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The amplitude dependent tune shifts from either space charge or beam-beam interactions are calculated
analytically with the inclusion of synchrotron oscillations and multiple interactions around the ring.
Simpler formulas are derived under limits of bunches longer than the transverse sizes, equal and unequal
transverse sizes, etc. This is used to derive semianalytical forms for the density distribution of the tune
shifts. The tune spread and the density distribution are needed to understand beam decoherence or Landau
damping with either interaction. The tune footprints due to space charge in IOTA are simulated using
PyOrbit and found to be in good agreement with the theoretical predictions.
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I. INTRODUCTION

The space charge interaction in a low energy synchrotron
and the beam-beam interaction in a collider are the
dominant contributors to the incoherent tune spread in
these machines. In this report, we calculate first the
incoherent amplitude dependent transverse tune shifts in
Gaussian beams due to either interaction. We generalize
these tune shifts to include the effects of synchrotron
oscillations and especially in the case of space charge,
we also include the contributions of the interactions from
multiple locations around the ring. Next, we calculate the
beam density distributions as a function of these tuneshifts.
This density distribution is needed to determine beam
stability in different conditions. In terms of scaled tune
shifts (defined in Sec. III), the density distribution has
exactly the same form for both space charge and beam-
beam interactions. However, the role of the tune spread and
the density in determining beam stability is very different in
the two interactions. The head-on beam-beam interactions
act as an external source of tune spread and can con-
sequently be used to provide Landau damping [1] while
with space charge, an external driving source such as
octupoles [2] or perhaps electron lenses [3] is required for
Landau damping. Nevertheless, even with space charge, the
contributions from the internal tune spread and the density
distribution have to be included in determining beam
stability. Another use of the incoherent tune spread with

either interaction is finding the beam decoherence time
when the centroid is offset from the center, e.g., due to a
dipole kick.
The calculation of tune shifts due to head-on beam-beam

interactions was reported in [4–6] while the fully 2D
calculation of tune spreads and resonance driving terms,
etc., was done, e.g., in [7]. These were then generalized to
long-range interactions [8] which were of greater interest in
the Tevatron. The expressions for head-on interactions are
easily found by taking the limit of zero separation. We note
that the space charge tune shifts with amplitude for round
beams without synchrotron oscillations were calculated in
[9] which used some of the methods in [7]. The density
distribution was extracted from numerical simulations, but
an insufficient sampling of the beam core led to an incorrect
form of the density, especially close to the core where the
space charge tune shift is largest. Our method is semi-
analytical, in that numerical inversion of analytical func-
tions followed by interpolation to obtain smooth functions
is required. We also check that the zeroth to second
moments of the distribution are preserved.

II. INCOHERENT TUNE SHIFTS WITH
SYNCHROTRON OSCILLATIONS

Here we consider the tune shifts with amplitude due to a
Hamiltonian with linear transverse motion, longitudinal
motion in an rf bucket, and either a space charge interaction
or a beam-beam interaction. In this section, we consider
first the Hamiltonian with a space charge interaction
experienced by a Gaussian distribution in three space
dimensions. At the end of this section, we consider the
beam-beam interaction and show that the tune shift with
amplitude scaled by the zero amplitude tune shift has the
same form as with space charge. The Hamiltonian in the lab
frame can be written in dimensionless form as
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H ¼ 1

2
½ðx0Þ2 þ ðy0Þ2 þ Kxx2 þ Kyy2�

þ e
β2γm0c2

ðVrf þ VSCÞ; ð2:1Þ

where ðx; y; x0; y0Þ are the phase space coordinates,
ðKx; KyÞ are quadrupole strengths, e is the unit of particle
charge, c is the speed of light, Vrf is the rf cavity voltage
wave form, and VSC is the electric potential due to the space
charge measured in the lab frame. Transforming to action-
angle variables ðJx;ϕx; Jy;ϕyÞ in the transverse planes, as,
e.g.,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2βxJx

p
cosϕx;

x0 ¼
ffiffiffiffiffiffiffi
2Jx

p � ffiffiffiffiffi
1

βx

s
sinϕx − 2αx cosϕx

�
: ð2:2Þ

This reduces the linear part of the transverse Hamiltonian to

H⊥;0 ¼
1

R
ðνx;0Jx þ νy;0JyÞ; ð2:3Þ

where ðνx;0; νy;0Þ are the tunes of the linear lattice and R is
the machine radius.
Consider a Gaussian distribution in three space dimen-

sions for a bunch; the same bunch experiencing its space
charge field or the opposing bunch for the case of beam-
beam interactions

ψðx; y; zÞ ¼ Ne

ð2πÞ3=2σxσyσz
exp

�
−

x2

2σ2x
−

y2

2σ2y
−

z2

2σ2z

�
; ð2:4Þ

where σx, σy, and σz are the rms bunch dimensions. The
solution of Poisson’s equation ∇2V ¼ −ψ=ε0 leads to the
following solution for the electric scalar potential [10]:

Vðx; y; zÞ ¼ 1

4πε0

Ne

π1=2γ

Z
∞

0

dq
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2σ2x þ qÞð2σ2y þ qÞð2γ2σ2z þ qÞ
q

�
1 − exp

��
−

x2

2σ2x þ q
−

y2

2σ2y þ q
−

γ2z2

2γ2σ2z þ q

��
;

ð2:5Þ

where the coordinates ðx; y; zÞ and the rms sizes ðσx; σy; σzÞ are measured in the rest frame. The complete Hamiltonian in
three degrees of freedom (3 d.o.f.) after scaling by R is

H ¼ νx;0Jx þ νy;0Jy þ
eR

β2γm0c2
Vrfðδp=p; zÞ þ RCSCV̄ðx; y; zÞ; ð2:6Þ

CSC ¼ Nprp
π1=2β2γ2

; ð2:7Þ

V̄ðx; y; zÞ ¼
Z

∞

0

dq
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2σ2x þ qÞð2σ2y þ qÞð2γ2σ2z þ qÞ
q

�
1 − exp

�
−

x2

2σ2x þ q
−

y2

2σ2y þ q
−

γ2z2

2γ2σ2z þ q

��
; ð2:8Þ

where rp ¼ e2=ð4πε0m0c2Þ is the classical particle radius.
The tunes follow from the derivatives of the angle-averaged
Hamiltonian.Wewill write only the expressions in x, the one
for y can be found by the replacement x ↔ y. Our focus is on
the transverse tune shifts with amplitude, thus we ignore
dominantly longitudinal effects such as longitudinal space
charge effects. We also do not consider the momentum
dependence of the transverse tunes or the modulation of the
revolution period by the synchrotron oscillations, these do
not have a noticeable effect on the dynamics in IOTAbecause
of the small synchrotron tune. We do include the impact of

synchrotron oscillations on the transverse dynamics via the
nonlinear interaction potential. With these assumptions, the
transverse tune shifts are given by

Δνx ¼ RCSC
∂

∂Jx
hV̄iϕx;ϕy;ϕz;s; ð2:9Þ

where the averaging is done over all three angles and over s,
the length along the ring. Hence after using action-angle
variables,

Δνx ¼ RCSC

Z
∞

0

dq
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2σ2x þ qÞ3ð2σ2y þ qÞð2γ2σ2z þ qÞ
q 2βxcos2ϕx exp

�
−
2βxJxcos2ϕx

2σ2x þ q
−

y2

2σ2y þ q
−

γ2z2

2γ2σ2z þ q

�
.
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Changing the integration variable from q to a dimensionless variable u as

u ¼ 2σ2x
ð2σ2x þ qÞ ;⇒ q ¼ 2σ2x

u
− 2σ2x:

This converts the infinite range of integration over q to a finite range of integration over u. Hence

Δνx ¼
RCSCβx
21=2σ2xγσz

Z
1

0

du

�
cos2ϕx

�
1

½ðσ2y=σ2x − 1Þuþ 1�
u

½ð1 − σ2x=γ2σ2zÞuþ σ2x=γ2σ2z �
�
1=2

× exp

�
−
2βxJxcos2ϕx

2σ2x
u −

2βyJycos2ϕy

2σ2y

u
2σ2y½ð1 − σ2x=σ2yÞuþ σ2x=σ2y�

−
γ2z2u

2γ2σ2z ½ð1 − σ2x=γ2σ2zÞuþ σ2x=γ2σ2z �
��

ϕx;ϕy;s
.

ð2:10Þ

In order to make progress, we need to assume that the longitudinal motion is simple harmonic. This implies that the rf
cavity force be linear of equivalently that we approximate the cosine term in Vrf by the first two terms in its Taylor
expansion. Writing the coordinates ðx; y; zÞ in terms of dimensionless amplitudes ðax; ay; azÞ and the corresponding rms
sizes ðσx; σy; σzÞ,

x ¼ axσx cosϕx; y ¼ ayσy cosϕy; z ¼ azσz cosϕz: ð2:11Þ

We use the integral representation of I0

I0ðwÞ ¼
1

π

Z
π

0

dθ exp½�w cos θ� ¼ 1

2π

Z
2π

0

dθ exp½�w cos 2θ�. ð2:12Þ

The integrals in the phase averages over ϕx;ϕy;ϕz are of the form

1

2π

Z
2π

0

dϕ exp½−wcos2ϕ� ¼ exp

�
−
1

2
w

�
I0

�
1

2
w

�
1

2π

Z
2π

0

dϕcos2ϕ exp½−wcos2ϕ� ¼ 1

2
exp

�
−
1

2
w

��
I0

�
1

2
w

�
− I1

�
1

2
w

��
.

Gathering all terms together, the final expression is

Δνxðax; ay; azÞ ¼ CSC
R

2
ffiffiffi
2

p
γσzεx

Z
1

0

du exp

�
−
a2xu
4

��
I0

�
a2xu
4

�
− I1

�
a2xu
4

��
exp

�
−
a2yu

4

�
exp

�
−
a2zu
4

�

×

��
1

½ðσ2y=σ2x − 1Þuþ 1�
u

½ð1 − σ2x=γ2σ2zÞuþ σ2x=γ2σ2z �
�
1=2

× I0

�
a2y
4

u
ð1 − σ2x=σ2yÞuþ σ2x=σ2y

�
I0

�
a2zu

4½ð1 − σ2x=γ2σ2zÞuþ σ2x=γ2σ2z �
��

s
. ð2:13Þ

From this general expression, we can obtain the tune shifts for special cases.

A. Bunch length longer than the transverse sizes

Using the general expression Eq. (2.13) in this limit where the transverse sizes are both negligibly small compared to the
bunch length, i.e., ðσx; σyÞ ≪ σz, we find

Δνxðax; ay; azÞ ¼ CSC
R

2
ffiffiffi
2

p
γσzεx

�Z
1

0

du exp

�
−
a2zu
4

�
I0

�
a2zu
4

�
exp

�
−
a2xu
4

��
I0

�
a2xu
4

�
− I1

�
a2xu
4

��

× exp

�
−
a2yu

4

��
1

½ðσ2y=σ2x − 1Þuþ 1�
�
1=2

I0

�
a2y
4

u
ð1 − σ2x=σ2yÞuþ σ2x=σ2y

��
s
. ð2:14Þ

DENSITY DISTRIBUTIONS OF TUNE SHIFTS … PHYS. REV. ACCEL. BEAMS 26, 080101 (2023)

080101-3



Equation (2.14) and a similar one for Δνy (with x ↔ y) are
of the form which is generally applicable for bunches in
hadron synchrotrons, even the low energy machines
where γ ≃ 1.
The tune shift at the origin is

Δνx;SCð0; 0; 0Þ

¼ RCSC

2
ffiffiffi
2

p
γεxσz

Z
1

0

du

��
1

½ðσ2y=σ2x − 1Þuþ 1�
�
1=2

�
s

¼ RCSCffiffiffi
2

p
γεxσz

				
�

1

1þ σy=σx

�
s
. ð2:15Þ

Substituting the expression for CSC and assuming round
beams at all locations, we obtain

Δνx;SC ¼ Nprp
β2γ2

R

2
ffiffiffiffiffiffi
2π

p
γσzεx

¼ rp
βγ2εx;N

λGR;

λG ¼ Np

2
ffiffiffiffiffiffi
2π

p
σz

; ð2:16Þ

where we used εx;N ¼ βγεx and λG is the longitudinal
density. These are the standard expressions for the space
charge tune shift parameters for Gaussian bunches. With a
coasting bunch, the longitudinal density is λ ¼ Np=ð2πRÞ.
The zero amplitude tune shifts for nonround beams can

be written as

Δνxð0; 0; 0Þ ¼ 2

�
1

σy=σx þ 1

�
s
Δνx;SC;

Δνyð0; 0; 0Þ ¼ 2

�
1

σX=σy þ 1

�
s
Δνy;SC. ð2:17Þ

These equations include the variation of beam sizes around
the ring.
At zero transverse amplitude in this limit of both long

and round bunches

Δνxð0; 0; azÞjLong;round
¼ Δνx;SC

Z
1

0

du exp

�
−
a2zu
4

�
I0

�
a2zu
4

�
≡ fzΔνx;SC;

ð2:18Þ

fz ¼ exp

�
−
a2z
4

��
I0

�
a2z
4

�
þ I1

�
a2z
4

��
; ð2:19Þ

where fz is the correction factor that describes the impact of
synchrotron oscillations. Hence fz plotted in Fig. 1 shows
that the small amplitude tune shifts due to the space charge
of a longitudinal slice decreases with distance z, falling by
half at az ¼ 3 corresponding to the edge of the bucket.
The caveat is that the longitudinal motion is not simple
harmonic; nevertheless, this curve should be accurate at
smaller amplitudes. The small transverse amplitude par-
ticles can oscillate over different synchrotron amplitudes;
we can average over the full range of these amplitudes.
Assuming a Gaussian distribution in az, we find

hfzi ¼
ffiffiffi
2

p ðπ2 − 2Γ½3=4�4Þ
π3=2Γ½3=4�2 ≃ 0.91. ð2:20Þ

We observe that synchrotron oscillation reduces the small
amplitude tune shift by about 10%. However, since
synchrotron oscillations have a much longer timescale
than betatron oscillations, this average value hfzi may
not be a useful indicator of their impact.
Zero synchrotron amplitude az ¼ 0 with arbitrary trans-

verse sizes leads to

Δνxðax; ay; 0ÞjLong ¼ Δνx;SC
�Z

1

0

du exp

�
−
a2xu
4

��
I0

�
a2xu
4

�
− I1

�
a2xu
4

��

× exp

�
−
a2yu

4

��
1

½ðσ2y=σ2x − 1Þuþ 1� I0
�
a2y
4

u
ð1 − σ2x=σ2yÞuþ σ2x=σ2y

���
s
. ð2:21Þ

FIG. 1. Correction factor fz for the reduction of the zero
amplitude tune shift as a function of the longitudinal
amplitude az.
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We observe that when the beams are not round, the tune
shift depends on the variation of the relative beam size
σy=σx around the ring. The average over the ring can be
calculated exactly with an integral evaluation at several
points along the ring or approximately by replacing the
average over the function by the function of the averaged

argument. This approach would require a single integral
and would be computationally faster. The quality of this
approximation will be evaluated in Sec. IV for IOTA
parameters.
With the further assumption of round bunches every-

where, the above simplifies to

Δνxðax; ay; azÞjLong;round ¼ Δνx;SC
Z

1

0

du exp

�
−
a2zu
4

�
I0

�
a2zu
4

�

× exp

�
−
a2xu
4

��
I0

�
a2xu
4

�
− I1

�
a2xu
4

��
exp

�
−
a2yu

4

�
I0

�
a2y
4
u

�
. ð2:22Þ

In most machines, the bunch is not round everywhere in the
ring; nevertheless, Eq. (2.22) can be used as a first
approximation for the tune shift with amplitude.
In Sec. IV, we evaluate the tune shifts for IOTA

parameters and consider the impact of synchrotron oscil-
lations and the round beams approximation on the trans-
verse tune shifts.

B. Beam-beam tune shifts

The beam-beam tune footprint can be found in a similar
fashion as given above. The major difference is that in a
collider, the particles all move at very relativistic speed, so
β ≃ 1, γ ≫ 1. Consequently, there is a large increase in the
transverse fields in going from the rest frame to the lab
frame due to the Lorentz boost while the longitudinal fields
are unchanged,

E⊥;lab ≃ γE⊥;rest ¼ −γ∇⊥VBB; Ez;lab ¼ Ez;rest;

Bx;lab ¼
Ey;lab

β
; By;lab ¼ −

Ex;lab

β
: ð2:23Þ

Here VBB is the scalar potential for the beam-beam
interaction and is the same as VSC except that the beam
parameters are of the opposing bunch. The net force due to
the electric and magnetic fields is in the same direction for
beam-beam interactions and oppose each other with space
charge. While the space charge forces act radially outward
in all directions, the beam-beam forces are almost entirely
in the transverse plane emanating from a squashed pancake

like disc traveling with the opposing beam. In most
circumstances, we can think of the opposing beam as
being pointlike along the direction of motion and the beam-
beam potential as effectively two dimensional. The longi-
tudinal density has a role to play in beam-beam interactions
in effects such as phase averaging in long bunches [11,12]
or when hourglass effects [13] or crossing angles are
introduced; see [14] for a recent calculation of the lumi-
nosity and beam-beam tune shifts with both these effects in
a Higgs factory eþ − e− collider.
In most cases where the beam-beam interaction is 2D,

the results of Sec. II A are applicable here because γ ≫ 1.
Following the same procedure as in obtaining Eq. (2.17)
leads to the beam-beam tune shift at the origin

Δνx;bb ¼
rpNpβ

�
x

2πγ

1

σ�xðσ�x þ σ�yÞ
;

Δνy;bb ¼
rpNpβ

�
y

2πγ

1

σ�yðσ�x þ σ�yÞ
; ð2:24Þ

where β�x; β�y; σ�x; σ�y are the values at the IP and we assumed
that the beam parameters are the same at all the IPs.
The important point here is that both the space charge

and the beam-beam potential have the same dependence on
the transverse amplitudes, consequently, the two footprints
are the same if we scale out the zero amplitude tune shifts.
Thus, the horizontal beam-beam tune shift at transverse
amplitudes ðax; ayÞ can be written down using Eq. (2.21)

Δνx;bbðax; ayÞ ¼ Δνx;bb
Z

1

0

du exp

�
−
a2xu
4

��
I0

�
a2xu
4

�
− I1

�
a2xu
4

��
exp

�
−
a2yu

4

�

×
�

1

½ðσ2y=σ2x − 1Þuþ 1� I0
�
a2y
4

u
ð1 − σ2x=σ2yÞuþ σ2x=σ2y

��
ð2:25Þ

and a similar expression holds in the vertical plane.
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III. DENSITY DISTRIBUTION IN TUNES

We saw in the previous section that the beam andmachine
parameters describing the space charge and beam-beam tune
shifts are all included in the zero amplitude tune shifts
Δνx;sc;Δνy;sc. It is therefore useful to describe the universal
functions of the dimensionless amplitudes as

ξxðax; ay; azÞ ¼
Δνxðax; ay; azÞ

Δνx;sc
;

ξyðax; ay; azÞ ¼
Δνyðax; ay; azÞ

Δνy;sc
: ð3:1Þ

The functions ξx, ξy are universal in the sense that their
behavior describes the amplitude dependence for any
machine. In this section, we consider the distribution
assuming a Gaussian distribution in phase space.

A. Density distribution in 1D

We start with the tune density distribution in 1D for the
sake of clarity. The density in action jx is transformed to the
dimensionless amplitude variable αx as

ρðjxÞ ¼
1

εx
exp

�
−
jx
εx

�
¼ 1

εx
exp½−2αx�; αx ¼

a2x
4
¼ jx
2εx

;

ð3:2Þ

ρðαxÞ ¼ ρðaxÞ
�
∂αx
∂ax

�
−1

¼ ax exp

�
−
1

2
a2x

�
½ax=2�−1

¼ 2 exp½−2αx�. ð3:3Þ
Now we need to transform from the amplitude to the scaled
tune shift which implies

ρðξxÞ ¼
ρðαxÞ

dξx=dαx
¼ 1

2
exp½−2αx�

×

�Z
1

0

du u½H0
0ðαxuÞ −H0

1ðαxuÞ
�
−1
; ð3:4Þ

HnðzÞ≡ exp½−z�InðzÞ. ð3:5Þ

Hence, using the tune shift expression in 1D

ξxðαxÞ ¼
Z

1

0

du½H0ðαxuÞ −H1ðαxuÞ�; ð3:6Þ

ρðξxÞ ¼ ρðαxÞ
�
∂ξx
∂αx

�
−1

¼ 2 exp½−2αx�
�Z

1

0

duu½H0
0ðαxuÞ −H0

1ðαxuÞ
�
−1

ð3:7Þ

FIG. 2. Top: Tune shift ξ as a function of the scaled amplitude
ax ¼ 2

ffiffiffiffiffi
αx

p
, ax is the transverse amplitude in units of the rms size;

Middle: the inverse function αxðξÞ. Bottom: the density distri-
bution as a function of the tune shift.
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≡ 2
exp½−2αx�
Jacðαx; ξxÞ

. ð3:8Þ

Here Jacðαx; ξxÞ is the Jacobian of the transformation from
αx → ξx. Equation (3.6) defines ξx as a function of αx.
Inverting this relation (numerically) defines αx as a function
of ξx. We denote this function αfðξxÞ. Inserting this
function back into Eq. (3.8) yields the functional form

ρðξxÞ ¼ 2
exp½−2αfðξxÞ�
Jac½αfðξxÞ�

. ð3:9Þ

In 1D, the inverse function is straightforward to obtain.
Figure 2 shows plots of the function ξxðαxÞ and the inverse

function αfðξxÞ which resembles a one-sided delta
function.
The pth moment of the tune shift, i.e., hξ0xi (the norm),

hξ1xi; hξ2xi;… should agree in any coordinate system used
for the density distribution. We can use this to test the
accuracy of the distribution in ξx. The two lowest moments
can be calculated analytically using the known functional
forms in terms of αx.

Z
1

0

ρðξxÞdξx ¼
Z

∞

0

ρðαxÞdαx ¼ 2

Z
∞

0

exp½−2αx�dαx ¼ 1;

ð3:10Þ

hξxi ¼
Z

∞

0

ξðαxÞρðαxÞdαx ¼ 2

Z
∞

0

exp½−2αx�dαx
Z

1

0

du½H0ðαxuÞ −H1ðαxuÞ�

¼ 2

Z
∞

0

dαx

Z
1

0

du exp½−ð2þ uÞαx�½I0ðαxuÞ − I1ðαxuÞ�. ð3:11Þ

Weuse the integration result from the table of integrals in [15]

Z
∞

0

e−αzIpðβzÞdz ¼
βpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − β2
p

ðαþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − β2

p
Þp

. ð3:12Þ

Doing the integral over αx first followed by the integration
over u, we find

hξxi ¼
Z

∞

0

dαx exp½−ð2þ uÞαx�½I0ðαxuÞ− I1ðαxuÞ�

¼
Z

1

0

du

�
1ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p −
1ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p u

ð1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p Þ2
�

ð3:13Þ

¼ 4ðarcsinh½1� − log½2�Þ ¼ 0.752906. ð3:14Þ

Numerically, the moments can also be calculated using
either ρðαxÞ or ρðξxÞ. The results are shown in Table I where
numerical A uses the first method and numerical B uses the
second. The fact that the moments calculated numerically
with numerical B agrees exactly with the other methods
gives confidence that the expression for the density dis-
tribution in tune shift ρðξxÞ is correct.
Finally, we calculate the median tune shift which by

definition is the value at which the number of particles is
the same both above and below the median value ξm, i.e.,

Z
ξm

0

ρðξxÞdξx ¼
Z

∞

ξm

ρðξxÞdξx ¼ 0.5 → ξm ¼ 0.783.

ð3:15Þ

The density distribution ρðξxÞ along with the average and
median tune shifts are indicated in the bottom plot of Fig. 2.

The 1D density vanishes in the range a ≤ ξx ≤ 0.2 and
reaches a maximum at ξx ¼ 1, as expected since that is the
region of maximum density.

B. Density distribution in 2D

The procedure is the same as in 1D, but the details are
slightly different because first a nonlinear equation in two
variables has to be solved followed by a 2D interpolation is
required. Let the density in the tune space be ρðξx; ξyÞ. By
the conservation of particle number,

ρðαx; αyÞdαxdαy ¼ ρðξx; ξyÞdξxdξy ð3:16Þ

which implies

TABLE I. Moments of the density distribution calculated in
different ways in 1D and 2D. The two numerical ways, labeled as
i and ii, describe using the density in amplitude space ρðαx; αyÞ
and tune space ρðξx; ξyÞ, respectively. In all cases, numerical A is
the more accurate.

Analytical Numerical A Numerical B

1D
Normalization 1.0 1.0 1.0
hξxi 0.752906 0.752906 0.752906
hξ2xi Not applicable 0.597766 0.597766
ξx;rms Not applicable 0.175782 0.175782

2D
Normalization 1.0 1.0 0.981
hξxi 0.633389 0.633389 0.629
hξ2xi Not applicable 0.4293 0.4596
ξx;rms Not applicable 0.1678 0.253
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ρðξx; ξyÞ ¼ ρðαx; αyÞ=Jacðξx; ξy; αx; αyÞ; ð3:17Þ

where

Jacðξx; ξy; αx;αyÞ ¼
				
				
∂ξx
∂αx

∂ξx
∂αy

∂ξy
∂αx

∂ξy
∂αy

				
				. ð3:18Þ

The density can be written as

ρðαx; αyÞ ¼ 4 exp½−2αx − 2αy�: ð3:19Þ

In terms of these variables, the scaled tune shifts are

ξxðαx; αyÞ ¼
Z

1

0

du½H0ðαxuÞ −H1ðαxuÞ�H0ðαyuÞ; ð3:20Þ

ξyðαx; αyÞ ¼
Z

1

0

duH0ðαxuÞ½H0ðαyuÞ −H1ðαyuÞ�. ð3:21Þ

The derivatives are found for example as

∂ξx
∂αx

¼
�Z

1

0

du uH0ðαzuÞ½H0
0ðαxuÞ −H0

1ðαxuÞ�H0ðαyuÞ
�
.

ð3:22Þ

These can be used to write the density in tune space using
Eqs. (3.17)–(3.19) in terms of αx, αy. Doing so yields

ρðξx; ξyÞ ¼ 4
exp½−2αx − 2αy�
Jacðξx; ξy; αx; αyÞ

. ð3:23Þ

The rhs of this equation, however, is a function of the
amplitudes ðαx; αyÞ while what we want is a function of the
scaled tune shifts ðξx; ξyÞ. That requires an inversion of
Eqs. (3.20) and (3.21). It is done in two steps: (i) solving
these nonlinear equations to find αx, αy as functions of ξx,
ξy and (ii) interpolating these to write these as smooth
functions of ξx, ξy. Figure 3 shows the complete density
ρðξx; ξyÞ as a function of ξx, ξy viewed from two different
angles as well the projected density ρxðξxÞ on the ξx axis,
which is obtained by integrating over the ξy axis, i.e.,

ρxðξxÞ ¼
Z

1

0

dξy ρðξx; ξyÞ: ð3:24Þ

The density is exactly symmetric along the ξx ¼ ξy axis,
as it must be for round beams. The second plot shows that
the density is zero at the origin and we observe that along
either the ξx axis or the ξy axis, the density is similar to the
1D density profile seen in Fig. 2. The projected density
does not vanish at ξx ¼ 0 and it has a maximum around
ξx ¼ 0.9 rather than at ξx ¼ 1. A little thought shows that is

true of any density that has a nonvanishing dependence on
both αx, αy.
The moments of the distribution are found as before

hξxi ¼
Z

∞

0

dαx

Z
∞

0

dαyξxðαx; αyÞρðαx; αyÞ

¼ 4

Z
1

0

du
Z

∞

0

dαx

Z
∞

0

dαy½H0ðαxuÞ −H1ðαxuÞ�

×H0ðαyuÞ exp½−2αx − 2αy�.
ð3:25Þ

For the integration over αy, we use the same integral result
in Eq. (3.12) to obtain

FIG. 3. Top: density ρðξx; ξyÞ vs the scaled tune shifts ξx, ξy.
Middle: this plot shows the density from a different angle, it
shows, e.g., the density along the ξx and also along the ξy axes.
Bottom: the projected density ρx along the ξx axis. It is nonzero at
ξx ¼ 0 and it has a maximum at a value less than ξx ¼ 1.
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Z
∞

0

H0ðαyuÞ exp½−2αx − 2αy�dαy ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p .

Combining this integration and doing the final integral over
u, we find

hξxi ¼ 4 ln

�
2

ffiffiffi
2

p
ffiffiffi
2

p þ 1

�
¼ 0.633389. ð3:26Þ

The moments calculated numerically using both methods
used for the 1D distribution are shown in Table I. The
normalization is not quite unity with the second method.
We attribute this ∼2% error to numerical issues in the
inversion and interpolation required to find the functions
αxðξx; ξyÞ; αyðξx; ξyÞ. This can be used to find the correct
moments by dividing the raw moments by the normaliza-
tion. With this correction, the error in the first moment is
∼0.7% while the error in the second moment is 7%.
Webriefly consider the application of these results to beam

stability with octupoles and space charge, a more detailed
study will be reported elsewhere. Typically, the stability is
considered using the dispersion relation with a 2D betatron
spread from both octupoles and space charge. This relation
was used to derive stability curves [16] with a parabolic
transverse densitywhich results in a space charge tune spread
linear in the actions that matches the octupolar tune spread
dependence. It may be possible to use the exact space charge
tune spread Δνx;SCðax; ayÞ ¼ Δνx;SCξzðax; ayÞ to obtain
stability curves for Gaussian bunches. The extension to
3D stability is in principle straightforward, using the 3D
space charge tune shifts ξx;yðax; ay; azÞ found in Sec. II. A
more direct use of the density curves derived in this section
would be to check the results derived from PIC simulations
against the exact results obtained here. We also note that the
rms tune spread calculated in Table I may be directly related
to the decoherence time following a kick; this time in 2D is
longer than the typical 1=ΔνSC timescale associated with 1D
decoherence.

IV. APPLICATION TO IOTA

IOTA is an accelerator that was designed to test the
concept of nonlinear integrable lattices [17]. The R & D
program with electrons and protons was discussed in [18].
The ring has been operated with electrons since commis-
sioning began and several notable results have been
achieved, including the demonstration of optical stochastic
cooling [19]. Proton operation is scheduled to begin in
2024 when the concept of achieving high space charge tune
shifts with a nonlinear integrable lattice will be tested.
In this section, we will evaluate the space charge foot-

prints theoretically and compare them with particle
tracking. This is done in an otherwise completely linear
lattice; we note that emittance growth and beam loss were
studied in a partially integrable lattice with octupoles in
[20]. Table II shows the relevant parameters of the IOTA

proton ring. First, we consider whether the beam is
sufficiently round everywhere in the ring for the round
beam expressions for the footprint to be applicable.
Figure 4 shows the ratio of the vertical to horizontal beam
sizes along the ring. The ratio varies between 0.5 and 5.0
with a mean value of 1.2. The mean value may not be
relevant here, as the fluctuations are fairly large. We
therefore use the general expression for the tune shifts
but we also compare with the round beam forms as well as
an approximation discussed in Sec. II. We discuss first the
theoretical footprints under the different assumptions dis-
cussed in Sec. II. In the limit of long bunches, which is
valid for IOTA, we can use Eq. (2.13). This involves
calculating the tune shift at each longitudinal location and
averaging over the locations. This method requires doing
an integration at each location. We can reverse the order
and instead do the averaging first and do a single integra-
tion instead.

TABLE II. Machine and beam parameters of the IOTA proton
ring.

IOTA proton parameters

Circumference 39.97 (m)
Kinetic energy 2.5 (MeV)
Maximum bunch intensity/current 9 × 1010=8 (ma)
Transverse normalized rms emittance (0.3, 0.3) (mmmrad)
Betatron tunes (5.3, 5.3)
Natural chromaticities (−8.2, −8.1)
Average transverse beam sizes (rms) (2.22, 2.22) (mm)
Kinematic γ/transition γt 1.003=3.75
rf voltage 400 (volts)
rf frequency/harmonic number 2.2 (MHz)/4
Bucket length ∼10 (m)
Bucket half height in δp=p 3.72 × 10−3

rms bunch length 1.7 (m)
rms energy/momentum spread 1.05 × 10−5=1.99 × 10−3

Synchrotron tune/period [turns] 0.0069= ∼ 145

FIG. 4. Ratio of σy=σx around the ring.
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Δνxðax; ay; azÞ ¼ Δνx;SC
Z

1

0

du


�
exp

�
−
a2zu
4

�
I0

�
a2zu
4

�
exp

�
−
a2xu
4

��
I0

�
a2xu
4

�
− I1

�
a2xu
4

��

×exp

�
−
a2yu

4

��
1

½ðσ2y=σ2x − 1Þuþ 1�
�
1=2

I0

�
a2y
4

u
ð1 − σ2x=σ2yÞuþ σ2x=σ2y

��
s

�
. ð4:1Þ

This reduces the time required for evaluation and we found
that the differences in numerical values are negligible, at
least in the case of IOTA.
The left plot in Fig. 5 shows a comparison of the

footprints based on the general expression in Eq. (2.13)
and that based on the round beam expression in Eq. (2.22).
The differences are small; this is, to be expected as IOTA
has been designed to have axial symmetry almost every-
where in the ring in order to preserve integrability [17]. The
right plot in this figure shows the footprints with synchro-
tron oscillations at two amplitudes az ¼ 1, 2. As expected
in Fig. 1, the total tune shift at az ¼ 1 is about 90% and at
az ¼ 2, the total tune shift is 70% of the value at az ¼ 0.
The theory of the amplitude dependent tune shifts

assumes that the particles stay at constant amplitudes while
executing betatron oscillations. This is not always true,
especially at high intensities. We examine this assumption
by testing emittance growth with PyOrbit simulations [21].
Many details on the PyOrbit simulations and their validation
can be found in earlier reports [20,22]. Detailed analysis
had shown that there was good agreement between theory
and simulations in all the tested regimes. In the simulations
reported here, all machine nonlinearities were turned off,
space charge was the only nonlinearity. The results reported
in [22] showed that initial beam losses can be minimized by
a process of slow initialization in which the charge per
macroparticle is increased over about 100 turns to full value
and the beam was injected into a lattice that was rms
matched to equilibrium beam sizes. The PIC parameters
that led to convergence were found to have the following
values: number of macroparticles ¼ 5 × 105, grid size

¼ 128 × 128 × 5, and the number of space charge kicks
per betatron wavelength ¼ 63. These values were used in
the simulations discussed below.
It is not completely straightforward to compare space

charge simulations with theory, especially at high inten-
sities. The simplest is to compare the space charge tune
shifts. The complications arise from the two effects theory
which assumes that the tune shift is calculated at constant
emittances, which is not the case as the space charge
increases. The second complication is related to PIC
simulations. It has been observed that this method causes
orbits to be chaotic at small amplitudes close to the origin
[23]. We dealt with the first issue by using the average
emittance over the time used for the tuneshift calculation.
For the second issue, we distribute particles over 100
different angles at the same small amplitude and average
over the angles to reduce the fluctuations in the tune shift
value. Another complication at high intensities is that
because the FFT aliases tunes to be in the range 0–0.5,
it cannot determine if the tunes are below or above the half
integer when the space charge tune shift exceeds 0.5. Here
we determined the correct tune shifts by selecting the value
that increased with intensity, without deeming the integer
parts. Previously, we had determined the complete tune
(integer and fractional parts) with the alternative method of
counting the number of betatron oscillations over a thou-
sand turns and found that the simulated tunes calculated
both ways agreed well with each other and with theory [22].
At a low intensity of 109 particles/bunch, there are only

fluctuations due to numerical noise in the PIC simulations.
These are observed to be around 0.4%, which is close to the

FIG. 5. Left: comparison of round and nonround footprints without synchrotron oscillations. Right: footprints with synchrotron
oscillation amplitudes of 1σs (in red) and 2σs (blue).
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expected level ∼1=
ffiffiffi
n

p ¼ 0.14%with n ¼ 5 × 105. Figure 6
shows the emittance change over a range of intensities; the
last value 9 × 1010 corresponds to the maximum design
bunch intensity. Since there is very little observable

emittance growth at the lowest intensities in this range,
we expect the simulated tunes to be close to theoretical
values. However, the tune shifts are too small to be
accurately computable with an FFT over ∼1000 turns,
especially to resolve the tune shift for neighboring particles.
We use a Hann filter to improve the FFT resolution. At
intermediate intensity of 1010, there is a larger emittance
growth of ∼10% while at 9 × 1010, the emittance grows by
nearly a factor of 10 without slow initialization. The tune
footprints are calculated using 5 × 105 macroparticles and
using 5000 test particles distributed transversely from 0 to
5σ and with zero synchrotron amplitude. Figure 7 shows
the footprints at 1010 and 9 × 1010 intensities obtained with
PyOrbit simulations and compared with the theoretical values
using Eq. (2.21). In the top plots of Fig. 7, we have scaled
the numerical footprints by the maximum tune shift, so the
analytical and numerical footprints can be easily compared.
In the bottom plots of this figure, we show the absolute
footprints are shown except at the higher intensity, the
fractional parts are shown since these are the FFT values.
At the lower intensity, the two footprints agree reasonably
well although the simulated footprint is wider at amplitudes
from 1 to 5σ. At the intensity of 9 × 1010, the simulated

FIG. 6. Relative emittance growth over 1000 turns as a function
of the intensity for two conditions: without slow initialization and
with a slow initialization of 100 turns.

FIG. 7. Top row: scaled footprints from PyOrbit tracking and theory with nonround beams with az ¼ 0. Left: intensity ¼ 1010, Right:
intensity ¼ 9 × 1010. Bottom row: absolute footprints at the same intensities as above. At the higher intensity, the footprint shows the
fractional part only, the total tune shifts are an integer higher at (−1þ ½Δνx�, −1þ ½Δνy�), and the [] denotes the fractional part.
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footprint is even wider and the agreement is not as close,
which is to be expected. The single most important reason
for the increasing discrepancy is that the theory assumes
that all particles move on invariant actions which is not true
at high intensities. Nevertheless, the theoretical footprint
can be useful both as a benchmark tool and also to quickly
determine the important resonances that can be crossed by
the footprint at a chosen working point.

V. CONCLUSIONS

We derived tune shifts with amplitude in terms of a
universal dimensionless parameter under quite general con-
ditions that are valid for space charge or beam-beam
interactions. We included multiple interaction points and
synchrotron oscillations. Our focus is on space charge
interactions mainly and the inclusion ofmultiple interactions
as well as beams with arbitrary transverse aspect ratios is
especially important. We then used the analytical tune shifts
to derive semianalytical expressions for the density distri-
bution of tunes assuming that the density is a Gaussian
function of the phase-space coordinates. The tune distribu-
tion requires an inversion of the functional arguments
followed by a numerical interpolation. We emphasize that
the tune distribution thus obtained requires no numerical
simulations. This is important because the density at the
maximum tune shift requires very high sampling of this
region and quite often the simulations get thewrong shape of
the density in this region. The density is expressed in terms of
variables ðξx; ξyÞ which are the tune shifts scaled by the
maximum tune shifts. Therefore, the density ρðξx; ξyÞ has the
same form and shape for both space charge and beam-beam
interactions.With themethodpresented here,weverified that
the lowordermoments of the distribution are preserved in the
transformation; exactly in 1D andwith a∼2% error in 2D for
the zeroth moment, see Table I for the other moments. These
errors could be further reduced by improving the numerical
schemes for the function inversion and interpolation. This
calculation of the density distribution in tunes will enable a
more accurate modeling of Landau damping with space
charge and an external nonlinearity such as octupoles as well
as the damping with beam-beam interactions.
We checked the tune spread calculations for the IOTA

proton ring with simulations using the PyOrbit code. At the
highest intensities planned with bunched beams, there is a
substantial emittance blow up and steps will need to be
taken to mitigate emittance growth and beam loss. We used
a numerical scheme of slow initialization to reduce the
growth and prevent beam loss over the short timescale of
the simulation. Using this scheme, we found generally
good agreement between the footprints calculated by
theory and simulation. The expressions for the theoretical
footprints developed in this paper should therefore be
useful for benchmarking other space charge simulation
codes as well as determining working points relatively free
of low order space charge driven resonances.
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