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A harmonic kicker cavity was originally proposed as an ultrafast bunch exchange device between energy
recovery linac (ERL) and the circulator cooling ring (CCR) of the Jefferson Laboratory Electron-Ion
Collider (JLEIC). The cavity is a transverse deflecting cavity that delivers a sharp kick synthesized using a
linear combination of harmonic modes, which can be developed as a normal conducting quarter wave
resonator (QWR). We present the development of the QWR as a high-power device (up to 7.5 kW) ready
for a beam test: rf design (that involves the rf power optimization, tuning mechanism of five harmonic
modes, power coupling), multipacting study, mechanical design with a water cooling system for high
power operation, fabrication, and the rf bench tests.
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I. INTRODUCTION

A harmonic kicker cavity was proposed as an ultrafast
electron bunch exchange device in the context of the
circulator cooling ring (CCR) development as a part of
the JLEIC cooling system R&D [1,2]. In the CCR (for a
schematic overview of the CCR and the beam parameters,
see Fig. 1(a) and Table I, respectively), the recirculating
electron bunches at bunch frequency of 476.3 MHz are
replenished in a way that the “exchanged” bunches at the
frequency of 43.3 MHz (the frequency was planned to
eventually increase to 86.6 MHz in a possible luminosity
upgrade of the JLEIC where the rf system and the bunch
frequency would change to 952.6 MHz) are deflected into/
out of the ring by a pair of rf kickers, as shown at the second
to top in Fig. 1(a). In order for this kick to not disturb the
beam dynamics of the neighboring bunches (circulating the
ring), the kick was synthesized from a linear combination
of five (odd) harmonic modes with a fundamental fre-
quency of 86.6 MHz—this frequency is compatible with
the exchange frequency of both 43.3 and 86.6 MHz—so
that its temporal profile [shown at the bottom in Fig. 1(a)] is
sharply peaked around the exchanged bunches only and
rapidly falls down to near zero elsewhere. More details on
the design principle of a harmonic kicker and its role in the
CCR beam dynamics are discussed in [3].
A QWR with its coaxial geometry (see Fig. 1(b), where

a cross section of the QWR is shown) can naturally

accommodate the five (odd) harmonic modes as its reso-
nant modes in a reasonably compact size, half of the double
quarter wave resonator (DQWR), for example. In Fig. 1(b)
that the tip of the inner conductor is configured so that the
electromagnetic fields in the gap (between the tip and the
bottom) provide a vertically deflecting kick to the beam.
As per Table I, for a beam with energy of 55 MeV, a kick
voltage of 25 kV for each mode is needed for 2.5 mrad
deflection. The total kick voltage of 125 kV can be
achieved straightforwardly by an optimally designed nor-
mal conducting QWR with about 7.1 kW total rf power,
which is some advantage over a stripline cavity that can
also provide a sharp kick with traveling waves [4]. On the
other hand, vertical asymmetry of the QWR gives rise to the
significant multipole fields that could degrade beam
dynamics and needs a scheme that suppresses the effects
(for a multipole cancellation scheme, see [5,6]). The five
harmonic modes from the rf source are nearly critically
coupled into the cavity via a single loop input power
coupler, located near the top utilizing a dominant inductive
coupling. The tuning of the resonant frequencies of the
cavity is achieved by a five-plunger tuner system, where
five stubs along the outer conductor of the cavity are
inserted into the cavity with the frequency tuning deter-
mined by the insertion depths.
The first prototype of a QWR kicker cavity was

successfully developed with the fundamental frequency
of 95.2 MHz [1,2], which was compatible with the first
version of beam parameters of the CCR—the beam
parameters of the CCR and a harmonic kicker went through
a couple of revisions before settled down to the current
values as listed in Table I. The prototype was mostly based
on the rf design not intended for high-power operation nor
the beam test and was used only as proof-of-principle for
the feasibility of the QWR as a harmonic kicker. In this
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paper, the development of the second prototype with a
fundamental frequency of 86.6 MHz (for the design
development, see [6,7]) is presented in some detail. The
second prototype is an upgraded version for a high power
operation (∼7.5 kW) in beam test (which requires a
vacuum-tight device up ∼10−9 mbar). A high-power, high
vacuum operation requires power optimization, rf break-
down and multipacting investigation, nearly critical rf
couplings (between 0.5 and 2), and multiphysics analysis
that assesses the effects of the rf heating and evacuation of
the cavity. Moreover, the heating requires an effective
cooling system. A high power operation makes maintaining
a stable kick profile in Fig. 1(a) particularly challenging. A
high-power operation involves relatively high temperatures
and large temperature drifts even under the cooling scheme,

leading to significant resonant frequency shifts via thermal
expansion/contraction of the cavity wall. For a stable kick
profile, each harmonic mode from the rf source at drive
(which is nominal) frequency must couple into the cavity
with the nominal amplitude/phase as prescribed in Table I.
With the amplitude of each mode modulated upon coupling
depending on the deviation of the resonant frequency from
the drive frequency, the resonant frequency shifts by
thermal drifts must be compensated by a tuning system.
This requirement, combined with possible bunch frequency
change (for flexible beam operation) and the compensation
of another resonant frequency deviations from fabrication/
installation of the cavity, demands an effective tuning
system with a large tuning range of δf=f ∼�4 × 10−4

for each mode and relatively fast in action. The impedance

TABLE I. The Beam and kicker parameters of the CCR. The Twiss parameters are at the kickers. The numbers
after � signs are the voltage tolerances for the beam quality control [3].

Parameters (CCR) Unit Value Modes Parameters (kicker) Unit Value

Beam energy Ee MeV 55 86.6 MHz Kick voltage V1 kV −25� 0.38
Kick angle θ mrad 2.5 259.8 MHz Kick voltage V2 kV −25� 0.38
Turns N 11 433 MHz Kick voltage V3 kV −25� 0.38
Kick frequency fk MHz 86.6 606.2 MHz Kick voltage V4 kV −25� 0.38
Bunch frequency fb MHz 476.3 779.4 MHz Kick voltage V5 kV −25� 0.38
Bunch charge Qb nC 1.6
Bunch length lb cm 3
Energy spread δE 3 × 10−4

Emittance εn mm·mrad 36
Twiss parameter α 0
Twiss parameter β m 120

FIG. 1. The schematic overview of the CCR and the QWR model. (a) The overview of the CCR with a harmonic kicker system,
denoted as RF kickers. A temporal profile of a harmonic kick is shown at the bottom. (b) The cross-sectional view of the QWR.
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study with a high-intensity beam current will be discussed
in a separate publication.
A prototype cavity for high vacuum, high power oper-

ation was fabricated and tested with a beam at the Upgraded
Injector Test Facility (UITF) of the Jefferson Lab (for a
detailed description of the test and its preparation, see [8]).
The test was done successfully at the beam energy of
9 MeV, and the rf power of the kicker cavity was
accordingly scaled down to about 150W for the test. An
application of a harmonic kicker can possibly be extended
beyond the CCR/JLEIC beam exchange to a more general
context of the beams with a wide range of time structures
and deflecting angles. The successful prototyping of the
current kicker cavity will render much confidence and
lessons in developing many other (high power in particular)
kicker systems to come in the future.

II. ANALYTICAL MODEL FOR QUARTER
WAVE RESONATOR (QWR)

Before performing numerical rf simulations that would
determine a highly optimized geometry, we analytically
study the performance of the QWR based on a simple
semiclosed coaxial structure model, which would give
a rough estimate for the geometrical parameters of the
cavity as well as a better understanding of the underlying
mechanism of the cavity performance. The QWR cavity is
designed to have five odd harmonics of the fundamental
frequency of f1 ¼ 86.6 MHz and deliver the kick voltage
of Vk ¼ 25 kV in each harmonic mode. To control the
beam loss up to �6σ (where σ ¼ 5.9 mm is rms value of
the transverse beam size determined in beam dynamics
simulations [9]), the gap size g and beam pipe aperture 2Rbp

are constrained to be g ¼ 2Rbp ¼ 0.07 m. In Fig. 1(b), the
height h of the QWR is roughly given as h ¼ λ1=4 ¼
0.866 m, where λ1 ¼ 3.46 m is a wavelength correspond-
ing to the fundamental frequency. Higher modes naturally
exist as odd harmonics for the same given height. For
optimal kick efficiency, all the harmonic fields in the cavity
are on-crest (i.e., with rf phase ϕ ¼ 0) when the electron
bunch passes the cavity center. Then “synchronization
condition” that maximizes the transit time factor with res-
pect to the ninth harmonic frequency f9 (with the shortest
wavelength λ9) sets the outer conductor radius b to satisfy
2b=c ¼ 1=ð2f9Þ, i.e., b ¼ 92.6 mm, where c is the speed
of light c. But the synchronization condition is based on the
constant kick profile and the value of b is expected to be
flexible for realistic profiles. Finally, a is determined to
minimize the total power loss Pd on the copper wall of the
cavity, which is given as

Pd ¼
X5
n¼1

V2
k;n

R⊥;n
; ð1Þ

where Vk;n, R⊥;n are kick voltage and transverse shunt
impedance of nth odd harmonic mode, respectively. Based

on the simple geometry, an analytical formula for the
transverse shunt resistance R⊥ is available [2] as

R⊥;n ¼
128πf1ðbξÞ2Z2

0F
2
nT2

n

cg2Rs;n

�
1

bξ
þ 1

b
þ 8f1

c
ln
1

ξ

�
−1
; ð2Þ

where Rs;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
πfnμ0
σ0

s
; Z0 ¼

η0
2π

ln

�
1

ξ

�
: ð3Þ

In (2), ξ is the ratio a=b, Rs;n is the surface resistance
associated with nth odd harmonic mode (μ0 ¼ 4π ×
10−7 N=A2 is vacuum permeability and σ0 ¼ 5.8 ×
107 S=m is ideal conductivity of pure copper at room
temperature), Z0 is the characteristic impedance of trans-
mission line (the QWR) with vacuum wavelength imped-
ance η0 ¼ 120π Ω, Fn is a fringe field factor, and Tn is a
transit time factor of the nth odd harmonic mode, respec-
tively. A fringe factor Fn is defined as

Fn ¼
1

2aEn

Z
b

−b
dzfE⊥nðzÞ − cB⊥nðzÞg

¼ 1

2aEn

Z
b

−b
dz E⊥nðzÞ: ð4Þ

Here E⊥n, B⊥n are vertical electric fields and horizontal
magnetic fields on the beam axis, respectively. The En is a
vertical electric field on a beam axis assumed to be uniform
over the gap. Thus the shunt voltage V⊥;n of nth harmonic
across the gap is given as V⊥;n ¼ gEn ¼ gE⊥ðz ¼ 0Þ. The
last equality in (4) holds because B⊥n’s are all antisym-
metric along the beam axis according to the CST-MWS

simulation. A transit time factor Tn is defined as

Tn ¼
1

2aEnFn

Z
b

−b
dz

�
E⊥nðzÞ cos

�2πfnz
c

�

− cB⊥nðzÞ sin
�2πfnz

c

��
: ð5Þ

Fn’s and Tn’s are the functions of a, b, and g, which can be
fitted via a two-variable nonlinear regression with a series
of parameter scanning (with respect to ξ and b) in the
simulations (see Table VIII in Appendix A for the explicit
fitting results). Then the power Pd in (1) is obtained as a
function of a and b via Fn and Tn: By inserting (4), (5) (in
Appendix A) into (2) and subsequently (1). The total power
(1) as a function of a and b is plotted in Fig. 2. According to
Fig. 2, the bigger b would imply the smaller minimum
power loss at bigger ξ. For example, if b ¼ 88 mm is
selected, the power loss will be the minimum Ptot ¼ 5 kW
at ξ ¼ 0.36, i.e., a ¼ 31.7 mm.
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III. ELECTROMAGNETIC DESIGN OF THE
HARMONIC KICKER

A. Power optimization

Unlike the first prototype [2], the second prototype has
an even larger beam pipe size, which makes deviation from
the analytical description significant. For more accurate
optimization for the minimum power loss, a series of
numerical simulations using a 3D FEA code CST-MWS

[10] was necessary. Using analytically determined optimal
dimension for the cavity geometry from the previous
section as a starting model, a two-parameter scanning of
a and b was done (The actual sweep was with ξ ¼ a=b
instead of a). The resulting power distribution over the
swept parameters is shown in Fig. 3. In Fig. 3, the power
tends to get lower as b and ξ increase but TE11 mode

(shown in Fig. 3) starts to develop as the fifth mode in
frequency spectrum as aþ b value exceeds a certain
threshold. As a result, the region of lower power loss
available to the harmonic kicker cavity corresponds to the
proximity (the dark blue region in Fig. 3) of the threshold
boundary beyond which the TE modes develop. Although
the global minimum power of 4.9 kW is obtained with
b ¼ 98 mm, ξ ¼ 0.26, this would lead to a too-small
inner conductor in diameter, which might interfere with
the cooling channel installation into the inner conductor.
Alternative choice was made at b ¼ 88 mm ξ ¼ 0.34
(a ¼ 30 mm), where the dissipated power is Pdiss ¼
5.7 kW for the required kick voltage. This compares with
the analytical estimation in Sec. II, which is based on
a coaxial structure without beam pipe and smaller by
about ∼700 W. The choice of the dimensions takes into
account an engineering margin of 3–4 mm to the threshold
boundary. The influence on the power of blending to
various corners is minimal except for the tip of the inner
conductor, which was set to the minimum accordingly.
Although the larger blending on the tip decreases the peak
electric field, it also decreases transverse shunt impedance,
which implies more energy in the cavity needed for the
given target kick voltage, leading to significant increases
in power.

B. Rf break down study

For a full power operation, the Kilpatrick limit for the rf
breakdown was checked for the kicker cavity. The
Kilpatrick limit for each harmonic mode was numerically
estimated as illustrated in Fig. 4(a) and listed in Table II.
The peak surface field for each mode as scaled to the
target kick voltage was obtained from the simulation. The
comparison was done mode by mode and listed in Table II,
which shows the peak surface fields are significantly lower
than the Kilpatrick limit for every mode. The phase of
each mode is set to zero so that all the modes add up
constructively to define a total field on the moment a kicked
bunch passes through the kicker center. Moreover, with the
peak fields of the five modes all located at the tip of the
inner conductor, the maximum possible surface peak field
(of a total field) then would be a sum of the last column in
Table II, i.e., 13.6 MV=m. A more realistic estimation of
the total peak field is somewhat more ambiguous. The
superposition of 3D field maps of five modes in the CST

simulation shows the total peak field to be 7.8 MV=m,
because the peak field location of each mode is slightly
different. We conclude the actual total peak field will be
between 7.8 MV=m and 13.6 MV=m. With the Kilpatrick
limit [see the defining equation in Fig. 4(a)] applicable
only with a single frequency mode, we find an “effective”
single frequency mode that the total field in a short time
period of our interest, i.e., during a time window of�0.2 ns
when a bunch goes through the cavity and the total sur-
face peak field comes close to the predicted maximum
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7.8–13.6 MV=m. In Fig. 4(b), one can see the temporal
profile of the total field would be flattened by a hypotheti-
cal 952.6 MHz mode over the time window of �0.2 ns.
This suggests that during bunch passage the total field
can be effectively considered as a single frequency mode
at ∼952.6 MHz. The Kilpatrick limit of 952.6 MHz mode

is again numerically solved to be about 28 MV=m [see
Fig. 4(a)], well above the possible range of the total peak
surface fields.
In addition to the analysis based on the peak surface

electric field, the pulsed surface heating temperature and
the modified surface Poynting vector (Sc) were evaluated
and compared to the threshold values for the breakdown
[11]. The modified Poynting vector is defined as Sc ¼
Re½S� þIm½S�=6 for the given complex Poynting vector
S ¼ E⃗ × H⃗. The computed maximum modified Poynting
vector in the cavity is only 1450 W=mm2 (Fig. 5), which is
much less than the scaled threshold 10.6 × 106 W=mm2

to a pulse length of 2.2 ns (see the bottom figure of
Fig. 1(a) for the pulse length of a harmonic kicker). The
threshold scales with the pulse length tp as ∝ t−1=6p from
5 × 106 W=mm2 for a 200 ns pulse length as reported in
[11,12] in the context of a traveling wave structure. The
peak heating temperature [see Fig. 18(c)] at the maximum
modified Poynting vector location is also only around
60 °C, whose temperature rise from the room temperature is
about the same as the threshold temperature rise of 40 °C
for the oxygen-free copper (OFC) [13].

C. Harmonic frequency adjustment
and tuner design

After power optimization, the resonant frequencies were
tuned to the nominal harmonic frequencies by adjusting the
height of the cavity (for rough tuning) and tapering the
inner conductor in multiple segments (for fine-tuning).
Additional tuning by a set of five stub tuners [See Fig. 1(b)]

TABLE II. Kilpatrick limit for the harmonic kicker. EK is the
Kilpatrick limit and Epk is a normalized surface peak field of the
kicker cavity.

Modes f EK Epk
Units MHz MV/m MV/m

1 86.6 11 2.7
3 259.8 16 2.9
5 433 20 2.8
7 606.2 23 2.7
9 779.4 26 2.5
Total 952.6 28 7.6–13.6

W/mm2

FIG. 5. The modified Poynting vector.
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is to compensate for any frequency deviations (from the
nominal frequency) due to fabrication errors, temperature
drifts, beam dynamics requirement, and small microphon-
ics during the operation. In particular, possible bunch
frequency change fb ∼ 476.3 MHz� 67 kHz (from the
CCR beam dynamics requirement for possible path length
change) and temperature drifts from the imbalance between
the rf heating and cooling system would require cavity
frequency adjustment in the range of δf=f ∼�1.4 × 10−4

and δf=f ∼�0.8 × 10−4, respectively—the tuning range
for temperature drift was estimated from δf=f ∼ δl=l ∼ κδT
(with κ ¼ 16 × 10−6 K−1 being a thermal expansion coef-
ficient of a copper) for the temperature drift of δT ∼�5 K.
This will make the tuning range of δf=f ∼�4 × 10−4

appropriate for a combination of the two dominant factors.
First the rough tuning was done by adjusting the height,

whose fractional frequency response (δf=f) is linear with
the common slope of 1.15 × 10−3 mm−1 for all modes.
This is consistent with Slater’s cavity perturbation theorem,
i.e., δf=f ∼ δl=l (with l ¼ 0.83 m), which is valid in
small perturbation. A rough tuning achieved the frequency
deviations of Δf=f ≤ �2.5 × 10−3 for all modes at the
height h ¼ 903 mm. Before fine-tuning (by tapering),
the stub tuner configuration was determined to secure
the tuning range. A harmonic frequency response to any
small change in cavity geometry would be described by
Slater’s cavity perturbation theorem, i.e., the frequency
response of each harmonic mode to the small cavity energy
change is given as

Δfi ¼ fiΔUi; where Ui ¼
Z
V
dVfϵ0E2

i − μ0H2
i g: ð6Þ

Here fi,Ui, Ei,Hi are the frequency, the stored energy, and
the electric and magnetic field of the ith odd harmonic,
respectively, while V is the cavity volume. Tuning is
done by changing Ui’s with a set of independent “tuning
points” hj’s (with j ¼ 1;…;M for M tuning points), i.e.,
ΔUi ¼

P
M
j¼1ð∂Ui=∂hjÞΔhj, which leads to

Δfi ¼ T ijΔhj; where T ij ¼
∂fi
∂hj

¼ fi
∂Ui

∂hj
: ð7Þ

Here T is called a tuning matrix. The ði; jÞ element of T
corresponds to the first order frequency response of ith odd
harmonic to the change in jth tuning point. For the given
five modes, five tuning points would make (7) a 5 × 5
matrix equation that can be critically determined and
always be solved for Δh’s simply by inverting T .
Now arbitrary hj’s can be specified to a particular tuning

mechanism. For stub insertion adjustment, hj is an insertion
depth of the jth stub. For small changes of Δhj we have

T ij ¼ fi

Z
Sj

dafϵ0E2
i − μ0H2

i g; ð8Þ

where Si is the cross-section area of the jth stub. In terms of
physical quantities, T in (8) is approximately the surface
integral of “frequency sensitivity density”, which is a
function of area element via electric and magnetic field
profiles on the area. Thus the broad tuning range can be
found using an extensive scanning of a set of tuning
parameters in the simulation with a high mesh setting
(tetrahedral meshing >5 × 105 with the curved element of
order 2): the vertical position, insertion depth (into the
cavity), radius and corner blending of each stub. In
particular, the vertical positions were determined in
Fig. 6(a) so that all the tuning matrix elements [see (10)]
are reasonably large enough for a small stub motion. Some
of the determined positions (three in the middle) were
shared with the tapering points, which require shallow
tapering angles. The stubs were inserted into the default
position in the cavity for bidirectional tuning. A deep
insertion, in spite of a higher tuning range with stronger
fields, would lead to more heating and a wider frequency
deviation spectrum with nonlinear frequency sensitivity as
shown in 6(b). Therefore the (default) insertion depths of
the stubs are determined to be 15 mm into the cavity
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volume, balancing frequency spectrum control and a large
tuning range—this naturally sets the motion range of the
stubs to be �15 mm. For a larger tuning range, each stub
with a larger cross section and a sharper blending to the
edge is inserted as demonstrated. The sharper blending
enhances the field strength and increases the tuning range.
To compensate for the overall frequency change during the
insertion to default position, a few iterations between rough
tuning and stub configuration adjustments are needed
before reaching the final height h ¼ 899.5 mm, with which
the fifth mode reaches target frequency at the insertion
depth of 15 mm.
With the stub tuners inserted, a finer tuning by tapering

the inner conductor on five locations for five modes was
done to achieve the resolution of δfi=f < 3 × 10−5 for all
i’s, which is required to maintain a temporal kick field
profile and the rf power loss under control. In practice, T is
evaluated by parameter scanning (sweeping Δhj’s while
tracking Δfi’s) in CST-MWS simulations and applying a
linear fit to the outputs (see Appendix B for details of
fitting). The optimal tuning matrices, T t for inner con-
ductor tapering and T s for the stub insertion, are obtained
(in units of MHz/mm) as

T t ¼

2
666664

−0.530 −0.344 0.142 0.446 0.263

−0.509 1.216 −0.863 −0.516 0.609

−0.056 −0.638 0.982 −1.003 0.581

−0.295 0.530 −0.513 −0.236 0.283

−0.241 −0.262 0.267 −0.093 0.030

3
777775;

ð9Þ

T s ¼

2
666664

−0.019 −0.012 −0.003 0.008 0.011

0.005 0.025 −0.043 −0.034 0.021

0.047 −0.114 0.032 −0.116 0.003

−0.068 0.035 −0.159 −0.094 −0.045
−0.226 −0.099 0.076 0.029 −0.121

3
777775:

ð10Þ

Once T is known, frequency deviations can be compen-
sated by solving for Δhj’s in (7). With T t in (9), Δhj’s
determine the tapering slopes on the inner conductor. With
T s in (10), Δhj’s are the insertion depth of the stubs.
Because the actual frequency response of each mode is not
fully linear, the tuning based on the tuning matrices fails to
tune the frequencies exactly, which requires some iterations
of tuning based on (7) for a desired tuning accuracy of
δf=f ∼�3 × 10−5, as demonstrated in Fig. 7(a).
The tuning range of the stub tuners can be approximately

estimated based on the linear matrix T s in (10) and is
illustrated in Fig. 7(b). In Fig. 7(b), the horizontal axis
is a distribution of the instances of fractional frequency

deviations of the cavity in the range of δf=f ∼�6 × 10−4.
Here an instance (a point on the horizontal axis) is a
quintuplet whose entry corresponds to the fractional
frequency deviation for each harmonic mode, i.e.,
ðδf1=f1; δf2=f2; δf3=f3; δf4=f4; δf5=f5Þ. Each instance
is labeled as “frequency deviation index”—we used 250
different instances in the distribution. The vertical axis
refers to the distance traveled by each stub to tune the
frequency back to the target for a given instance of
frequency deviation, using the Slater cavity perturbation
theorem with (10). Five stubs define five curves (with
different colors) for the distribution. Given that the traveled
distances must be all within �15 mm, which is the
mechanical upper/lower limit of the stub motion, some
of the curves in Fig. 7(b) nearly touching the�15 mm limit
suggest δf=f ∼�6 × 10−4 is the maximum tuning range.
Given a rather long travel distance of the stubs, the Slater
cavity perturbation theorem has limitations and a more
accurate tuning range evaluation requires a different
approach that takes into account a nonlinear response to
the stub insertion. In Appendix C, we scanned the fre-
quency response over a full range of stub motion, obtaining
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FIG. 7. The tuning range of the stubs based on a linear
response. (a) The iteration process for frequency tuning, starting
with the frequency deviation of δf=f ¼ 5.7 × 10−4. (b) The
tuning range of the stubs.
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a nonlinear fit. The tuning range plot using the nonlinear fit
curves (but still using the iteration based on a linear matrix)
is shown in Fig. 30(f).

D. Coupler design

A single loop power coupler was designed to couple five
harmonic modes into the kicker cavity. For each mode, the
generator power Pg needed to maintain a constant kick
voltage within the cavity is determined by the rf coupling
β’s. The baseline design of rf coupling to the cavity is based
on a negligible beam loading case with a low kick voltage
of 125 kV (see Table I). Then the approximate formula for
the generator power on resonance is given as

P0
g;tot ¼

X5
n¼1

Pg;n ¼
X5
n¼1

V2
n

Rn

ð1þ βnÞ2
4βn

¼
X5
n¼1

Pwall;n
ð1þ βnÞ2

4βn
; ð11Þ

where Vn, Rn, βn, Pwall;n are the kick voltage, shunt
impedance, rf coupling coefficients, and wall loss of the
nth mode, respectively. The rf coupling is defined as
βn ¼ Q0;n=Qe;n with Q0;n and Qe;n being unloaded and
external quality factor for nth mode. With a single loop
coupler configuration, exact critical couplings for all five
modes cannot be achieved and only the acceptable range
of the (near critical) couplings (for the minimum power)
was considered. In Fig. 8(a), the power increase due to
the small deviation of β from critical coupling is not big,
and even a relatively large deviation is allowed in case of
overcoupling. It is advantageous for the minimum total
power to have higher frequency modes closer to the
critical coupling because they have smaller shunt imped-
ances and require more power. The estimation based on
(11) gives the target range of all the βn’s in 0.7< β < 1.5
to keep the additional total generator power (due to rf
coupling) below 300 W.
For the rf coupling in the cavity, a loop coupler is placed

near the top plate where the inductive coupling via mag-
netic field is dominant. The detailed geometrical con-
figuration of the loop antenna was determined with the
extensive use of CST-MWS code [10] utilizing geometrical
parameter scanning capability while tracking β’s and is
shown in Fig. 8(b). The characteristic impedance of the
coupler is matched to 50 Ω of the standard transmission
line. Given the broadband (80–800 MHz) nature of the
coupling, a more sophisticated configuration than a single
frequency coupling is required: a loop with its tip grounded
gives far better control over the convergence of the β’s for
the five harmonic modes (i.e., β values for all the modes are
close to one another). The grounded loop couples to the
fields via both electric and magnetic fields. The straight
section of the grounding L-leg mostly picks up the electric

field (proportional to its length), while the area enclosed by
the loop picks up magnetic fields. Moreover, because of the
geometrical location of the leg and the loop area, different
modes are selectively coupled, i.e., lower modes that
cannot penetrate deep into the coupler port has mostly
magnetic coupling, while the higher modes with deeper
penetration have both couplings. The balance between
these two contributions for each mode was achieved by
extensive parameter scanning of the vertical position of the
coupler port and insertion depth. The remaining geomet-
rical parameters [as shown in Fig. 8(b)] were also scanned
for finer tuning of the coupling. Finally, the loop geometry
was further tuned so that the couplings and the correspond-
ing power are insensitive to the deviation from the ideal
configuration. The tip is anchored on a rotatable flange so
that some coupling adjustment is available via rotating the
loop before the final installation.
Now we remark on some technical aspects of the

coupling simulations. The rf coupling β for each harmonic
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mode was obtained, via the evaluation of quality factorsQ0

and Qe, in 3D simulations using CST-MWS. Although there
exists in CST-MWS a simple way to evaluate Qe based on a
waveguide port set up at the end of the coupler port, this
involves a rather cumbersome boundary matching to
properly account for incoming and outgoing rf fields
through the coupler port [14,15]. Instead, we use a different
method developed in [16] that utilizes a perfect absorber of

the rf fields. A perfectly absorbing load placed at the end of
the coupler port would make electromagnetic fields a
purely outgoing traveling wave through the coupler port
(without reflecting back into the cavity). Then the heat loss
at the load by the outgoing waves would account Qe
accurately.
First, the specification of an artificial, perfect absorberwas

determined by the optimization simulation in frequency
domain solver targeting the lowest reflection for all the
harmonic modes. An artificial absorber shown in Fig. 9(a) is
an elongated (2 m long) tapered cone for minimum reflec-
tion. The optimized material properties are also shown in
Fig. 9(a). In Fig. 9(b), S11 parameters obtained in the
simulations are shown to be small (< − 25 dBm) for all
the harmonic modes (ranging from 86 to 800 MHz).
With the absorber integrated into the cavity model

through the coupler port, the rf power coupling evalu-
ation was done in eigensolver of CST-MWS: the coupling
constant β ¼ Q0=Qe for each mode and the correspond-
ing total source power Pg according to (11). With a lossy
material present in the simulation, the conventional
quality factor Qpert computed in CST accounts for both
the surface loss (of the cavity) and the volume loss (of
the absorber), corresponding to the loaded quality factor
QL. On the other hand, Qlossy accounting for the volume
loss of the absorber only corresponds to Qe, from which
Q0 can be determined as Q0 ¼ QeQL=ðQe −QLÞ. This
evaluation can be compared with the direct evaluation of
the Qe, based on the loaded frequency with a waveguide
port setup, which is listed in Table III. Except for the
fundamental frequency mode, the evaluations for all the
higher modes agree very closely. In order to account for
some heating (especially in high power operation) leading
to decrease in Q0 in the real cavity, the coupling was
slightly over-coupled and the conductivity of the copper
was slightly lowered to σc ¼ 4.8 × 107 S=m< σ0 ¼
5.8 × 107 S=m (σ0 is ideal conductivity of copper at
room temperature).
The parameter scanning results are summarized in

Fig. 10. All the relevant geometrical parameters of the
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FIG. 9. The optimization of an absorber. (a) The geometry of
the heat load. The lighter blue is the heat absorber. The red plane
is a waveguide through which input power leaks in. (b) The
optimized S11 parameter of the heat load.

TABLE III. The figures of merit [including QeðflÞ] for harmonic modes as evaluated through the waveguide port
method with a loaded frequency. Qe is the external quality factor with an absorber. In evaluation, realistic
conductivity for copper σ ¼ 4.8 × 107 was used. The bandwidth is computed as Δ�3dB;n ¼ �fn=2QL;n.

Modes f Q0 R⊥ Qe Qe (fl) βop Δ�3dB Pd Pg R⊥=Q0 G
Units MHz ×104 MΩ ×104 ×104 kHz kW kW Ω Ω

1 86.6 0.57 1.38 0.78 0.85 0.74 �13.1 0.472 0.47 241 15
2 259.8 0.98 0.71 0.83 0.84 1.21 �28.9 0.832 0.88 76 43
3 433 1.28 0.53 1.07 1.09 1.22 �37.1 1.189 1.20 41 77
4 606.2 1.51 0.37 1.29 1.29 1.20 �43.6 1.683 1.69 25 107
5 779.4 1.65 0.24 1.35 1.33 1.25 �52.5 2.656 2.68 14 133
Total 6.9 7.0
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loop, Rcp, Bcp, Hcp, d, wloop, hloop, rloop, lgr, and θ
in Fig. 8(b) were scanned in the order of sensitivity to
β’s. The most sensitive parameters, the coupler port center
location (along the outer conductor of the coaxial line) Hcp

and the insertion depth d, were scanned simultaneously to
obtain convergent couplings (of all the harmonic modes)
and the remaining parameters were adjusted to refine the
coupling (followed by a few iterations). In Fig. 10(a), the
optimal vertical location at Hcp ¼ 803 mm was chosen
near the “crossing” region of the β profiles and the
convergent β’s were shifted together by adjusting the depth
to d ¼ 1 mm. Subsequently, loop width wl, loop height hl,
and wire thickness rl were fine-tuned to improve on
convergence. The power stability against the field map
degradation from fabrication error or misalignment is
shown in Fig. 10(b), where one can see the d ¼ 1 mm
case gives the minimum power and also the most stable
over a wide range of vertical location at Hcp ¼ 803 mm.
The power deviations against the insertion errors remain
relatively small (7.3–7.7 kW) between d ¼ −2 and

d ¼ 4 mm. Finally, to compensate for the fabrication or
installation errors and heating, the coupling can be adjusted
to some extent by rotating the loop. The behavior of the
coupling over rotation angle is shown in Fig. 11(a)
together with very little frequency change 11(b). In
Fig. 11(a), the first three modes are magnetically coupled
(with the minimum at 90°), while the two higher modes
couple electromagnetically. Also, the coupling of the fifth
mode is asymmetrical because the topmost tuner port is
rotated (by 90°) with respect to the rest of the tuner ports
for fabrication issues and the fifth mode is the most
sensitive to this change. Due to the position of the loop
being far away from the beam axis, there are only
negligible changes in the kick field profile with the
insertion of the loop (and rotation).
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IV. THE RF PERFORMANCE OF THE CAVITY

A. Field profiles

Generic 3D fields of a harmonic kicker cavity are
shown in Fig. 12 in a coordinate system as set by the
CST-MWS where ẑ defines beam axis and ŷ is a kick
direction. In Fig. 12(a), the electric field of the fifth mode
at the phase of 0° is shown to develop the vertically
upward kick between the tip of the inner conductor and
the bottom. The field is not uniform across the gap and
increases from the bottom to the tip. In Fig. 12(b), the
magnetic field of the fifth mode is shown from the top
view. The field is directed clockwise at the phase of 90°
making its contribution to the Lorentz force opposite to
the electric fields. For a nontrivial kick with an electron
(at the center of the cavity) on-crest of the rf phase, the
temporal profile of the electromagnetic fields are EðtÞ ¼
cos ωt and BðtÞ ¼ sin ωt, respectively, because the phase
of B field advances that of E field by π=2. Notice that,
unlike strip line kicker, the kick in a resonant cavity the
particle experiences is the same whether the particle is

injected from the left or right beam port (Both v⃗ and B⃗
change their signs).
The field profiles on the beam axis, whose only nontrivial

components are Ey, Bx, and Ez, are shown in Fig. 13. In
Fig. 13(a), the longitudinal profile of each electric mode as
seen by a passing electron, i.e., multiplied by temporal
profile, is approximately the Gaussian shape. In Fig. 13(b),
the magnetic mode resembles the derivative of the Gaussian
multiplied by the temporal profile. The longitudinal profile of
the transverse Lorentz force, as a sum of the corresponding
five harmonic modes is shown in Fig. 14(a), with small
deformations in Gaussian shape mainly caused by the
magnetic fourth and fifth modes. Notice with a sine function
beingoddwith respect to the origin, the contribution from the
antisymmetricBx field [see Fig. 12(b)] is nontrivial and in the
opposite direction to the Ey fields. In Fig. 14(b), total fields
for Ey, Bx, and Ez fields are shown. In particular, the profile
of a total axial field Ez is antisymmetric with respect to the
center [see Fig. 12(a)], and its integration is zero, preserving
the energy spread of the electron bunch.

FIG. 12. The 3D field profiles of the QWR. (a) The electric field
of fifth mode at 0° phase. The electron is deflected downward.
(b) The magnetic fields of fifth mode as viewed from top at phase
of 90°. At phase −90°, the electron enters the cavity from the left
and the B fields with the counterclockwise orientation deflect the
electron upward.
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The kick voltage is defined as a line integration of the
vertical component of the Lorentz force F⃗L along the
beam-axis:

Vkick ¼
Z

l=2

−l=2
dzFL;y ¼

Z
l=2

−l=2
dz e½E⃗þ v⃗ × B⃗�y

¼ e
X5
n¼1

Z
l=2

−l=2
dz½Ey;nðzÞ cos ðωnz=cÞ

þ cBx;nðzÞ sin ðωnz=cÞ�; ð12Þ

where l is an effective length of the cavity and Ey;n; Bx;n are
longitudinal profile of the fields on beam axis.
The power Pg from the generator to keep a constant kick

voltage without beam current is given by [14]

Pg ¼
X5
n¼1

V2⊥;n

R⊥;n

ð1þ βnÞ2
4βn

�
1þ 4Q2

0;n

ð1þ βnÞ2
�
δfn
fn

�
2
�
; ð13Þ

where δfn is arbitrary frequency deviation and Q0;n is
unloaded quality factor for nth mode, respectively. In order
to keep Pg reasonably close to the nominal value P0

g;tot in
(11), i.e., Pg ∼ 1.1P0

g;tot, the frequency deviations must be
controlled as δfn=fn ∼ 3 × 10−1=Q0;n ∼ 3 × 10−5 for all
n’s, where δf here refers to the largest allowed frequency
deviation defining the resolution of frequency tuning. The
figures of merit for the kicker cavity is listed in Table III.

B. Multipole expansion of the field

The effect of the bunch center offset from the beam axis
can be described in terms of the multipoles. In Fig. 15(a),
the horizontal profile of the kick EyðxÞ at z ¼ 0 can be
considered as constant near x ¼ 0 over a few beam sizes.
The vertical profile of the kick EyðyÞ has some gradient
near y ¼ 0, indicating the presence of multipole fields. In
Fig. 15(b), the rf power with different vertical offsets from
the beam axis is shown. The electron on the negative
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longitudinal profile of total fields on axis: Ey, cBx, Ez fields.
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(positive) offset has less (more) transverse kick according
to Fig. 15(a), one has lower(higher) shunt impedance and
higher (lower) power loss for the nominal kick voltage. The
profile is approximately linear over small offsets with the
power increase rate of −220 W=mm.
Now we discuss the effects of multipole fields on the

kick following [3]. The kick on the bunch can be succinctly
described via the Panofsky-Wenzel theorem [17]: the
transverse momentum change in kick direction at the exit
is expressed in terms of the longitudinal field component
Ez. For a generic harmonic mode, we have

Δp⊥ ¼ −
e
ω

Z
l=2

−l=2
dz∇⊥Ezðr⃗⊥; zÞ sin

�
ω
�z
c
þ τ

��
: ð14Þ

Here ⊥ refers to a kick direction, Δp⊥ ¼ p⊥ − p⊥0, where
p⊥ is the momentum at the exit and p⊥0 ¼ 0 is at the
entrance, l ¼ cβ=f is the effective length of the cavity, r⃗⊥ is
a transverse offset vector, and τ is the arrival time of an
electron (with respect to the reference electron). Now the
integrand in (14) is expanded in terms of multipole fields of
Ez around the beam axis (analogous to static magnetic
fields, see appendix of [5] for more details). First the
complexification Ẽz of Ez such that Ez ¼ RefẼzg is
expanded at each z over transverse plane in polar coor-
dinates fr;ϕg into

fEzðr⃗⊥; zÞ ¼
X∞
n¼0

CnðzÞrneinϕ; ð15Þ

where CnðzÞ ¼
1

πrn

Z
2π

0

dϕEzðr⃗⊥; zÞe−inϕ: ð16Þ

Here ϕ is the azimuthal angle of an offset electron with
respect to the kick direction. Then by inserting the real part
of (15) into (14) and considering only the offset that is
parallel to a kick direction, i.e., ϕ ¼ 0, the kick in a radial
direction is given as

pr ¼ −
e
ω

X∞
n¼1

nRefcnrn−1g; ð17Þ

where complex multipole expansion coefficients cn’s are
defined as

cn ¼
Z

l=2

−l=2
dz

1

πrn

	Z
2π

0

Ezðr;ϕ; zÞe−inϕdϕ



× sin

�
ω
�z
c
þ τ

��
: ð18Þ

The complex coefficients cn’s are written as cn ¼ bn − ian,
where bn, an’s are identified as normal and skew multipole
coefficients, respectively. The coefficients in (18) for the
QWR are numerically evaluated by inserting the 3D field
maps of the Ez, which is obtained from the rf field
simulation by the CST-MWS (the details of the accurate
evaluation of the 3D field maps in the QWR are found in
the appendix of [18]). Finally, if the kick is in y direction,
the momentum change (14) can be rewritten as

py ¼
e
c
Vy; ð19Þ

where Vy ¼
X5
n;m¼1

c
ωm

Refcnmnyn−1g: ð20Þ

Here we included all the harmonic modes (indexed
with m) for completeness and cnm refers to the mth order
coefficient of the nth mode. The resulting multipole
coefficients up to decapole are listed in Table IV. In
Table IV, skew multipoles are vanishingly small (compared
to normal multipoles) because of horizontal symmetry
(with respect to yz-plane) of the fields with Ezð−ϕÞ ¼
EzðϕÞ, while there is no apparent vanishing of even normal
multipoles because of lack of vertical anti-symmetry
(with respect to xz-plane) in the QWR structure, with

TABLE IV. The multipole field coefficients of a vertical harmonic kick as evaluated based on the circle with
10 mm radius in hexahedral meshing. The coefficients are normalized to kick voltage of 25 kV for each mode.

Multipoles Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

f (MHz) 86.6 259.8 433 606.2 779.4

b1 (V) 4.49 × 104 1.37 × 105 2.27 × 105 3.17 × 105 4.05 × 105

b2 (V/m) −4.16 × 105 −1.25×6 −2.05 × 106 −2.79 × 106 −3.46 × 106

b3 (V=m2) 5.33 × 106 1.62 × 107 2.68 × 107 3.75 × 107 4.88 × 107

b4 (V=m3) −3.66 × 107 −1.11 × 108 −1.82 × 108 −2.53 × 108 −3.28 × 108

b5 (V=m4) 2.08 × 108 6.31 × 108 1.05 × 109 1.48 × 109 2.03 × 109

a1 (V) −2.19 3.26 6.76 × 10 4.07 × 102 2.57 × 103

a2 (V/m) 8.09 × 10 4.45 × 10 −1.18 × 103 −7.86 × 103 −4.99 × 104

a3 (V=m2) −4.48 × 103 −1.10 × 104 −2.71 × 103 6.86 × 104 5.18 × 105

a4 (V=m3) −3.85 × 104 7.80 × 104 −1.03 × 105 −1.28 × 106 −8.80 × 106

a5 (V=m4) 6.51 × 106 −2.01 × 107 3.54 × 107 6.06 × 107 1.53 × 108
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Ezðπ − ϕÞ ≠ EzðϕÞ. Also, notice that the dipole coefficient
for each mode agrees with the kick voltage on the beam-
axis (upon multiplying c=ωm’s according to the Panofsky-
Wenzel theorem).
Further details on the beam dynamics in the presence of

the multipoles are discussed in [3].

C. Multipacting study

The multipacting of the kicker cavity could absorb rf
power by forming a current, generate excessive heat
leading to a lower (unloaded) quality factor, and damage
the cavity surface. In particular, these potential problems
could become steady and critical to the operation of the
cavity, if the multipacting takes place near the operation
voltage. The geometry of the QWR has local resonance
structures for possible multipacting: between the inner
conductor and the outer conductor (two-point multipacting)
and the top plate (two-point multipacting). The resonance
in the harmonic kicker cavity is based on the period of the
fundamental mode (as the longest period at T1 ¼ 11.5 ns)

even in the presence of all five harmonic modes (whose
periods are all subharmonics of T1). In addition to
resonance, multipacting is limited to the electron within
the impact energy bandwidth whose corresponding true
second emission yield ðSEYÞ > 1, implying growth of the
numbers of secondary electrons. The true second emission
yield (SEY) curve as a function of the impact energy of
incident electron for pure copper is shown in Fig. 16, where
the impact energy bandwidth with (true) SEY> 1 is
between 50 eV and 1.8 keV.
The multipacting simulation study was done using the

CST-PS (PIC solver). The electromagnetic field from the EM
simulation (as a superposition of the five modes as per the
prescription in Table I) was imported to the multipacting
simulation. To save simulation time and computer memory,
the electron sources were localized in two separate simu-
lation runs. The investigation of two-point multipacting at
the top plate, where the Lorentz force is dominated by
magnetic fields, shows no sign of multipacting over the
entire range of the voltage. The investigation of two-point
multipacting between the inner and the outer conductor [see
Fig. 17(a)] is summarized in Fig. 17. In Fig. 17(b), the
overall exponential increase in (normalized) particle num-
ber indicates the two-point multipacting with a period of
6 ns (half period of fundamental mode). The multipacting
barrier is relatively narrowly defined over 2.5–25 kV, well
below the nominal kick voltage of 125 kV. Various well-
known techniques to overcome multipacting are available
in low voltage regions: rf processing, and jump over of rf
voltage to the operation voltage can be applied.
Two-point multipacting across a small gap, where the

electric fields are approximately constant across the gap,
can be described and evaluated very accurately via ana-
lytical formula. For example, this will be applied to the gap
between the tuner port and the plungers and between the
bottom cap and the outer conductor. The solution to the
equation of motion for an electron subject to the electric
field as a sum of the harmonic modes is given as

FIG. 17. The multipacting between the inner and the outer conductor. (a) The electron source at the inner conductor. (b) The number of
the electrons as a function of time. The colored curves correspond to the multipacting. (c) The trajectories of the multipacting electrons.
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xðtÞ ¼
X5
n¼1

	
eEn

ω2
nm

fsin ðωntþφnÞ− sinφng−
eEn

ωnm
t cosφn



;

ð21Þ

where n is a harmonic number, m is electron mass, En, ωn,
φn are the peak electric field, harmonic angular frequency,
and phase of the nth mode, respectively. The resonance
condition is given as that the particle travels the gap dis-
tance d in time τ ¼ π=ω1, i.e., xð1=2f1Þ ¼ −d. Setting the
rf phases φn ¼ 0 for all n in (21), the resonance condition
is re-written with the effective voltage across the gap
defined as

Veff ¼
X5
n¼1

End
ð2n − 1Þ ¼

4πmd2f21
e

: ð22Þ

The second equality is by using the resonance condition.
Furthermore, the impact velocity of an incident electron can
be computed by differentiating (21) to be ẋð1=2f1Þ ¼
−eVeff=ðmπf1dÞ. Then nonrelativistic kinetic energy K is
given as

K ¼ e2V2
eff

2π2mf21d
2
¼ 8mf21d

2; ð23Þ

which needs to be between 50 eV and 1.8 keV in copper
SEY (according to Fig. 16) for SEY> 1. With d ¼ 1 mm,
K ¼ 0.34 eV only.

V. MECHANICAL DESIGN FOR FABRICATION

For a high power operation of the cavity up to 7.1 kW,
the mechanical design of the cavity is focused on

implementing a water cooling scheme that limits thermal
loads to the cavity system and controlling the frequency
shifts due to various deformations of the cavity geometry
during the installation and operation. The frequency devia-
tions before the installation to the beamline can be handled
via a target frequency table, while the deviations left over
after the final welding or during the operation are to be
compensated by the tuners with the aforementioned tuning
range. As a part of the engineering design, the minor
modification in cavity geometry includes: the bottom cap
was introduced to give an additional frequency control
other than the stub tuners, open access for chemical
polishing, and also for easier handling during the fabrica-
tion. The top tuner port was rotated by 90° in order to avoid
the interference of the step motor station mounted on the
tuner ports. Due to the axial symmetry of the fields around
the inner conductor, the tuning range with this rotation
remained the same.

A. Thermo-structural analysis

A thermo-mechanical analysis for a cooling system
design for a high-power operation was done with a series
of coupled multiphysics simulations using the CST-MPS (for
a more detailed analysis using the ANSYS [19], see [20]. In
the analysis, the total rf power loss on the (inner) surface of
4 mm thick cavity wall [see Fig. 18(a)] at full power was
imported into the thermal simulation as the thermal loads
and the temperature distribution was computed. The power
computed in the rf simulation is based on a constant surface
resistance (at the fixed temperature) of the pure copper, not
taking into account positive feedback where the temper-
ature, resistance, and power are all dynamic variables
depending on one another. The analysis with the temper-
ature-dependent resistance would require a number of

FIG. 18. The thermal analysis at 7.5 kW. (a) The rf power distribution. (b) The temperature of the cooling water in equilibrium.
(c) The temperature distribution. (d) The deformation of the cavity.
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iterations in the simulation runs until the saturation in the
temperature is observed. Here we limit the validity of the
current analysis to a constant temperature close enough to
the saturated temperature. After finding out the cavity
temperature is too high over ∼100 °C without a cooling
water system but only with the air convection around the
outer conductor, which would lead to unstable temperature
fluctuations during operation, cooling water channels were
implemented inside the inner conductor–the inner conductor
was the hottest mass with the strong magnetic field. A total
cooling water flow of 1.25 l=min at an inlet temperature of
30 °C runs down a single channel before branches at the
bottom into three channels sized to promote a turbulent flow
while maintaining a transitional flow at supply pipes. To
reduce the temperature further down, additional water
channels were also implemented over the top plate, around

the outer conductor, and the back end of the stub tuners as
shown in Fig. 18(b). In particular, a cooling water channel
was introduced inside the inner conductor of the coupler.
The resulting temperature profile at full power is shown in
Fig. 18(c). Except for the localized hot mass of the coupler
loop at 80 °C, the bulk of the cavity body remains at around
60–70 °C. The hottest region of the body at 70 °C is near the
bottom where the cooling water does not reach. The temper-
ature of the inner conductor of the coupler is controlled at
30 °C and would be in direct thermal contact with a ceramic
window, which was demonstrated to withstand the temper-
ature over 100 °C at 14 kW power [21].
For structural stability, stress and modal analysis were

done. The stress analysis for thermal expansion and
evacuation are shown in Fig. 19. Given that the yield
strength of the copper and the stainless steel (304) is 33.3
and 205 MPa, respectively (the ultimate strength of the
copper is 210 MPa), the von Mises stresses on the cavity in
Fig. 19 are mostly below the yield strength and the ones
that exceed the yield strength are in either stainless steel
flanges (thermal load stress) or localized around the beam
pipe joints (evacuation stress), where the fixed boundary
constraints affect the most.
The result of the modal analysis to obtain vibrational

resonant frequencies is listed in Table V. All the resonant
modes are found between 15–64 Hz, which overlap with
the external microphonics from the vacuum pumps.
However, the microphonics transfer function for a typical
QWR suggests that the resulting rf frequency shifts are a
few tens of Hz [22,23]. In particular, the top plate was
reinforced by using a thicker wall, which reduced the
vibration amplitude of the inner conductor (pendulum
modes) found at ∼36–39 Hz in Table V.

B. The heating on the stubs

An engineering design of the stub tuners has a 1 mm gap
between the stubs and tuner port [see Fig. 20(a)] as a

FIG. 19. The mechanical stress analysis. (a) The Von mises
stress by thermal load at 7.5 kW. (b) The Von mises stress by
evacuation.

TABLE V. The modal analysis of the kicker cavity: mechanical vibrational eigenfrequencies.

Mode f (Hz) Behavior

1 17.6 sway of the entire assembly toward tuners
2 20.8 twist of assembly about the axis, induced by tuners
3 26.4 counter twist of tuners about axis
4 32.5 counter twist of tuners about axis
5 35.1 twist of tuners, the pendulum of inner conductor along beamline
6 36.2 pendulum of inner conductor transverse to beamline
7 36.8 counter twist of tuners about axis
8 38.9 twist of top tuner, the pendulum of inner conductor along beam line
9 43.7 twist of top tuner about axis
10 52.4 tuners pitching
11 53.3 tuners pitching
12 53.9 tuners pitching
13 60.9 tuners pitching
14 63.5 tuners pitching
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clearance for moderate misalignment error, through which
the resonant rf modes could leak.
If the rf coupling of any mode at the stub allows the

leaked fields to form TEM modes, then the mode could
propagate through the back of the port (without cutoff) to
form standing waves, leading to significant rf heat loss.
The condition for standing wave is roughly given as

leff ¼
λn
4
ð2k − 1Þ ¼ λ1

4ð2n − 1Þ ð2k − 1Þ;

for some k∈Z and n ¼ 1;…; 5; ð24Þ

where leff is an effective length associated with the stub
configuration and λn is wavelength of nth resonant mode.
The integers 2k − 1’s correspond to odd multiples of the

wavelength (25) that can form standing waves. The shortest
leff that allows the standingwave for the ninth harmonic (with
the shortest wavelength) with k ¼ 1 is leff ¼ 96.2 mm,
which should be considered to be the upper limit on the
length of the tuner ports. If we consider higher order modes
excited by a high beam current, 952.6 MHz mode in
particular, we would have 78.7 mm for leff.
We investigated the heating in the gaps of tuner ports,

determining the appropriate port lengths and the rel-
evance of the rf finger [shown in Fig. 20(b)], which
blocks the rf modes from leaking through the gaps in the
ports. The focus was on the second and the third ports
(from the bottom), where the magnetic field is strong, as
illustrated in Fig. 20(c). In Fig. 21(a), the port length is
varied with the stub in nominal position, i.e., 15 mm into
the cavity, while the total power on each stub (by a sum
of five harmonic modes) was tracked. The plots show that
the power loss starts to pick up drastically (to ∼10 kW)
around 95 mm. The power profiles are dominated by the
contribution from the fifth mode, as demonstrated by the
fifth mode magnetic energy density around the ring at the
back of each port also picking up near 95 mm in
Fig. 21(b). This implies the standing wave formation
for the ninth harmonic. Both plots show the curves head
down past 95 mm and pick up again around 120 mm,
which corresponds to the standing wave condition (25)
with k ¼ 2. With many mechanical constraints imposed
on the tuner port, it is difficult to obtain port length
shorter than 90 mm, and the rf finger at 45 mm [see
Fig. 20(a)] is introduced for the minimum power loss by
blocking rf fields, as suggested in [24]. Furthermore,
when the stubs are in motion for tuning, the effective
length leff in (25) changes (because the field configura-
tion near the opening of the gap changes accordingly),
and it may be impossible to avoid standing wave
formation for all five modes in all five ports under
general circumstances. This was checked by a series of
simulations with stubs insertion scanned as shown in

1 mm gap 

RF finger

FIG. 20. The designs and the fields of the tuners. (a) The
plunger with a gap. (b) The rf finger wrapped around the stub.
(c) The magnetic field distribution.
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energy density of the fifth mode over ring area on the back flange.
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Fig. 22. The simulation of the plunger travel within the
tuning range shows no development of the TEM modes,
but instead gradual power increase as the stubs near the
inner conductor, where the magnetic fields are stronger.
Note that even after the installation of the fingers, the
modest amount of rf leakage still could exist (up to
∼45 mm, the location of the finger) as TM mode in the
gap, but the mode exponentially decays. Finally, the two-
point multipacting in the gap is unlikely, according to the
incident electron energy that satisfies the resonance

condition as calculated by (23): 0.34–27.5 eV, far below
multipacting range in Fig. 16.

C. Target frequency table

From trimming in the bench test to beamline installa-
tion, the frequencies of the cavity can be controlled by
achieving the target frequency at each step listed in
Table VI. The target frequencies were set for the actual
beam test at the UITF. During the evacuation, there exist
two different mechanisms for the frequency shifts. One is
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FIG. 22. The total power on each stub vs insertion. (a) The power on the stubs vs insertion. The contributions from all the modes are
summed up on each stub. (b) The integrated magnetic density of the total modes over ring area on the back flange.

TABLE VI. The target frequency table for the beam test benchmarked with the measurements. The numbers in the
parenthesis are simulated target values.

Procedures 86.6 MHz 259.8 MHz 433 MHz 606.2 MHz 779.4 MHz

Baseline trimming
δf (kHz)/mm 100 286 537 682 924

(101) (304) (515) (699) (878)

Final joint
f (MHz) 86.605 259.596 432.982 606.157 779.005
Assembly for evacuation
f (MHz) 86.5925 259.6300 433.0046 606.3228 779.4237

(86.585) (259.760) (432.932) (606.104) (779.277)

Evacuation
δf (kHz) 18.1 53.1 33.5 5.3 56.3
Dielectric constant (25.547) (76.641) (127.735) (178.829) (229.923)
Deformation (−0.57) (−1.00) (−2.45) (−3.26) (−5.86)
Sum (24.977) (75.641) (125.285) (175.569) (224.063)
f (MHz) 86.6106 259.6831 433.0381 606.3281 779.4800

(86.610) (259.835) (433.057) (606.279) (779.501)

Thermal heating
δf (kHz) −8.725 −18.26 −69.35 −54.93 −67.97

(−6.6) (−25.2) (−40.6) (−56.3) (−71.5)
f (MHz) 86.6019 259.6648 432.9688 606.2732 779.4120

(86.603) (259.810) (433.017) (606.223) (779.430)
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via the change in dielectric constant from air to vacuum.
The other is mechanical deformation. For the dielectric
constant change, the frequency change is given as

δfn
fn

¼ −
1

2

δϵ

ϵ
: ð25Þ

δϵ ¼ ϵvac − ϵair ¼ 1–1.00059 ¼ −0.00059 (at STM,
0.9 MHz), δfn=fn ¼ 2.95 × 10−4. The frequency shift
due to mechanical deformation is obtained by coupled
simulations using CST-MPS and CST-MWS. With the fixed
boundary condition on the beam and the coupler
ports, the pressure difference of 1 bar was applied to
the shell deformation as shown in Fig. 23(a). The
maximum deformation is at the tuner ports, as shown
in Fig. 23(c).
The frequency shift due to “free” (without any

mechanical constraint) thermal expansion by rf heating
would be analytically estimated as

δfn
fn

¼ −
δl
l
¼ −κΔT; ð26Þ

where κ ¼ 16 × 10−6=K is the thermal expansion coef-
ficient for the oxygen-free copper (OFC) and ΔT is the
temperature difference. The expected cavity body tem-
perature difference between evacuation at room temper-
ature and the onset of a water cooling system (whose
temperature is fixed by a chiller at 30 °C) during the
actual beam test was 6 K—the test was done with low
power at around 150 W and the body temperature was
the same as the water temperature. Notice that the

temperature difference is much smaller than our default
full power operation scenario with 7.1 kW power, where
the difference is ΔT ¼ 45 K. The expected frequency
shift for the test is computed to be δfn=fn ¼ 9.6 × 10−5.
This estimate is slightly different from the simulated
frequency shift (see Table VI), which is based on the
expansion with the fixed boundary condition on the
beam pipe applied in the simulation. Figure 18(d) shows
the thermal expansion with fixed beam and coupler
ports. The target frequency at each step, based on the
estimation by simulations, is tabulated in Table VI.

VI. PROTOTYPE FABRICATION

A prototype cavity for high vacuum, high power
operation was fabricated with mostly 4 mm thick
OFC. Two subassembly groups were fabricated in paral-
lel, clamped up for an rf bench test, and finally joined
leak-tight by the TIG braze. The cavity surface was
supposed to be chemically polished after the final joining
by the electron beam welding (EBW), but the TIG braze
was done instead and the surface was polished only
before the clamp-up.

A. Fabrication of subassemblies

The fabrication of two subassembly groups, the outer
tube, and the inner conductor group, went parallel with
separate controls on the part dimensions and vacuum
leakage. The outer tube group started with a machined
4 mm thick copper tube, and various ports were brazed to
the tube in a high vacuum furnace in multiple stages. The
brazing of the ports were grouped into four batches using

FIG. 23. The evacuation multiphysics simulations. (a) The atmospheric pressure (1 bar) on the cavity wall. (b) The fixed boundary
conditions on the beam and coupler ports. (c) The displacement. Due to the fixed coupler port and the pressure inside the inner
conductor, the dominant displacement is the one toward the stubs. The more relevant displacement is shrinkage.
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the filler alloys with different (in a decreasing order)
melting temperatures. The braze work softened the copper
and deformed the tube and ports with some dimensional
errors. The inner conductor group started with a high-
accuracy computer numerical control (CNC) machining of
tapering slopes on a solid cylinder, a thickened top plate to
prevent the inner conductor from oscillating, water chan-
nels, and inner conductor cap, which was separated from
the inner conductor for an easy trimming during the clamp-
up test. A top plate and a cooling channel were electron
beam welded to the tapered cylinder—the inner conductor
cap was welded to the inner conductor before a final
joining. Throughout the procedure, dimensional checks
were done with a coordinate measuring machine (CMM)/
optical scanner (FARO). Special attention was focused on
the dimensional control of the high frequency-sensitivity
regions of the cavity where the electromagnetic fields are
strong, i.e., near the top plate and the gap. Moreover, the
inner conductor was centered to preserve the multipole
structure of the fields. The rf finger made of Cu-Ni-Sn alloy
[24], coated with silver (protection against galling), was
mounted onto each tuner flange to be inserted into
the gap (between the tuner port and the plunger) to
stop the rf leakage. Subsequently, the surfaces of the
subassemblies were polished by the Copper-brite. After
leak checks, the completed subassemblies are shown
“clamped” up and caged in Fig. 24 set for the rf bench test.

B. The clamp-up test and final welding

The nominal rf frequencies of the kicker cavity at
its operation are controlled step by step during the

installation because both the fabrication and installation
procedures would inevitably involve frequency changes.
Table VI lists “the target frequency” that needs to be
achieved after each step. In particular, the frequency
deviations due to fabrication errors can be assessed and
compensated (to some extent) via a clamp-up test. In the
test, the subassemblies were clamped up (the setup for
the test is shown in Fig. 24) before the final joining and
the designated region of the cavity—the outer tube, the
inner conductor cap, and the “top hat”-flange had been
prepared with extra 2–4 mm margin in length—was
trimmed away while the frequency changes (increases)
were tracked as the targets are gradually approached
from below.
The measurements of frequencies are tracked through

various trimmings/final joining steps and summarized
in Fig. 25. All the measurements were done with an
extra 2 mm thickness on the top hat-flange surface
(reserved for final fine-tuning after a final joining).
Once the gap distance is to the nominal design value
(at step 2 in Fig. 25), one obtains a linear fractional
frequency response rate against a “baseline” trimming,
i.e., a pair of cuts on both the outer and the inner
conductor cap by the same amount (1 mm). The baseline
trimming keeps the gap distance constant. The rate is
used to determine the final trimming length to reach the
target frequency. The prediction of the response rate
based on the simulation is δf=f ∼ 1.2 × 10−3/mm for all
five modes. This implies that, unlike a single-frequency
cavity, the trimming of a harmonic kicker cavity can shift
all the frequencies by the same fraction, but cannot
reduce the spread among the frequency fractions of the
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FIG. 25. The tracking of fractional frequencies of harmonic
modes throughout various trimmings/final joint steps: (1) initial
assessment, (2) 1.5 mm cut on the outer, (3) 1 mm on the inner,
(4) 1 mm cut on the outer, (5) final cut on the inner (1 mm) and
the outer (1.2 mm), (6) after EBW on the inner cap, (7) S-bond,
(8) TIG-braze, (9) 3 mm cut on the top hat flange.

FIG. 24. The kicker cavity placed in the cage for the bench test.
Its orientation is upside down for measurement convenience.
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modes, leaving the fine-tuning to stub tuners. The base-
line trimming (steps 3 and 4) measurement perfectly
agrees with the simulation prediction. The final cut was
determined taking into account the welding shrinkage
(∼0.1 mm) of the inner conductor cap and the extra
thickness of the top hat-flange so that the final fractional
frequency deviations (at step 9) are centered to 0 within
the expected tuning range.
In addition, the rf couplings and Q0 were also measured

and benchmarked against the simulated prediction. Before
the final joint, except for the first mode that has a very good
agreement with the simulated prediction, the other modes
have rather poorer agreements on both the rf couplings and
(unloaded) quality factors Q0 (lower than expected). We
believe this is due to poor rf contact inside an (improvised,
no vacuum-tight) mockup coupler and on the final joint as
well as lower copper conductivity of dirty rf surface.
An option for the final joint between the two sub-

assemblies went through a series of changes: the electron
beam welding (EBW), whose welding parameters for
consistent performance on the full-penetration were not
obtained, was replaced by a “S-bond” technique, low-
temperature brazing [25]. S-bond failed to make the
cavity leak-tight and was replaced by a TIG-braze, which
made the cavity leak-tight but without full penetration. In
Fig. 25, although events 7 and 8 were not supposed to
change the frequencies (without shrinkage), the measure-
ment shows there were some significant frequency
changes, which forced the top-hat flange trimming bigger

than the planned 2 mm. This changes the multipole
structure of the kick profile. After chemical polishing, the
TIG-braze, and the implementation of a vacuum-tight
input coupler, Q0 increased significantly and the rf
coupling improved to near nominal values (see
Table VII). After the TIG-braze, the top hat flange
surface was trimmed off (at step 9) to finalize the
frequency tuning, which put all the five modes between
−6.85 × 10−4 and þ1.95 × 10−4, which is within tuning
range even before tuning by a tuning system. After the
completion of the cavity fabrication, the cavity was
evacuated and tested to be leak-tight. Finally, the cavity
was installed onto the beamline and connected to a
cooling water whose temperature was fixed to
30°� 0.5 C. The measured frequency change through
these two steps are also listed in Table VI.

VII. THE RF TEST OF A CAVITY

A. The measurements of the tuning matrix

The tuning matrix elements for stub tuners were
measured with all the stubs at the nominal positions
(15 mm into the cavity volume). During the measure-
ments, the frequencies were measured before/after the
insertion of the stubs by dialing the rotating knobs.
The repeatability of the frequency response to the
insertion was checked with a caution given to reversing
the tuning knob rotation. The matrix elements ½T stub;0�ij
(i; j ¼ 1; 2;…; 5) in (27), obtained from the measure-
ments, correspond to the frequency change (in MHz) of
the ith mode against the jth plunger insertion by 1 mm.
In comparison with the simulated prediction (the num-
bers in parenthesis), the elements involving lower-order
modes are almost identical, while those involving
higher-order modes have some small discrepancies.
The discrepancies are mostly from the misalignment
of the stub insertion, which was complicated in the
presence of the rf finger.

T stub;0

¼

2
66666666666666666664

−0.018 −0.011 −0.003 0.008 0.010

ð−0.019Þ ð−0.012Þ ð−0.003Þ ð0.008Þ ð0.011Þ
0.007 0.026 −0.045 −0.030 0.020

ð0.005Þ ð0.025Þ ð−0.043Þ ð−0.034Þ ð0.021Þ
0.048 −0.112 0.038 −0.105 −0.007
ð0.047Þ ð−0.114Þ ð0.032Þ ð−0.116Þ ð0.003Þ
−0.060 0.038 −0.165 −0.086 −0.034
ð−0.068Þ ð0.035Þ ð−0.159Þ ð−0.094Þ ð−0.045Þ
−0.199 −0.090 0.085 0.030 −0.099
ð−0.226Þ ð−0.099Þ ð0.076Þ ð0.029Þ ð−0.121Þ

3
77777777777777777775

.

ð27Þ

TABLE VII. The rf coupling and (unloaded) quality factor mea-
surements. Here β was computed as β¼ð1∓S11;min=S11;maxÞ=
ð1�S11;min=S11;maxÞ where upper(lower) sign corresponds to the
over/under coupling. The values in the parenthesis refer to the
nominal design values.

Mode 1 3 5 7 9

f (MHz) 86.6098 259.7992 432.9878 606.2005 779.4521
(86.603) (259.810) (433.017) (606.223) (779.430)

QL 3659 5030 6729 6711 5613
(3293) (4494) (11432) (6957) (7425)

jS12j (dB) 41.4 36.3 36.4 37.4 38.8
Smin
11 (mU) 314.8 96.44 54.6 40.7 177.4

Smax
11 (mU) 978.4 998 983.9 957.9 922.7

Coupling under under over over over
(under) (over) (over) (over) (over)

β 0.51 0.82 0.88 1.09 1.49
(0.74) (1.21) (1.22) (1.20) (1.25)

Q0 5525 9154 11804 14026 13976
(5700) (9800) (12800) (15100) (16500)

Qext 10834 11164 13414 12868 9380
(7800) (8300) (10700) (12900) (13500)

Qfp (107) 6.9 3.9 5.1 7.6 10.1

βfp (10−4) 0.80 2.4 2.3 1.8 1.4
G (15) (43) (77) (107) (133)
σc (107 S=m) 4.64 4.65 4.02 4.11 3.40
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In a linear tuning regime, this close overall agreement
would lead to a (fractional) frequency tuning range of
5 × 10−4 (for all five modes), as predicted by the
simulation. The tracking of the actual frequency deviation
of the cavity as the tuning scheme was applied is shown
in Fig. 26. The initial deviation was big enough for a
linear tuning scheme to break down—after some iter-
ations with a tuning matrix T stub;0 in (27), the frequencies
were not improving at all with further iteration (tuning
steps 6–8 in Fig. 26). Taking into account nonlinear
frequency response, another tuning matrix T stub;1 in (28)
had to be evaluated at the stagnant point (tuning step 9 in
Fig. 26) before tuning to the nominal frequencies much
more effectively. The final tuned frequency deviations
were within �0.3 bandwidths, which was mostly limited
by the mechanical accuracy of dialing the tuning knobs
(up to 0.05 mm).

T stub;1

¼

2
6666664

−0.0124 −0.0166 −0.0052 0.0059 0.0124

0.0070 0.0290 −0.0580 −0.0160 0.0230

0.0390 −0.1580 0.0370 −0.0630 −0.0030
−0.360 0.0360 −0.2160 −0.0440 −0.0690
−0.1340 −0.1710 0.0870 0.0290 −0.1800

3
7777775
ð28Þ

B. The measurement of rf parameters

The rf parameters were measured after the final
joint to determine the rf coupling β’s and the quality
factors as well as the resonant frequencies. The frequency
spectrum (S12) for the five harmonic modes is shown in
Fig. 27 (also listed in Table VII), whose frequency

deviations from the nominals are all well within the
half-bandwidths.
The rf couplings and quality factors, as obtained from

S11 measurements (port 1 is the input power coupler),
are listed in Table VII. They are in good agreement with
the nominal values except for the ninth harmonic. To
understand the discrepancy in the ninth harmonic,
Assuming geometry factors G of the actual cavity—
they are not directly measurable—are close to the
simulated values, the conductivities σc of the copper
on the cavity surface can be derived from the meas-
urement-based Q0’s mode by mode as per (29) and were
listed in Table VII.

σc ¼
πfμ0
R2
s

; where Rs ¼
G
Q0

: ð29Þ

Here μ0 ¼ 4π × 10−7 N=A2 is vacuum permeability and
Rs is the surface resistance of the copper. Given that
all the simulated nominal figures of merit in Table VII
were based on the default value of σc ¼ 4.8 × 107 S=m,
the derived conductivities are to be compared to the
default value. The comparison implies there exists a
significant reduction in conductivity to varying degrees
depending on the frequencies of the modes. The
reduction is believed to result from surface contami-
nation during the S-bond and lack of chemical clean-
ing after TIG braze, which led to a rougher surface. It
is well known [26,27] that the surface roughness
reduces conductivity and the reduction is bigger with
higher frequency modes. On the other hand, the
discrepancy in Qext could be traced back to the
fabrication/installation errors of the (coupler) antenna
configuration, to which the ninth harmonic is most
sensitive. Nevertheless, the coupling β’s for the modes
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FIG. 26. The tuning of harmonic modes.
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FIG. 27. The frequency spectrum of jS21j from the vector
network analyzer (VNA) showing the peaks at the resonant
frequencies of a kicker cavity.

GUNN TAE PARK et al. PHYS. REV. ACCEL. BEAMS 26, 091002 (2023)

091002-22



are still close enough to critical coupling from a power
supply point of view.

VIII. CONCLUSION

The prototype of a harmonic kicker cavity as a
7.1 kW high-power device that deflects the electrons
in/out of the CCR of the JLEIC was designed and
fabricated. The cavity design was highly optimized for
power loss, harmonic frequency tuning, and near-critical
rf coupling. In particular, the rf coupling of all five
harmonic modes was achieved by a single-loop coupler.
As a high power device, the thermal load from rf
heating was evaluated and the water cooling scheme
that limited the overall temperature to around 70°C was
designed using coupled multiphysics simulations. To
compensate for the frequency deviations during the
installation and operation, a tuning system consisting
of five stubs that are inserted into the cavity was
designed to have the tuning range of δf=f ∼�5.5 ×
10−4 for all the modes. The stub tuners are equipped
with rf fingers that block the rf leakage, preventing
excessive heating. rf breakdown in the Kilpatrick limit
and multipacting were also investigated.
The cavity prototype was fabricated together with

the multi-harmonic rf source (HAWG/HWAC) and
controller, a tuning system, and a coupler set. Via a
clamp-up bench test and trimming, the five harmonic
frequencies are precisely tuned compensating the
fabrication errors and other rf measurements showed
the rf couplings and Q0’s of the cavity are close to the
nominal design values, making the cavity ready for the
beam test.
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APPENDIX A: PARAMETER FITTING OF
ON-AXIS FIELD PROFILES IN THE QWR

The explicit expression for An, σn, Bn, ρn’s in terms
of ξ, b are obtained from two-variable fitting of the field
profiles from the CST-MWS simulations and listed in
Table VIII. The field profiles were obtained by param-
eter scanning of b and ξ0, where ξ0 ¼ ξþ 0.0133b ¼
a=bþ 0.0133b (the equation of threshold). The An’s,
σn’s, Bn’s, ρn’s, and En’s were extracted from the

postprocessing after a series of the CST-MWS simulations.
The An’s and Bn’s are extracted as the peak values of
the E⊥ and B⊥, respectively. Then x value for e−1=2 of
the peak value would correspond to rms of the
Gausssian, i.e., σn and ρn. The En’s were directly
evaluated from the shunt voltage V⊥ divided by g.
How close the field profile E⊥;n is to the Gaussian mode
was checked by obtaining integration of the field over
the axis in the CST, which can be compared toffiffiffiffiffiffiffiffiffiffi
2πσ2

p
An. Their ratios range 0.85–1, with a larger

deviation tending to be with larger b. This implies
the power calculation based on the Gaussian model can
have errors up to 30%. Also An was compared with En
with little differences. Here the ratio An=En does not
depend on ξ, b, only n.
The extracted data were fitted with a nonlinear regression

equation χðξ; bÞ ¼ Aξ2 þ Bξþ Cb2 þDbþ E. In particu-
lar, the fringe field factor and transit time factor were fitted
with the coefficients in Table VIII.

APPENDIX B: TAPERING
AND TUNING MATRIX

The tapering and tuning matrix is obtained from the
CST simulations. Based on the Slater perturbation
theorem, the matrix elements are determined by a series
of perturbative parameter scanning of hj ’s, tapering
heights, and dj’s, stub insertion depths while tracking
the five harmonic modes. The tracking and fitting results
are shown in Fig. 28 for tapering and Fig. 29 for tuning.
The plots in Fig. 28, 29 are fitted to linear curves,
whose slopes would constitute tapering matrix T t in (9)
and tuner matrix T s in (10), respectively.

TABLE VIII. The fitting from the CST-MWS simulation. The
fitting equation ¼ Aξ2 þ Bξþ Cb2 þDbþ E.

Modes 86.6 MHz 259.8 MHz 433 MHz 606.2 MHz 779.4 MHz

Fn

A 0.1 −1.9 796.8 −119.7 8.5
B −0.1 −1.5 832.7 −125.2 8.5
C −0.6 −0.2 964.8 −146.9 8.5
D −0.5 −0.6 1171 −180.4 10.4
E 0.0 −2.5 1538 −241.2 14.8

Tn

A −0.51 1.55 13.3 −2.46 –0.06
B −0.13 0.38 1.15 −0.34 0.73
C 0.13 −0.3 1.17 1.44 0.97
D 0.31 −1.02 21.7 −5.06 1.99
E 0.76 −2.42 7.28 −3.42 2.95
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FIG. 28. The fitting for frequency tuning matrices of the tapering points. (a) The fitting for 86.6 MHz. (b) The fitting for 259.8 MHz.
(c) The fitting for 433 MHz. (d) The fitting for 606.2 MHz. (e) The fitting for 779.4 MHz.
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FIG. 29. The fitting for frequency tuning matrices of the stub insertion. (a) The fitting for 86.6 MHz. (b) The fitting for 259.8 MHz.
(c) The fitting for 433 MHz. (d) The fitting for 606.2 MHz. (e) The fitting for 779.4 MHz.
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APPENDIX C: LONG RANGE TUNING

The frequency response to stub motion through a full
travel distance of �15 mm is not linear as illustrated in
Fig. 6(b), for example. Accordingly, frequency tuning
based on a linear matrix (10) is not accurate away from
the proximity of the default insertion. To predict an
accurate tuning range over a full travel distance, the
frequency response to each stub motion (with the other
stubs held at the default position) is fitted to analytical
nonlinear curves over a full travel distance (see
Table IX):

fðxÞ ¼ A − BeCx; ðC1Þ

gðxÞ ¼ A0 cos ðB0xþ C0Þ þD0x2 þ E0: ðC2Þ

Here f, g are frequencies, x is displacement of each
stub, and A;B; C;A0;B0; C0;D0; E0 are fitting constants.
In “exceptional” cases, i.e., mode 2 with stub 1, mode 3
with stub 5, and mode 5 with stub 4, the curves are fitted
by g in (C2), while the rest of cases are fitted by f in
(C1). By the Slater cavity perturbation theorem, the
frequency change is the sum of those by each stub
motion. The frequency tuning is still based on an
iteration of linear approximation (10) because it is
difficult to solve a coupled system of nonlinear equa-
tions. The fitting by (C1), (C2) could make iteration
processes shorter by using the tuning matrix that is
displacement-dependent as

T ijðxÞ ¼

8>>><
>>>:

if ði; jÞ ¼ ð2; 1Þ; ð3; 5Þ; ð5; 4Þ
−A0

ij sin ðB0
ijxþ C0ijÞ þ 2D0

ijx;

otherwise

−BijCijeCijx:

ðC3Þ

The resulting tuning range is shown in Fig. 30(f) to be a
little more limited than based on a linear response model.
In Fig. 30(f), the stub travel distances “saturated” with
frequency deviations in the range of δf=f ∼ 5.5 × 10−4.
In Fig. 6(b), one can see the curves are flatter near the
cavity wall on the outer tube, reducing the frequency
sensitivity.

TABLE IX. The fitting from the CST-MWS simulation for global
frequency response.

Modes 86.6 MHz 259.8 MHz 433 MHz 606.2 MHz 779.4 MHz

The first
stub

A 86.84 431.87 606.80 781.99
B 0.24 −1.14 0.63 2.07
C 0.08 0.04 0.10 0.10
A0 0.045
B0 0.129
C0 −1.872
D0 0.000
E0 259.812

The second
stub

A 86.73 259.11 434.39 599.71 780.67
B 0.13 −0.69 1.39 −6.48 0.75
C 0.08 0.04 0.08 0.00 0.13

The third
stub

A 86.62 260.29 431.75 607.97 778.11
B 0.02 0.50 −1.26 1.80 −1.80
C 0.13 0.08 0.02 0.08 0.04

The fourth
stub

A 86.36 260.16 434.42 607.17
B −0.24 0.37 1.42 1.00
C 0.03 0.09 0.08 0.09
A0 0.257
B0 0.146
C0 −2.267
D0 −0.002
E0 780.079

The fifth
stub

A 86.36 259.16 606.57 781.04
B −0.24 −0.64 0.40 1.12
C 0.04 0.03 0.11 0.10
A0 −0.018
B0 0.279
C0 −4.900
D0 0.000
E0 433.011
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