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Beam stability is conventionally described by means of the stability diagram, which is a threshold line in
a complex plane of a particular intensity parameter, the coherent tune shift; the diagram separates stable and
unstable states. The incoherent tune spread of the beam particles normally causes the transverse stability
diagram to be an asymmetric bell-shaped curve above the real axis; for a given optical nonlinearity, the
diagram is determined by the beam distribution function only. Recently, such a diagram was measured
by means of an antidamper, see Antipov et al., Phys. Rev. Lett. 126, 164801 (2021). Such measurements
open the door to a new method of beam diagnostics, finding the beam phase space density as a solution
of an inverse stability problem. The main idea, methods of its implementation, possible obstacles and
optimizations are discussed.
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I. INTRODUCTION

For a start, let us consider a bunch of N particles
with slightly different oscillation frequencies, so that their
spread Δ̄ω is small compared to the average value ω̄. Let us
assume also that besides the slightly nonlinear focusing,
there is a feedback which detects the centroid offset and
acts on the bunch as a whole proportionally to that. For
such a system, it is convenient to introduce slow amplitudes
of the particle oscillations, ak ¼ expðiω̄tÞxk, where xk is
the offset of the kth particle, and t is time. Due to the
nonlinearity and the feedback, the amplitudes are not
constant, but obey the dynamic equations,

ȧk þ iΔωkak ¼ −igā; ð1Þ

where ā ¼ P
k ak=N is the slow amplitude of the bunch

centroid, Δωk is the tune shift of the kth particle, and g is
the feedback gain in units of the tune shift. Looking for the
solution ak ∝ expð−iνtÞ, one gets

ak ¼
g

ν − Δωk
ā: ð2Þ

Averaging that over the particles leads to the dispersion
equation for the eigenfrequency ν,

g
N

X

k

1

ν − Δωk
¼ 1: ð3Þ

If the frequency spread Δω is caused by nonlinearity of
transverse focusing of the particles with incoherent trans-
verse actions Jx, Jy, then Δωk ¼ ΔωðJx; JyÞ, and the
dispersion equation can be presented by means of the
integral with the bunch distribution function FðJx; JyÞ,

−
�Z Z

dJxdJy
Jx ∂F

∂Jx

ν − ΔωðJx; JyÞ þ io

�−1
¼ g: ð4Þ

Here we followed the Hereward rule [1] for the sum to
integral transformation,

1

N

X

k

ð…Þ → −
Z Z

dJxdJyJx
∂F
∂Jx

ð…Þ ð5Þ

and applied the Landau rule for the pole, ν → νþ io,
with an infinitesimally small o > 0; all integrals over the
actions are from zero to infinity. The distribution function is
supposed to be normalized,

R R
dJxdJyFðJx; JyÞ ¼ 1.

The asymmetry between x and y in Eq. (5) is caused by
x-direction of the oscillations.
Instead of solving the dispersion equation (4) for the

eigenvalue ν for a given complex gain g, the problem can be
reversed: on the complex plane of the gain g, let us find the
line which separates stable and unstable states of the bunch.
For this purpose, the dispersion equation can be considered
as a map ν → g, so this threshold line is generated by
mapping of the real axis of ν onto the complex plane of g
by means of Eq. (4). Threshold lines of such a kind are
called stability diagrams. For beam dynamics, they were
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introduced by Vaccaro [2,3], so there is a reason to call
them Vaccaro diagrams.
The considered case of the bunch-flat feedback, or the

antidamper, allows a generalization for an arbitrary wake
function. In fact, the same dispersion equation (4) is valid
for any wake function; instead of the gain g the coherent
tune shift Ω has to be used, which is the tune shift of the
collective mode in case of no tune spread. Thus, for an
arbitrary wake,

−
�Z Z

dJxdJy
Jx

∂F
∂Jx

ν − ΔωðJx; JyÞ þ io

�−1
¼ Ω; ð6Þ

see more details in Refs. [4,5].
Without wakes but with the antidamper, the bunch is

stable provided that the gain g lies below the Vaccaro
diagram. Otherwise, the rigid-bunch collective mode, or
zeroth mode, would be unstable. For the wake-driven
instabilities, the bunch is stable if and only if each of its
collective tune shifts lies below the Vaccaro diagram.
The possibility for the bunch to be stable even if the

feedback or the wake are destabilizing to some degree is a
demonstration of the Landau damping, a self-stabilizing
mechanism based on the resonance interaction between
the coherent and incoherent degrees of freedom, i.e.,
the resonance between collective modes and individual
particles [6,7].
Historically, the idea of the stability diagram has been

suggested and then used for decades for the case of wakes
and machine impedances, not for the antidampers. The
latter was proposed as a way to measure the diagram,
making use of our ability to change the complex gain, while
the machine wake function is normally just given. The
proposed idea was recently implemented at the LHC by
Antipov et al. [8].
Measuring of the stability diagram opens the door to a

specific beam diagnostics. Indeed, with known incoherent
tune dependence ΔωðJx; JyÞ, the Vaccaro diagram is
determined by the distribution function only. Obviously,
the entire distribution function FðJx; JyÞ cannot be
obtained from such measurements: a function of two
arguments is not extractable from a function of one argu-
ment, which Vaccaro diagram is. We will see below, that
what can be generally extracted from a single diagram,
are two 1D projections of the full distribution, FxðJxÞ ¼R
dJyFðJx; JyÞ and FyðJyÞ ¼

R
dJxFðJx; JyÞ. Such an

objective can be called the diagram inversion problem.
Indeed, the conventional forward problem requires finding
the diagram when the distribution function is given. The
inverse problem requires the opposite: finding the distri-
bution function when the diagram is given. Such inversion
of the diagram can be treated as a particular case of the
inverse stability problem, which, in turn, is a particular case
of the general inverse problem:

An inverse problem in science is the process of
calculating from a set of observations the causal
factors that produced them: for example, calcu-
lating an image in x-ray computed tomography,
source reconstruction in acoustics, or calculating
the density of the Earth from measurements of its
gravity field. It is called an inverse problem
because it starts with the effects and then calcu-
lates the causes. [9].

Inverse problems have wide application in many areas
of science and technology. Below we will see how the
inversion of the Vaccaro diagram can be effectively done
and then discuss effects of the chromaticity, x=y coupling,
octupole tilts, and machine impedances.

II. ONE-DIMENSIONAL CASE

Let us deal first with 1D case, when the nonlinearity is
fed predominantly either from the y plane (orthogonal to
the plane of the collective mode) or from the x plane, same
as the one of the collective mode. Let it also be assumed
that the nonlinearity is of the lowest order, i.e., caused by
octupoles, so that ΔωðJx; JyÞ ¼ kJy for the alien case, or
ΔωðJx; JyÞ ¼ kJx for the own case. Without compromising
any generality, we may assume the octupole strength k > 0
and choose such units of the actions that k ¼ 1. In this
situation, the dispersion equation reduces to

�Z

dJy
FyðJyÞ

ν − Jy þ io

�−1
¼ g ð7Þ

for the alien case. For the own one, it is obtained from here
by the substitutions Jy → Jx and Fy → −Jx

∂Fx
∂Jx

. Examples
of 1D own and alien Vaccaro diagrams for the normalized
Gaussian distribution FðJx; JyÞ ¼ expð−Jx − JyÞ are pre-
sented in Fig. 1. Note that both diagrams are essentially

FIG. 1. Normalized Vaccaro diagrams for the Gaussian dis-
tribution when the octupole nonlinearity is fed from the alien
(blue) or own (yellow) planes. The emittances and nonlinearity
coefficients are unitary. Both curves scale linearly in both
directions with the emittances and nonlinearity coefficients.

ALEXEY BUROV PHYS. REV. ACCEL. BEAMS 26, 082801 (2023)

082801-2



single-sided, mostly located at ℜg > 0. For the negative
nonlinearity, k<0, the diagrams would be mirror-reflected,
being nonzero essentially at the negative side of the
abscissa. This single-sidedness of the diagram can be
interpreted as a demonstration of a relatively small shift
of the coherent tune by the octupole tune spread. In such a
case, the resonance between the coherent and incoherent
oscillations may occur only when the wake shifts the
collective tune to the same direction where the incoherent
tunes are shifted by the octupoles.
Below in this section we suggest two methods of getting

1D distribution function from the stability diagram.

A. Core-fit

A straightforward possibility to proceed opens at suffi-
ciently large ν, so that

R∞
ν dJyFy ≪ 1. In this case the

dispersion integral of the last equation can be taken
asymptotically:

Z

dJy
FyðJyÞ

ν − Jy þ io
≃
1

ν
− πiFyðνÞ: ð8Þ

Consequently, Eq. (7) reduces to a fairly simple form,

νþ πiν2FyðνÞ ≃ g; ð9Þ

or, for the real and imaginary parts of the gain,

ℜg ≃ ν; ℑg ≃ πν2FyðνÞ: ð10Þ

Since the Vaccaro diagram is nothing but a function
ℑgðℜgÞ, the solution of the inversion problem for the tail
particles follows,

FyðνÞ ≃
ℑgðνÞ
πν2

: ð11Þ

As noted above, for the own case, the results are obtained
by a substitution Fy → −Jx

∂Fx
∂Jx

,

−ν
∂FxðνÞ
∂ν

≃
ℑgðνÞ
πν2

: ð12Þ

These asymptotic relations provide solutions for the tail
or halo particles.
A possible way to solve the problem for the bunch core is

to assume that the distribution function belongs to a certain
family of functions with few free parameters, fitting them to
the measured diagram within its core region. For example,
one may try to do the fitting with a binomial distribution
function FðJÞ ∝ ð1 − J=J0Þn, with a scale parameter
J0 > 0, a power parameter n ≥ 0, assuming 0 ≤ J ≤ J0.
A special advantage of this choice is that the dispersion
integrals can be analytically taken, being expressed in terms
of the hypergeometric function both for the alien and own

cases. If the core of the beam distribution can be well
described by a smooth monotonic function, one may expect
that such a choice for the fitting candidates would provide a
sufficient accuracy for the diagram core. Note that J0 < 0
and n < −1 for all J ≥ 0 can be tried for such binomial
distributions as well, with the same advantage of the
analytical expression of the dispersion integral.
To facilitate work with this family of the fitting candi-

dates, Figs. 2 and 3 provide plots for the aspect ratio of the
stability diagram versus the power parameter n, for both
alien and own cases. The aspect ratio A is defined as a ratio
of the diagram’s full width at half maximum ΔℜgFWHM, to
the maximum itself,

A ¼ ΔℜgFWHM=maxℑg: ð13Þ

FIG. 2. Aspect ratio A of 1D stability diagram, the alien case,
versus the power n of the binomial distribution function
∝ ð1 − J=J0Þn, nJ0 > 0. Note that limn→−2A ¼ ∞. The dashed
line marks the asymptote, FðJÞ ¼ J−10 e−J=J0 , J0 > 0.

FIG. 3. The same as Fig. 2 for the own case. Here limn→−2A ¼ ∞
as well.
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One may use these plots in the following way: First, the
aspect ratio A of the measured diagram has to be computed.
Then, the corresponding power parameter n can be found
from either Fig. 2 or Fig. 3, depending on the case. After
that, the scaling parameter J0 of the obtained binomial
distribution can be found as a best fit to the measured
diagram core. If the resulting agreement were not good
enough, two options could be considered. The first one is to
try a different family of the candidate functions, possibly
with more fitting parameters. The second option is to use an
iterative method with some initial guess function instead.
An example of such a method is presented below.

B. Iterative four-leg walk

Whatever the measured diagram is, we may consider
the described binomial fit as an initial guess FinðJÞ for the
sought-for distribution function. After that, we may do
the following four consecutive steps: (1) Compute the
dispersion integral of Eq. (7) numerically for sufficiently
extended and dense set of the eigenvalues ν with the input
distribution function FinðJÞ, and so find ℜgðνÞ as a table
with possible interpolation. (2) Obtain the imaginary part
ℑgðνÞ for each value of the real part ℜgðνÞ from the
measured diagram. (3) Having thus the full complex gain
gðνÞ ¼ ℜgðνÞ þ iℑgðνÞ, compute an updated distribution
function, FoutðνÞ ¼ −π−1ℑg−1ðνÞ. (4) Normalize the
updated distribution, FoutðνÞ → FoutðνÞ=

R
FoutðJÞdJ, and

then use it as a new input at the first iterative step,
FoutðJÞ → FinðJÞ. These four consecutive steps constitute
an iterative four-leg walk, which can continue as long as
needed.
The walk has to deal with some obstacles, however. The

first one is clear for the alien case. As one can see in Fig. 1,
a part of the alien diagram at the negative arguments is a
two-valued function and each of its branches includes a
point with infinite derivative, so the second leg stumbles
at ℜg ≤ 0. To avoid this stumbling block, the involved
interval of the actions J (and thus, the eigenvalues ν) can be
limited from below, ν ≥ νmin, to guarantee that only
positive values of the diagram abscissa are involved at
step 2. However, the distribution at smaller actions,
J < νmin, is needed at steps 1 and 4, so the extrapolation
of the output distribution for those small arguments is
needed. The second obstacle relates to the numerical
stability and convergence of the process, which may require
even larger lower border of the actions than the first
obstacle requires.
Figure 4 demonstrates how the algorithm works for the

Gaussian distribution, with νmin ¼ 0.7. The convergence is
extremely fast, but the algorithm gets numerically unstable
at small actions, J ≲ 0.5, for a lower value of the border
νmin. The cost of the extrapolation is a possible loss of the
distribution details at the area of small arguments, J < νmin.
The same algorithm can be applied to the own case too,

of course. Since the stability diagram is everywhere a

single-valued function now, as can be seen in Fig. 1, we
might expect that the small-action problem will not appear.
Such an expectation would be wrong, however. The
instability problem at small actions takes place here as
well, when the border νmin is not sufficiently large. In fact,
the stability may require even higher border here than for
the alien case for the same actual and guess distributions.
As a consequence, a deviation of the converged distribution
from the actual one may be significant. This deviation can
be reduced, however, since the stability requirement on νmin
is relaxed when the computed distribution moves closer to
the actual one. An example of such iterations is presented in
Fig. 5, where νmin was reduced by almost a factor of 2
within the entire process. The corresponding behavior of
the average emittance ϵ ¼ R

JFdJ is shown in Fig. 6,
where δϵ is the difference between the computed and actual
emittances.
Thus, we may conclude, that the suggested four-leg-walk

algorithm seems to provide generally a fast convergence of

FIG. 4. An example of the iteration convergence for the alien
case, νmin ¼ 0.7. Here “true” means the distribution responsible
for the “measured diagram”; “0” means the initial guess of the
distribution, while “1” and “2” stand for the output distributions
after the first and second four-leg moves of the algorithm. The
latter is clearly very fast, but it becomes unstable at small actions,
J ≲ 0.5, for a slightly smaller border νmin.

FIG. 5. Distribution convergence for the own case. The con-
vergence parameter νmin was reduced from 1.5 for the first four
iterations to 1.2 for the next three iterations, then to 1.0 for the
following two steps, and 0.8 till the end.
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the computed distribution to the actual one. However, one
should pay attention to the numerical stability and system-
atic deviation issues by following a proper strategy with the
border parameter νmin.

III. TWO-DIMENSIONAL CASE

Let us move on now to a more general case, when the
octupole nonlinearity is provided from both planes,
ΔωðJx; JyÞ ¼ kxJx − kyJy. The reason why signs of the
own and alien contributions are opposite here relates to
the demonstrated single-sidedness of the 1D case, when the
resonant particles effectively exist only for a certain sign of
the real part of the coherent tune shift or the antidamper
gain ℜg. For real beams, however, the coherent tune shifts
may be of both signs, so their Landau damping requires the
stability diagram to cover both positive and negative tune
shifts. That is why the Landau octupoles have to provide, if
possible, opposite signs of the own and alien contributions
to the incoherent tune shifts. With this notation, assuming
kx;y > 0, suppression of collective modes with positive tune
shifts requires sufficient x emittance, while stability of the
modes with negative tune shifts needs the same from the
y plane. This separation of x=y responsibilities suggests an
algorithm of the diagram inversion for the 2D case.
First, the halo distribution functions Fy and Fx can be

found from Eq. (11), applied to the negative side of the
diagram, and from Eq. (12), applied to the positive side,
correspondingly. For the core distribution, the same fitting
idea can be applied as for the 1D case, with the binomial or
a similar distribution function within two sigmas or so.
Again, the positive side of the diagram would be mostly
affected by the x emittance, and the negative side by the
y one.
Figure 7 illustrates how this x=y, or þ=− separation

looks like in the example of the LHC octupoles and
Gaussian bunches, as they were assumed in Ref. [5], at
the top energy and for 550A of the octupole current. The
coherent tune shift Δq is taken there in the conventional
units of the revolution frequency. The diagrams are

computed for the normalized rms emittances, as they are
specified there in the conventional mmmrad units. Note
that doubling of the x emittance approximately doubles the
diagram scale at the positive side, making a much smaller
effect at the negative side; the opposite is true for the y
emittance. That is why the 1D aspect ratios for the binomial
distributions, Figs. 2 and 3, should provide good initial
approximations for the 2D case too if the actual partial
distributions are binomial or close to them. Keeping in
mind theþ=− separation, one may see that the aspect ratios
for the 2D Gaussian case of Fig. 7 are fairly close to the 1D
numbers 5.0 (alien) and 4.2 (own).
Since both Fy and Fx distributions can be found from

single-plane measurements, the method allows a consistency
check by means of measuring the diagrams for both planes.
A question may be asked if it is possible to extend the 1D

iterative four-leg-walk algorithm to 2D situation, or to
invent for 2D another iterative algorithm. So far, I do not
know the answer.

IV. CHROMATICITY

The above consideration tacitly assumed that the chro-
maticity is negligible. If it is not, it can be taken into
account as described below according to Ref. [10].
In a presence of the chromaticity, the antidamper excites

all the headtail modes, whose coherent tune shifts Ω can be
found from the following equation:

g
X∞

l¼−∞

Kl

Ω − lωs
¼ 1; ð14Þ

with g as the antidamper gain, ωs as the synchrotron
frequency. The form factors Kl are determined by the rms
headtail phase ζ, which is the rms chromatic tune spread in
the units of the synchrotron frequency,

Kl ¼
Z

∞

0

J2l ðζrÞfðrÞrdr; ð15Þ

FIG. 6. Emittance convergence, in %, for the same case as in
Fig. 5.

FIG. 7. Vaccaro diagrams calculated for a Gaussian bunch at
the LHC top energy for 550 A of the octupole current, yielding
kx ¼ 1.0 × 10−4, ky ¼ 0.7 × 10−4 for the normalized rms emit-
tances 2.5 mmmrad; for more details see Ref. [5]. Gaussian
normalized rms emittances for each curve are shown.
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where Jl is the Bessel function, and fðrÞ is the normalized
longitudinal phase space density,

Z
∞

0

fðrÞrdr ¼ 1 ð16Þ

versus the radial amplitude r, whose units are chosen
so that

Z
∞

0

fðrÞr3dr=2 ¼ 1: ð17Þ

Note that

X∞

l¼−∞
Kl ¼ 1 ð18Þ

for any chromatic factor ζ and any distribution function
fðrÞ. For the Gaussian bunch, fðrÞ ¼ expð−r2=2Þ, the
form factor integrals can be analytically taken,

KlðζÞ ¼ expð−ζ2ÞIlðζ2Þ; ð19Þ

where Il is the modified Bessel function. Plots of the first
three form factors, together with their common asymptote,
are presented in Fig. 8.
Let us reduce our analysis of Eq. (14) by the case of

small or moderate chromaticity, jζj≲ 1, considering two
limit cases, a very small gain, jgj ≪ ωs and a very large
one, jgj ≫ ωs. In the former case, the gain is distributed
among the headtail modes according to the form factors, so
the coherent tune shifts for the headtail modes are

Ωl ¼ lωs þ gKlðζÞ: ð20Þ

In the latter case, the rigid-bunch mode is formed; it takes
the entire gain, Ω ¼ g, so the chromaticity does not play a
role. Due to its insensitivity to the chromaticity, this case
presents a special interest for the suggested diagnostics.

Another benefit of a sufficiently large gain relates to
the lesser effects of the machine impedances, whose
knowledge is rather imprecise usually. Note that in case
of larger chromaticity, jζj ≥ 1, this rigid-bunch regime
requires jgj ≫ ωsjζj.

V. OTHER FACTORS

Above, the machine optics was assumed to be
uncoupled. In principle, the described diagnostics could
work for coupled x=y optics too. However, coupling would
bring additional problems. For the coupled case, it is harder
to control both the nonlinear optical coefficients k of the
Landau octupoles, and the coherent tune shifts of the
antidamper. Also, for strong coupling, the octupole coef-
ficients k could drop dramatically, down to zero for
circular modes.
A similar problem is associated with erratic tilts of the

octupoles. If an octupole is tilted by an angle θ, its effect
decreases as cosð4θÞ ≈ 1–8θ2. Thus, the error bar of 1% or
less requires jθj ≤ 2°.
One more potential source of the error bars relates to the

machine impedances, or the wakefields, as well as to the
coherent effects of the image charges and currents. Indeed,
such factors introduce their own, typically poorly known,
coherent tune shifts and modify the beam response to the
antidamper. To suppress such effects, high octupole and
high gain settings would help. To make sure that those
settings are high enough, the linear scaling of the diagram
with the octupole strength could be checked.
For proton beams at low and medium energy, the

space charge is almost always important. We did not
consider it here, leaving this issue for future research.
Another interesting area of the inverse stability problem,
completely untouched here, is one associated with the alien
longitudinal-to-transverse Landau damping.

VI. SUMMARY

A novel method is suggested for finding beam phase
space densities by means of the stability diagrams mea-
sured with an antidamper, with a further solution of an
inverse stability problem.
Two algorithms are suggested for that matter, fitting and

iterative ones. Their effectiveness and possible problems
are demonstrated for the 1D case. For 2D diagram, the
fitting algorithm should generally be as useful as for 1D
cases. Generally, a single 2D diagram should allow to find
two 1D phase space densities. The iterative algorithm is yet
to be invented for 2D case.
Effects of the chromaticity, coupling, octupole tilts, and

machine impedances are discussed.
Provided that the provoked instabilities are detected

at their initial stage, and a sufficiently fast reduction
of the gain follows, the suggested method can be
nondestructive.

FIG. 8. Headtail form factorsKn for a Gaussian bunch, together
with their asymptote, versus the rms headtail phase ζ.
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