bunch repetition rate and Q is the bunch charge. Assuming
frep ¼ 27 kHz, Q ¼ 250 pC and maximal peak current of
5 kA (which corresponds to σz ¼ 6 μm) we obtain the same
heat power P ¼ 1 W=m for all three shapes of the vacuum
chamber. The extra heating has to be taken into account in
the design of the cryogenic system.
Finally as the last example we consider the impedance

of the metallic pipe with dielectric coating which could
be used for generation of terahertz radiation at the
European XFEL. The application of two-layer metal-
dielectric compounds as accelerating structure and as
radiators for the generation of intense wakefield radiation
are recognized as promising areas in which intensive
theoretical and experimental research is being carried
out.The fundamental importance of the finite conductivity

FIG. 8. The left plot compares the longitudinal wake functions of different vacuum chamber shapes at cryogenic temperature with
RRR ¼ 100. The right plot presents dependence of the loss factor hWjji form the rms bunch length σz for the Gaussian bunch shape for
the three cases presented in the left plot.

FIG. 9. The left plot compares the real (solid lines) and imaginary (dashed lines) parts of the longitudinal impedance of the round
metallic pipe with dielectric layer at the room temperature near to the main resonance frequency. The blue lines are obtained with ac
surface impedance, Eq. (106). The red lines are obtained with ASE surface impedance, Eq. (105). The right plot compares the
impedances obtained with ASE surface impedance, Eq. (105), at the room temperate with RRR ¼ 1 (red curves) and at the cryogenic
temperature with RRR ¼ 100 (black lines).
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of the metallic wave-guide and of losses in the dielectric
layer was underlined in [26].
We consider a cylindrical metal waveguide with an

internal dielectric coating. The inner radius of the
copper pipe with conductivity σc ¼ 5.8 × 107 S=m is
a ¼ 0.55 mm. The dielectric coating has thickness of
50 μm and permittivity ϵ ¼ 9ϵ0. The copper has the
relaxation time τ ¼ 2.46 × 10−14 s and the Fermi velocity
vf ¼ 1.6 × 106 m=s. We assume that the dielectric is
lossless and consider only losses in copper.
In Fig. 9 on the left we compare the real (solid lines) and

imaginary (dashed lines) parts of the longitudinal imped-
ance at the room temperature near to the main resonance
frequency. The blue lines are obtained with ac surface
impedance, Eq. (106). The red lines are obtained with ASE
surface impedance, Eq. (105). The curves are quite similar.
The right plot in Fig. 9 compares the impedances

obtained with ASE surface impedance, Eq. (105), at the
room temperate (red curves) and at the cryogenic temper-
ature (black curves). We have used RRR ¼ 1 for the room
temperature and RRR ¼ 100 for the cryogenic one. As
expected the cryogenic temperature allows to reduce the
losses in the metal making only negligible shift in the
resonance frequency.

V. DISCUSSION

We have thus far examined cases where the impedance
matrix takes a uniform form across all modes within the
modal expansion. This approach often yields a sufficiently
accurate solution for various scenarios. However, a more
refined approximation or even an exact problem reformu-
lation can be achieved by introducing an impedance matrix
that varies with the modal numberm. For instance, consider
the scenario of an infinitely thick cylindrical pipe with
material parameters defined by Eq. (77). We can reformu-
late the problem as the solution of Maxwell’s equations
within the vacuum region, incorporating the impedance
boundary condition, Eq. (5), where the impedance matrix is
modally dependent with matrix elements

Zm
TM ¼ −

iaν2KmðaνϵÞ
ckmϵrKmðaνϵÞ þ ackϵrνϵKm−1ðaνϵÞ

Zm
12 ¼ −

�
aβcϵrνϵKm−1ðaνϵÞ

mKmðaνϵÞ
þ βcϵr

�
−1
;

Zm
21 ¼ −Zm

12:

Zm
TE ¼ 1

Zm
TM

�
μr
ϵr

þ Zm
12Z

m
21

�

−
ickμr
ν2

�
νϵKm−1ðaνϵÞ
KmðaνϵÞ

−
νμKm−1ðaνμÞ
KmðaνμÞ

�
:

Here a is the interior radius of the pipe and other parameters
are defined as in Eq. (78). For large conductivity, σc ≫ 1,

this matrix can be approximated by diagonal impedance
matrix with elements given by Eq. (106). Similar modally
dependent impedance matrix formulations are feasible for
multilayered structures, as discussed in Ref. [16].
The equations derived in this paper remain valid even

when considering an impedance matrix dependent on the
modal number m.
In this study, we have exclusively presented corrugated

structures as examples of surfaces with anisotropic imped-
ance. Corrugated and dielectric waveguides are presently
undergoing extensive investigation as accelerated structures
or sources of terahertz radiation. Given that various
materials (such as sapphire, ceramic films, etc.) exhibit
significant anisotropy and that intentionally designed
surfaces with desired anisotropy can be crafted as explored
in Ref. [15], we anticipate that the findings from this work
will offer valuable insights for designing different compo-
nents of modern accelerators.
In the examples we have considered only the relativistic

limit,γ → ∞, without analysis of dependence of the results
on the beam energy. For the round conductive pipe such
kind of analysis for the monopole and dipole modes was
carried out in [3].

VI. SUMMARY

In this paper, we have derived analytical expressions for
beam impedance of round, rectangular and Π-shaped
pipes with anisotropic surface impedance. We have
considered both the relativistic and nonrelativistic cases.
The field matching technique for layered structures with
layers of uniaxial anisotropy and anisotropic impedance
boundary condition at the last layer was described. The
derived equations are applied to the case of corrugated
structures with anisotropic impedance and closed analyti-
cal expressions for the wake functions with arbitrary offset
of the source and the witness particles have been estab-
lished. The influence of the shape of the vacuum chamber
on the wakes in the cryogenic temperature was studied. It
was shown that the shaping of the pipe allows to reduce
the energy loss only for extremely short bunches. Finally
the impact of the anomalous skin effect on the longi-
tudinal impedance of metallic pipe with dielectric layer
was analyzed.

APPENDIX A: MATRIX ELEMENTS FOR
ROUND LAYERED WAVEGUIDE WITH

UNIAXIAL ANISOTROPY

Here we consider the matrices used for many layered
round pipe. The matrix Mj from Eq. (81) is a complex
matrix of order 4 which maps coefficients from layer with
index j − 1 to the ones in layer j. In order to simplify the
notation we use a for aj, index “1” for j − 1 and index “2”
for j. Additionally we omit label r and use νϵ, νμ instead of
νϵr, ν

μ
r . Then the matrix Mj has the following elements
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M11 ¼
1

2
a

�
ν22ϵr;1νϵ;1½Im−1ðaνϵ;1Þ þ Imþ1ðaνϵ;1Þ�Kmðaνϵ;2Þ

ν21ϵr;2
þ νϵ;2Imðaνϵ;1Þ½Km−1ðaνϵ;2Þ þ Kmþ1ðaνϵ;2Þ�

�
;

M12 ¼
ν22ϵr;1Kmðaνϵ;2Þ½mKmðaνϵ;1Þ − aνϵ;1Kmþ1ðaνϵ;1Þ�

ν21ϵr;2
þ Kmðaνϵ;1Þ½aνϵ;2Kmþ1ðaνϵ;2Þ −mKmðaνϵ;2Þ�

M13 ¼
βmcðν22μr;1ϵr;1 − ν21μr;2ϵr;2ÞImðaνμ;1ÞKmðaνϵ;2Þ

ν21ϵr;2
;

M14 ¼
Kmðaνμ;1Þ
Imðaνμ;1Þ

M13;

M21 ¼
1

2
a

�
νϵ;2Imðaνϵ;1Þ½Im−1ðaνϵ;2Þ þ Imþ1ðaνϵ;2Þ� −

ν22ϵr;1νϵ;1Imðaνϵ;2Þ½Im−1ðaνϵ;1Þ þ Imþ1ðaνϵ;1Þ�
ν21ϵr;2

�
;

M22 ¼
1

2
a

�
ν22ϵr;1νϵ;1Imðaνϵ;2Þ½Km−1ðaνϵ;1Þ þ Kmþ1ðaνϵ;1Þ�

ν21ϵr;2
þ νϵ;2½Im−1ðaνϵ;2Þ þ Imþ1ðaνϵ;2Þ�Kmðaνϵ;1Þ

�

M23 ¼
βmcðν21μr;2ϵr;2 − ν22μr;1ϵr;1ÞImðaνμ;1ÞImðaνϵ;2Þ

ν21ϵr;2
;

M24 ¼
Kmðaνμ;1Þ
Imðaνμ;1Þ

M23;

M31 ¼
cβmðν22μr;1ϵr;1 − ν21μr;2ϵr;2ÞKmðaνμ;2ÞImðaνϵ;1Þ

ν21μr;2
;

M32 ¼
Kmðaνϵ;1Þ
Imðaνϵ;1Þ

M31;

M33 ¼
1

2
a

�
νμ;2Imðaνμ;1Þ½Km−1ðaνμ;2Þ þ Kmþ1ðaνμ;2Þ� þ

ν22νμ;1μr;1½Im−1ðaνμ;1Þ þ Imþ1ðaνμ;1Þ�Kmðaνμ;2Þ
ν21μr;2

�

M34 ¼ Kmðaνμ;1Þ½aνμ;2Kmþ1ðaνμ;2Þ −mKmðaνμ;2Þ� þ
ν22μr;1Kmðaνμ;2Þ½mKmðaνμ;1Þ − aνμ;1Kmþ1ðaνμ;1Þ�

ν21μr;2
;

M41 ¼
cβmðν21μr;2ϵr;2 − ν22μr;1ϵr;1ÞImðaνμ;2ÞImðaνϵ;1Þ

ν21μr;2
;

M42 ¼
Kmðaνϵ;1Þ
Imðaνϵ;1Þ

M41;

M43 ¼
1

2
a

�
νμ;2Imðaνμ;1Þ½Im−1ðaνμ;2Þ þ Imþ1ðaνμ;2Þ� −

ν22νμ;1μr;1Imðaνμ;2Þ½Im−1ðaνμ;1Þ þ Imþ1ðaνμ;1Þ�
ν21μr;2

�
;

M44 ¼
1

2
a
�
νμ;2½Im−1ðaνμ;2Þ þ Imþ1ðaνμ;2Þ�Kmðaνμ;1Þ þ

ν22νμ;1μr;1Imðaνμ;2Þ½Km−1ðaνμ;1Þ þ Kmþ1ðaνμ;1Þ�
ν21μr;2

�
.

Matrix MC2F
N converts the field coefficients into the field components and its nonzero elements are

MC2F
11 ¼ ImðaNνϵ;NÞ; MC2F

12 ¼ KmðaNνϵ;NÞ;
MC2F

23 ¼ ImðaNνμ;NÞ; MC2F
24 ¼ KmðaNνμ;NÞ;
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MC2F
31 ¼ −

ikmImðaNνϵ;NÞ
βaNν2N

;

MC2F
32 ¼ −

ikmKmðaNνϵ;NÞ
βaNν2N

;

MC2F
33 ¼ −

ikcνμ;Nμr;N ½Im−1ðaNνμ;NÞ þ Imþ1ðaNνμ;NÞ�
2ν2N

;

MC2F
34 ¼ ikcνμ;Nμr;N ½Km−1ðaNνμ;NÞ þ Kmþ1ðaNνμ;NÞ�

2ν2N
;

MC2F
41 ¼ ikcϵr;Nνϵ;N ½Im−1ðaNνϵ;NÞ þ Imþ1ðaNνϵ;NÞ�

2ν2N
;

MC2F
42 ¼ −

ikcϵr;Nνϵ;N ½Km−1ðaNνϵ;NÞ þ Kmþ1ðaNνϵ;NÞ�
2ν2N

;

MC2F
43 ¼ ikmImðaNνμ;NÞ

βaNν2N
;

MC2F
44 ¼ ikmKmðaNνμ;NÞ

βaNν2N
:

APPENDIX B: MATRIX ELEMENTS FOR
RECTANGULAR AND Π-SHAPED ANISOTROPIC

LAYERED WAVEGUIDES

In the case of rectangular structure with many layers
matrix Mj relates coefficients at interface r ¼ aj

�
Cm;j
þ ; Cm;j

− ; Dm;j
þ ; Dm;j

−

�
T

¼ Mj

�
Cm;j−1
þ ; Cm;j−1

− ; Dm;j−1
þ ; Dm;j−1

−

�
T
:

In order to simplify the notation we use a for aj, index “1”
for j − 1 and index “2” for j. Additionally we omit label y
and use kϵ, kμ instead of kϵy, k

μ
y.

The matrix Mj has the following elements

M11 ¼
eaðkϵ;1−kϵ;2Þðν21kϵ;2ϵy;2 þ ν22kϵ;1ϵy;1Þ

2ν21kϵ;2ϵy;2
;

M12 ¼
e−aðkϵ;1þkϵ;2Þðν21kϵ;2ϵy;2 − ν22kϵ;1ϵy;1Þ

2ν21kϵ;2ϵy;2
;

M13 ¼
βckxeaðkμ;1−kϵ;2Þðν21μy;2ϵy;2 − ν22μy;1ϵy;1Þ

2ν21kϵ;2ϵy;2
;

M14 ¼ e−2akμ;1M13;

M21 ¼ e2aðkϵ;1þkϵ;2ÞM12; M22 ¼ e2aðkϵ;2−kϵ;1ÞM11;

M23 ¼ −e2akϵ;2M13; M24 ¼ −e2aðkϵ;2−kμ;1ÞM13;

M31 ¼ −e2aðkϵ;1−kμ;2ÞM42; M32 ¼ −e−2akμ;2M42;

M33 ¼ e2aðkμ;1−kμ;2ÞM44; M34 ¼ e−2aðkμ;1þkμ;2ÞM43;

M41 ¼ e2akϵ;1M42;

M42 ¼
cβkxeaðkμ;2−kϵ;1Þðν22μy;1ϵy;1 − ν21μy;2ϵy;2Þ

2ν21kμ;2μy;2
;

M43 ¼
eaðkμ;1þkμ;2Þðν21kμ;2μy;2 − ν22kμ;1μy;1Þ

2ν21kμ;2μy;2
;

M44 ¼
eaðkμ;2−kμ;1Þðν21kμ;2μy;2 þ ν22kμ;1μy;1Þ

2ν21kμ;2μy;2
:

The matrix MC2F
N converts the field coefficients into the

field components:

ðEz;mðaNÞ; Hz;mðaNÞ; Ex;mðaNÞ; Hx;mðaNÞÞT
¼ MC2F

N ðCm;N
þ ; Cm;N

− ; Dm;N
þ ; Dm;N

− ÞT:

The nonzero elements of this matrix are

MC2F
11 ¼eaNkϵ;N ; MC2F

12 ¼e−aNkϵ;N ;

MC2F
23 ¼eaNkμ;N ; MC2F

24 ¼e−aNkμ;N ;

MC2F
31 ¼ ikkxeaNkϵ;N

βν2N
; MC2F

32 ¼ ikkxe−aNkϵ;N

βν2N
;

MC2F
33 ¼−

ikZ0kμ;Nμy;2NeaNkμ;N

ν2N
;

MC2F
34 ¼ ikZ0kμ;Nμy;2Ne−aNkμ;N

ν2N
;

MC2F
41 ¼ ickkϵ;Nϵy;NeaNkϵ;N

ν2N
; MC2F

42 ¼−
ickkϵ;Nϵy;Ne−aNkϵ;N

ν2N
;

MC2F
43 ¼−

ikkxeaNkμ;N

βν2N
; MC2F

44 ¼−
ikkxe−aNkμ;N

βν2N
:

APPENDIX C: SHORT-RANGE LONGITUDINAL
FORM FACTORS OF ELLIPTICAL AND

RECTANGULAR WAVEGUIDES

It is well known that the longitudinal wake function of
round pipe of radius a with a retardation layer has the
following value at the origin

wround
k ð0Þ ¼ Z0c

2πa2
; wround

k ð0þÞ ¼ 2wround
k ð0Þ;

where “0þ” means the one-sided limit from the right.
An ellipse with semimajor axis w and semiminor axis a

can be conformally mapped onto the circle of radius a by
transformation
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fellipðzÞ ¼ a
ffiffiffi
k

p
sn

�
2K
π

arcsin

�
zffiffiðp w2 − a2Þ

�
; k2
�
;

where sn is the Jacobi elliptic sine function and

k ¼
�
θ2ð0; pÞ
θ3ð0; pÞ

�
2

; K ¼ π

2
θ23ð0; pÞ; p ¼

�
w − a
wþ a

�
2

:

Here θ2, θ3 are Jacobi theta functions. Following [27] we
can write the value of the longitudinal wake function of the
elliptical wave-guide at the origin as

wellip
k ð0Þ ¼ wround

k ð0ÞFellip
k

�
a
w

�
;

Fellip
k

�
a
w

�
¼
�
d
dz

fellip½0�
�

2

¼
�
a
w

�
2 4kK2

π2½1 − ða=wÞ2� ;

where Fellip
k is the longitudinal form factor of the elliptical

wave-guide.
A rectangle with width 2w and height 2a can be

conformally mapped onto the circle of radius g by trans-
formation

frectðzÞ ¼ g
1þ i

ffiffiffi
k

p
sn½Kw−1ðzþ iaÞ�

iþ ffiffiffi
k

p
sn½Kw−1ðzþ iaÞ� ;

where the symbols K and k have the same meaning as for
the ellipse above but the value of p is different:

p ¼ e−2πa=w:

Hence the longitudinal wake function of the rectangular
waveguide at the origin can be written as

wrect
k ð0Þ ¼ wround

k ð0ÞFrect
k

�
a
w

�
;

Frect
k

�
a
w

�
¼
�
d
dz

frect½0�
�

2

¼
�
a
w

�
2 4kK2ðcnðiK a

w ; k
2Þ dnðiK a

w ; k
2ÞÞ2

ðiþ ffiffiffi
k

p
snðiK a

w ; k
2ÞÞ4 ;

where sn, cn, dn are elliptic Jacobi functions and Frect
k is the

longitudinal form factor of the rectangular waveguide.
The form factors allow simple cubic approximations:

Fellip
k ðxÞ ¼ 0.279x3 þ 0.093x2 þ 0.013xþ π2=16;

Frect
k ðxÞ ¼ 0.477x3 − 0.268x2 þ 0.036xþ π2=16;

x ¼ a=w; a ≤ w;

with maximal absolute error below 0.3%. Figure 10 shows
dependence of the form factors from the parameters
ratio a=w.
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