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The Compact Linear Collider (CLIC) plans to start operation at a center-of-mass energy of 380 GeV.
This paper reports on various optimizations of the CLIC 380-GeV Final Focus System (FFS). Analytical
approximations have been used to guide the numerical optimizations. The first optimization consists of the
reduction of the vertical beta function at the interaction point to 70 μm, which is at the limit of the hourglass
effect. The second optimization focuses on minimizing the lengths of the final doublet quadrupoles to
reduce the chromaticity. The third optimization searched for alternative optics configurations, resulting
in the implementation of a novel dispersion profile along the FFS. This alternative optics boosts both total
and peak luminosities by 7% and 9%, respectively.
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I. INTRODUCTION

The Compact Linear Collider (CLIC) [1] aims to
provide lepton collisions up to 3 TeV center-of-mass
energy [2]. In the recent update of the CLIC staging
strategy [3], the initial stage of the project is foreseen to be
380 GeV. The high total luminosity at the interaction
point (IP) is provided by focusing the beams in the beam
delivery system (BDS), which is located after the linac,
see Fig. 1. Originally, the BDS at 380 GeV was obtained
by scaling down the 500-GeV lattice [4]. Beam properties
after the acceleration are measured in the diagnostics
section. It is followed by the energy collimation section,
where the particles with a relative energy offset larger
than 1.3% are removed from the beam [5]. The betatron
collimation removes the particles with a large transverse
amplitude, applying the collimation depth of 15σx × 55σy
[6]. The final focus system (FFS) is the last section of the
BDS and is responsible for the demagnification of the
beam to the nanometer level, needed to satisfy the high
luminosity requirements at the IP. The final doublet (FD)
consists of the last two quadrupoles (QF1 and QD0)
upstream of the IP. They strongly reduce the beta
functions at the IP to β�x ¼ 8 mm and β�y ¼ 100 μm
(CLIC 380 GeV), see Table I. The FD is also a strong

source of chromaticity at the IP, especially in the vertical
plane, approximately given by ξ�y ≈ L�=β�y. Here, L� is the
distance between the last quadrupole (QD0) and IP. To
cancel the chromatic aberrations at the IP, CLIC uses an
FFS design based on the local chromaticity correction
scheme [7]. It uses two interleaved sextupoles in the FD to
correct the horizontal and vertical chromaticities simulta-
neously. Figure 2 shows the scheme of the FFS, high-
lighting the key elements of the lattice.
Following the proposed strategy, all the CLIC energy

stages will share the same detector, called CLICdet [8]. It
has a total length of 11.4 m, and including the end coil
dimension, the half-length of the detector is 5.918 m.
These data were used to design the optics of CLIC 3 TeV
with QD0 completely outside of the detector [9] with
L� ¼ 6 m. It was done to exclude the need to shield QD0
with the antisolenoid and to simplify the machine detector
interface (MDI). The same strategy was applied to CLIC
380 GeV lattice [10]. The optics with L� ¼ 6 m was
obtained by scaling the old version with L� of 4.3 m (see
Table I). The aperture, calculated for such an optics [11],
is shown in Fig. 3. In the calculations, the maximum pole
tip field in the BDS magnets with exempt of FD quadru-
poles, is set to 1.5 T to respect the limitation of the iron
saturation [12]. Also, the minimum value of the beampipe
radius is set to 15 mm above which the resistive wall
effects are considered negligible.
In this paper, we report the optimizations of the FFS

optics of CLIC 380 GeV made in several stages. The first
optimization consists of reducing the vertical beta function
to 70 μm to reach the limit of the hourglass effect [13] and
is described in Sec. II. As a second optimization, the FD
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quadrupoles have been shortened to reduce the chroma-
ticity. In this case, two optics have been designed, one
with a traditional dispersion profile and another with a
novel dispersion profile. The optics with the traditional
dispersion profile is discussed in Sec. III and the second
optics with a novel dispersion profile is described in
Sec. IV. Based on these designs and the specification of
the collimation section, the aperture for the BDS has been
recalculated in Sec. VI.

II. NONLINEAR OPTIMIZATION OF THE
OPTICS WITH REDUCED β�y

Lepton colliders use flat beams at the IP in order to
maximize the luminosity while keeping the beam-beam
parameters within certain limits [14]. As a result, both the
vertical beam size and beta function are maintained at very
small values.
The beta function in the region between the IP and the

first quadrupole of the FD, at a distance s < L� from the IP
is given by the following equation:

βx;yðsÞ ¼ β�x;y þ
s2

β�x;y
: ð1Þ

When β�y is comparable to the bunch length, the beam
size varies significantly along the longitudinal range of

collision. This is known as the hourglass effect, which leads
to a luminosity reduction. In the CLIC 380-GeV parameters
set, there is still margin to increase luminosity by reducing
the vertical beta function from β�y ¼ 100 μm to the same
value as the bunch length, β�y ¼ 70 μm. On the other hand,
it leads to the growth of the vertical disruption parameter by
approximately 20% (Dy ∼ 1

σ�yðσ�yþσ�xÞ). The initial disruption

FIG. 2. Schematic layout of the CLIC FFS. Quadrupoles are
shown in red, sextupoles in green, dipoles in blue, and octupoles
in cyan.

TABLE I. Summary table of the key parameters of the scaled
FFS for CLIC 380 GeV with L� ¼ 6 m.

FFS length (m) 770
Normalized emittance (IP) ϵn;x=ϵn;y (nm) 950=30
Beta function (IP) β�x=β�y ðmmÞ=ðmmÞ 8=0.1
IP beam size σ�x=σ�y (nm) 144=2.9
Bunch length σz (μm) 70
rms energy spread δp (%) 0.3
Number of particles in one bunch N (×109) 5.2
Number of bunches in one train Nb 352
Repetition rate f (Hz) 50
Total luminosity L (1034 cm−2 s−1) 1.5
Peak luminosity Lpeak (1034 cm−2 s−1) 0.9
Vertical chromaticity ξ�y ≈ L�=β�y 60 000

FIG. 1. Layout (view from the top) of the beam delivery system of CLIC at 380 GeV, including dipoles (blue), quadrupoles (red) and
sextupoles (green).

FIG. 3. Apertures of the magnets along the BDS. The black line
corresponds to the aperture evaluated for the collimation depth as
maxð15σx; 55σyÞ. The nominal aperture also takes into account
the lower boundary of 15 mm and an additional 1.1 mm for the
beam pipe thickness and possible magnet offset. The feasible
aperture (blue) corresponds to the maximum aperture, which
allows the pole tip field to be less than 1.5 T.
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parameter values are Dx ¼ 0.24 and Dy ¼ 12.5 [14]. The
large values of the disruption parameter can have a strong
impact on the luminosity stability as well as the tolerances
for the dynamic effects and the feedback systems.
The Twiss parameters are rematched in MAD-X [15]

for the new β�y using the matching quadrupoles (see Fig. 4).
The beam size at the IP is then matched to the linear values
using the six available sextupoles, namely SD0, SF1, SD4,
SF5, SD5, SF6, and two octupoles, namely OCT1 and
OCT2. The sextupoles and octupoles play a key role in
correcting chromatic effects in the beam. Chromaticity in
this context is defined as [16]:

σ�x;y 2 ¼ ϵx;yβ
�
x;yð1þ ξ2x;yδ

2
pÞ; ð2Þ

where ϵx;y is the beam emittance, β�x;y is the beta function
at the IP, δp is the relative momentum spread of the beam,
and ξx;y is the chromaticity at the IP. The calculations are
performed in MAD-X with PTC [17] and Mapclass [18].
Similarly to the design with β�y ¼ 100 μm, octupoles are
needed to cancel the third-order vertical aberrations. The
final beam sizes are σ�x ¼ 143.48 nm and σ�y ¼ 2.72 nm,

see Fig. 8. Required sextupole and octupole strengths are
given in Table II.
Calculation of the total luminosity (Ltotal) and peak

luminosity (Lpeak), which only takes into account collision
events with a relative energy offset not greater than 1%, is
done with the particle tracking codes PLACET [19,20] and
Guinea Pig [21,22]. In the transverse plane, the Gaussian
distribution based on the optical parameters at the BDS
entrance is used to generate the beam. In the longitudinal
plane, a flattop energy profile is utilized with a 1% energy
spread width. We also consider synchrotron radiation in the
tracking. The luminosity evaluated for this optics is Ltotal ¼
1.66 × 1034 cm−2 s−1 and Lpeak ¼ 0.96 × 1034 cm−2 s−1.
This new optics has increased the total luminosity by
2% and the peak luminosity by 3% (see Table VII).
Furthermore, this new optics with β�y ¼ 70 μm has been
used in luminosity tuning simulations in the presence of
realistic errors performed in [23]. On average, the low β�y
optics tunes 13% faster reaching 2.5% higher luminosity.
On the other hand, the number of machines that did not
reach the target luminosity of 1.65 × 1034 cm−2 s−1
increased from 3.2% to 5.4% if compared to the optics
with β�y ¼ 100 μm.

III. NONLINEAR OPTIMIZATION OF FFS
WITH SHORT FD

The longer L� optics was designed by scaling up the
original optics with L� ¼ 4.3 m, where all drifts and
magnet lengths were increased correspondingly to reach
L� ¼ 6 m. As a result, the length of the FFS increased from
550 to 770 m [4]. The apertures evaluated for the BDS
magnets (see Fig. 3) show that almost all the quadrupoles,
except for the few at the BDS entrance, respect the 1.5-T
field limit. It is also valid for both QF1 and QD0 magnets,
although, based on the “hybrid” design of the QD0 magnet
[24], the maximum pole tip field could be approximately
2.2 T. Table III shows the FD quadrupoles settings after the
reduction of the vertical IP beta function. The pole tip field
for both QF1 and QD0 is way lower than 2.2 T, which
allows to decrease their length. Based on this, we decrease
the length of QF1 and QD0 to approximately 2.79 and
1.69 m. The advantage of the FD with shorter magnets is
that it generates less chromaticity and reduces the beta-
function level in the whole FFS, see Fig. 5. When the QF1

FIG. 4. Beta functions and dispersion for the new optics with
β�y ¼ 70 μm.

TABLE II. Optimized integrated strengths of the sextupoles
and octupoles.

Integrated strength

Magnet K2L (m−2) K3L (m−3)

SD0 0.84 � � �
SF1 −0.23 � � �
SD4 0.55 � � �
SF5 0.29 � � �
SD5 −1.70 � � �
SF6 0.96 � � �
OCT1 � � � −9.07
OCT2 � � � −0.40

TABLE III. The key parameters of the FD quadrupoles for the
optics with β�y ¼ 70 μm.

QF1 QD0

Magnetic length (m) 5.59 4.69
Integrated strength K1L (m−1) 0.076 −0.184
Aperture (mm) 27.4 27.4
Pole tip field (T) 0.23 0.68
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and QD0 are shortened, their magnetic fields are increased
accordingly to keep the same integrated strength. The final
drift L� is kept with length of 6 m. Optics is rematched with
MAD-X, for the same IP parameters as in Sec. II.
After rematching the optics, we must ensure that the

condition for simultaneous correction of horizontal chro-
maticity and second-order dispersion is restored. This
necessitates the FD chromaticity to be similar to the
upstream chromaticity. For this purpose, we scan the
upstream chromaticity and match the second-order beam
size for each point. As evaluated in the Appendix, the
square of the minimum horizontal beam size at the IP is a
quadratic function of the upstream chromaticity. We denote
ξFDx as the horizontal chromaticity generated at the IP by the
FD, and ξupx as the horizontal chromaticity generated at the
IP by the elements upstream to the FD. The chromaticity
difference impacting the horizontal beam size at the IP is:

Δξx ¼ ξFDx − ξupx . ð3Þ

To modify ξupx , the distance between the section of the
dipole magnets Dip2 and the FD is changed (refer to
Fig. 2). In this case, FD chromaticity remains the same,
while the beta-function level along the FFS is affected,
which directly impacts the upstream chromaticity. For each
distance change, the Twiss parameters are matched with
quadrupoles, and the second-order beam size is matched
using the sextupoles. Figure 6 shows the plot of the second-
order horizontal beam size as a function of chromaticity
difference Δξx evaluated for each distance change between
Dip2 and FD. Also, Fig. 7 connects Δξx with the change
in the distance between Dip2 and FD. The parabolic fit of
the square of the horizontal beam size gives the optimal
difference of Δξx ≈ 47. This is achieved by inserting an
additional drift of length ΔL ≈ 4.75 m between Dip2
and the FD. The final settings for the sextupoles are

obtained from the fifth-order beam size matching.
Table IV gives the optimal magnetic strengths of each
sextupole to get the smallest beam size of σ�x ¼ 143.02 nm
and σ�y ¼ 2.63 nm, see Fig. 8.
The larger the dispersion at the sextupole locations are, the

weaker the sextupoles needed to compensate for the chro-
maticity and the lower the aberrations at the IP are. On the
other hand, a large dispersion level requires stronger dipoles
and ultimately leads to energy loss and beam emittance
growth due to synchrotron radiation. These two effects have
to be balanced to reach the highest luminosity.
Calculation of Ltotal and Lpeak for this optics gives

1.66×1034 cm−2 s−1 and 0.96×1034 cm−2 s−1, respectively.

FIG. 5. Beta functions βx and βy along the FFS for the design
with short FD (solid line) and for the original FD (dashed line)
both with β�y ¼ 70 μm.

FIG. 6. The second-order horizontal beam size normalized to
the linear beam size at the IP as the function of the difference
between the FD and upstream chromaticity.

FIG. 7. Difference between the FD and upstream chromaticity
as a function of the distance change between Dip2 and FD.

TABLE IV. Optimized integrated strength of the sextupoles.

Magnet SD0 SF1 SD4 SF5 SD5 SF6

Strength K2L (m−2) 1.18 −0.21 0.71 −0.38 2.02 0.41
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It is expected that this optics has a better energy bandwidth
with respect to the other β�y ¼ 70 μm optics, due to the
smaller vertical chromaticity.
The dispersion level is modified by scaling the bending

angles of all the dipoles in the FFS. In the calculations,
the dipole strengths were scanned in the relative range
0.37–1.31 of their original strength with a step of 6.25%.
The dispersion profile for different scaling factors is shown
in Fig. 9. For each scale factor, the sextupole settings were
adjusted to optimize the beam size at the IP with MAD-X and
Mapclass, and the luminosity was calculated with PLACET

and Guinea Pig. Such a scan is shown in Fig. 10. One can
see that the dispersion level established in the nominal
design is still the optimal choice for the current optics and
does not require any changes.

IV. NONLINEAR OPTIMIZATION OF FFS
WITH SHORT FD AND ALTERNATIVE

DISPERSION PROFILE

It has been found that by inverting the strength of one of
the quadrupoles of the FFS, namely QD6B (refer to Fig. 2),

a new dispersion profile can be established for the FFS,
see Fig. 11. In this case, the quadrupole inverts the
dispersion slope, allowing larger dispersion at the FD for
the same dipoles bending angles.
The optics requires the same retuning as in Sec. III,

due to the new dispersion profile. An approach that was
used is based on the simultaneous matching of the IP Twiss
parameters and the upstream chromaticity to the given
value, using the quadrupoles upstream of the FD. For each
chromaticity value the second-order beam size is mini-
mized with the sextupoles, see Fig. 12. By applying the
parabolic fit, one can find the minimum, which corresponds
to the chromaticity difference of Δξ�x ≈ 171. The sextupole
settings are obtained from the numerical optimization with
MAD-X and Mapclass, strengths are varied to minimize the
fifth-order beam size. The beam size obtained after the

FIG. 8. Horizontal (top) and vertical (bottom) beam size at the
IP as a function of the map order.

FIG. 9. Dispersion in the FFS for different scales of the bending
angle of the dipoles for the optics with β�y ¼ 70 μm and short FD
quadrupoles.

FIG. 10. Luminosity dependence of the dispersion level
along the FFS for the optics with β�y ¼ 70 μm and short FD
quadrupoles.
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optimization is σ�x ¼ 144.31 nm and σ�y ¼ 3.92 nm and is
far from the target. The beam size as a function of the order
of the transfer map is given in Fig. 15 and is labeled
as “before optimization.” Vertical beam size σ�y is large,
mainly due to the third-order contributions, similar to the
design in Sec. II when the octupoles are switched off.
Horizontal beam size is dominated by the contributions
from high-order terms.
We denote uf;i ¼ fxf; x0f; yf; y0f; δg with i∈ ½1; 5� as a

particle’s coordinate at the end of the beamline. It correlates
with the coordinates at the beginning in the most general
form [18]:

uf;i ¼
X
jklmn

Mijklmnx0jx00
ky0ly00

mδ0
n; ð4Þ

where u0 ≡ fx0; x00; y0; y00; δ0g is the set of particle
coordinates at the entrance. Usually, the map Mijklmn is

truncated at the order q such that jþ kþ lþmþ n ≤ q.
For horizontal and vertical coordinates we denote
M1jklmn ≡ Xjklmn and M3jklmn ≡ Yjklmn, respectively. The
beam size at the IP derives:

σ�x;y2 ¼
X
jklmn

j0k0 l0m0n0

XðYÞjklmnXðYÞj0k0l0m0n0

×
Z

x0jþj0x00
kþk0y0lþl0y00

mþm0
δ0

nþn0ρ0dv0: ð5Þ

Integration is performed over the initial phase space, ρ0 is
the phase-space density, and dv0 is the differential volume
of the initial phase space. The map is assumed to be
symplectic. Gaussian distribution is used for the transverse
coordinates. In the case of CLIC, for δ, a flattop distribution
is used with full width of 1%.
To analyze the IP beam size, the transfer map is truncated

at fifth order. The terms inside the sum in Eq. (5) are
evaluated with Mapclass and sorted in descending order.
Figure 13 shows the largest contributions to the horizontal
and vertical beam size. Looking at these results, several

FIG. 11. Comparison between the original and the alternative
dispersion profile in the FFS.

FIG. 12. The second-order horizontal beam size normalized to
the linear beam size at the IP as a function of the difference
between the FD and upstream chromaticities.

FIG. 13. The largest contributions to the square of the hori-
zontal (top) and vertical (bottom) beam size, excluding the linear
parts. The contributions of second order are shown in green, third
order in blue, fourth order in orange, and fifth order in red.
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outlines can be made for this design: (i) The horizontal
beam size at second order is well corrected but with
noticeable pure geometrical contribution from X2

20000.
The third-order chromatic terms such X01002X01000 and
X2
00003 are dominant and are responsible for the large σ�x

growth at third order. (ii) Horizontal beam size is reduced
close to the linear value, mainly at fifth order, with the
largest reduction coming from X01004X01000. (iii) Vertical
beam size is almost twice the target value at fifth order. It is
dominated by the third-order contributions, like the cou-
pling terms Y2

20100 and Y2
20001.

One of the main issues limiting the IP beam size is the
distribution of sextupoles in the FFS and the transfer
matrices between them. In this context, few improvements
can be done: (i) Scan the location of SD5 to find the best
position that gives the smallest beam size at the IP. For
each SD5 location, the beam size at the IP is matched with
the sextupoles. The results of such a scan are shown in
Fig. 14. As one can see, it is possible to reduce the vertical
beam size down to 2.49 nm when SD5 is shifted by 6 m
further from the IP, without the need to use octupoles.
(ii) Add the pair of decapoles to correct the fourth-order
horizontal and vertical beam size growth. Although the
fifth-order beam size is numerically optimized, the pres-
ence of fourth-order aberrations would strongly impact
the beam size dependence on the energy offset and,
consequently—energy bandwidth. It is suggested to put
the pair of decapoles in the FD region to correct it, named
DEC1 and DEC2, which are located next to the SF1 and
SD0 sextupoles, respectively.
One can compare the beam sizes before and after the

above optimizations, evaluated in MAD-X and Mapclass in
Fig. 15. The beam size obtained after these optimizations is
142.97 nm × 2.52 nm, see Table V. To optimize the lattice
in terms of luminosity at the IP and find the balance

between emittance growth due to the synchrotron radiation
and aberrations control, one needs to find the optimum
dispersion scale factor. As it is shown in Table V, the vertical
beam size is around 13% larger when the synchrotron
radiation is considered. It might limit the total luminosity
and reduce the peak luminosity at the IP. Dispersion scale
factors within �50% from the initial value are explored,
see Fig. 16. The highest values of Ltotal ¼
1.74 × 1034 cm−2 s−1 and Lpeak¼1.01×1034 cm−2 s−1 are
obtained by reducing dispersion by 12.5%. The final
sextupole and decapole settings are given in Table VI.

V. PERFORMANCE EVALUATION
OF THE OPTICS

A. Beam size and luminosity

The beam size is calculatedwithMAD-X-PTC andMapclass,
including the map terms up to the eighth-order, and also is
extracted from the PLACET tracking. Luminosity is calculated
with Guinea Pig. The results are given in Table VII.

FIG. 14. Fifth-order horizontal and vertical beam sizes at the
IP as a function of SD5 sextupole location. The target values are
σtargetx ¼ 143.00 nm and σtargety ¼ 2.38 nm.

FIG. 15. Horizontal (top) and vertical (bottom) beam size at
the IP before (black) and after (red) optimization. The blue line
corresponds to the optics with optimized dispersion.
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Horizontal beam size is well matched to the linear value
of 143 nm for each optics. The vertical beam size of the
optics with β�y ¼ 100 μm is at 15% larger than the largest
beam size of the optics with β�y ¼ 70 μm. Among the
different designs, the optics with short FD and with a
different dispersion profile provides the best aberration
control, providing almost linear value of σ�y, see Fig. 17.
As a result, the optics with short FD and with an

alternative dispersion profile provides the largest luminos-
ity achieving a 6.7% boost of total luminosity and an 8.6%
boost of peak luminosity if compared to the optics with
β�y ¼ 100 μm and a 5% boost if compared with the rest
β�y ¼ 70 μm optics. Estimation of the luminosity growth
expectation based on the PLACET beam size approximates
as 17.6%. The luminosity limiting factor due to the
hourglass effect reduced from 91.6% to 86.1% for β�y ¼
100 μm and β�y ¼ 70 μm respectively [16], which means a
5.5% difference. This gives the potential of the luminosity
growth of at most 12.1%, with the actual value of 8.6%.

B. Energy bandwidth

The term energy bandwidth is used to describe the beam
size or the luminosity dependence on the energy offset.
In this paper, the definition from [25] is used. It is defined
as the width of the region where the beam size does not
grow more than 10%, compared to the on-momentum

beam size. For the simulation, particle tracking with
PLACET is used for the beam with an energy offset in the
range of �1%. It is worth mentioning that no energy
collimation is applied so that the particle can have an
energy offset larger than 1.3%. Overall, it increases the
beam size and total luminosity but does not affect the peak
luminosity. Figure 18 shows the calculation results for
different optics. The estimated bandwidth based on it is
given in Table VII.
One can see that the vertical beam size rapid growth

for the off-momentum beam is responsible for the small
energy bandwidth. Although it is possible to control the
linear optics very well by adding the higher-order magnets,
such as octupoles and decapoles, second-order beam size
remains large under the presence of the energy offset. It
happens due to the rapid growth of the vertical chromaticity
for the off-momentum beams.
To analyze how the luminosity changes with the energy

offset, the beam distributions obtained earlier are given to
Guinea Pig. The results are shown in Fig. 19. One can see
that the original optics with β�y ¼ 100 μm has the largest
bandwidth for Ltotal mainly because of the horizontal beam
size reduction for negative δp. Peak luminosity bandwidth
is similar, except for the optics with different Dx profile,
which is about 25% smaller.

VI. PERFORMANCE EVALUATION
OF THE COLLIMATION DEPTH

CLIC’s collimation section at 380 GeV was scaled down
from 3 TeV and preserves the same collimation depth and

FIG. 16. Luminosity dependence of the dispersion level along
the FFS for the optics with β�y ¼ 70 μm, short FD, and the
alternative dispersion profile.

TABLE V. Beam size and luminosity comparisons before and after dispersion optimization for the optics with an alternative dispersion
profile. Calculations with PLACET are performed including the synchrotron radiation.

Mapclass (eighth-order map) PLACET + Guinea-Pig

σ�x (nm) σ�y (nm) σ�x (nm) σ�y (nm) Ltotal (1034 cm−2 s−1) Lpeak (1034 cm−2 s−1)

Before Dx optimization 142.97 2.52 145.62 2.87 1.73 1.00
After Dx optimization 142.43 2.45 143.82 2.67 1.74 1.01

TABLE VI. Optimized integrated strength of the sextupoles
and decapoles for the optics with an alternative dispersion profile.

Strength

Magnet K2L (m−2) K4L (m−4)

SD0 1.21 � � �
SF1 −0.29 � � �
SD4 0.77 � � �
SF5 −0.47 � � �
SD5 4.67 � � �
SF6 0.50 � � �
DEC1 � � � −370
DEC2 � � � 9120
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consists of the energy and betatron collimations in the
respective order. Energy collimation removes the particles
from the beam with an energy offset larger than 1.3% [5].
The betatron section aims to clean the beam halo, such that
neither particles nor emitted photons hit QF1, QD0, or
the inner part of the detector. Simulation studies in [6]
established the optimal collimation depth of 15σx and 55σy
for the 3-TeV stage. In 380 GeV lattice, the nominal

aperture is larger than 3 TeV and is comparable with the
CLICdet [8] inner dimension.
Vertex detector is located in close proximity to the

interaction region and has an inner radius of 31 mm, with
a beam pipe of 29.4 mm inner radius. To simulate the beam
halo, the monochromatic beam of the large emittance is

TABLE VII. Beam sizes are calculated with PLACET including synchrotron radiation and with Mapclass including transfer map terms
up to the eighth order. Luminosity is calculated with Guinea Pig.

MAPCLASS PLACET + Guinea Pig

Optics σ�x (nm) σ�y (nm) σ�x (nm) σ�y (nm)
σx;y

bandwidth (%)
Ltotal

(1034 cm−2 s−1)
Lpeak

(1034 cm−2 s−1)

β�y ¼ 100 μm 141.90 3.14 144.22 3.14 0.52 1.63 0.93
β�y ¼ 70 μm 143.48 2.72 145.78 2.74 0.35 1.66 0.96
β�y ¼ 70 μm, Short FD 142.74 2.63 144.72 2.71 0.42 1.66 0.96
β�y ¼ 70 μm, Short FDþ altern Dx 142.43 2.45 143.82 2.67 0.3 1.74 1.01

FIG. 17. Horizontal (top) and vertical (bottom) beam size as the
function of the order of the map considered.

FIG. 18. Normalized horizontal (top) and vertical (bottom)
beam size evaluated with PLACET including SR as the function of
the energy offset. The red dashed line corresponds to a 10% beam
size increase.
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generated at the FFS entrance and tracked with PLACET

through the FFS. Collimation cuts are applied at the FD
entrance, limiting the occupied phase space to:

jxj < 15σx; jx0j < 15σx0 ; ð6Þ

jyj < 55σy; jy0j < 55σy0 : ð7Þ

The beam distribution at the FD entrance is given in
Fig. 20. Particles passing through QF1 and QD0 emit

FIG. 19. Total (top) and peak (bottom) luminosity change with
the energy offset normalized to the corresponding values of the
on-momentum beam. Red dashed line corresponds to the nominal
values from Table I.

FIG. 20. Cross section of the collimated beam at the FD
entrance.

FIG. 21. Horizontal (top) and vertical (bottom) position of the
emitted photons extrapolated to the entrance of the first dipole
magnet in the postcollision line. The beam pipe’s smallest radius
around the IP is shown with the dashed line.

TABLE VIII. The gradient and the aperture of the FD.

QF1 QD0

Gradient (T=m) 16.3 73.7
Aperture (mm) 31.2 27.0
Pole tip field (T) 0.51 1.99
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photons due to the synchrotron radiation. The photon
emission cone’s opening angle is 1=γ ≈ 2.6 μrad.
In this case, the photons are assumed to travel along

the emission direction, calculated for each particle at the
entrance, center, and exit of QF1 and QD0 using PLACET

tracking. In Fig. 21, the photon flux is shown, including
the reference apertures of the detector. One can see that
photons do not hit it. QD0’s aperture is adjusted based on
the cone radii at their location to avoid the photons hitting
the FD. We also took into account the potential quadru-
poles’ offsets of 0.1 mm. For QF1, it is the nominal aperture
based on the collimation depth. For QD0, it is around
27.0 mm from the simulation (see Table VIII).
The photon flux emitted in QF1 and QD0 has an

elliptic shape in the transverse plane with radii of around
27 × 18 mm2 at the IP location. It satisfies the require-
ments, as photons do not hit the detector nor the FD.
Based on the estimated aperture for the FD and including

the studies of the resistive wall effects in [26], the aperture
for BDS of CLIC 380 GeV is proposed, see Fig. 22.
The nominal apertures, which are calculated based on the
collimation depth, are increased everywhere outside the
FD by 44%, and the FD aperture is set to 27 mm from
the photon flux radii.

VII. CONCLUSION

Two new optics have been designed for the FFS of CLIC
380 GeV. Both of them have a vertical beta function of
70 μm and have shorter FD quadrupoles by about a factor
of 2. The first optics is conceptually similar to the previous
design. It provides the same luminosity as the optics with
longer FD but has a 30% larger energy bandwidth and does
not require octupoles. The second optics proposes the use
of a different dispersion profile within the FFS. This optics
features higher total and peak luminosities, which are
around 5% larger than the other optics with β�y ¼ 70 μm,
but has a smaller energy bandwidth and also requires a pair

of decapoles. Considering the large luminosity gain for the
same vertical beta functions, the optics with an alternative
dispersion profile is preferred option for the final focus of
CLIC at 380 GeV.
The collimation depth has been verified to protect the FD

and the detector from the photon flux.

APPENDIX: ANALYTICAL APPROXIMATION OF
THE HORIZONTAL BEAM SIZE AT THE IP

The primary source of chromaticity at the IP is the FD
quadrupoles. Traditionally, the sextupoles that are put in the
dispersive region are used to cancel the chromaticity. In the
local chromaticity correction scheme, FD is also located
in the dispersive region. This gives rise to the additional
chromatic contributions to the horizontal beam size, like
second-order dispersion. Correction of that requires that
half of the horizontal natural chromaticity is generated
upstream of the FD. In these derivations, we evaluate
the minimum horizontal beam size as a function of the
upstream horizontal chromaticity. Here, we do not take into
account the effect of the synchrotron radiation, so the
energy of each particle is assumed constant. Also, Gaussian
beam density is used in the derivations.
Transformation of the horizontal coordinates through a

single quadrupole, located in the no dispersion region,
including the second-order transfer map terms in transfer
formalism [27] is given by

�
x ¼ R11x0 þ R12x00 þ T116x0δþ T126x00δ

x0 ¼ R21x0 þ R22x00 þ T216x0δþ T226x00δ
; ðA1Þ

which rewrites as:

x⃗ ¼ R̂ x0
!þ

�
T116 T126

T216 T226

�
x0
!δ≡ R̂ x0

!þT̂xx0
!δ; ðA2Þ

where x⃗ ¼ ðx; x0ÞT are the coordinates at the exit of the
quadrupole, R̂ is the linear transfer matrix of the quadru-
pole, δ is the relative energy offset of the particle,
x0
!¼ ðx0; x00ÞT are the coordinates at the quadrupole
entrance, and T̂x is the matrix of the second-order terms
of the horizontal transformation. We denote T̃x as a matrix
of the second-order terms between the starting point and
the IP. Considering a single quadrupole, it writes as

T̃x ≡
 
T̃116 T̃126

T̃216 T̃226

!
¼ R̂Q→IPT̂xR̂

s0→Q; ðA3Þ

where R̂s0→Q is the transfer matrix between the starting
point and the quadrupole and R̂Q→IP is the transfer matrix
between the quadrupole and the IP. In the case of multiple
quadrupoles, T̃x is given by

FIG. 22. Beam pipe apertures (radius) distribution along the
BDS.
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T̃x ¼
X
i

R̂Qi→IPT̂i
xR̂

s0→Qi: ðA4Þ

The particle’s coordinate at the IP then writes:

x�
!≡ ðx�; x0�Þ ¼ R̂s0→IPxs0

!þ T̃x xs0
!δ; ðA5Þ

where xs0
!¼ ðxs0 ; x0s0ÞT are the horizontal coordinates at the

starting point, and R̂s0→IP is the transfer matrix between the
starting point and the IP. Beam size at the IP writes as

σ�x2 ¼ ϵxβ
�
x þ T̃2

116σ
2
xs0
δ2p þ T̃2

126σ
2
x0s0
δ2p

þ 2T̃116T̃126σxs0 ;x
0
s0
δ2p; ðA6Þ

with

σ2xs0 ¼ ϵxβx;s0 ; σ2x0s0
¼ ϵxγx;s0 ; σxs0 ;x

0
s0
¼ −ϵxαx;s0 :

Here βx;s0 , αx;s0 , and γx;s0 are the Twiss functions at the
starting point. Based on the definition in Eq. (2), one can
extract the horizontal chromaticity at the IP:

ξ2x ¼ T̃2
116

βx;s0
β�x

þ T̃2
126

γx;s0
β�x

− 2T̃116T̃126

αx;s0
β�x

: ðA7Þ

In the event αx;s0 ¼ 0, which is the case for most of the
calculations with Mapclass, the equation can be simplified:

ξ2x ¼ T̃2
116

βx;s0
β�x

þ T̃2
126

1

β�xβx;s0
: ðA8Þ

A similar equation can also be derived for the vertical
plane. In such a form, it agrees with the chromaticity
definition in [28].
In the further derivations, we utilize the thin-lens

approximation. So for a quadrupole, T216 ≈ kL with kL
as the integrated strength, and the rest second-order terms
are zero. We consider a single quadrupole, located at the FD
phase (π=2 phase advance from the IP):

R̂Q→IP ¼

0
B@

ffiffiffiffi
β�x
βx

q
αx

ffiffiffiffiffiffiffiffiffi
βxβ

�
x

p

− 1ffiffiffiffiffiffiffi
βxβ

�
x

p 0

1
CA; ðA9Þ

here βx and αx are the Twiss functions at the quadrupole
location. Horizontal chromaticity generated by such quad-
rupole simplifies to

ξqx ≈ T̃116

ffiffiffiffiffi
βx
β�x

s
¼ T216R

Q→IP
12

ffiffiffiffiffi
βx
β�x

s
¼ kLβx. ðA10Þ

The entrance of the quadrupole is taken as a starting point.
In the presence of the dispersion Dx at the quadrupole

location, we set x0 → x0 þDxδ, and in the thin-lens
approximation, Eq. (A1) transforms to

�
x ¼ R11ðx0 þDxδÞ þ R12x00
x0 ¼ R21ðx0 þDxδÞ þ R22x00 þ T216ðx0 þDxδÞδ

;

ðA11Þ

or similarly to Eq. (A2):

x⃗¼ R̂ x0
!þ

�
R11

R21

�
Dxδþ

�
0 0

T216 0

�
x0
!δþ

�
0

T216Dx

�
δ2:

ðA12Þ

Particle’s coordinate vector at the IP is given by

x�
! ¼ R̂Q→IPx⃗. It gives the following beam size:

σ�x2 ¼ ϵxβ
�
x þ ϵxβ

�
xξ

q
x
2δ2p þ ðT216R

Q→IP
12 DxÞ23δ4p; ðA13Þ

we denote T̃q
166 ≡ T216R

Q→IP
12 Dx as the second-order

dispersion generated by the quadrupole. We connect it to
the chromaticity from Eq. (A10):

T̃q
166 ¼

ffiffiffiffiffi
β�x
βx

s
Dxξ

q
x: ðA14Þ

Similarly, we calculate the chromaticity and second-
order dispersion generated by a single sextupole. Particle’s
coordinates transformation after passing through a thin
sextupole in the dispersive region is given by

�
x ¼ x0 þDxδ

x0 ¼ x00 þ Ts
211ðx0 þDxδÞ2 þ Ts

233y
2
0

; ðA15Þ

here Ts
211 ¼ −ksL=2, Ts

233 ¼ ksL=2, ksL is the sextupole
integrated strength, and y0 is the vertical displacement at
the sextupole entrance. Horizontal coordinate at the IP,
after the transformation R̂Q→IP writes:

x� ¼ x�betatron þ Ts
211R

Q→IP
12 x20 þ Ts

233R
Q→IP
12 y20

þ 2Ts
211DxR

Q→IP
12 x0δþ Ts

211D
2
xR

Q→IP
12 δ2: ðA16Þ

We denote8>><
>>:

T̃s
111 ≡ Ts

211R
Q→IP
12 ¼ − 1

2
ksL

ffiffiffiffiffiffiffiffiffi
βxβ

�
x

p

T̃s
133 ≡ Ts

233R
Q→IP
12 ¼ 1

2
ksL

ffiffiffiffiffiffiffiffiffi
βxβ

�
x

p

T̃s
116 ≡ 2Ts

211DxR
Q→IP
12 ¼ −ksLDx

ffiffiffiffiffiffiffiffiffi
βxβ

�
x

p
:

The terms T̃s
111 and T̃

s
133 are pure geometrical contributions,

which are the source of the geometrical aberrations at
the IP. They can be canceled with an additional sextupole
of equal strength located upstream in the dispersion-free
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region. It requires −I transformation between the sextu-
poles. According to Eq. (A7), chromaticity generated by a
single sextupole is

ξsx ≈ T̃s
116

ffiffiffiffiffi
βx
β�x

s
¼ −ksLDxβx: ðA17Þ

And the second-order dispersion

T̃s
166 ≡ Ts

211D
2
xR̂

Q→IP
12 ¼ 1

2

ffiffiffiffiffi
β�x
βx

s
Dxξ

s
x: ðA18Þ

We construct the minimum system needed for the simulta-
neous correction of the horizontal chromaticity and second-
order dispersion generated by the quadrupole. It requires
two sextupoles, one sextupole is placed next to a quadru-
pole, the second is located in the upstream dispersion-free
region to provide −I transformation between them, see
Fig. 23. Horizontal coordinate of the particle at the IP for
such a system writes:

x� ¼ x�betatron þ ðT̃q
116 þ T̃s

116Þx0δþ ðT̃q
166 þ T̃s

166Þδ2:
ðA19Þ

Also, we introduce the additional chromaticity ξupx , gen-
erated by the quadrupoles upstream in the dispersion-free
region. Combining Eqs. (A10), (A14), (A17), and (A18),
horizontal beam size at the IP evaluates

σ�x 2 ¼ ϵxβ
�
x þ ϵxβ

�
xðξupx þ ξqx þ ξsxÞ2δ2p

þ 3
β�x
βx

D2
xðξqx þ ξsx=2Þ2δ4p: ðA20Þ

One can see that to cancel the second-order dispersion,
we need ξsx ¼ −2ξqx . Therefore to also cancel chromaticity,
we need an additional contribution with value ξupx ¼ ξqx .

When the optics is not tuned well, the natural chromaticity
generated upstream is not optimal ξupx ¼ ξqx þ Δξx. We
search for new amount of the chromaticity generated by the
sextupole ξsx ¼ −2ξqx þ Δξsx to minimize the horizontal
beam size by solving d

dΔξsx
σ�x2 ¼ 0. We get

Δξsx ¼ −
Δξx

1þ 3
4

D2
x

βxϵx
δ2p

; ðA21Þ

σ2x
ϵxβ

�
x
¼ 1þ ðΔξx þ ΔξsxÞ2δ2p þ

3

4

D2
x

βxϵx
ðΔξsxÞ2δ4p

¼ 1þ Δξ2xδ2p
1þ 4

3
ϵxβx
D2

xδ
2
p

: ðA22Þ

When the dispersion at upstream sextupole S1 (refer to
Fig. 23) is nonzero, it also contributes to the beam size via
the chromaticity and second-order dispersion at the IP:

σ�x2 ¼ ϵxβ
�
x þ ϵxβ

�
xðξupx þ ξqx þ ξsx þ ξs1x Þ2δ2p

þ 3
β�x
βx

D2
x

�
ξqx þ ξsx=2 − ξs1x =2

Ds1
x

Dx

�
2

δ4p; ðA23Þ

where Ds1
x is the dispersion at upstream sextupole and

ξs1x ¼ −ks;L1βxDs1
x is the chromaticity it generates. The

minus sign in the second-order dispersion contribution
appears due to the −I transformation. The strength of the
upstream sextupole is set ks1L ¼ ksL to cancel the geomet-
rical aberrations. The optimal upstream chromaticity
evaluates as

ξupx ¼ ξqx
1þDs1

x =Dx

1 −Ds1
x =Dx

: ðA24Þ

It requires the sextupoles to be set to produce the
following chromaticities:

ξsx ¼ −
2ξqx

1 − ðDs1
x

Dx
Þ2
; ξs1x ¼ −

2ξqx

1 − ðDs1
x

Dx
Þ2
Ds1

x

Dx
; ðA25Þ

leading to the full cancellation of the above aberrations.
In the presence of the additional upstream chromaticity
Δξx, cancellation of the geometrical aberrations does not
strictly correspond to the minimum beam size. One has to
include the geometrical and chromogeometrical terms to
evaluate the minimum beam size. Given the fact that in
CLIC FFS design, there are six sextupoles, we also need
to include the impact from the rest of the sextupoles
located at large βx locations. In the current design, we
have one additional sextupole, namely SF6, referred to as
S2 in Fig. 24. It is located at dispersive region with Ds2

x
dispersion and at 2π phase advance from the FD. Similarly

FIG. 23. Minimum scheme required for the correction of the
horizontal chromaticity and second-order dispersion in the FFS.
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to Eq. (A19), we evaluate the horizontal coordinate at
the IP, including the geometrical terms:

x� ¼ x�betatron þ
�
T̃q
116 þ T̃s

116 þ T̃s1
116 þ T̃s2

116

�
x0δ

þ
�
T̃q
166 þ T̃s

166 − T̃s1
166 þ T̃s2

166

�
δ2

−
�
T̃s
111 − T̃s1

111 þ T̃s2
111

�
x20

þ
�
T̃s
133 − T̃s1

133 þ T̃s2
133

�
y20: ðA26Þ

We connect the pure geometrical terms of the sextupoles with
the chromaticity of the corresponding magnet as follows:

T̃s
111 ¼ −T̃s

133 ¼
ξsx
2Dx

ffiffiffiffiffi
β�x
βx

s
: ðA27Þ

When horizontal chromaticity generated upstream differs
from the value given in Eq. (A24) by Δξx, we adjust the
amount of chromaticity generated by the sextupoles S and S1
byΔξsx andΔξs1x with respect to Eq. (A25). At the same time,
we want to find the optimal settings for S2 sextupole, ξs2x ¼
−ks2L βxDs2

x tominimize the horizontal beam size at the IP. The
horizontal beam size for such a system, based on Eq. (A26)

with upstream chromaticity ξupx ¼ ξqx
1þDs1

x =Dx

1−Ds1
x =Dx

þ Δξx and

including Eq. (A27) writes:

σ�x2 ¼ ϵxβ
�
x þ ϵxβ

�
x

�
Δξx þ Δξsx þ Δξs1x þ ξs2x

�
2
δ2p

× 3
β�x
βx

D2
x

�
Δξsx
2

−
Δξs1x
2

Ds1
x

Dx
þ ξs2x

2

Ds2
x

Dx

�
2

δ4p

þ 3

4

β�x
βx

�
Δξsx
Dx

−
Δξs1x
Ds1

x
þ ξs2x
Ds2

x

�
2h
ðϵxβxÞ2 þ ðϵyβyÞ2

i

þ β�x
βx

�
Δξsx
Dx

−
Δξs1x
Ds1

x
þ ξs2x
Ds2

x

�

×

�
Δξsx
2

−
Δξs1x
2

Ds1
x

Dx
þ ξs2x

2

Ds2
x

Dx

�
Dxδ

2
pðϵyβy − ϵxβxÞ:

ðA28Þ

The minimum is found by solving the following system of
equations:

8>>><
>>>:

∂

∂Δξsx
σ�x2 ¼ 0

∂

∂Δξs1x
σ�x2 ¼ 0

∂

∂ξs2x
σ�x2 ¼ 0:

ðA29Þ

One can use ξ⃗ ¼ ðΔξsx;Δξs1x ; ξs2x ÞT to simplify Eq. (A28) to
the following form:

σ�x2 ¼ ϵxβ
�
x þ ϵxβ

�
x

�
Δξx þ

X3
i¼1

ξi

�2

δ2p þ
X3
i¼1

X3
j¼i

Aijξiξj;

ðA30Þ

where Aij are the terms one gets after comparing Eqs. (A30)
and (A28). Derivatives evaluate as

∂

∂ξl
σ�x2 ¼ 2ϵxβ

�
x

�
Δξx þ

X3
i¼1

ξi

�
δ2p

þ
X3
i¼1

X3
j¼i

Aijðδilξj þ δjlξiÞ; ðA31Þ

where δij is Kronecker delta. By introducing the Heaviside
step function H, with Hð0Þ ¼ 1, we rewrite the sum:

∂

∂ξl
σ�x2 ¼ 2ϵxβ

�
xδ

2
pΔξx

þ
X3
i¼1

ξi
n
2ϵxβ

�
xδ

2
p þ Ail½Hði − lÞ þHðl − iÞ�

o
:

ðA32Þ

In this format, the solution of Eq. (A29) simplifies to

M̂ ξ⃗ ¼ Δξxb⃗; ξ⃗ ¼ ðΔξsx;Δξs1x ; ξs2x ÞT; ðA33Þ

where M̂ and b⃗ are thematrix and vector estimated depending
on the configuration of the sextupoles. The solution is
proportional toΔξx, which leads to the quadratic dependence
of σ�x2 onΔξx, similarly to Eq. (A22). This property is used to
find the optimal upstream chromaticity for different optics
designs in this paper.
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