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We consider analytical expressions for beam impedance of round, rectangular, and I1-shaped wave-

guides with anisotropic surface impedance of arbitrary nature. The formulas are given for relativistic and

nonrelativistic cases and the impedance matrix of general form. The field matching technique for layered

structures with layers of uniaxial anisotropy and anisotropic impedance boundary condition at the last

layer is described. The analytical methods are applied to the real structure examples with corrugations,

dielectrics, and anomalous skin effects.
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I. INTRODUCTION

The electromagnetic behavior of the vacuum chamber
in many situations can be described by impedance
boundary condition for time-harmonic electromagnetic
field E, H [1,2]:

nxE=-Znx(nxH), (1)
where Z* is a surface impedance tensor and n is a unit
vector normal to the surface of the pipe.

The explicit form of the surface impedance tensor
depends on the material and geometry properties of
the pipe. The resistivity and the roughness are analyzed
in [2—4]. The structures with periodic corrugations of the
walls are considered in [5-8]. The anomalous skin effects
can be treated as in [9,10].

In this paper we consider analytical expressions for
beam impedance [11] of round, rectangular and I1-shaped
waveguides with anisotropic surface impedance of arbitrary
nature.

Equations for round structure with impedance boundary
condition for nonrelativistic charge have been revisited
recently in [3] for monopole and dipole modes. In the
relativistic limit the equations for dipole mode are written
only for the explicit form of the resistive surface impedance
without generalization to an arbitrary one. The equations
for higher order azimuthal modes are not considered there.
The knowledge of the higher order modes is necessary to
analyze the beam behavior near to the walls of the vacuum
chamber. The application of the surface impedance
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formalism to flat corrugated structures with one or two
parallel plates was done in [6-8]. But only the relativistic
limit was studied in these papers.

In the publications listed above the surfaces impedance
matrix has only diagonal elements, which are equal. But, for
example, in the case of the corrugated structures with
resistivity a more accurate approximation is to use nonequal
diagonal elements, as it was done for the longitudinal
impedance in [12]. The impedance matrix with nonequal
diagonal elements was used in [13,14] for the analysis of
radiation from the charged particle near a corrugated surface.

Examples of surfaces characterized by fully populated
impedance matrices are discussed in Refs. [15,16]. The
accuracy of the surface impedance boundary conditions for
dielectric layers and conductive metals have been exam-
ined, for example, in [16,17], along with references therein.

Round layered pipes and flat layered parallel plates are
considered in [18] for fully isotropic layers and in [19] for
anisotropic materials. The treatment of the impedance boun-
dary condition in the last layer was not considered there.

In this paper we would like to extend the available results
in several directions. We consider all modes for round,
rectangular, and I1-shaped structures in nonrelativistic and
relativistic cases. We give the equations for impedance
matrix of general form.

In the following we call the structure “round” if it is
axially symmetric. If the structure has a constant width
between two perfectly conducting planes and has rectangular
cross sections then we call such structure ‘“rectangular.”
Figure 1 shows the transverse to z-axis cross sections of
round and rectangular structures. Additionally, a I1-shaped
structure is shown in Fig. 1 as well. It is one plate between
two perfectly conducting plates.

We assume that the charge is moving along a straight line
parallel to the longitudinal axis of the system, and we
neglect the influence of the wakefields on the charge
motion. In the frequency domain all fields will have the

Published by the American Physical Society
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FIG. 1. Transverse to z-axis cross sections of round (a),

rectangular (b), and II-shaped (c) geometries. The point charge
position is shown by red circle.

time dependence ¢’ (w is the angular frequency) which
we will omit in the subsequent equations.

We start in Sec. II A with derivation of the non-
relativistic beam impedance of round metallic pipe with
anisotropic surface impedance. Then the equations for
the relativistic limit are presented. The same is done in
Secs. I B and II C for the rectangular pipe and I1-shape. In
Sec. IID we present the equations for the infinite
and semi-infinite flat plates. Section III describes the field
matching technique for layered structures with uniaxial
anisotropy and anisotropic impedance boundary condition.
The analytical techniques and numerical methods are
applied to the real structure examples with corrugations,
dielectrics and anomalous skin effects in Sec. IV.

II. VACUUM REGION CLOSED BY PIPE
WITH SURFACE IMPEDANCE

Let us start by considering only one vacuum region
closed with a metallic pipe. In this case we will derive
analytical solutions. In Sec. III we discuss how to modify
the field matching method for the pipes with many
homogeneous layers.

A. Round beam pipe with surface impedance

For round structures we will use cylindrical coordinates
r, @, z. The charge density in the frequency domain can be
expanded in Fourier series

p(r.p.2,k) = e PN " p,8(r = ro) cos[m(p — po),
m=0

q
=, 2
Pm morg(1+ 8,0) 2)

where 7y, @, are coordinates of the point charge g,
k=w/c, p=v/c, cis velocity of light in vacuum, and
Omo = 1 if m =1, 0 otherwise.

From the linearity of Maxwell’s equations the compo-
nents of the electromagnetic field can be represented by
infinite sums:

H,(r, ¢,z k) w [ Hom(r. k)
E(r.p.z,k) | = e‘”‘z/ﬂz E,,(r.,k) | cos(mg),
E.(r.¢.2.k) "0\ Eo(r,k)
E,(r,¢.2,k) w [ Eom(r k)
H,(r,p.z.k) | = e /P Z H,, (r,k) | sin(mg).
Hz<r7¢’z7k) =0 Hzm<r7 k)
(3)

It is a direct consequence of Maxwell’s equations applied
to fields’ decomposition in Eq. (3), that for each modal
number m we can write an independent system of equations

m ) .
7Hzm + ZBHW = iweyE,,,,
k 2 ,
_lﬁHrm _EHZ_m = la)é‘OE(/}m,
10 m .
;g(VH(pm) _7Hrm - la)€0Ezm + Upmé(r - r())y
Y .
-—E, r __ -
Y:Em+zﬂE(ﬂm iopoH.
k0 '
_IBErm —gEz,m = _la)ﬂOngm,
10 .
Va}"( E )+ Erm__lwluOHzmv
10 m .
;E(THrm) _7H‘/”m - lkHzm =0,
10 m . o
;a(rErm) +7Ew,, —ikE,, :6—0_ (4)

The impedance boundary condition, Eq. (1), can be
rewritten as

~E_,(a) _ Zry Zip H(pm(a) (5)
E(pm(a) Zy  Zrg H,,(a)
We are interested in beam impedance as defined in [11,18].

E (r.g.z.k)e™/’
q

ZH(rO’q)O?r’(pvk’},) = 5 (6)

where the longitudinal field £, depends on the coordinates
of the source particle ry, ¢, and the product E,e™*/’ is
independent of z. For round pipe the beam impedance can be
presented as expansion in azimuthal modes
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= kr, kr
Z||(r07(p0’r’(p’k 7 sz k }/ ( ﬂo> (Yﬁ) Cos[m((p—(po)]—|—Z§‘2(r0,(p0,r,(p, k,}/), (7)
=0
kZ, k\/13 + 1r* = 2ryrcos(p — @)
z3y ) s Iy ’k7 - - K ) 8
Ac(r() (00 r (P y) 277.'(]/2— ]) 0( }’ﬂ ( )

where 1,,, K, are modified Bessel functions of complex
argument, y is the Lorentz factor and we have written
explicitly the space charge contribution Z. Function
Z,,(k,y) is the modal impedance to be found.

From system of first-order equations, Eq. (4), we obtain
the decoupled second-order equations for the longitudinal
field components

1o o0 m? ik

0l (R E, = Sr—1), (9
ror or <r2 +y> : yzﬂeop (r=ro), (9)
1o o0 m? k
——7r—H — | — 2 H :0, = —. 10
ror or " <r2 +I/> o ‘ P (19)

A general solution of homogeneous hyperbolic Egs. (9)
and (10) in charge free regions can be written in form

E(r)
H.(r)

=C/',(vr
=DM, (v

) + CEK,,(vr),

r) + DK, (vr), (11)
where /,,, K,, are modified Bessel functions of complex
argument and ¥, D', D¥ are unknown constants to
be found.

In the following we numerate the electric field E_, (r)
by index “0” for r < ry and by index “1” for r > r(. The
magnetic field H.,,(r) has the same representation in the
whole domain. In order to avoid the divergence of
the solution we need to put Ci* =0, D? = 0. At the
position of the beam r, the longitudinal component of the
electric field E, is continuous and we can write

CmO Cm] Cm 1 (I/ ) . 12
+ 1, (vr) (12)
If we multiply Eq. (9) by r, integrate it from ry — A to

ro — A and take limit for A — 0 then we obtain the jump
condition of the derivative:

0 3} ik

—E! -—E° =——pDn 13
or zm(rO) or zm(ro) }’zﬂeopm ( )
It follows from Egs. (11) and (13) that
m1 d m1 d mo 4
cy ldr I, (vrg) + Cy ld m(vrg) — Cj ’Oalm(l/ro)
ik
=——Pn- (14)
72ﬂ€0

|
As a next step we put Eq. (12) into Eq. (14) and use the

relation /,,,(x) £ K, (x) — K, (x) £1,,(x) = — 1. We obtain
ikr,
e : 15
K yzﬂeopm m(l/rO) ( )

It is direct consequence of Eq. (7) that the impedance
term can be found as

Cm,l
1
qlm (IJV())

Eém(r()) - qzﬁm _
qlm(UFO)2

Zy(k,y) = . (106)

where we have used the expansion of the space charge
impedance in azimuthal modes

Zsc(rO Po, T (p7k }/)

io: scm rO’r k}/)COS[ (§0—(p0)], (17)
B ikZ,
Zsc,m(r07rv k’ 7) - (}/2 _ 1)( +5m0) (U’”)Im(’/”o)
K ke, ran (18)

In order to find the constants C'!, D in Eq. (11) we use
the impedance boundary condition, Eq. (5), with the
azimuthal field components defined through the longi-
tudinal ones as

ik (10 m
H,=—=—=E,+-—H.,,), 19
pm y2 <ZO or zm +/}r .,m) ( )
ik 0 m
Eflﬂm == ? (ZO ;Hzm + EE;m> . (20)
From straightforward symbolic calculations [20]

we derive that the modal impedance in Eq. (7) can be
written as

0ZnN

Z,(k,y) = ipe.n (K,
n(k.7) nalm(x)(l+5,,10)D+ pipen (K-7).
X ka
- = 21
ak’ T (21)
0|Z| im) _
N=1,(x —— ) +il,_(x), 22
(el ity 22
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D =1,(x)? (1 —ﬂ;)zmzZTM _iH_m 1+ @ T Zy =2y i 0’ Ze
ﬂ X ZO X Z ﬂZO Z()
2mZry | . A Zm
1 l,_ —+if( 1 —-1,_ 2= 23
a0 (72 i0 1+ ) ) = i 23)
|
ix’ZyK ,,(x H.(x,vy,2,k H. (v.k
plpem(k }/) Zk I ° 1( )5 ’ (24) X( Y ) —lkZ/ﬂ S Xm(y ) )
L (x)(1+ Ono) Ey(x.y.2.k) Y| Emlk) | sin(ky,).
m=1
where |Z*| is the determinant of the matrix Z*: E.(x,y,2,k) Eon(y.k)
\Z°| = ZypZm — Z12Zy). (25) Elx.y.z. ) o—ike/B & Exn(y. k)
H,(x,y.z.k) Z H,, (v, k) | cos(ky,x).
Here Z e (k. 7) is the modal impedance of nonrelativistic H.(x.y,2.k) =1 H., (7. k)

charge in perfectly conducting round pipe.
In relativistic limit, y — oo, one obtains

Z||<r07 Po. T, @, k, }’) = sz(k>r6nrm COS[’"(CO - QDO)],
m=0

(26)
ZTM
Zylk) =——"F——5—, 27
olk) 2an(1 +4t2pm) 27
ZTM
Z,(k) = =

a2m+1”(1 _|_Zzlzozw \Z|_’_ (lka_f_n;ikl)ZZT(l]\/[)

m > 0. (28)

B. Rectangular beam pipe with surface impedance
at two opposite sidewalls

In rectangular case we choose a coordinate system with y
in the vertical and x in the horizontal directions as it is
shown in Fig. 1. The z coordinate is directed along the
beam direction. The structures considered in this paper
have constant width 2w in x-direction between two per-
fectly conducting side walls. In the following we consider
only the case where the rectangular structure is symmetric
in the y-direction (up-bottom symmetry).

The charge density can be expanded in Fourier series
along x-coordinate

e—ikz/ﬂ o0 ) )
p(x,y,z,k) = pmb‘(y _yO) Sln(kxmx0) Sln(kxmx)’
m=1
q zm
= kxm =7 29
Pm=" o (29)

where x,, y, are coordinates of the point charge. Again it
follows from the linearity of Maxwell’s equations that the
components of electromagnetic field can be represented by
infinite sums:

For each modal number k,, we write an independent
system of equations

k :
—ky,H_,, + ZBH m = o€k,
k J :
_ZBH}'m - a_szm = la)eOExmf
J :
a_nym + kmeym = lweOEzm + Upm‘s(y - yO)’
.k .
kmezm + IBExm = _lw/’tOHymv
.k d .
_ZBEym - aEzm = —iwpoH .
0 .
a_y( xm) kme)m = _la)/"OHzm9
d .
EHym + kmexm - lkHzm =0,
d . Pm
5y Eom ki~ Ey =22 (30)

The surface impedance boundary condition, Eq. (1),
takes the following form

Ezm(“) o ZTM Zl2 me(a) (31)
_Exm<a) ZZ] ZTE Hzm(a>
It is well known that for a rectangular pipe the beam

impedance can be written as expansion in the modal
number k., [21]

Z|| (xo Y0,X,Y, k sz(yOﬂy’k 7) Sln(kxme) Sln(kxmx)

+Zsc(x09y07X,y,k,}’), (32)
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Zsc<x0v Yo, X5 Y, k7 ]/)

S b0y im0 sin ). (33
m=1
Zoem(Yo:y-kiv) = =3 (yzﬂizlo) o e fombo,
Ky = \/ K2, + 12, (34)
where the modal impedance reads
Zn(vo-y- k. v) = Z3 (k.y) cosh(ky,,yo) cosh(ky,,y)
+ Z33 (k. y) sinh(ky,,y0) sinh(k,,,y). (33)

Here Z,.(xq, yo, X, y, k,7) is the impedance between the
two vertical perfectly conducting plates at x =0 and at
x = 2w. In the limit when the coordinates of the perfectly
conducting plates go to £oo it reduces to Z32, Eq. (75).

From system of first-order equations, Eq. (30), we obtain
the decoupled second-order ones

& . ig8(y = yo)v*

ayZ Zm k% mEzm — T ’ (36)
02
Gy Hon =Bl = 0. (37)

The longitudinal field components can be presented as
sums of complex exponents

Cm k\m.} + Cm xmv

E
Hzm(r) Dm k)my + D’n wxy (38)
Just as in case of round pipe of the previous section we
numerate the electric field E_,,(y) by index “0” for y < y,
and by index “1” for y > y,. The magnetic field H_,,(y) has
the same representation in the whole domain. If we
integrate Eq. (36) from y, — A to yy + A and take limit

for A — 0 then we obtain the jump in the derivative:

o, 9

—E -

Egm (yO) = (39)

ik
——Pm-
r’pey "

The term ZS¢(k,y) in Eq. (35) can be found from the
solution of the problem in the half of the domain with
magnetic boundary condition at the symmetry plane.
From the condition H_,,(0) =0, H,,(0) =0 we obtain
D" =-pn, Cm0 = c'"o

At the position of the beam y, the longitudinal compo-
nent E, is continuous and we can write
)myO

2070 cosh(ky,,yo) = Ctekmo 4 €1 = (40)

The derivative of the field E, has jump, Eq. (39), and from
Eq. (38) we obtain

Cﬂ'l ekvmyo — Ccm1 g=kyuyo

ik
- (41)
ky,m72ﬁ€0

— 2" sinh(ky,,yo)

Combining Egs. (40) and (41) we can derive the relation
ik

cpl—cml = ——— 42
- kymyzﬁe() ( )

Pm COSh(kymyO) .

Hence the impedance term Z5¢(k,y) can be found as

EL(Y0) = 4Z56m 2c7!
anc(k,}/) Tz (yO) qL, s z(yO) _ 1 , (43)
g cosh(ky,,ro) g cosh(k,,,7)
where
Zizm(y()) = [Zsc,m(y()v Yo» k’ ]/) + Zxc,m(_yO’ Yos k’ ]/)]/2

(44)

In order to find the constants D", "%, C"', €™, we
use Egs. (40), (42) and the impedance boundary condition,
Eq. (31), where the transversal field components are
defined through the longitudinal ones as

ik (1 9 k.,

H)lcm == (Z ayE%m +7Hzm)v (45)
ik (o k.,

E,lrm = ; <205Hzm + B E;m> . (46)

From straightforward symbolic calculations [20] we find
out that the impedance term Z5(k,y) can be written as

ZtmN
Zii(ky) = =5+ Zigem(kr).  (47)
ik |Z°
N=k -5 1 ann(ak,).  @8)
Pr-ZoZmm
L Al .5
D = —iA sinh (2ak,,,) + 7 2k,,, sinh” (ak,,,)
0
+ 2k, cosh? (ak,,,). (49)
A— YZZTM(kJZ(m - ﬂzkim) T i(le - ZZI)kxm kZ1g
kZ PZy przy’
(50)
ikZy[1 — tanh (ak,,,)]
Ziem(kiy) = s (51)

27 Pk
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Here Z 5. .,
charge in perfectly conducting rectangle with the magnetic
boundary condition at the symmetry plane, y = 0.

In the same way the item Z3$(k,y) can be found from
the solution of the problem in the half of the domain
with electric boundary condition at the symmetry plane.
From the equations E_,(0) =0, E,,,(0) =0 we obtain
D" =Dpn, "0 = O,

At the position of the beam y, the longitudinal compo-
nent E, is continuous and we can write

(k,y) is the modal impedance of nonrelativistic

2C"0 sinh(ky,,yo) = C' b

+ Cmlemhmo (52)

From the jump of the derivative of E_ at y, we obtain

ik .
24, Pm snlh(kymy())' (53)

crl 4 omt =
- kymyzﬂeo

Hence the impedance term Z33(k,y) can be found as

s Elm(r ) B qZ;é m 2Cm’1
Zy(k,y) = =3 = (54)
g sinh(ky,,ro) q sinh(ky,,ro)
where
Z?Zm = [Zsc,m(y07 Yo, k’ Y) - Zsc.m(_yO’ Yo, k’ Y)]/Z (55)

Following the same route of derivation as for Z¢(k,y)
we obtain the impedance term Z35(k,7):

ZtmuN
Zi(ky) = ==+ Zifou m (k7). (56)
ik _|Z°]
N =k, ,, — —5—5———coth (ak,,,) (57)
"B ZoZnw
D = —iA sinh (2ak |Zs|2k h?(ak
= —iA sinh (2ak,,,) + Z ymcosh? (aky,,)
+ 2k, sinh*(ak,,,)., (58)
ikZy(coth (ak,,,) — 1)
Ziipem(K:7) = : - (%9)
P 277k
Here Z;l‘pe (k. 7) is the modal impedance of nonrelativistic

charge in perfectly conducting rectangle with the electric
boundary condition at the symmetry plane, y = 0.

In the relativistic limit, y — oo, the equations reduce to
the following expressions

Zn(y0,y, k) = Z3i (k) cosh(kynyo) cosh(kyny)

+ Z; (k) sinh(ky,yo) sinh(k,y), — (60)

zee (k) Ztm
2% 2] smh2 (akyy,)+ B sinh(2ak,,,) +2cosh?(ak,,,)

(61)

Zss (k)= Zym
m s ’
2Z1cosh? (k) + Bsinh (2ak,,,) +2sinh?(ak,y,)
0

(62)

where

Zin—=2y  Zmm( k  kem
B= = Lom)),
ZO T ZO (kx.m k (63)

C. One plate with surface impedance placed
between two perfectly conducting sidewalls

Let us consider the case when there is only one plate with
the impedance boundary condition placed at y =0 as
shown in Fig. 1. The charge is at the position y, < O.

The beam impedance has the same form given by
Eq. (32) but the modal impedance has different represen-
tation

Zy(y0.y. koy) = Zy(k,y)ebomot) (64)

The electric and magnetic longitudinal fields compo-
nents are presented by the same form, Eq. (38), as for the
rectangular pipe. To avoid divergence of the field at
y = —co we have to put C"% =0, D" = 0. Again the
H_,(y) component has the same representation in the
whole domain and we are looking only for the constants
c0, ¢!, ¢, D From four equations

E;m(o) = ZTMH,lvm(O) + ZIZHzm(O)’

E)lcm(o) = _ZTEHzm (O) - ZZlH)lcm(O)v (65)
E?m(y()) = E;m()’o)’

0 0 ik

ay zm(yO) ay zm(yO) }’2/}€opm ( )

we obtain the four constants straightforwardly.
The impedance term will be obtained from the relation

Eém()’o) B qzsc,m o CTI

Zm (k’ Y) - qezkvm)'o

=i (6

Hence the modal beam impedance of [1-shaped waveguide
reads

ZeuN
Zy(k.y) ==5

+ plpem(k ]/) (68)
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ik|Z*|
Y B ZoZrw

(12 Zi—Zo  ir* Zrvikom
D_<ZZ+1 o o (27T
0 0 0

N = (69)

n B Zrnks _ ikZqg (70)
kZ Prizy’
ikZ,
Z ky) =———. 71
plpe.m( 7/) Zﬂzyzkym ( )

Here Z . (k. 7) is the modal impedance of nonrelativistic

charge in perfectly conducting IT-shaped structure.
|

In the relativistic limit, y — oo, the previous equations
reduce to the following expressions

Z, (30, K) = Z,, (k) eber 0ot (12)
ZTM
Z,(k) = — e ()
Uil - + 2o

D. Infinite and semi-infinite plates

In the case of infinite plates, —co < x < oo, the imped-
ance reads

1 ©
Z”(xo,yo,x,y,k) _;A Z(y()?y’ k7 kx’ ]/) COS(kX(XO—X))dkx+Z??,(X0,y0,x,y, k?V)’ (74)

kZ,

Z?S‘(Xo,yo,x,y, kv 7) = -

27z(y* -1

74

) K, (k\/(x —x0)> + (v - )’0)2> ’ (75)

where Z(yo, v, k, k,,7) is defined by Eq. (35) for two parallel plates or by Eq. (64) for one plate.
In the case of semi-infinite plates, 0 < x < oo, the impedance reads

2 [oo . . <
Z”(xO’yO?x’ y7k) = 7_7,'/)' Z(y()?yvk? kx’ 7/) Sln<kxx0) Sln(kxx)dkx +Z§E‘ml('x0’y0’x7y’k7 }’),

Z?‘Zmi()co’ y()’x’y’k’ J/) = Z??(xo’)’o’x,y’k, }’) -Z

E'?(—xo’)’o’x,y,k, Y)’ (76)

where again Z(yy, v, k, k., y) is defined by Eq. (35) for two parallel plates or by Eq. (64) for one plate.

III. MANY HOMOGENEOUS LAYERS CLOSED
BY PIPE WITH SURFACE IMPEDANCE

In this section we describe modification of the field
matching method published in [18,19] to include an imped-
ance boundary condition. Additionally we consider the case
of Il-shaped structure which was not analyzed before.

Let us consider a round pipe sketched in Fig. 2 with
many layers possessing the uni-axial anisotropy. It means

5 - ay
En, Uy €N, Ky
ay-1
€3, U3 a, el
T €2, U2
a,
€0, Mo \ €0, Mo
a; a; .. Gay_; ay - Wy

FIG. 2. Transverse to z-axis cross sections of “round” and
“rectangular” layered pipes.

that the permittivity and the permeability tensors are

diagonal and for their elements the following relations hold
e(r) = €,(r).  m(r) = py(r).

We do not have to assume any particular frequency

dependence. In order to include conductivity and other

losses in numerical code we use the following expressions
(here we consider as example the r-component):

A )
6,(7‘, k) —6,(}")[1 15,,(}")] (1)[1 —l—ian'(r)]’
pr(r k) = w(r)[1 =id(r)]. o= ke, (77)

where €. is the real part of the complex permittivity, ). is
the real part of the complex permeability, and the loss can
be introduced with the help of dielectric loss tangent &¢,
magnetic loss tangent &, or/and with ac conductivity
following the Drude model [1], where o, is the dc
conductivity of the material and 7 its relaxation time.
We use similar expressions for z- components of the
permittivity and the permeability tensors.
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Inside of each layer where the complex permeability and
permittivity are constants (independent from r) a general
solution can be written in form similar to Eq. (11)

E.,(r) = CP'L, (vir) + CRK,, (v5r),
Hzm(r) = D?Im(l/;r) +D%Km(ﬂr)’

vy =1Vr, €z/€r’

vy :Vr\//’tz//’tn

y% = k2/}—2 - a)zer,u,, (78)

where /,,, K,, are modified Bessel functions of complex
argument.

In the following we will numerate the layers by index j
and r =a; defines interface between the layers with
numbers j and j+ 1. In order to find the constants

Cy, CR7, Dy DY in Eq. (78) we use four conditions
at the interfaces between the layers:

Elw(aj) = Eln'(a)).,  Hlu(a;) = HS (a;),
e Em(ay) = el ElWN @), ulHl(a;) = ult HE (a;),
(79)

where the radial field components are defined through the
longitudinal ones as

; ik (10 _;
Eer(r):l <E{nz

mey,
Y - H7 )
v: \por + r ”m>

n mier Em> . (80)

From Egs. (78)—(80) at each interface r = a; we obtain the
relations

2

i ik (10
H{‘m(r) = l/_ <__rH£nZ

<C;n,j+l’ CZ'HI, D;"’jH, D?’HI)T
—M, (c;”*-" LCR7 DY, DZ-"’)T, (81)

where M; is a complex matrix of order 4. The explicit
expressions for the elements of matrix M; are given in
Appendix A. They can be written as a combination of
modified Bessel functions and the expressions are similar
to those obtained in [18] for an isotropic case.

The matrix connecting the coefficients from vacuum
layer to the coefficients of the last layer can be found as a
matrix product

M - MN—IMN—Z"‘Ml'

The last layer, j = N, is closed with pipe at r = ay
described by surface impedance, Eq. (5). Hence in order to
take into the account the impedance boundary condition we
have to find the matrix

M = M M,

where M{? is a matrix converting the field coefficients
into the field components:

Ez,m (aN) C;'LN
Homlaw) | _ \par| G (82)
Erp.m (GN) N D;n’N
Hzp.,m (aN) D?’N

The explicit form of the elements of the matrix M is
given in Appendix A.

From the boundary condition at the axis we obtain
D' = 0. The coefficient Cp"' is known and given by
Eq. (15). Hence we are looking for the solution of the
following simple system:

My My Zyn  Zy C;n’] /CII?’]
My My -1 0 Dpt/cy!
My My —Zrg —Zy HY,,/C!
My My O -1 HY,/Ce!
M,
—My,
-1 57 (83)
-Ms3;
My,

After numerically solving of Eq. (83) the modal longi-
tudinal impedance in Eq. (7) can be found as

ikz, Cp!

Z,(ky)=— .
m( 7) 5m()77~'(]/2—1)c'[?’1

For rectangular geometries sketched in Fig. 2 we follow
the same approach and the same suggestion of uniaxial
anisotropy (transverse permeability and permittivity are
different from the longitudinal ones). The field in the
homogeneous uniaxially anisotropic layer can be presented
as sum of complex exponents

(r) = Cpekiny 4 Cme~kin,

E.,,
Hzm(r) — DTek{:my + Dr_ne_kfv‘"my’

€

- 2 2 €z
k;m - kxm +l/y s
€y

klylm = k%m =+ V% &7
y
Vi =P - wfelul. (84)
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In the following we consider only the case where the rectangular structure is symmetric in the y-direction (up-bottom
symmetry). In this case Eq. (35) for the modal impedance Z,, (v, y, k, y) holds. The item Z5¢ (k, y) can be found from the
solution of the problem in the half of the domain with magnetic boundary condition at the symmetry plane H_,,(0) = 0.
Hence we are looking for the solution of the following system:

My+Myp Myy—-My —Zin —Zmy
My + My My —My -1 0
My + Mz Mz —Msy Zpp  —Zy
My + My Myz— My, 0 -1

where elements of the matrix are described in Appendix B.

crlyemt -t ~M,

Do/(cmt -t _ | M=z (85)
Hy,/cm - crh ~Ms, |

HY,/(C2t =) ~Ma

After numerical solution of Eq. (85) the item Z5¢(k,y) can be found as

2ikZ
75 (k,y) = ——— i

m,1
c

k2

(> = DK, (cmt — cm1y’

The item Z3$(k,y) can be found from the solution of another problem in the half of the domain with electric boundary
condition at the symmetry plane E_,,(0) = 0. We are looking for the solution of the following system:

My —-Myp Mysy+My -Zyn —Zy
My — My My+My -1 0
My =My My +Msy Zrp 2y
My —My My +My 0 -1

After numerical solution of Eq. (86) the item Z3$ (k,y) can
be found as

2ikZ, !
(> = DK, (cm! 4+ ™Yy’

Zn(k,y) = =

Finally let us consider only one plate with the same
structure of layers as shown in Fig. 2. We use Eq. (64) for
the modal impedance Z,,(yy,y, k,7) and Eq. (84) for the
longitudinal field components. In order to avoid the
divergence of the fields at y = —co we have to put
D™! = (. Hence we are looking for the solution of the
following system:

My My -Zy —Ziy Cil']/crf’]
My My -1 0 Dfl/(clf’l
My My Zrp  Zy HY,/Cm!
M41 M43 0 -1 Hivm/cr_n,l
M,
—M>,
= " , (87)
—M3;
My,

crl/emt + ot My
pye/(cmt 4 it _ | M=z ' (86)
HY /(cmt o —M3,
HEYjemh 4+ o My

where elements of the matrix M = M$?*M are the same as
for the rectangular case and described in Appendix B.

After numerical solution of Eq. (87) the item Z,,(k,y)
can be found as

ikz, 7!

Zokyy) =———"F——-. 88

IV. APPLICATIONS

In this section we consider several examples of the
application of the analytical techniques described in the
paper to the real structures with corrugations, dielectrics,
and anomalous skin effects. We consider only the relativ-
istic limit y — oo.

A. Short-range wakes of corrugated structures

In this section we consider corrugated structures sketched
in Fig. 3: rectangular and round corrugated waveguides. The
corrugations have period p and gap ¢, which is smaller than
the gap depth A.

The short-range wakefields of two corrugated plates
have been analyzed in [6,7]. These studies have established
that the surface impedance formalism can be employed
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(a) parallel plates

: &

(b) round pipe

2w
(c) corrugations
I
t «—
K i
B B >

FIG. 3. Sketches of rectangular (a) and round (b) structures in
front view with corrugations as yellow layers. The parameters of
the corrugations are shown in side view (c). The point charge
position is shown by green circle.

under the condition that the gap depth h exceeds the gap
width 7, and the distance to the wall d is greater than the
corrugation period p.

The approximations for one corrugated plate are
obtained in [8] in the limit a — co. Let us give a more
accurate formulas for the case of one infinite plate for
arbitrary offsets of the source and the witness particles.

As shown in [7,22] the corrugations can be described by
surface impedance

Zwl) = Zot s =T ate/pIp)
a(x) = =0.07x — 0.465y/x + 1. (89)

We take the surface impedance Zg(k) =0, since the
surface currents in horizontal direction are not impeded
by the corrugations [12]. If we additionally assume that
k> k,, then the modal impedance, Eq. (73), can be
approximated as

 Zm
x £0

The modal wake function of point charge is given by the
inverse Fourier transform of the impedance

2
sk’

o1

w(s, k) = Zock.e*S ) erfe[\/s/5(k, )], 5(k,)

and for s small compared to 5(k,) Eq. (91) can be
approximated by exponential function [7]

w(s, ky) = Zocke k552, (92)

Integrating in k, we obtain the longitudinal wake
function for arbitrary offsets of the source and the witness
particles:

w)| (X0, yo. X,y 5)
Z o
_ %o¢ e—kx(\/(T”c—yO‘y) cos[k,(x — xo)]dk,

T Jo

_ Zoc _(VO5ss.—yo—y)* = (x = xo)?
n |:(\/0.5SSC —yo—=y)*+ (x— xo)z}

(93)

P

where (xg, o) are the transverse coordinates of the source
particle, (x,y) are the transverse coordinates of the witness
particle, and s is the distance between them. For the same
horizontal offset of both particles, x = x;, the vertical
component of the transverse wake function reads

ZyC 2s
wy (Yo, v, ) = = (94)

7 (=y=y0) (0555, —yg —y)*

and the monopole component of the transverse wake
(y = yg) can be written in the form

Zyc s

) S (V0 Ses, — 2

(95)

In order to confirm the accuracy of the obtained equations
we consider an example of plates with the corrugation
parameters from Table I. We consider a rectangular wave-
guide with relatively large aperture, 2a = 4 mm, and large
width, 2w = 12 mm. The Gaussian bunch with longitudinal
density A(s) of rms length o, = 10 pm has offset from the
symmetry axis equal to 1.5 mm. It means that the short-range
wake potential of such bunch is equal to the short-range
wake potential of the same bunch flying with offset
vo = 0.5 mm from one infinite plate. The correctness of
this assumption for the given case was confirmed in [23].
The wake potential at this offset is obtained numerical with
code ECHO [21] through the modal expansion similar to
Eq. (32):

TABLE I. Corrugations parameters used in the calculations.

Parameter Value Units
Period, p 0.5 mm
Longitudinal gap, ¢ 0.25 mm
Depth, h 0.5 mm
Nominal distance to the wall, d 0.5 mm
Aperture (diameter), 2a 4 mm
Width, 2w 12 mm
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Wy (5, Kom) [==—

pCm]

-50

wlmwl

W, (s) [pclm]

1500

1000

s [um]

FIG. 4. Transverse wake potential of corrugated plate for the Gaussian bunch with rms length of 10 pm moving at 0.5 mm offset
from the plate. The left plot shows dependence of the modal wake potential W, (s, k,,,,) from the modal number &, as calculated by
ECHO [21]. The right plot compares the numerical result from ECHO (solid line) with the wake potential calculated from Eq. (95)

(red dashed curve).

40 m
Z Wy(s’ kxm)Sin2 <7> s kxm =

m=1

m

W, (s) (9)

2w

The left plot in Fig. 4 shows dependence of the modal
wake potential W (s, k,,,) from the modal number k,,,. The
maximal contribution is done by the mode with the modal
number k,; = 1.83 mm~'. The right plot in Fig. 4 com-
pares the numerical result from ECHO (solid line) with the
wake potential calculated from Eq. (95) and we see only
small difference between the curves in the plot.

The characteristic wave number for this Gaussian beam
can be estimated as k = 1/, = 100 mm~'. The left plot
confirms that at the beam offset of 0.5 mm from the plate
the condition k, < k holds for the modal numbers &, which
contribute to the wake potential.

The wake potential for the given wake function w(s) and
a normalized charge distribution A(s) was obtained by
convolution

In order to confirm accuracy of the exponential approxi-
mation, Eq. (92), we have compared in the left plot of Fig. 5
the curves from Eq. (91) (solid black line) and Eq. (92)
(dashed red curve) for the mode with the modal number k7,
which makes the largest contribution to the wake potential
[see Eq. (96)]. The right plot in Fig. 5 compares the curve
from Eq. (95) (dashed red line) with the exponential
approximation obtained in paper [8] (dotted blue line)

Z()C S N A —
w (y ) = — 5 (y )(] — ( + 1>€ Sm(,\'o)>’
PV dmyy Y Sm(¥o)

(o) = 8. (98)

The solid black line presents the wake function obtained
from Eq. (91) without exponential approximation. We
conclude that Eq. (95) gives a better approximation of
the “true” wake function in comparison with Eq. (98)
published in [8].

[Se]
W) (s) = / wy|(s")A(s = s")ds'. (97) As a next example let us consider a round pipe of
0 radius a with corrugations along axis z. Following the same
w(s, ky7) w (5) [ ]
Z()Ckx7 Y pC m
1 8000 -
08 S
6000 S
0.6 “o
4000
0.4
_—. 2000
0 0
0 50 100 150 200 0 50 100 150 200
s [um] s [um]

FIG. 5.

The left plot compares the curves from Eq. (91) (solid black line) and Eq. (92) (dashed red curve). The right plot compares the

curve from Eq. (95) (dashed red line) with the exponential approximation from [8], Eq. (98) (dotted blue line). The solid black line
presents the wake function obtained from Eq. (91) without exponential approximation.
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FIG. 6. Transverse wake potential of round corrugated pipe for the Gaussian bunch with rms length of 10 pm moving at 0.5 mm
offset from the wall. The left plot shows the dependence of the modal wake potential W,,,(s) from the modal number m as calculated
by ECHO [21]. The right plot compares the numerical result from ECHO (solid line) with the wake potential calculated from Eq. (102)

(red dashed curve).

arguments as in previous example we assume that
Zrp(k) = 0. If we additionally assume that m < ka, then
the modal impedance can be written as

ZTM

Z, (k)= .
" azm“n'(l +5m0+%2§—(‘;’[)

(99)

The modal wake function of point charge is given by the
inverse Fourier transform of the impedance

m+ 1)Zyc

wp(s) = (ﬂaz%es/smerfc(vs/sm),
2a?

= . 100

S (4 5y (100)

For s small compared to s,, Eq. (99) can be approximated
by the exponential function [7]

(m+ 1)Zyc o5

Zn ) (101)

Win(s) =

ma

For arbitrary offsets of the source and the witness
particles the longitudinal wake function can be written as

w) (ro, 9o, 7, @, 5) = Z W (8)rf r™ cos [m(p — @o)].
m=0

where (rg, ) are the transverse coordinates of the source
particle, (r, @) are the transverse coordinates of the witness
particle, and s is the distance between them.

With the exponential approximation, Eq. (101), the
radial component of the transverse wake function reads

o0

W, (o, 9o, 7 . 8) = Y mw,, (s)r ! cos[m(p — o)),

m=1

(102)

Won(s) == [ Wy (x)dx
2 1)Z
o 2m A+ DZocs,, (1 _ (1 s /sm>e-\/—s/sm>‘
xa2(m+1)

(103)

The number of the modes required in the sum increases
as the beam trajectory nears the wall. In the vicinity of the
wall the used approximation fails as the condition m < ka
is violated.

In order to confirm applicability of the obtained approxi-
mation we have calculated the transverse wake potential for
round pipe with the corrugation parameters listed in Table I
for the Gaussian bunch A(s) with rms length ¢ = 10 pm
and offset 7y = 1.5 mm. The wake potential at this offset is
obtained numerical with code ECHO through the modal
expansion similar to Eq. (26):

(104)

The left plot in Fig. 6 shows dependence of the modal
wake potential W,,,(s) from the modal number m. The
maximal contribution is done by the mode with the modal
number m = 4. The right plot compares the numerical
result from ECHO (solid line) with the wake potential
calculated from Eq. (102) and we see only small difference
between the curves.

The characteristic wave number for this Gaussian beam
can be estimated as k = 1/6, = 100 mm~! and radius of
the structure is @ = 2 mm. The left plot confirms that at the
beam offset ry = 1.5 from the symmetry axis the condition
m < ka holds for the modal numbers m which contribute
to the wake potential.
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B. Resistive wall wakes at cryogenic temperatures

Resistive wall wakefields generated due to finite con-
ductivity of an accelerator vacuum chamber play an
important role in beam dynamics and free electron laser
physics. They are important for small apertures and short
bunches used in modern undulators. For the metal surfaces
at cryogenic temperatures the anomalous skin effect
regime (ASE) has to be considered. The surface impedance
of ASE reads [9]

kl
Z (k) = —Zyi—,
s() OlF
[es] . l‘
F:_E./ log(l—l—n—’_CzK())dl‘,
z Jo

k(1) = % [(1 + #2) arctan(t) — 1],

k2 L
’/I:_<_> ) C:l_:;’

u u

3/1\2

u=1++ickr, a:§<g),

2
N = 1
) ”Z()ack’ I = vy, (105)

where o, is the metal conductivity, v is the Fermi velocity,
7 is the relaxation time.

Conductivity of pure metals increases several orders of
magnitude when they are cooled from room temperature to
cryogenic temperatures. A commonly used parameter, the
residual resistivity ratio (RRR), is defined (at 4 K) as
RRR =0.(4 K)/0.(293 K). At the room temperature
|¢] < 1 and the surface impedance reduces to the simple
model of ac conductivity:

KV
. [pC m
6

ASE, RRR=100

2
0 ‘ ’
“/ ASE, RRR=1
-4

(106)

Z,(k) =, |ikZy—.
GC

Superconducting undulators (SCU) are part of the
European XFEL facility development program [24]. A
total of six SCU modules are planned to be installed
downstream of the SASE2 undulator line at the European
XFEL. The SCU vacuum chamber will have elliptical or
racetrack shape with width 2w = 10 mm and height
2a =5 mm. In the following we estimate the longitudinal
wakefields of aluminum vacuum chamber at cryogenic
temperature. The material properties of the aluminum
at the room temperature are: o, = 3.66 x 10’ S/m,
7=71x10""s, v; =2 x10° m/s. At cryogenic tem-
perature we assume that RRR = 100.

In the following we assume that the impedance matrix
has only diagonal nonzero elements which are equal
to Z,(k).

In Fig. 7 on the left we compare the longitudinal wake
functions in the round chamber with radius of 2.5 mm. The
blue dashed curve and the red dotted curve present the wake
functions at the room temperature obtained with Egs. (106)
and (105), correspondingly. The solid black line presents
the wake at the cryogenic temperature with RRR = 100.
The wake functions of ac and ASE models at the room
temperature are quite close and effect of ASE is small. All
three wake functions have the same value at the origin
given by Zyc/(na*). The wake at the cryogenic temper-
ature drops faster but has a larger amplitude of oscillations.

The right plot in Fig. 7 presents dependence of the loss
factor (W) from the rms bunch length & for the Gaussian
bunch shape. The loss factor is defined as

(W) (s)) = /_ : W (s")(s')ds'. (107)

10°

107"

0 5 10 15 20 25
0, [um]

FIG. 7. The left plot shows the longitudinal wake functions of the round chamber with radius of 2.5 mm. The blue dashed curve and
the red dotted curve present the wake functions at the room temperature obtained with Egs. (106) and (105), correspondingly. The solid
black line presents the wake at the cryogenic temperature with RRR = 100 The right plot presents dependence of the loss factor (W)
form the rms bunch length o, for the Gaussian bunch shape for the three cases presented in the left plot.
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The left plot compares the longitudinal wake functions of different vacuum chamber shapes at cryogenic temperature with

RRR = 100. The right plot presents dependence of the loss factor (W) form the rms bunch length o, for the Gaussian bunch shape for

the three cases presented in the left plot.

In Fig. 8 on the left we compare the longitudinal wake
functions of different vacuum chamber shapes at cryogenic
temperature with RRR = 100. The solid black line presents
the wake of the round shape with radius a of 2.5 mm. The
red dotted curve presents the wake of the elliptical shape
with height 2a = 5 mm and width 2w = 10 mm. For the
elliptical shape we have used the numerical code described
in [25]. The red dotted curve presents the wake of two
parallel plates with height 2a¢ =5 mm. The reduction
of the wake at the origin is equal to z%/16 for the flat
shape and FeiP(0.5) = 0.68 for the elliptical one (see
Appendix C for the definition of F!iP). The right plot in
Fig. 7 presents dependence of the loss factor (W) form the
rms bunch length o, for the Gaussian bunch and the tree
vacuum chamber cross sections. It is interesting to note that
the other shapes reduce the loss factor (relative to the one of
round pipe) only for very short bunches with rms length
less than 6 pm.

The loss factor can be converted to the heating of the
vacuum chamber walls: P = f., (W) Q%, where f, is the
bunch repetition rate and Q is the bunch charge. Assuming
frep = 27 kHz, Q = 250 pC and maximal peak current of
5 kA (which corresponds to 6, = 6 pm) we obtain the same
heat power P = 1 W/m for all three shapes of the vacuum
chamber. The extra heating has to be taken into account in
the design of the cryogenic system.

Finally as the last example we consider the impedance
of the metallic pipe with dielectric coating which could
be used for generation of terahertz radiation at the
European XFEL. The application of two-layer metal-
dielectric compounds as accelerating structure and as
radiators for the generation of intense wakefield radiation
are recognized as promising areas in which intensive
theoretical and experimental research is being carried
out.The fundamental importance of the finite conductivity

MQ
Z|— VA E]
m
60
40
20
0
_ \ -
5 \\\ ,/"’ 20
-10 A_s”
0.359 0.36 0.361 0.362 0.359 0.36 0.361 0.362
f[THz] f[THz]

FIG. 9. The left plot compares the real (solid lines) and imaginary (dashed lines) parts of the longitudinal impedance of the round
metallic pipe with dielectric layer at the room temperature near to the main resonance frequency. The blue lines are obtained with ac
surface impedance, Eq. (106). The red lines are obtained with ASE surface impedance, Eq. (105). The right plot compares the
impedances obtained with ASE surface impedance, Eq. (105), at the room temperate with RRR = 1 (red curves) and at the cryogenic
temperature with RRR = 100 (black lines).

094401-14



BEAM WAKES FOR CANONICAL CHAMBERS WITH ...

PHYS. REV. ACCEL. BEAMS 26, 094401 (2023)

of the metallic wave-guide and of losses in the dielectric
layer was underlined in [26].

We consider a cylindrical metal waveguide with an
internal dielectric coating. The inner radius of the
copper pipe with conductivity o, = 5.8 x 107 S/m is
a = 0.55 mm. The dielectric coating has thickness of
50 pm and permittivity € = 9¢,. The copper has the
relaxation time 7 = 2.46 x 10~'% s and the Fermi velocity
vy =1.6x 10° m/s. We assume that the dielectric is
lossless and consider only losses in copper.

In Fig. 9 on the left we compare the real (solid lines) and
imaginary (dashed lines) parts of the longitudinal imped-
ance at the room temperature near to the main resonance
frequency. The blue lines are obtained with ac surface
impedance, Eq. (106). The red lines are obtained with ASE
surface impedance, Eq. (105). The curves are quite similar.

The right plot in Fig. 9 compares the impedances
obtained with ASE surface impedance, Eq. (105), at the
room temperate (red curves) and at the cryogenic temper-
ature (black curves). We have used RRR = 1 for the room
temperature and RRR = 100 for the cryogenic one. As
expected the cryogenic temperature allows to reduce the
losses in the metal making only negligible shift in the
resonance frequency.

V. DISCUSSION

We have thus far examined cases where the impedance
matrix takes a uniform form across all modes within the
modal expansion. This approach often yields a sufficiently
accurate solution for various scenarios. However, a more
refined approximation or even an exact problem reformu-
lation can be achieved by introducing an impedance matrix
that varies with the modal number m. For instance, consider
the scenario of an infinitely thick cylindrical pipe with
material parameters defined by Eq. (77). We can reformu-
late the problem as the solution of Maxwell’s equations
within the vacuum region, incorporating the impedance
boundary condition, Eq. (5), where the impedance matrix is
modally dependent with matrix elements

ia’K,,(av,)

- ckme K, (av,.) + acke,v.K,,_ (av,)

apcev.K,,_(av,) -1
gm rfellm €
12 ( me ((We) + ﬁcer ’

m o __ __7m
ZZI_ ZlZ‘

| -
.
ickp, (yeKm—l(a’/s) l/ﬂKm—l(aVﬂ))

v Km(aye) Km(al/ﬂ)

m o
ZTE -

Here a is the interior radius of the pipe and other parameters
are defined as in Eq. (78). For large conductivity, o. > 1,

this matrix can be approximated by diagonal impedance
matrix with elements given by Eq. (106). Similar modally
dependent impedance matrix formulations are feasible for
multilayered structures, as discussed in Ref. [16].

The equations derived in this paper remain valid even
when considering an impedance matrix dependent on the
modal number m.

In this study, we have exclusively presented corrugated
structures as examples of surfaces with anisotropic imped-
ance. Corrugated and dielectric waveguides are presently
undergoing extensive investigation as accelerated structures
or sources of terahertz radiation. Given that various
materials (such as sapphire, ceramic films, etc.) exhibit
significant anisotropy and that intentionally designed
surfaces with desired anisotropy can be crafted as explored
in Ref. [15], we anticipate that the findings from this work
will offer valuable insights for designing different compo-
nents of modern accelerators.

In the examples we have considered only the relativistic
limit,y — oo, without analysis of dependence of the results
on the beam energy. For the round conductive pipe such
kind of analysis for the monopole and dipole modes was
carried out in [3].

VI. SUMMARY

In this paper, we have derived analytical expressions for
beam impedance of round, rectangular and Il-shaped
pipes with anisotropic surface impedance. We have
considered both the relativistic and nonrelativistic cases.
The field matching technique for layered structures with
layers of uniaxial anisotropy and anisotropic impedance
boundary condition at the last layer was described. The
derived equations are applied to the case of corrugated
structures with anisotropic impedance and closed analyti-
cal expressions for the wake functions with arbitrary offset
of the source and the witness particles have been estab-
lished. The influence of the shape of the vacuum chamber
on the wakes in the cryogenic temperature was studied. It
was shown that the shaping of the pipe allows to reduce
the energy loss only for extremely short bunches. Finally
the impact of the anomalous skin effect on the longi-
tudinal impedance of metallic pipe with dielectric layer
was analyzed.

APPENDIX A: MATRIX ELEMENTS FOR
ROUND LAYERED WAVEGUIDE WITH
UNIAXIAL ANISOTROPY

Here we consider the matrices used for many layered
round pipe. The matrix M; from Eq. (81) is a complex
matrix of order 4 which maps coefficients from layer with
index j — 1 to the ones in layer j. In order to simplify the
notation we use a for a;, index “1” for j — 1 and index “2”
for j. Additionally we omit label r and use v,, v, instead of
14, /. Then the matrix M ; has the following elements
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M, — 1 (V%(':r,lye.l[lm—l (al/e,l) + Im+1(aye,1)]Km(aye,2)
1 =za

2 + Ve,ZIm(aVs.l)[Km—l(al/sl) =+ Km+1 ((1116_2)]> ’
V1€rp

_ Uger,le(aye,Z)[me<aye,l) B aye,le+1(al/e,l)]

M12 - 2 + Km(al/e,l)[aye,ZKm+l(al/e,2) - me(aye,Z)]
Vi€rn
Mix — ﬂmc(l/%/‘r,ler,l - U%ﬂr,26r2)lm(ay/l,l)Km(al/e,Z)
13 — 2 ’
Uler,Z
K, (a
M14 — n( Uﬂ l)

1
My =3a <U6.21m(aye.l)[Im—l(aye,2) + g1 (aven)] = 3

V%Gr,lye.llm(al/el) [Im—l (aye.l) + Im+1 (al/e,l)]
2 Vi€rn '

1 (vie, Wl (aves)[Kpoi(ave ) + K av,
My, —§a< Criberln(@vea)| m21( 1) mit (@) + Veo -1 (ave ) +1m+1(aVe.2)]Km(aVe,1>>
l/ler,Z
Mox — ﬁmc(y%/‘rlerl - V%/’lr,ler.l)Im(ayﬂ.l)lm(ayel)
23 — 2 ’
I/1€r.2
K (av,1)
My, = = = 23>
Im(ayu.])
o Cﬁm(y%”r,ler,l - V%/'lr,Zerl)Km(ayM.Z)Im(aye,l)
M3l - > 5
Vikr2
M32 — Km(al/e 1 M31,
Im(ayel
1 VsVttt o1 (av, 1) + Ly (v, 1)K, (av, )
M3 :561<V,4,21m(f11/;4.1)[Km—1(al/y,z) + K (ay, 5)] + 22 B e
Vikr2
V%/"r,le(ayﬂ,Z)[me(ayp,l) - ayﬂ,le+1(al/p,1”

M34 = Km(ayﬂ,l)[ayﬂle—&-l(aylll) - me(aUu,Z)] +

’

2
Vikr2

o Cﬂm(y%ﬂrlerl - I/%,ur,ler,l)Im(aUM,Z)Im(aUG,l)
41 — 2 ’
yl/’tr,Z

)] _ U%yﬂ.ll’tr.llm(ayul)[lm—l (al/y.l) + Im+1 (ayu.l)]>
y%/"rl ,
V%Vy,ll"r,llm(ayﬂﬁ)[l(m—l (al//,t.l) + KrnJrl(ayﬂ,l)})
5 .
Vikr2

M43 = Ea (yﬂ,Zlm(aVy,l)[Im—l (al/ﬂ,Z) + Im+1 (ayﬂ,Z

1
M44 = Ea(yﬂl[lm—l (ayﬂ,2> + Im+1 (ayﬂl)]Km(aVy,l) +

Matrix M§?F converts the field coefficients into the field components and its nonzero elements are

MP" = Iy (ayve), MGF = K, (ayven),
MS" =1, (ayv, ). MGF = K, (ayv,y),
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MC2F — _ ikml,, (ayven) ’
MOF ikmK,,(ayv,y)
? Payvy
MCZF _ ikcyﬂ,Nﬂr.N[lm—l (aNl/ﬂ,N) + Im+] (aNI/”yN)]
33 21/]2\/ ’
MC2F — ikev, npr N[K o1 (ayvu ) + K (ayv,n)]
34 21/2 s
N
MC2F — ikce, nVen[In-1(anven) + Luii (anven)]
41 21/]2\/ s
MC2F — _ ikce, nVeN[Km-i(anVen) + Knii(anven)]
42 21/}2\] s
ycor _ kmly(any,y)
43 ﬂaNl/le
MC2F — ikam(aNyﬂ,N)
44 Panvy

APPENDIX B: MATRIX ELEMENTS FOR
RECTANGULAR AND II-SHAPED ANISOTROPIC
LAYERED WAVEGUIDES

In the case of rectangular structure with many layers
matrix M; relates coefficients at interface r = a;

(e, cmi, prd pmd)
=M, (! cmit ppt )
J s L ) ) _ .
In order to simplify the notation we use a for a;, index “1”
for j — 1 and index “2” for j. Additionally we omit label y

and use k., k, instead of kS, k.
The matrix M; has the following elements

€a(ké"] _k(;hz) (D%ke,zey,Z _|_ U%ke‘,l ey,] )

M = 203k 26,2 ’
M, — e_a(kg'lﬂ{d)(V%fsleyl — U%ke,ley,l) ’
2vike €y
'BCkXea(k“'l_kE'Z)(U%My,2€y.2 - V%/"y,ley,l)
M5 = ,

2
21/1k€,2€y,2
— ,—2ak
M14—€ a"'lM13,
My, = e2alkeitke) pp,,

_ _lak
My = —e2M 3,

M22 e eza(kc.l_kc,l>M11’

1‘424 — _eza(ke.Z_ku.l)Ml?”

My = —e*hai=hu2l My,
M33 g eza<k;4‘l_kuA2)M44’

My = e My,

Mz = —e7 22 My,,

1‘434 — e_2“(ku-l+ku.2)M43,

kyo—ke 2 2
o Cﬂkxea< " 6"|)(y2ﬂ}',1€y,l - I/lluy,Zey.Z)

My, = ,
ZU%ky,Zﬂy,Z
Moe — ea(k“ﬁk“'”(’/%kﬂ,zﬂy,z — 13k, 1y1)
43 — ’
Zy%k,ul:uy,Z
M B ea(kﬂ'z_ku.l)(U%kﬂlﬂy’z + V%kﬂ,lﬂy,l)
44 — .

21/%](,1’2/,{%2

The matrix M converts the field coefficients into the
field components:

(Ez.,m(aN)7 I_Iz.,m(aN)7 Ex,m(aN)’ Hx,m(aN))T
=M@F(crN cmN DTN pm T,
The nonzero elements of this matrix are
M]C]ZF — eaNke,N’ M]CZZF — e—aNkaN’

M2C32F :eaNkaN’ Mg42F — e—aNkaN’

ikk eken ikk e wken
C2F x C2F x
M3 = ’ 32 = )
pui %
N N
. k
y<oF — _ KZokuniyon e
33 — 7 > s
Uy
. —ayk,
oo _ kZoky niy oye” N
34 2 ’
Un
/ aykey 1 —aykey
MczF_’Ckke‘,Ne»Ne MC2F__lckk€,Ney_Ne
41 = 2 ) 0n = 2 )
Uy Un
MOF ikk, eken MOF _ _ ikk, e~ ken
43 ﬂy2 ’ 4 ,BI/Z
N N

APPENDIX C: SHORT-RANGE LONGITUDINAL
FORM FACTORS OF ELLIPTICAL AND
RECTANGULAR WAVEGUIDES

It is well known that the longitudinal wake function of
round pipe of radius a with a retardation layer has the
following value at the origin

Z
W‘r‘ound (0) = 0¢

S W‘r‘ound<0+) — 2Wround(0)’
a

l
where “O+” means the one-sided limit from the right.
An ellipse with semimajor axis w and semiminor axis a

can be conformally mapped onto the circle of radius a by
transformation
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FIG. 10. Short-range longitudinal form factors of the elliptical
(solid line) and the rectangular (dashed line) pipes.

fellie(z) = avksn (271( arcsin (m> , k2> )

where sn is the Jacobi elliptic sine function and

k:(wf, K:%G%(O,p), p=(w_a>2.

05(0, p)

Here 0,, 05 are Jacobi theta functions. Following [27] we
can write the value of the longitudinal wake function of the
elliptical wave-guide at the origin as

ellip _ round ellip [ @
wi - (0) = wi(0)F <W>
: d .\ [(a\* @ 4kK>?

Felhp ﬁ — [ L pellip 0 [ —
() = (o) = () mri
where F inip is the longitudinal form factor of the elliptical

wave-guide.

A rectangle with width 2w and height 2a can be
conformally mapped onto the circle of radius g by trans-
formation

1+ ivksn[Kw™' (z + ia)]
i +Vksn[Kw™ (z +ia)]

frect (Z) =g

where the symbols K and k have the same meaning as for
the ellipse above but the value of p is different:

p= e—27ra/w

Hence the longitudinal wake function of the rectangular
waveguide at the origin can be written as

W‘r‘ect (0) — W‘r‘ound (O)FﬂeCt (ﬁ) ,

()= (o)
_ <ﬂ>24kK2(cn(iK%,k2) dn(iK &, k2))>
— (i + Vksn(iK &, k2))*

’

w

where sn, cn, dn are elliptic Jacobi functions and F ‘r‘“‘ is the

longitudinal form factor of the rectangular waveguide.
The form factors allow simple cubic approximations:

F{"™(x) = 0279x* +0.093x% + 0.013x + 7°/16,
Fieet(x) = 0.477x° = 0.268x + 0.036x + /16,

x=a/w, a<w,

with maximal absolute error below 0.3%. Figure 10 shows
dependence of the form factors from the parameters
ratio a/w.
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