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Dynamic aperture (DA) is an important nonlinear property of a storage ring lattice, which has a dominant
effect on beam injection efficiency and beam lifetime. Generally, minimizing both resonance driving terms
(RDTs) and amplitude dependent tune shifts is an essential condition for enlarging the DA. In this paper, we
study the correlation between the fluctuation of RDTs along the longitudinal position and the DA area with
double-bend and multibend achromat lattices. The fluctuation of one RDT is quantitatively represented by the
average RDT at the positions of nonlinear magnets. It is found that minimizing the RDT fluctuations is more
effective than minimizing the commonly-used one-turn RDTs in enlarging the DA, and thus can serve as a
very powerful indicator in the DA optimization. It is also found that minimizing low-order RDT fluctuations
can also reduce both higher-order one-turn RDTs and higher-order RDT fluctuations, which also indicates
that even higher-order RDTs can also be controlled due to the reduction of higher-order RDT fluctuations.
This could be the underlying physics behind the strong correlation between minimizing the RDT fluctuations
and enlarging the DA. And this also suggests that controlling lower-order RDT fluctuations in the DA
optimization can avoid the need for calculating higher-order RDTs to a large extent, which are not only more
computationally complicated but also more numerous. Besides, the effectiveness of controlling the RDT
fluctuations in enlarging the DA confirms that the local cancellation of nonlinear effects used in some
diffraction-limited storage ring lattices is more effective than the global cancellation.
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I. INTRODUCTION

Dynamic aperture (DA) has a dominant effect on beam
injection efficiency and beam lifetime of a storage ring.
Optimization of the DA is a complex problem with a long
history. In the past decade or so, due to the improvement of
computer performance and the application of evolutionary
algorithms, particle tracking-based numerical approach has
been widely used for DA optimization, in which genetic
algorithm or particle swarm optimization algorithm is
applied to find the globally best solution [1–6]. But this
numerical approach is quite demanding in computational
resources, and in general, there is basically no physics to
guide further lattice optimization. As an alternative and

complementary approach, resonance driving term (RDT)
minimization [7] is a traditional analytical approach with
fast optimization speed and easily-revealed physics. In this
analytical approach, minimizing RDTs to suppress the
corresponding resonances and also controlling amplitude
dependent tune shifts (ADTS) to avoid resonance crossings
can help to enlarge the DA. However, small RDTs is a
necessary but not sufficient condition for large DA [2], and
the optimization result obtained by this approach largely
depends on the lattice designers’ experiences.
Nevertheless, the guidance of the RDTs is of great

significance. Two types of nonlinear cancellation schemes,
which are made within one lattice cell, were proposed in the
multibend achromat (MBA) lattice design of diffraction-
limited storage rings (DLSRs) and showed remarkable
success [8,9]. One is the hybrid MBA lattice with a pair of
-I separated dispersion bumps [8], and the other is the
higher-order achromat (HOA) lattice with some identical
bend unit cells [9]. Both can cancel the main RDTs
generated by sextupoles within one lattice cell. This local
cancellation prevents the RDTs from building up along the
ring and is thus more effective than the global cancellation
made over some lattice cells [10]. This inspires us the
importance of suppressing the variation or fluctuation of
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RDTs in improving the nonlinear dynamics. In this paper,
the RDTs of nonlinear magnets will be calculated as a
function of the longitudinal position. There are two ways
to show the fluctuation of RDTs along the longitudinal
position. One is to calculate the accumulated RDTs from
a fixed longitudinal starting position, the same as in
Refs. [11,12] and similar to the calculation of multiperiod
RDTs in OPA [13]. This way can show the build-up and
cancellation of RDTs, and here we call it the build-up
fluctuation of RDTs. The other is to calculate one-period or
one-turn RDTs with varying longitudinal starting position,
which was presented in Refs. [14–17] and also used in
ELEGANT [18]. We will discuss these two kinds of RDT
fluctuations in this paper, and try to find the correlation
between the DA area and the RDT fluctuations with a large
number of nonlinear lattice solutions. We noticed that in
Ref. [19], the turn-by-turn fluctuations of the Courant-
Snyder actions were minimized to enlarge the DA.
The remaining sections of this paper are outlined as

follows. Section II introduces the RDTs briefly, and
describes two kinds of RDT fluctuations and give the
correlation between them. We also analyze the relation
between reducing RDT fluctuations and control of crossing
terms of nonlinear magnets, which is beneficial for enlarging
the DA. Then, in Sec. III, the study starts with the simple
double-bend achromat (DBA) lattice of a third-generation
synchrotron light source, where low-order RDTs are the
most important. Next we step further into the more complex
case of two 6BA lattices of DLSRs in Sec. IV. At the end of
the paper, a brief summary and outlook are given.

II. CONTROL OF THE RDT FLUCTUATIONS

The one-turn map of a storage ring with N þ 1 linear
maps separated by N thin-lens sextupole maps can be
normalized as [7]:

M0→Nþ1 ¼ M0→1e∶V1∶M1→2e∶V2∶…e∶VN∶MN→Nþ1

¼ A−1
0 e∶V̂1∶e∶V̂2∶…e∶V̂N∶R0→Nþ1ANþ1

¼ A−1
0 e∶h∶R0→Nþ1ANþ1; ð1Þ

where V̂i ≡R0→iAiVi, A is a normalizing map, R is a
rotation, and e∶h∶ is the nonlinear Lie map. Using the
resonance basis, the nth order generator of e∶h∶ can be
expanded as:

hn ¼
X

n¼jþkþlþmþp

hjklmph
þj
x h−kx hþl

y h−my δp; ð2Þ

where h�x ≡ ffiffiffiffiffiffiffi
2Jx

p
e�iϕx , h�y ≡ ffiffiffiffiffiffiffi

2Jy
p

e�iϕy , with ðJ;ϕÞ
being action-angle variables, and hjklmp is the so-called
driving terms. The terms with p ≠ 0 are chromatic terms,
which affect the off-momentum dynamics. In this paper we
focus on the on-momentum DA, where the geometric terms

with p ¼ 0 are considered. The geometric terms can be
divided into two categories. The terms with j ¼ k and
l ¼ m drive the ADTS, and the remaining terms drive
resonances ðj − kÞνx þ ðl −mÞνy.
The concept of RDTs is derived from the one-turn map,

and traditionally, one focuses on the RDTs of a periodic
map or one-turn map. In this paper we take the fluctuation
of RDTs along the longitudinal position into consideration.
Denoting

Q
t
a¼1 e

∶V̂a∶ ≡ e∶St∶, e∶St∶ ¼ e∶St−1∶e∶V̂t∶, and
when t ¼ N, SN is the h of Eq. (1). According to the
Baker-Campbell-Hausdorff formula [20], we have

St ¼ St−1 þ V̂t þ
1

2
∶St−1∶ V̂t þ

1

12
∶St−1∶2V̂t

þ 1

12
∶V̂t∶2St−1 þ � � � : ð3Þ

Equation (3) indicates that the lower-order terms of St−1
contribute to the higher-order terms of St. Expanding St
with the resonance basis as in Eq. (2), we can get a series
of nonlinear terms that show the build-up fluctuation of
driving terms hjklmp. We denote the driving terms of St as
h1→t;jklmp. And by expanding V̂t, we can get the contri-
bution of the tth sextupole to the third-order RDTs, denoted
as ht;jklmp. For the third-order RDTs, h1→t;jklmp ¼P

t
a¼1 ha;jklmp. The lower-order RDT build-up fluctuations

contribute to the higher-order RDTs of the one-turn map.
For example, the fourth-order RDTs of sextupoles are
crossing terms of their third-order RDTs [7],

h4 ¼
1

2

XN
b>a¼1

½V̂a; V̂b� ¼
1

2

XN
b¼2

�Xb−1
a¼1

V̂a; V̂b

�
; ð4Þ

where
P

b−1
a¼1 V̂a is the third-order term of Sb−1. Reducing

the amplitude of h1→t;jklmp can be beneficial for controlling
the crossing terms. Therefore, minimizing the RDT build-
up fluctuations is beneficial for reducing the higher-order
one-turn RDTs as well as higher-order RDT fluctuations.
And as the higher-order RDT fluctuations decrease, the
even higher-order RDTs are also controlled. This is the
physics why minimizing the RDT fluctuations can be very
effective in enlarging the DA, which will be demonstrated
later. The analysis above can also apply to a storage ring
with both sextupoles and octupoles.
The crossing terms are the key in the physical analysis

above. There is an exception with thin sextupoles where no
crossing term is generated [20]. The simplest case of this
exception is the well-known −I transformation with two
identical thin sextupoles at both sides. In this exception,
the nonlinear effects of the thin sextupoles can cancel each
other. Scaling the sextupole strengths, i.e., changing the
RDT fluctuations, does not affect the nonlinear cancellation
and the infinite DA. However, in the realistic lattices
where sextupoles have thickness, crossing terms are always
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present. Therefore, minimizing the RDT fluctuations can be
effectively applied to the realistic lattices.
In order to clearly illustrate the build-up fluctuations of

RDTs, the third-order RDT h10020 of the SSRF storage ring
lattice is plotted in Fig. 1 as a function of position in one
superperiod (SP). It changes stepwise at the locations
of sextupoles. Traditionally, in order to enlarge the on-
momentum DA, it is necessary to control the values of
geometric RDTs of one-turn map, denoted as hjklm0;ring.
In the complex plane, we can characterize the build-up

fluctuation of RDTs more clearly and show the regularity.
Referring the definition in Ref. [13], we introduce

m ¼ ðj − k; l −mÞ to represent the mode of hjklm0 and
μ ¼ 2πðνx; νyÞ the phase advances of one SP. We can
use the RDT build-up fluctuation data of one SP to
construct the build-up fluctuation over any number of
SPs. For each third-order RDT hjklm0, if we denote
the number of sextupoles of one SP as N1, the value
of hjklm0 at the tth sextupole of the (uþ 1)th SP
(1 ≤ t ≤ N1; u ≥ 0) is

h1→ðu·N1þtÞ;jklm0 ¼ h1→u·N1;jklm0 þ hðu·N1þ1Þ→ðu·N1þtÞ;jklm0

¼ h1→N1;jklm0

1 − eium·μ

1 − eim·μ þ h1→t;jklm0eium·μ

¼ h1→N1;jklm0

1 − eim·μ þ
�
h1→t;jklm0 −

h1→N1;jklm0

1 − eim·μ

�
eium·μ

¼ C0;m þ Ct;meium·μ;

with C0;m ¼ h1→N1;jklm0

1 − eim·μ ;

Ct;m ¼ h1→t;jklm0 −
h1→N1;jklm0

1 − eim·μ : ð5Þ

The calculation of multiperiod RDTs in Eq. (5) can be
found in Ref. [13]. With u as a variable, Eq. (5) is a circle in
the complex plane with C0;m as its center and jCt;mj as its
radius. Also taking the SSRF lattice as an example, we
calculated the build-up fluctuation of h10020 for 20 SPs, and
the results are plotted in the complex plane in Fig. 2. ForN1

sextupoles, there are N1 concentric circles as the dots
shown in Fig. 2. And when t ¼ N1, the circle passes the
origin as shown with the orange dots. The C0;m, which is

the center of these circles, shows the overall offset.
Traditionally, minimizing one RDT only involves C0;m.
While reducing the build-up fluctuation of one RDT
involves reducing both the radii of these circles and the
offset of the center.
As for the second kind of RDT fluctuations, the

definition of RDTs is different. A transformation F, which
is a polynomial function, is used to find the nonlinear
invariants, and these RDTs are the coefficients in F,

FIG. 1. The amplitude variation of the third-order RDT h10020 at
the locations of sextupoles (green blocks in the magnet layout) in
one SP of the SSRF storage ring lattice. The RDT is cumulatively
calculated from zero.

FIG. 2. Build-up fluctuation of h10020 of the SSRF lattice in the
complex plane for 20 SPs.
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denoted as fjklm0 [17]. The phase advances between the
observation position s of this fluctuation and the starting
position of the build-up fluctuation are denoted asΔϕðsÞ ¼
ðΔϕxðsÞ;ΔϕyðsÞÞ. For an observation position s between
the tth and (tþ 1)th sextupoles, the third-order RDT
fjklm0ðsÞ is

fjklm0ðsÞ ¼
hðtþ1Þ→ðN1þtÞ;jklm0e−im·ΔϕðsÞ

1 − eim·μ

¼ hðtþ1Þ→N1;jklm0 þ h1→t;jklm0eim·μ

1 − eim·μ e−im·ΔϕðsÞ

¼ h1→N1;jklm0 − ð1 − eim·μÞh1→t;jklm0

1 − eim·μ e−im·ΔϕðsÞ

¼ −Ct;me−im·ΔϕðsÞ: ð6Þ

So jfjklm0ðsÞj is equal to jCt;mj in Eq. (5), which is exactly
the radius of the circle formed by the RDT build-up
fluctuation. Then the values of fjklm0 for one period are
at a series of concentric circles in the complex plane as
shown in Fig. 3. The difference between these two kinds of
fluctuations is that the center of circles in Fig. 2, which is
also equal to fjklm0ð0Þ, is not at the origin. The amplitude of
f10020ðsÞ of the SSRF lattice is shown in Fig. 4, which is
similar to Fig. 1. This is because h10020 is almost canceled
over one SP and C0;m in Eq. (5) is small. For the third-order
RDTs, minimizing jCt;mj is helpful for controlling both of
the two kinds of fluctuations.
The case of the fourth-order RDTs is similar but more

complex. As shown in Appendix A, the values of fourth-
order fjklm0ðsÞ are also at a series of concentric circles
in the complex plane. The radii of these circles are the

amplitudes of the eium·μ terms of the RDT build-up
fluctuation, i.e., jCt;mj. Note that the calculation of jCt;mj
for the fourth-order RDT fluctuations is different from the
third-order case. So minimizing jCt;mj is also helpful for
controlling the two kinds of fourth-order RDT fluctuations.
Therefore, in this paper we use hjklm0;ave ¼PN1

t¼1 jCt;mj=N1 to represent the fluctuation of one RDT,
which is the average amplitude of fjklm0ðsÞ at nonlinear
magnets. Also, the effectiveness of controlling the average
amplitude of the RDT build-up fluctuations is presented in
Appendix B and compared with the average amplitude of
fjklm0ðsÞ. Different RDTs driving different nonlinear
effects are not of the same importance. It will be compli-
cated to consider individual weights for different RDTs.
For simplicity, in this paper, the RDTs of the same order
have the same weight. The fluctuation of the nth order
RDTs, denoted as hn;ave, is calculated as

hn;ave ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
jþkþlþm¼n

ðhjklm0;aveÞ2
s

: ð7Þ

And we use hn;ring to represent the nth order one-turn
RDTs, which is defined in the same way as in Eq. (7).
When the third- and fourth-order RDTs are considered
simultaneously, we introduce a weight coefficient w for the
fourth-order RDTs. For example, the sum of the third- and
fourth-RDT fluctuations is calculated as h3;ave þ w · h4;ave.
Besides, the ADTS terms also affect the on-momentum
DA. We denote the one-turn ADTS terms as hADTS, which
is calculated as

hADTS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dνx
dJx

�
2

þ
�
dνx
dJy

�
2

þ
�
dνy
dJy

�
2

s
: ð8Þ

By the way, calculating the RDT fluctuations is a
necessary step to calculate the one-turn RDTs, which
requires almost no additional calculations. With the data
of third-order RDT fluctuations stored in the calculation,

FIG. 3. Fluctuation of f10020ðsÞ of the SSRF lattice in the
complex plane for one SP. The blue dots are f10020ðsÞ calculated
at the entrances and exits of magnets.

FIG. 4. The variation of the amplitude of the third-order RDT
f10020 in one SP of the SSRF lattice.
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we can directly have the values of
P

b−1
a¼1 V̂a in Eq. (4),

allowing us to calculate the crossing terms using only
one loop.

III. OPTIMIZATION OF A DBA LATTICE

Now we first use the SSRF lattice to analyze the
nonlinear dynamics based on RDTs and their fluctuations.
SSRF is a third-generation synchrotron light source with a
beam energy of 3.5 GeVand a natural emittance of 3.9 nm ·
rad [21]. Its storage ring consists of four SPs with 20 DBA
cells. Each SP has three standard cells and two matching
cells. The linear optical functions and magnet layout of a
half SP are shown in Fig. 5. There are two chromatic
sextupole families (SD and SF) in the high dispersion
regions, and 6 harmonic sextupole families (S1–S6) in the
relatively low dispersion regions. The families S1, S3,
and S5 are horizontally focusing sextupoles, and S2, S4,
and S6 are defocusing ones.
In our nonlinear optimization, the strengths of six

harmonic sextupole families are variables, with two chro-
matic sextupole families for fitting the corrected chroma-
ticities to (1, 1). To statistically analyze the correlation
between the RDTs and DA area, a large number of
nonlinear solutions need to be generated. The probability
of finding a nonlinear solution with a large DA in a
randomly generated solution set is very small. Now that
minimizing the RDTs of one-turn map is a necessary
condition for enlarging the DA, we can increase the
proportion of nonlinear solutions with large DAs by
minimizing the RDTs. With a genetic algorithm toolbox
geatpy [22], 10 000 nonlinear solutions were obtained after
40 generations of minimizing the third-order RDTs, and the
third-order RDTs of some solutions are almost completely
canceled. Then the on-momentum DA areas of all nonlinear
solutions were calculated with ELEGANT [18].

Following Ref. [2], we show the correlation between
the DA area and the third-order RDTs of one-turn map, i.e.,
h3;ring, for these solutions in Fig. 6. Besides, their RDT
fluctuations h3;ave are shown in the figure as a color bar. The
correlation between DA area and h3;ring roughly follows
what was found in Ref. [2]: small h3;ring is a necessary but
not sufficient condition for large DA. However, the DA area
has a stronger correlation with h3;ave. For a solution with
small h3;ave, the probability of having a large DA area
is larger than the solution with small h3;ring. Therefore,
minimizing the RDT fluctuations is more effective than
minimizing one-turn RDTs in enlarging the DA. Besides,
there is an interesting thing that for the solutions with small
h3;ave, their h3;ring are not large.
The third-order RDTs are the most important in this

DBA lattice [23]. For a more comprehensive comparison
and a better understanding, the ADTS terms as well as the
fourth-order RDTs were further involved in the nonlinear
analysis. Of the generated solutions, the solutions with
hADTS < 10 000 m−1 were used for the further analysis. For
these solutions, Fig. 7 shows different correlations between
the DA area, the one-turn RDTs and the fluctuations of
RDTs. Figure 7(a) is another representation of Fig. 6, with
the two axes representing h3;ring and h3;ave and the color bar
representing DA area. It can be clearly seen that the colors
are roughly layered horizontally, with solutions having
large DAs, indicated by the red color, sinking to the bottom.
In Appendix B, we make a similar figure with y axis
representing the average amplitude of the RDT build-up
fluctuations, indicating that controlling the RDT build-up
fluctuations is also effective. In Fig. 7(b), the fourth-order
RDTs are further involved with the weight coefficient
w ¼ 0.01 m1=2. The RDT fluctuations are still pronounced,

FIG. 5. Linear optical functions and magnet layout of a half SP
of the SSRF lattice. In the layout, bends are in blue, quadrupoles
in red, and sextupoles in green.

FIG. 6. Correlation between the DA area, the third-order one-
turn RDTs h3;ring and the third-order RDT fluctuations h3;ave for
the nonlinear solutions of the SSRF DBA lattice. Red color
indicates large RDT fluctuations, and blue color indicates small
RDT fluctuations.
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with colors again roughly layered. In the two lower plots,
we step further to analyze the one-turn RDTs and the RDT
fluctuations separately. Figure 7(c) shows the correlation
between the third- and fourth-order one-turn RDTs and DA
area. We can see that the colors are layered clearly only
when h3;ring is quite small. But when h3;ring is relatively
larger, many solutions with large differences in DA area are
mixed together. This is because the third-order RDTs
dominate in this DBA lattice, and the significance
of h4;ring emerges when h3;ring is small. Comparing
Figs. 7(a) and 7(c), we can find that minimizing h3;ave is
even more effective than minimizing the fourth-order term
h4;ring. A possible explanation is that the crossing terms of
lower-order RDTs generate higher-order RDTs, thus indi-
cating a underlying connection between the higher-order
RDTs and the fluctuation of lower-order RDTs. We will
further demonstrate it in the next paragraph. In Fig. 7(d),
the two axes are changed to h3;ave and h4;ave. We can see
that from the upper right to the lower left, the DA areas
of these solutions gradually increase, and that the
solutions with large DAs are on the tip of the lower
left corner. This reflects that there is a strong positive
correlation between the third-order and fourth-order RDT
fluctuations in this lattice.

Figure 8 shows the correlation between the higher-order
h4;ring, h4;ave and the lower-order h3;ave. It is clear that both
h4;ring and h4;ave roughly reduce as h3;ave reduces. This
verifies that controlling the fluctuation of the third-order

FIG. 7. Different correlations between the DA area, the third- and fourth-order RDTs of one-turn map and the fluctuations of these
RDTs for the SSRF DBA lattice. Red color indicates large DA areas, and blue for small DA areas. The nonlinear solutions shown here
have hADTS < 10 000 m−1.

FIG. 8. Correlation between h3;ave, h4;ring, and h4;ave for the
SSRF DBA lattice. Red color indicates large h3;ave, and blue color
for small h3;ave.
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RDTs is beneficial for controlling the fourth-order one-turn
RDTs and the fourth-order RDT fluctuations due to the
cross-talk effect. This is also consistent with Fig. 7(d).
Furthermore, the cross-terms can generate even higher-
order RDTs, such as fifth-order RDTs. As higher-order
RDT fluctuations are reduced, even higher-order RDTs can
also be controlled. This could be the underlying physics
behind the strong correlation between reducing the RDT
fluctuations and enlarging the DA. Higher-order RDTs
are not only numerous in quantity, but also complicated
to compute. It is cumbersome to directly reduce them,
especially for fifth- and even higher-order RDTs.
Therefore, we can minimize the fluctuations of lower-order
RDTs to control them without calculating them.
We pick out two nonlinear solutions with approximately

the same values of h3;ring, h4;ring and ADTS terms, but their
h3;ave and h4;ave are different. Table I shows these values
of the two solutions. Their DAs with frequency map
analysis [24] are tracked with ELEGANT and shown in
Fig. 9. The one-turn RDTs and the RDT fluctuations are
also shown in the figure. We can clearly see that the
solution with smaller RDT fluctuations, i.e., smaller h3;ave
and h4;ave, has a larger DA. For the solution with smaller
DA, the fifth-order resonance line 3νx − 2νy has a more
significant effect. This verifies that controlling the fluctua-
tions of third- and fourth-order RDTs is beneficial for
controlling the fifth-order RDTs.

IV. OPTIMIZATION OF 6BA LATTICES

To achieve a diffraction-limited emittance with a rea-
sonable circumference, MBA lattices are used in the design
of DLSRs to replace DBA lattices [25,26]. In this section,
we will use DLSR MBA lattices to study the correlation
between RDT fluctuations and DA area again. In these
lattices with strong focusing, the nonlinear effects become
strong. HOA is a successful approach to control the
nonlinear effects and has been used in some DLSR lattice
designs [9,27–31]. In an HOA MBA lattice with appro-
priate bend unit cell tunes, most or all of the third- and
fourth-order geometric RDTs can be canceled over some

identical cells [32]. Here the MBA lattices used are two
HOA 6BA lattices that we designed in Refs. [29,33],
which have five identical unit cells, each with horizontal
and vertical tunes of (0.4, 0.1). In this kind of HOA
lattices, the fourth-order RDT h20200 cannot be canceled
in the ideal cancellation condition [32]. Besides, in these
6BA lattices, the HOA approach was also used for further
nonlinear cancellation over some lattice cells. For one
of the 6BA lattices, the term h20200 is still not canceled
over some lattice cells; while for the other one, h20200 is
canceled over lattice cells.

A. The first 6BA lattice

The first 6BA lattice we will study was designed in
Ref. [33]. The designed storage ring is a 2.2 GeV DLSR
with a natural emittance of 94 pm · rad, which consists of
16 identical lattice cells. The optical functions of this lattice
are shown in Fig. 10. The horizontal and vertical tunes of a
lattice cell are close to ð2þ 5=8; 7=8Þ, enabling nonlinear
cancellation over eight cells. However, neither the lattice
cell tunes nor the unit cell tunes are able to cancel h20200. To
further optimize the nonlinear dynamics, including the
control of ADTS terms, the sextupoles are symmetrically
grouped into eight families as illustrated in Fig. 10, and a
family of octupoles is used as in Ref. [33].
Similar to the DBA lattice, we use genetic algorithm to

increase the proportion of solutions with good dynamic
performance for better nonlinear analysis. But here three
objectives h3;ring, h4;ring, and hADTS were optimized simul-
taneously, since fourth-order RDTs and ADTS terms
become more important in the nonlinear optimization of
DLSR lattices. The chromaticities were corrected to (2,2).
The genetic algorithm ran 10 generations with a population
size of 10 000. The fourth-order RDT build-up fluctuations
of one optimized solution along the ring are shown in
Fig. 11. The term h20200 exhibits a significant rise in
magnitude along the ring, while the other terms are well
suppressed. As previously mentioned, the term h20200
cannot be canceled in two HOA schemes, i.e., nonlinear
cancellation within a single lattice cell and over eight lattice
cells, and can only be controlled through the nonlinear
optimization with sextupole grouping.
For the optimized solutions, their h3;ave, h4;ave, and DA

areas were calculated. Figure 12 shows the correlation
between the RDT fluctuations, ADTS terms, and DA area.
The weight coefficient w is also set to 0.01 m−1 in this
lattice. Compared to the DBA lattice, ADTS terms are
more difficult to control in this 6BA lattice with stronger
focusing. Most of the solutions with large ADTS values
have small DA areas. For the solutions with both
small ADTS values and small RDT fluctuations, most of
them have large DAs. We use the solutions with hADTS <
1 × 105 m−1 for further analysis. The correlation between
RDT fluctuations and one-turn RDTs is shown in the upper
plot of Fig. 13. We can see that similar to the DBA lattice

TABLE I. Nonlinear term values of two nonlinear solutions
with similar RDT h3;ring, h4;ring and ADTS terms but different
RDT fluctuations h3;ave and h4;ave.

Smaller DA Larger DA

h3;ring (m−1
2) 3.5 3.6

h4;ring (m−1) 901 897
dνx=dJx (m−1) −315 −737
dνx=dJy (m−1) 857 1171
dνy=dJy (m−1) −2082 −2472
h3;ave (m−1

2) 23.2 20.7

h4;ave (m−1) 961 693
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FIG. 9. Two nonlinear solutions of the SSRF DBA lattice with similar one-turn RDT and ADTS terms but different RDT fluctuations
and DA areas. The left four plots are for one solution, and the right four for the other solution. The upper four plots show the third- and
fourth-order RDT fluctuations, and the lower four plots are the frequency map analysis of DAs. The values of these nonlinear terms are
listed in Table I.
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case, DA area has a stronger correlation with RDT
fluctuations than one-turn RDTs, with the red color sinking
to the bottom. Besides, the differences in RDT fluctuations
of these solutions can be large when their one-turn RDTs
are controlled. The lower plot of Fig. 13 shows that the term
h20200;ave contributes the main difference. We can see that
for the solutions with small h20200;ave, most of them have
large DA areas. And for the solutions with small h20200;ave
but large fluctuations of other RDTs, their DAs are small,
indicating that controlling the fluctuation of other RDTs
is also important.

B. The second 6BA lattice

The second 6BA lattice to be studied was designed in
Ref. [29]. The beam energy is also 2.2 GeV. But the storage

FIG. 10. Linear optical functions and magnet layout of one
cell of the first 6BA lattice. In the layout, bends are in blue,
quadrupoles in red, sextupoles in green, and octupoles in brown.

FIG. 11. The fourth-order RDT build-up fluctuations along
the first 6BA ring of a nonlinear solution. The RDT h20200 rises
very high.

FIG. 12. Correlation between the ADTS terms, the RDT
fluctuations and the DA areas for the first 6BA lattice.

FIG. 13. Upper plot: correlation between the DA area, the one-
turn RDTs, and the RDT fluctuations for the first 6BA. Lower
plot: correlation between the DA area, the fluctuation of h20200,
and other RDT fluctuations. The nonlinear solutions shown here
have hADTS < 1 × 105 m−1.
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ring consists of 20 identical lattice cells and has a lower
natural emittance of 36 pm rad and lower beta functions in
straight sections. Figure 14 shows one cell of this lattice.
Different from the first 6BA lattice, the horizontal and
vertical tunes of this lattice cell are approximately (2.7,0.9)
to make the nonlinear cancellation over 10 cells, including
the cancellation of h20200. In this lattice, the sextupoles are
also symmetrically grouped as shown in Fig. 14. There are
eight families of chromatic sextupoles and three families of
harmonic octupoles used for the nonlinear optimization,
with the chromaticities corrected to ð−3;−3Þ due to
negative momentum compaction factor.
For the nonlinear analysis, the three objectives h3;ring,

h4;ring and hADTS were also optimized with a population
of 10 000 and 20 generations here. The correlation between
the RDT fluctuations, ADTS terms and DA area is shown
in Fig. 15. The weight coefficient w ¼ 0.01 m−1.
Compared to the first 6BA lattice, this lattice has stronger

nonlinear effects with larger ADTS terms. Nonetheless,
possibly due to the effective suppression of resonances with
the HOA strategy, even if the ADTS terms are large, there
are still some solutions with large DAs. Next we analyze
the solutions with hADTS < 5 × 105 m−1. The upper plot of
Fig. 16 shows the correlation between one-turn RDTs,
RDT fluctuations, and DA area. Compared to the first 6BA,
here the range of h3;ave þ w · h4;ave of the solutions is
smaller when one-turn RDTs are controlled. This is
because h20200 is prevented from building up in this lattice.
And we can see that the solutions with large DAs are
mainly at the bottom, indicating the effectiveness of
minimizing RDT fluctuations. In the lower plot, just like
Fig. 7(d), we further analyze the third- and fourth-order
RDT fluctuations separately. Most solutions with large
DAs have small h3;ave and h4;ave, which is consistent with
Fig. 7(d). But different from Fig. 7(d), there are also some

FIG. 14. Linear optical functions and magnet layout of the
second 6BA lattice cell.

FIG. 15. Correlation between the ADTS terms, the RDT
fluctuations and the DA areas for the second 6BA lattice.

FIG. 16. Upper plot: correlation between the DA area, the
one-turn RDTs and the RDT fluctuations for the second 6BA.
Lower plot: correlation between the DA area, the third- and
fourth-order RDT fluctuations with different orders being
considered separately. The nonlinear solutions shown here
have hADTS < 5 × 105 m−1.
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solutions with small h3;ave and h4;ave have small DAs. This
needs to be further studied. We have preliminarily found
that optimizing the weight of each RDT can strengthen the
correlation between RDT fluctuations and DA area, since
different resonances have different effects on DA.
We have shown that reducing the lower-order RDT

fluctuations is beneficial for controlling higher-order
RDTs in the DBA lattice. But in this 6BA lattice, the
fourth-order RDT fluctuations are contributed not only by
the crossing terms of sextupoles, but also by the octupoles,
and h3;ave only affects the former. To verify the correlation
between third-order RDT fluctuations and fourth-order
RDTs in this lattice like in Fig. 8, we generated another
set of nonlinear solutions by optimizing h3;ave for some
generations, where the octupoles were not employed. For
these solutions, the ones with smaller h3;ave also have
smaller h4;ave and h4;ring, as shown in Fig. 17. This is
consistent with Fig. 8. In the lower plot of Fig. 16, the
correlation between h3;ave and h4;ave is weaker than that in
Fig. 17 due to that the octupoles also contribute to fourth-
order RDTs.

V. CONCLUSION AND OUTLOOK

Inspired by the fact that the local cancellation of non-
linear dynamics effects adopted in some DLSR lattices is
more effective than the global cancellation, we studied the
analysis of nonlinear dynamics based on minimizing the
RDT fluctuations. Physical analysis showed that the RDT
fluctuations are involved in the calculation of crossing
terms. Minimizing the RDT fluctuations is beneficial for
controlling the crossing terms and thus enlarging the DA.
A DBA lattice and two 6BA lattices were taken as examples
for this study. It was found that reducing the RDT
fluctuations has a very strong correlation with enlarging
the DA area. Nonlinear solutions with small RDT

fluctuations are much more likely to have large DAs than
those with small one-turn RDTs. And for the solutions with
small RDT fluctuations, their one-turn RDTs are also
controlled. Moreover, reducing lower-order RDT fluctua-
tions can also reduce higher-order one-turn RDTs and
higher-order RDT fluctuations. The higher-order RDTs
contributed by the crossing terms of lower-order RDTs are
not only numerous but also computationally complicated,
especially for the fifth-order and higher-order RDTs. The
fifth-order case was demonstrated in the DBA lattice. The
effectiveness of controlling RDT fluctuations in enlarging
DA confirms once again that the local nonlinear cancella-
tion is more effective than the global cancellation. Note that
the nonlinear analysis based on minimizing the RDT
fluctuations is in the framework of minimizing RDTs,
but using minimizing the average RDTs instead of min-
imizing the commonly-used one-turn RDTs. This means
that minimizing the RDT fluctuations is still not a sufficient
condition for enlarging the DA, but it is more effective than
minimizing one-turn RDTs.
The average amplitude of fjklm0ðsÞ was used to quanti-

tatively represent the RDT fluctuation in this paper, and the
average amplitude of the RDT build-up fluctuation is also
effective as presented in Appendix B. For the codes having
the function of calculating the variation of RDTs along the
longitudinal position, i.e., the RDT fluctuations, such as
ELEGANT [18] and AT [34], it is easy to further include the
calculation of the quantity representing the RDT fluctuation
as used in this paper. So the analysis and optimization of
DA based on controlling the fluctuation of RDTs can also
be implemented with these codes.
Since reducing the RDT fluctuations can enlarge the DA

area more effectively than reducing the one-turn RDTs,
we can consider minimizing RDT fluctuations in the DA
optimization. By using evolutionary algorithms, we can
first minimize RDT fluctuations to effectively and quickly
find the regions where large DA solutions exist, and then in
these regions, DA can be further optimized based on
particle tracking. Although this paper focused on on-
momentum DA and the fluctuation of geometric RDTs,
it is possible that the fluctuation of chromatic terms related
to off-momentum dynamics can be further considered in
the nonlinear optimization. In addition, the RDT fluctua-
tions can provide physical feedback for adjusting linear
optics to achieve better nonlinear dynamics performance.
The quality of DA is related to both the area of the DA

and the diffusion rate inside the DA. Lower diffusion rates
indicate that the motion of particles is more regular [24] and
the DA has better robustness against errors. Since reducing
RDT fluctuations can control both lower-order and higher-
order resonances, it may lead to lower diffusion rates.
Therefore, we will further study the correlation between
RDT fluctuations, DA area and diffusion rates using
frequency map analysis. Besides, machine learning, which
has been successfully applied to the nonlinear dynamics

FIG. 17. Correlation between h3;ave, h4;ring, and h4;ave for the
second 6BA lattice.
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optimization in recent years [35–40], can also be used to
enhance the study in this paper, including better charac-
terization of the RDT fluctuations. Since reducing RDT
fluctuations is more effective than reducing one-turn or
one-period RDTs, we can explore new lattices based on
minimizing the RDT fluctuations in the linear and non-
linear optimization of a general magnet layout.
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APPENDIX A: FLUCTUATION OF THE
FOURTH-ORDER RDTs

As in Sec. II, here we also use m ¼ ðj − k; l −mÞ to
represent the mode of hjklm0, which drives the resonance
ðj − kÞνx þ ðl −mÞνy. For simplicity, we substitute hjklm0

with hm. The fourth-order RDTs are contributed by octu-
poles and the crossing terms of sextupoles. The fluctuation
of the fourth-order RDTs contributed by octupoles is as
simple as the third-order RDTs in Sec. II [41], and with the
number of lattice periods u as a variable, the fluctuation
of such a RDT can be described by a constant term and
the eium·μ term. In the following we will characterize the
fluctuation of the fourth-order RDTs contributed by the
crossing terms of sextupoles.

For a lattice period with N1 sextupoles, we denote the
period tunes as μ ¼ 2πðνx; νyÞ and the phase advances as
ϕ ¼ ðϕx;ϕyÞ. And we use ht;m to represent the contribution
of the tth sextupole to the third-order RDT. The sextupole
terms ha;m1

and hb;m2
drive the fourth-order resonance

m ¼ m1 þm2 by the cross-talk effect [7]:

1

2

XN1

b>a¼1

h
ha;m1

ð2JxÞ
j1þk1

2 ð2JyÞ
l1þm1

2 eim1ϕ;

hb;m2
ð2JxÞ

j2þk2
2 ð2JyÞ

l2þm2
2 eim2ϕ

i
: ðA1Þ

We move the terms ha;m1
and hb;m2

outside the Poisson
bracket, then the coefficient of the Poisson bracket
is 1

2

PN1

b>a¼1 ha;m1
hb;m2

.
The crossing term fluctuation arises from the change

of
P

t
b>a¼1 ha;m1

hb;m2
with t. For multiple lattice periods,

at the (uþ 1)th period (u ≥ 0),

Xu·N1þt

b>a¼1

ha;m1
hb;m2

¼
Xu·N1þt

b¼2

Xb−1
a¼1

ha;m1
hb;m2

¼
Xu·N1

b¼2

Xb−1
a¼1

ha;m1
hb;m2

þ
Xu·N1þt

b¼u·N1þ1

Xb−1
a¼1

ha;m1
hb;m2

. ðA2Þ

We denote that ha;m1
is at the ðua þ 1Þth period and hb;m2

is
at the ðub þ 1Þth period, with ub ≥ ua ≥ 0. The first part in
Eq. (A2) can be divided into two parts with ub ¼ ua and
ub > ua. Then we have

Xu·N1

b¼2

Xb−1
a¼1

ha;m1
hb;m2

¼
Xu−1
ua¼0

XN1

b>a¼1

hðua·N1þaÞ;m1
hðua·N1þbÞ;m2

þ
Xu−1

ub>ua¼0

XN1

a;b¼1

hðua·N1þaÞ;m1
hðub·N1þbÞ;m2

¼
Xu−1
ua¼0

XN1

b>a¼1

ha;m1
hb;m2

eiuaðm1þm2Þ·μ þ
Xu−1

ub>ua¼0

XN1

a;b¼1

ha;m1
hb;m2

eiðuam1þubm2Þ·μ

¼
 XN1

b>a¼1

ha;m1
hb;m2

!
1 − eiuðm1þm2Þ·μ

1 − eiðm1þm2Þ·μ þ
�XN1

a;b¼1

ha;m1
hb;m2

�Xu−1
ub¼1

eiubm2·μ
1 − eiubm1·μ

1 − eim1·μ

¼
 XN1

b>a¼1

ha;m1
hb;m2

!
1 − eiuðm1þm2Þ·μ

1 − eiðm1þm2Þ·μ þ
PN1

a;b¼1 ha;m1
hb;m2

1 − eim1·μ

�
1 − eium2·μ

1 − eim2·μ
−
1 − eiuðm1þm2Þ·μ

1 − eiðm1þm2Þ·μ

�
; ðA3Þ

where hðu·N1þtÞ;m ¼ ht;meium·μ. And the second part in Eq. (A2) is
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Xu·N1þt

b¼u·N1þ1

Xb−1
a¼1

ha;m1
hb;m2

¼
Xu·N1þt

b¼u·N1þ1

Xu·N1

a¼1

ha;m1
hb;m2

þ
Xu·N1þt

b¼u·N1þ2

Xb−1
a¼u·N1þ1

ha;m1
hb;m2

¼
 XN1

a¼1

ha;m1

1 − eium1·μ

1 − eim1·μ

! Xt
b¼1

hb;m2
eium2·μ

!
þ
Xt
b¼2

Xb−1
a¼1

ha;m1
hb;m2

eiuðm1þm2Þ·μ

¼
 XN1

a¼1

ha;m1

! Xt
b¼1

hb;m2

!
eium2·μ − eiuðm1þm2Þ·μ

1 − eim1·μ
þ
 Xt

b>a¼1

ha;m1
hb;m2

!
eiuðm1þm2Þ·μ: ðA4Þ

With Eqs. (A3) and (A4), we can construct the fourth-
order RDT build-up fluctuations of multiple periods based
on the RDTs of one period. With the number of periods u
as a variable, the crossing terms include the eium2·μ term,
the eiuðm1þm2Þ·μ term and constant term. Note that the
constant term is in Eq. (A3). According to Eq. (5), the

coefficient of the eium2·μ term in Eq. (A3) þ Eq. (A4),

i.e.,
PN1

a¼1
ha;m1

1−eim1 ·μ
ð−
PN1

b¼1
hb;m2

1−eim2 ·μ
þPt

b¼1 hb;m2
Þ, is equal to

C0;m1
Ct;m2

, where C0;m1
is the third-order one-period

RDT and Ct;m2
indicates the third-order RDT fluctuation.

And remember that
P

t
b>a¼1 ha;m2

hb;m1
also drives the same

resonance m1 þm2. So there is also the eium1·μ term.
Moreover, some fourth-order RDTs consist of more than
one pair of crossing terms. For example, h20110 is contributed
by h30000h01110, h21000h10110, and h10200h10020 [7], and there
are more terms in its fluctuation.
Here we show an example of the h31000 build-up

fluctuation of the second 6BA lattice. The RDT h31000 is
contributed by h30000 and h12000 through cross-talk. Let
m1 ¼ ð3; 0Þ, m2 ¼ ð−1; 0Þ, and m ¼ m1 þm2 ¼ ð2; 0Þ.
The values of h1→u·N1þt;31000 of the second 6BA, with u
varying from 1 to 50, were calculated, and the results
of t ¼ 4 and N1 are shown in Fig. 18. The fourth-order
RDT build-up fluctuation has the form of
C0;m þ Ct;meium·μ þ C0

t;m1
eium1·μ þ C0

t;m2
eium2·μ, with C0;m,

Ct;m, C0
t;m1

, and C0
t;m2

being four coefficients. Note that the

FIG. 18. The values of h1→u·N1þt;31000 of the second 6BA lattice
contributed by four terms, with u varying from 1 to 50. The upper
plot is the case with t ¼ N1, and the lower plot is the t ¼ 4 case.

FIG. 19. Fluctuation of f31000ðsÞ of the second 6BA lattice in
the complex plane for one period. The blue dots are f31000ðsÞ
calculated at the entrances and exits of magnets.
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expression of C0;m and Ct;m here is different from the case
of third-order RDTs shown in Eq. (5). For each sextupole
index t, the fourth-order RDT build-up fluctuation is
around the circle C0;m þ Ct;meium·μ as shown in Fig. 18,
which is different from the third-order RDT case. The circle
passes the origin in the complex plane when t ¼ N1.
Reducing the third-order RDT fluctuations brings these
dots closer to the dashed circles. Moreover, reducing the
fourth-order RDT fluctuations leads to smaller radii of
the circles. As for the second kind of RDT fluctuations, the
calculation is referred to Ref. [17]. We found that the values
of f31000ðsÞ are at the circles with radii equal to jCt;mj as
shown in Fig. 19.

APPENDIX B: AN EXAMPLE FOR THE
CORRELATION BETWEEN THE RDT BUILD-UP

FLUCTUATIONS AND DA AREA

Since the two kinds of RDT fluctuations are strongly
related, minimizing the average amplitude of the RDT
build-up fluctuations could also be effective in the DA
optimization. Here the SSRF lattice is also used as an
example, where the third-order RDTs are the main non-
linear terms. We use

h03;ave ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
jþkþlþm¼3

�XN
t¼1

jh1→t;jklm0j=N
�2

vuut ðB1Þ

to quantitatively represent the build-up fluctuation of
third-order RDTs. Figure 20 shows the correlation
between h03;ave, h3;ring and DA area for the same solutions
as in Fig. 7. We can clearly see that Fig. 20 is almost the
same as Fig. 7(a). The correlation between h03;ave and h3;ave
can be measured by the Spearman rank-order correlation
coefficient, rs [42]. The coefficient rs is a nonparametric
measure of the monotonicity of the relationship between

two datasets, which varies between −1 and þ1 with 0
implying no correlation. The values −1 andþ1 imply exact
monotonic relationship. For h03;ave and h3;ave, rs is 0.967,
indicating a very strong correlation between the two kinds
of RDT fluctuations. Therefore, minimizing the RDT build-
up fluctuations is also effective in enlarging the DA. If the
number of SPs of a ring is very small, it is better to calculate
the RDT build-up fluctuations for multiple turns to have
better convergence of calculation.
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