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Imposing a density modulation on an electron beam may improve the brightness of a Thomson source by
orders of magnitude via superradiant emission. In this paper, we analytically and numerically analyze
electron beam modulation via the ponderomotive force due to the copropagating beat wave formed by two
laser pulses at different frequencies. We show that energy modulation favorably scales with electron beam
energy but is limited by the interaction length imposed by the finite waist of the laser pulses. Additionally,
the effect of initial emittance and energy spread on the quality of microbunching is studied. Finally, we
propose a superradiant extreme ultraviolet Thomson source based on ponderomotive bunching.
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I. INTRODUCTION

Compact sources offering high-brightness radiation in
the extreme ultraviolet to x-ray regime are highly desired.
An upcoming approach is Thomson scattering, also
referred to as inverse Compton scattering, in which a
relativistic electron beam colliding with a laser pulse
generates radiation [1–5]. The short wavelength of the
laser pulse allows for significantly more compact accel-
erator setups than alternative sources such as synchrotrons
and free electron lasers, providing widespread availability
and increasing the number of potential applications.
Furthermore, by imposing a density modulation on the
electron beam, the intensity of the Thomson source can be
enhanced via superradiant emission, by orders of magni-
tude [6,7]. Realizing a superradiant Thomson source would
have a tremendous societal impact. However, the micro-
bunching of electrons with the beam energy relevant to
Thomson sources is a challenge that has yet to be met.
Several compact prebunching methods have been pro-

posed. For instance, transverse modulation, attained by
masking or diffraction on a crystalline solid, is converted to
a longitudinal modulation by transportation through an
emittance exchange (EEX) line [6–8]. Microbunches can
also be generated at the source by photoemission from
shaped laser pulses [9] or periodically modulated ionization

of a laser-cooled gas [10,11]. Another method is to impart
an energy modulation that converts into a density modu-
lation by velocity bunching. The modulation can be
realized by time-varying electric fields [12–14] or the
inverse FEL process [15].
Another approach to impose an energy modulation is via

the ponderomotive force from two lasers at different
frequencies [16]. As illustrated schematically in Fig. 1,
the two lasers have different propagation axes with respect
to the electron beam axis such that the group velocity of the
ponderomotive beat wave vpond is matched to the electron
beam velocity ve. The longitudinal phase space dynamics
of the center part of the electron beam for a single period of
the beat wave is illustrated in Figs. 1(a)–1(c). Before
interaction [Fig. 1(a)], the electron beam has a uniform
density with an rms energy spread of σγmec2, where γ ¼
ð1 − v2e=c2Þ−1=2 is the average Lorentz factor of the electron
beam, me the mass of an electron, and c the speed of light.
Subsequently, in the overlap region with the two laser pulses
[Fig. 1(b)], the ponderomotive beat wave imposes a sinus-
oidal energy modulation with amplitude Δγmec2. Finally,
after a drift lengthL ¼ f [Fig. 1(c)], the higher energy part of
the electron beam overtakes the low energy part, leading to a
peaked density distribution. The width of the peak, approx-
imately given by λb ¼ σγλmod=ð2πΔγÞ, where λmod ¼
2πve=ðω2 − ω1Þ the modulation wavelength with ωj the
angular frequency of the jth laser pulses, determines the
shortest wavelength at which superradiance can still occur.
By this method, several keV of energy modulation

amplitude has been applied with sub-milliJoule laser pulses,
resulting in electron bunches as short as λb ≃ 26 nm [17].
However, these experiments were carried out using an
ultralow emittance electron microscopy source with less
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than a single electron per pulse. For sufficient superradiant
emission, the density modulated electron bunch should
consist of abundant charge on the picocoulomb level
preferably at tens of MeV of beam energy [18]. Moreover,
the emittance and energy spread of such highly charged
bunches usually are orders of magnitude larger than that of a
typical electron beam in an electron microscope.
Nonetheless, in this paper, we present a theoretically and

numerically study showing that ponderomotive bunching is
suitable for a compact superradiant Thomson source. First,
in Sec. II, we treat the basic theory of ponderomotive
bunching using a plane wave model. We find expressions
for the relevant energy modulation parameters and calculate
the bunching quality. Then in Sec. III, we add a finite
energy spread and angular spread of the electrons to the
model and analyze the resulting bunching factor. In Sec. IV,
the effect of a finite extent of the laser pulse and electron
beam on bunching is studied. In Sec. V, we end with a
concrete proposal for a superradiant Thomson source based
on a ponderomotive buncher.

II. BASIC THEORY OF PONDEROMOTVE
BUNCHING

A. Energy modulation

Here we treat the basic properties of ponderomotive
bunching with covariant electrodynamics, using the metric
gμν ¼ diagð1;−1;−1;−1Þ. Since some of these properties
are already discussed in [16], we aim to cover them
concisely. To start, let us assume that the vector potential
of both laser pulses can be written as a plane wave with
constant amplitude such that the superposed normalized
vector potential is given by

Aμ ¼ ðA1 cosφ1 þ A2 cosφ2Þϵμ; ð1Þ

where Aj ¼ eE0;j=ðmcωjÞ the normalized vector potential
amplitude with E0;j the electric field strength ωj the angular
frequency of the jth laser pulse and e the elementary

charge. The phase φj ¼ kνjxν is determined by four-wave
vector kνj ¼ ωj=cð1;− sin θjex þ cos θjezÞ with θj the
angle with respect to the propagation axis of the electron
beam, see Fig. 1. The polarization four-vector is given by
ϵμ ¼ ð0; eyÞ. The beat wave formed by the two lasers is
composed of sum and difference frequencies corresponding
to, respectively, super- and subluminal phase velocities.
Time averaging the Lorentz force over the fast time

scales, see Appendix A, for initial four-velocity uν0 ¼
γð1; βezÞ normal to the polarization four-vector results in
the following equation of motion for the four-velocity of
the guiding center motion:

∂cτūμ ¼ −
1

2
∂
μhAνAνi; ð2Þ

where τ is the proper time and

hAνAνi ¼ −
1

2
A2
1 −

1

2
A2
2 − A1A2 cosφ− ð3Þ

the ponderomotive potential of the beat wave with φ− ¼
kν−xν the beat wave phase and kμ− ¼ kμ1 − kμ2 the four-
wavevector of the beat wave.
To estimate the energy gained by the electron after

interacting for a proper time τ0 with the beat wave, we
integrate Eq. (2) while applying the impulsive approxima-
tion xμ ≃ uμ0cτ þ xμ0 (see conditions in Appendix B). This
results in a change of four-velocity equal to

Δuμ ¼ 1

2
A1A2cτ0 sinφ0sinc

�
1

2
kν−u0νcτ0

�
kμ−; ð4Þ

where φ0 ¼ kν−x0ν the phase with respect to the beat wave
at τ ¼ 0 and sincðxÞ ¼ sinðxÞ=x. This expression describes
sinusoidal modulation in momentum and energy at fre-
quency ω1 − ω2. The amplitude of modulation is maxi-
mized when the electron beam is on-resonance, i.e.,
kν−u0ν ¼ 0, which can be explained intuitively in both
the electron beam rest frame and in the lab frame. In the
former frame, the condition states that the laser frequencies
are equal so that they form a standing wave. In the lab
frame, it states that the phase velocity of the subluminal part
of the beat wave is matched to the velocity of the electron
beam [16]. Furthermore, for purely longitudinal momen-
tum modulation Δu1;2 ¼ 0, we find the additional con-
dition k1;2− ¼ 0. By combining the resonance condition and
the longitudinal modulation condition, we find an expres-
sion for angle θj as a function of the laser frequencies and
resonant electron beam energy:

cos θ1 ¼
1

β

�
1 −

1

2γ2
ω1 þ ω2

ω1

�
: ð5Þ

The angle θ2 can be found by changing the subscripts in (5)
from 1 → 2 and vice versa. Note that the ponderomotive

FIG. 1. Schematic of ponderomotive bunching. (a)–(c) Longi-
tudinal phase space distribution along a bunching period.
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bunching method also allows for the generation of tilted
microbunches. Under certain conditions, such micro-
bunches are relevant to superradiant Thomson scattering
[18]. The application of tilted momentum modulation,
however, changes the conditions for the laser beam angles.
A brief discussion on tilted microbunching is given in
Appendix C.
Now suppose that the interaction time is N0 periods of

laser 1 so that τ0 ¼ 2πN0=ðckν1u0νÞ. Since the proper
velocity uμ0 scales with γ, one would expect that the proper
interaction time and thus the energy modulation scales with
τ0 ∼ 1=γ. However, for higher beam energies, the laser
angles θj becomes small using a fixed pair of laser
frequencies, which effectively increases the interaction
length. Substituting the laser angle Eq. (5) into τ0 gives
an interaction time of τ0 ¼ 4πN0γ=ðω1 þ ω2Þ, which is the
same for N0 periods of laser 2. Therefore, the energy
modulation of an on-resonance electron beam also scales
favorably with beam energy. By plugging the interaction
time into the μ ¼ 0 component of Eq. (4), one finds the
energy modulation amplitude given by

Δγ ¼ 2πγA1A2N0

ω1 − ω2

ω1 þ ω2

; ð6Þ

such that the energy modulation is given by Δγ sinφ0. In
reality, the number of interaction periods N0 is limited by
the finite spatiotemporal extent of the laser pulses, which
will be addressed in later Sec. IV. The scaling with beam
energy allows for strong energy modulation of a 4.6-MeV
beam (γ ¼ 10) at a few to tens of MeV electron beam
energy. For example, the energy modulation amplitude
induced by a laser pulse with N0 ¼ 100 cycles at ω1 ¼
2.4 × 1015 rad=s (λ1 ¼ 800 nm) and a laser pulse at the
third harmonic ω2 ¼ 3ω1, both having a normalized vector
potential of A1 ¼ A2 ¼ 0.002 is about 6.4 keV. We will use
this set of nominal parameters to illustrate the following
important quantities.

B. Microbunch formation

Following energy modulation, electrons with higher
energy will start to overtake the lower energy part of the
beam, leading to longitudinal foci along the beamaxis,where
the electron density is significantly increased as illustrated in
Fig. 1. The focal length f, after which the beam energy
modulation has fully converted into a density modulation,
can be found by expanding the phase after a drift L given by
φ ¼ φ0 þ LΔβ=β sinφ0 withΔβ ≃ Δγ=ðγ3βÞ, the change in
normalized velocity due to the energy modulation, around
φ0 ¼ π. The drift length for this case at which the phase
becomes zero corresponds to the focal length given by

f ¼ cγ2β3

2πA1A2N0

ω1 þ ω2

ðω1 − ω2Þ2
: ð7Þ

Even for electron beam energies of few to tens of MeV,
generic to Thomson sources, the focal length can be quite
short and does not require beam line elements that increase
the dispersion. For example, for the nominal parameters in
the previous section, the focal length is f ¼ 5 mm.
Next, the microbunching quality is quantified by calcu-

lating the Fourier component bn at frequency nck0−, with n
an integer, of the resulting density distribution along the
beat wave period at the center of the bunch. The Fourier
component bn, also known as the bunching factor, is an
important figure of merit for superradiance. It directly
quantifies the amplification factor of the power in super-
radiant Thomson scattering

PSR ¼ π

4
χαA2

0NLPebeam
jbnj2Ne

nNb
η; ð8Þ

where recoil parameter χ ¼ ℏωX=ðγmec2Þ is the ratio
between the energy of an emitted photon ℏωX and the
electron energy, α the fine-structure constant, A0 the
normalized laser vector potential, NL the number of laser
periods, Nb the number of microbunches and Pebeam ¼
Neγmec2frep the average electric power, with Ne the
number of electrons and frep the repetition rate. Note that
in Eq. (8), the transverse size of the electron beam has not
been taken into account, which can lead to a significant
reduction of superradiant power [18].
For now,wewill assume that the initial density distribution

of the electron beam is uniform neðφ0Þ ¼ ne;0 with ne;0 the
number of electrons per beat wave period and that all
electrons are on-resonance. The density distribution after
modulation can be written as the following Fourier series
neðφÞ ¼ ne;0

P∞
n¼1 bn expðinφ0Þ, where the Fourier coef-

ficients given by bn ¼ 1=ð2πne;0Þ
R
2π
0 dφneðφÞ exp½−inφ�

correspond to the bunching factor given in Eq. (8). Since the
distribution function is conserved along its trajectories, we
can write the integrand in this case as neðφÞdφ ¼ ne;0dφ0.
Next, we substitute φ ¼ φ0 þ ζ sinφ0, where ζ ¼ L=f, into
the expression for the Fourier components bn, which after
integrating results in

bn ¼ ð−1ÞnJnðnζÞ; ð9Þ

where JnðxÞ is the nth-order Bessel function of the first kind.
The expression gives the best case bunching factor or the nth
harmonic of the modulation frequency using this method
without any other effects, such as finite energy spread, taken
into account. For high harmonics n ≥ 4, its maximum
max½JnðxÞ� ≃ 0.67n−1=3 occurs when the argument is x ≃
nþ 0.81n1=3 corresponding to a drift length of ζ ¼ 1þ
0.81n−2=3. Assuming optimized bunching at the tenth
harmonic b10 ≃ 0.311 of a 5-pC electron bunch, with Nb ¼
100 microbunches, results in an amplification factor of
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jb10j2Ne ¼ 3 × 106 in 0.1% bandwidth with respect to the
incoherent case.

III. ENERGY SPREAD AND ANGULAR SPREAD

In the previous section, it was assumed that each electron
is perfectly on-resonance. In reality, however, an electron
beam has a finite energy spread σγ and a finite transverse
angular spread σθ. Off-resonant electrons are therefore
inevitable, affecting the microbunching process in the
following two ways: First, during interaction, off-resonant
electrons will probe different phases of the ponderomotive
wave, resulting in a lower average energy modulation and
an additional spread in energy modulation on top of the
initial energy spread. Second, after energy modulation, off-
resonant electrons result in a spread of arrival time at the
longitudinal focus, leading to a larger microbunch width.
Here, we will quantify these effects for energy spread and
angular spread separately.

A. Energy spread

Anelectronwith an off-resonant energy described by four-
velocity uμ0 ¼ ðγ þ δγÞð1; ½β þ δγ=ðγ3βÞ�ezÞ, where δγ ¼
γ0 − γ the deviation from the on-resonance Lorentz factor
γ, propagates at a different velocity than the beat wave phase
velocity formed by the two laser pulses. The rate at which the
phase of the electron changes with respect to the beat wave
follows from kν−u0ν ¼ δγð1þ δγ=γÞðω1 − ω2Þ=ðcβ2γ2Þ.
First, the effect of off-resonant electrons on the energy
modulation process will be studied. Then, we quantify
how it influences the subsequent densitymodulation process.
We consider an electron beamwith an initialGaussian energy
distribution f0 ¼ 1=ð ffiffiffiffiffiffi

2π
p

σγÞ exp½−δγ2=ð2σ2γÞ�, with σγ the
rms normalized energy spread as illustrated in Fig. 1(a).
The average energy modulation is analytically calculated

by substituting the expression for kν−u0ν above in Eq. (4)
and performing a weighted average of the zeroth compo-
nent hΔγi ¼ R

Δuð0Þf0dðδγÞ. To first order in the relative
energy spread σγ=γ, we find that

hΔγi ¼ Δγ
ffiffiffi
π

p
2

erfξ
ξ

; ð10Þ

where ξ ¼ ffiffiffi
π

p
σγN0ðω1 − ω2Þ=½γβ2ðω1 þ ω2Þ�, which is a

measure for the rms phase change during energy modula-
tion, and erfðxÞ ¼ ð2= ffiffiffi

π
p Þ R x

0 expð−y2Þdy is the error
function. The beam energy spread, as expected, decreases
the mean energy modulation, which is clearly shown by the
Taylor series at ξ ¼ 0 given by hΔγi ≃ Δγð1 − ξ2=3Þ.
However, if the rms phase change is much less than one
beat wave cycle such that ξ ≪ 1, the energy modulation can
be described by Eq. (6), which is the case for the nominal
set of parameters with an initial energy spread of
1 keV (ξ ¼ 0.019).

In Fig. 2(a) the average energy modulation amplitude
due to energy spread given by Eq. (10) is plotted for the
nominal set. The analytically calculated curves match the
results from particle tracking simulations (black dots) using
General Particle Tracer (GPT) [19], which integrates the
equations of motion of the electrons in the electromagnetic
fields without approximations. Note that in this work, we
do not take into account Coulomb forces in the particle
tracking simulations. For the nominal set, the average
energy modulation only decreases significantly for a beam
energy spread much larger than the energy modulation.
Such high energy spread with respect to the energy
modulation, as will be discussed later on, is highly
impractical for the formation of microbunching.
Similarly, the beam energy spread induced by the inter-

action leads to an additional spread in energy modulation.
The rms energy modulation is given by σΔγ ¼ ðhΔγ2i−
hΔγi2Þ1=2, where the second moment is hΔγ2i ¼R
Δuð0Þ2f0dðδγÞ. Using Eqs. (4) and (10), we obtain

σΔγ ¼
Δγ
2ξ

½expð−4ξ2Þ − 1 − πerfðξÞ2 þ 2
ffiffiffi
π

p
ξerfð2ξÞ�1=2:

ð11Þ

For small ξ, the rms spread in energy modulation is given by
σΔγ ≃

ffiffiffi
2

p
Δγξ2=3. The total energy spread after modulation

is approximately given by ðσ2γ þ σ2ΔγÞ1=2. The energy spread
is thus only increased significantlywhen the spread in energy
modulation becomes larger than the initial beam energy
spread.
For the nominal set, as shown in Fig. 2(b), the spread in

energy modulation does not become larger than the initial
spread, which holds in most practical cases. Therefore, this
effect is rather unimportant. Furthermore, bunching
becomes highly impractical if the initial energy spread is
larger than the energy modulation amplitude.
However, the initial energy spread does significantly

affect the microbunching formation. Assuming that the
energy modulation is unaffected by the energy spread,
ξ ≪ 1, we can write the phase advance of the electron after

FIG. 2. (a) Average energy modulation and (b) spread in energy
modulation due to electron beam energy spread.
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modulation as follows φ ¼ φ0 þ ζδγ=Δγ þ ζ sinφ0, where
the second term gives the extra phase slip due to the off-
resonant energy. Note that we again neglected the second
order term in the relative energy spread. Using the same
method as in Sec. II B including the initial energy dis-
tribution f0 and taking into account the additional off-
resonant term in the phase advance, the bunching factor
bn ¼ 1=ð2πÞ R 2π

0 dφ0

R∞−∞ f0 exp½−inφ�dðδγÞ can be calcu-
lated. Evaluating the integral results in

bn ¼ ð−1ÞnJnðnζÞ exp
�
−
1

2
n2ζ2

σ2γ
Δγ2

�
; ð12Þ

which is the well-known expression for the bunching factor
in high gain high harmonic generation [20]. The exponen-
tial term resulting from finite energy spread suppresses the
maximum bunching factor without energy spread given by
the Bessel function. Physically, this is caused by the
smallest attainable bunch width λb as shown in Fig. 1(c)
due to the varying arrival times. If the energy modulation is
impacted by the initial energy spread, then in good
approximation, one can substitute ζ → ζΔγ=hΔγi and
σγ → ðσ2γ þ σ2ΔγÞ−1=2 in Eq. (12).
The analytic bunching factor for a beam energy spread of

0.46 keV of the fundamental and fourth harmonic agree
with the GPT simulations, as is depicted in Fig. 3. Such
beam energy spreads are reached using conventional
photoguns generating electron bunches with a charge of
100 fC [21,22] or bunches with several pC using a modern
thermionic gun concept [23]. The bunching factor of the
fundamental is hardly impacted by the beam energy spread
with respect to the bunching factor of a monoenergetic
beam given by the dashed solid curve. However, the
maximum of the higher harmonic order is reduced by
about 10% in the absolute bunching factor.

B. Angular spread

To calculate the effect of the angular spread on energy
modulation and bunching, we consider an electronwith four-
velocity uμ0 ¼ γð1; βθxex þ βθyey þ β½1 − ðθ2x þ θ2yÞ=2�ezÞ,
where θx and θy are small angles the electron makes in
the xz and yz plane, respectively. The finite angles introduce
small perturbations from resonance, such that kν−u0ν ¼
ðθ2x þ θ2yÞðω1 − ω2Þ=ð2cÞ. In the following, a Gaussian
angular distribution described by the distribution function
f0 ¼ 1=ð2πσθÞ exp½−ðθ2x þ θ2yÞ=ð2σ2θÞ� is assumed, where
σθ is the rms angular spread.
First, the average energy modulation is calculated

assuming that the angular spread only affects the electron
resonance. Taking the weighted average hΔγi ¼R
Δuð0Þf0dθxdθy, where uð0Þ is evaluated at phase

φ0 ¼ π=2, results in the following average energy modu-
lation amplitude

hΔγi ¼ Δγ
arctanðχÞ

χ
; ð13Þ

where χ ¼ γ2σ2θ2πN0ðω1 − ω2Þ=ðω1 þ ω2Þ is a measure
for the accumulated phase change after the interaction. For
small χ, the average energy modulation is given by
hΔγi ≃ Δγð1 − χ2=3Þ. At χ ¼ 0, the energy modulation
is equal to the cold beam modulation. When χ ¼ 2.3, the
energy modulation is suppressed by the angular spread by a
factor of 2.
In Fig. 4(a), the drop of average energy modulation

amplitude due to angular spread given by Eq. (13) is plotted
for the nominal set. At an angular spread of 10 mrad, the
average energy modulation amplitude is about half the
optimal energy modulation amplitude. Assuming an elec-
tron beam waist of σr ¼ 5 μm, the normalized transverse
emittance ϵn ¼ γβσθσr of the electron beam corresponding
to the angular spread at this point is ϵn ¼ 500 nm rad. This
is much larger than the emittance of electron bunches from
photoinjectors with a charge of tens of pC [24,25].
The spread in energy modulation due to angular

spread can be calculated using the second moment
hΔγ2i ¼ R

Δuð0Þ2f0dθxdθy, resulting in

FIG. 3. Simulated (dots) and analytically calculated (solid
curves) bunching factor of the fundamental and fourth harmonic
with energy spread σγ ¼ 10−3. Analytically calculated bunching
factor without energy spread is given by the dashed curve.

FIG. 4. (a) Average energy modulation and (b) spread in energy
modulation due to electron beam angular spread.
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σΔγ ¼
Δγ
2χ

f4χ arctanð2χÞ − arctan2ðχÞ

− lnð1þ 4χ2Þg1=2: ð14Þ

The spread in energy modulation increases with the rms
phase change, as becomes clear from the Taylor expansion
around χ ¼ 0 given by σΔγ ≃

ffiffiffi
5

p
Δγχ2=3.

In Fig. 4(b), the average spread in energy modulation due
to angular spread given is plotted for the nominal set. For
low angular spread, the spread in energy modulation
steadily increases until it almost reaches 3 keV around
8 mrad. Then, the spread in energy modulation decreases as
a result of even stronger dephasing combined with a
significantly lower average modulation amplitude. Note
that in this regime, the analytic results do not match the
simulation very well. The additional spread in energy
modulation in the simulation is not induced by the ponder-
omotive force, however, but is rather an artifact of the
initialization of the electron in the plane wave.
The dominant effect of finite angular spread, however, is

that a curved densitymodulationwill form after a certain drift
length as is depicted in the inset figure in Fig. 5. Assuming
that the energy modulation is unaffected by the angular
spread, we can write the phase advance of the electron after
modulation as follows φ ¼ φ0 þ ζγ3β2ðθ2x þ θ2yÞ=ð2ΔγÞþ
ζ sinφ0, where the second term gives the extra phase slip due
to the finite initial angle. Evaluating the integral bn ¼
1=ð2πÞ R 2π

0 dφ0

R∞
−∞

R∞
−∞ f0 exp½−inφ�dθxdθy results in the

following bunching factor

bn ¼ ð−1ÞnJnðnζÞ
exp

h
−i arctanðnζ γ3β2σ2θ

Δγ Þ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2ζ2

γ6β4σ4θ
Δγ2

q . ð15Þ

Stronger bunching curvature induces a larger microbunch
width when projected on the axis, suppressing the bunching
factor significantly, which is quantified by the square root
term in Eq. (15). Because the bunching factor maximizes
around the ζ ≃ 1, we find that the angular spread should
satisfy the condition σ2θ ≪ Δγ=ðnγ3β2Þ to not considerably
deteriorate the longitudinal bunching. For the nominal set of
parameters with optimized superradiance at the tenth har-
monic, (40 nm), the allowable angular spread using this
condition is 1.2 mrad. At such angular spread, the induced
spread in energymodulation for the nominal set is negligible.
Note, however, that this could be taken into account since the
curvature is independent of the spread in energy modulation
or initial energy spread. The argument of the complex
exponent does not influence the superradiant power but adds
a constant phase term to the bunching factor.
Figure 5 shows that the analytic bunching factor of the

fundamental and fourth harmonic for the nominal set, with an
angular spread of 2.5 mrad, are in good agreement with the
GPT simulations. Although the energy modulation is hardly
impacted by the angular spread, the bunching factor of both
orders declines strongly due to the induced curvature. The
normalized transverse emittance for this beam, assuming
again a waist of 5 μm, is 50 nm rad. Highly charged bunches
of several pC at such low emittance can be generated using a
modern thermionic injector [23,26].

IV. FINITE SIZE EFFECTS OF THE ELECTRON
BEAM AND LASER PULSES

In the previous section, the bunching factor was calcu-
lated for a single beat wave period assuming an infinitely
long plane wave with infinite transverse extent. However, in
reality, both the electron beam and laser beam have a finite
transverse and longitudinal extent. The consequence is an
inhomogeneous energy modulation of the electron beam.
Since the energy modulation determines the focal length,
the time at which the local bunching factor at a given part of
the beam will be optimized may differ from other parts,
leading to a reduced macroscopic bunching factor and
superradiance. Here we will first study the effect of a finite
laser pulse and electron beam length. Then, we will also
take into account the finite transverse sizes of all beams.

A. Finite longitudinal size

Now we assume that the amplitude of both laser pulses is
varying along their axes. We consider Gaussian laser pulse
envelopes resulting in a normalized four-potential

Aμ ¼
�
A1 exp

�
−

φ2
1

2σ2φ1

�
cosφ1

þ A2 exp

�
−

φ2
2

2σ2φ2

�
cosφ2

�
ϵμ; ð16Þ

FIG. 5. Simulated (dots) and analytically calculated (solid
curves) bunching factor of the fundamental and fourth harmonic
with σθ ¼ 2.5 mrad angular spread. The analytic bunching factor
without angular or energy spread is indicated by the dashed
curves.
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where σφ is the rms pulse length in radians. In general, the
number of oscillations of both laser pulses may differ such
that σφ1

≠ σφ2
.

Taking the contraction of the four-potential and averaging
over the fast time scales leads to the same expression for the
ponderomotive potential as Eq. (3) but with amplitudes
substituted by the Gaussian envelopes Aj → AjgðφjÞ with
gðφjÞ¼exp½−φ2

j=ð2σ2φj
Þ� the envelope function. Substituting

the ponderomotive potential into the ponderomotive force
[Eq. (2)] and integrating results in the following energy
modulation for on-resonance electrons

Δγ ¼ ffiffiffi
π

p
A1A2γσφ

ω1 − ω2

ω1 þ ω2

exp

�
−

φ2
0

2ðσ2φ1
þ σ2φ2

Þ
�
; ð17Þ

where σφ ¼ ffiffiffi
2

p
σφ1

σφ2
=ðσ2φ1

þ σ2φ2
Þ1=2 and we assumed that

the envelope function is slowly varying with respect to the
laser wavelength: ju0ν∂νgðφjÞj ≪ jkνju0νgðφjÞj. The sinus-
oidal energy modulation Δγðφ0Þ sinφ0 scales linearly with
the electron beam energy γ and both the laser pulse
amplitudes A1 and A2 as in the plane wave case, see
Eq. (6), however, the total amplitude is now dependent on
initial phase φ0 of the electron with respect to the beat wave.
Figure 6 shows the simulated longitudinal phase space

just after energy modulation for a 4.6-MeV electron beam
modulated for the nominal set with A1 ¼ A2 ¼ 0.005 and
σφ ¼ σφ1

¼ σφ2
¼ 50 corresponding to a pulse length of 21

and 7 fs, respectively. The amplitude of the sinusoidal
modulation is largest at the center of the beam and becomes
increasingly smaller going off-center. The analytic expres-
sion for the modulation envelope given by Eq. (17) predicts
the simulation correctly.
As a result of the phase dependent energy modulation,

each period will compress at a slightly different position
downstream of the buncher. This breaks the periodicity so
the density distribution cannot be expanded in a Fourier
series. In this case, the bunching factor is given by the

continuous Fourier transform of the spatial distribu-
tion function written as bðκÞ ¼ R

dφneðφÞ exp½−iκφ�=Ne,
where κ is a continuous variable representing the bunching
frequency with respect to the frequency of the beat wave.
Consider an initial Gaussian longitudinal distribution

of monoenergetic electrons described by neðφ0Þ ¼ Ne=
ð ffiffiffiffiffiffi

2π
p

σeÞ exp½−φ2
0=ð2σ2eÞ�, where σe is the length of the

electron beam normalized by the wavelength of the beat
wave. Using the phase φ ¼ φ0 þ ζgðφ0Þ sinφ0, we find
that the bunching factor at κ ¼ n is given by

bn ¼
ð−1Þnffiffiffiffiffiffi
2π

p
σe

Z
∞

−∞
dφ0 exp

�
−

φ2
0

2σ2e

�

× Jn

�
nζ exp

�
−

φ2
0

2ðσ2φ1
þ σ2φ2

Þ
��

; ð18Þ

where ζ ¼ L=f with f ¼ cγ3β3=½Δγðω1 − ω2Þ� the focal
length of the center of the electron beam, where Δγ is
evaluated at φ0 ¼ 0. The electron beam distribution func-
tion in this expression weighs the contribution of the local
bunching factor, determined by the energy modulation
distribution in the argument of the Bessel function, to
the macroscopic bunching factor.
Now, we can study the expression for several cases as

illustrated in Fig. 7. First, when the electron beam is much
smaller than the laser pulses such that σe ≪ σφ, all the
electrons experience approximately the same amplitude of
the laser pulses and the expression simplifies to Eq. (9) as is
shown by the dashed curves in Fig. 7 for the fundamental
and eighth harmonic.
Second, when the electron bunch is as long as the laser

pulse σe ¼ σφ, the bunching is affected due to the finite
modulation envelope. In this case, the maximum of
the bunching factor is smaller than the plane wave case.

µ

FIG. 6. Analytically calculated energy modulation envelope
(red solid curve) corresponds with energy modulation of the GPT

simulation (dots) for A1 ¼ A2 ¼ 0.005 and σφ ¼ 50.

FIG. 7. Simulated (dots) and analytically calculated (continu-
ous curves) bunching factor of the fundamental and eighth
harmonic for σφ ¼ σe ¼ 50, with σφ1

¼ σφ2
Also, analytic results

are shown for σφ ¼ 50σe (dashed solid curve) and σφ ¼ 0.1σe
(dotted solid curve).
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The peak is reached farther downstream than the central
focal length since on average there are more electrons off-
center that are ideally compressed simultaneously.
Consequently, the distance over which there is significant
bunching is increased. In this regime, we also performed
GPT simulations which are in good agreement with the
analytical calculations.
Last, when the laser pulses are much shorter than the

electron bunch such that σe ≫ σφ, the bunching is influ-
enced by the modulation amplitude and the small fraction
of the electron beam that partakes in the modulation. The
combination of these two effects significantly lowers the
bunching factor as indicated by the dotted solid curves
in Fig. 7.

B. Including finite transverse size

Up until now, the laser pulses were modeled as plane
waves with infinite transverse extent. However, in reality,
both the laser pulses and the electron beam will have a finite
transverse waist size, which will affect the bunching
process in the following two ways. First, the laser pulse
waist will restrict the interaction time significantly, thereby
directly limiting the energy modulation. Second, the energy
modulation will depend on the transverse electron beam
coordinate, leading to different arrival times at the longi-
tudinal focus.
In the following calculations, we will study a laser pulse

including a Gaussian transverse profile given by

Aμ ≃
�
A1 exp

�
−

ρ21
w2
ρ1

−
η2

w2
η1

−
φ2
1

2σ2φ1

�
cosφ1

þ A2 exp

�
−

ρ22
w2
ρ2

−
η2

w2
η2

−
φ2
2

2σ2φ2

�
cosφ2

�
ϵμ; ð19Þ

where ρj ¼ rνjxν and η ¼ ϵνxν are mutually orthogonal
transverse laser coordinates with rμj ¼ ð0; cos θj ex þ
sin θj ezÞ a four-vector denoting the transverse direction
of the jth laser pulse. Here, wρj and wηj are the 1=e waist
sizes. To satisfy the Lorenz-gauge condition ∂

νAν ¼ 0 for
the above four-potential, there should be a nonzero scalar
potential. However, the scalar potential is negligible com-
pared to the vector potential as long as the amplitude is
slowly varying with respect to the wavelength of the laser,
which we will assume in the following calculations. Note
that this expression describes a Gaussian TEM00 mode
laser beam close to its focus, neglecting beam divergence
and the radial and Gouy phase change.
Following the plane wave analysis, see Appendix D, we

substitute the ponderomotive potential hAνAνi into the
ponderomotive force Eq. (2) and integrate it over proper
time. This results in the following energy modulation for
on-resonance electrons

Δγ ¼ ffiffiffi
π

p
A1A2γσ3D

ω1 − ω2

ω1 þ ω2

× exp

�
−

x20
2σ2x

−
y20
2σ2y

−
z20
2σ2z

þ x0z0
2σ2xz

�
; ð20Þ

where x0,z0, and y0 are the initial positions of an electron
and σ3D is the effective number of laser pulse periods the
electron interacts with. The rms energy modulation waists
are given by

σx ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
ρ1ω

2
1 þ w2

ρ2ω
2
2

q
ffiffiffi
2

p jω1 − ω2j
; ð21aÞ

σy ¼
wη1wη2ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
η1 þ w2

η2

q ; ð21bÞ

σz ≃
cσφ1

σφ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2φ1

ω2
1 þ σ2φ2

ω2
2

q ; ð21cÞ

and σxz → ∞, where we assumed a relativistic electron
beam γ ≫ 1. The general expressions for arbitrary energy
and geometry are given in Appendix D. The effective pulse
length can be written as

σ3D ¼ σφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
c2γ2σ2φ
ω2
1
w2
ρ1
þ c2γ2σ2φ

ω2
2
w2
ρ2

�h
β2 −

�
ω1−ω2

ω1þω2

�
2
ir ; ð22Þ

which depends on the waist sizes wρj of the laser pulses in
the propagation direction of the electron beam.
Equation (20) holds in the impulsive approximation

when laser diffraction is negligible during the interaction.
The latter condition is satisfied when the diffraction
parameter ψ ≃ w2

ηwρ½ω1ω2=ðw4
η þ w4

ρÞ�1=2=ðcγÞ, with wρ ¼
wρ1 ¼ wρ2 and wη ¼ wη1 ¼ wη2 satisfies the condition
ψ ≪ 1, see Appendix E. If the condition is not satisfied,
the interaction length is shortened due to the finite Rayleigh
lengths, resulting in a reduced effective interaction length
given by σ3D → σ3D

ffiffiffi
π

p
=ψ erfcxð1=ψÞ, where erfcxðxÞ ¼

expðx2Þ½1 − 2=
ffiffiffi
π

p R
x
0 expð−y2Þdy� is the scaled comple-

mentary error function.
It is instructive to study the energy modulation amplitude

[Eq. (20)] for a central electronwith ðx0; y0; z0Þ ¼ ð0; 0; 0Þ in
the following three limits. First, in the limit where the waist
size becomes very large such thatwρ ¼ wρ1 ¼ wρ2 → ∞, the
plane wave case is retrieved where the effective pulse length
σ3D ¼ σφ. In this case, the modulation amplitude is correctly
described by Eq. (6).
Second, for continuous wave lasers σφ → ∞, the effec-

tive pulse length is given by σ3D ¼ fγ2c2ðω−2
1 w−2

ρ1 þ
ω−2
2 w−2

ρ2 Þ½β2 − ðω1 − ω2Þ2=ðω1 þ ω2Þ2�g−1=2. In this limit,
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the effective pulse length, and consequently the energy
modulation, diverges when β ¼ ðω1 − ω2Þ=ðω1 þ ω2Þ,
which is the case when the laser pulses are counter-
propagating, see Eq. (5). In reality, however, the energy
modulation will always be limited by laser diffraction, FEL
interaction, or radial repulsion of the electron beam out of
the laser beams.
Last, in the high energy limit, we find that the effective

pulse length given by σ3D ¼ fγ2c2ðω−2
1 w−2

ρ1 þ ω−2
2 w−2

ρ2 Þ½1−
ðω1 − ω2Þ2=ðω1 þ ω2Þ2�g−1=2, which for equal waist sizes
is given by σ3D¼wρ=ð2cγÞ½ω1ω1ðω1þω2Þ2=ðω2

1þω2
2Þ�1=2,

is independent of the laser pulse length. This is caused by
laser pulses nearly copropagating with the electron beam.
Moreover, it scales inversely with the electron beam energy
such that the energy modulation amplitude [Eq. (22)]
becomes independent of beam energy. This is an important
result since it gives the maximum energy modulation
attainable by ponderomotive bunching using this geometry.
The results from the particle tracking simulation, shown

in Fig. 8, confirm that Eq. (20) correctly describes the
energy modulation. In the simulations TEM00, Gaussian
laser pulses were used. In the same figure, also the plane
wave and high energy limit are given by the red and blue
lines, respectively. The high energy limit can be extended
by increasing both wρj . In practice, however, this also
decreases the laser intensity for a given laser pulse energy
since A1A2 ∝ ðwρ1wρ2Þ−1=2. Therefore, the laser pulse

energy determines the asymptotic energy modulation
amplitude. In the simulation, the pulse energies are 0.3
and 0.95 mJ, respectively.
The optimal respective laser waists can be found by

considering that the energy modulation scales as Δγ ∝
σ3Dðwρ1wρ2Þ−1=2 for given laser pulse energies. By solving
the differential equation ∂Δγ=∂wρ1 ¼ 0 for the laser waist
wρ1, we find that the optimum waist size is given by

wρ1

			
maxðΔγÞ

¼ ω2wρ2

ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

2
w2
ρ2

c2γ2σ2φ½β2−ðω1−ω2ω1þω2
Þ2�

r ð23Þ

which for relativistic electron beams (γ ≫ 1) is written as
wρ1jmaxðΔγÞ ≃ ω2wρ1=ω1. For the nominal set, the optimal
waist leads to a relative increase in the energy modulation
of about 30% with respect to the case of equal waist sizes.
Note that the effective pulse length σ3D is independent of
the waists in laser polarization direction wηj . To attain
maximum energy modulation with a constant laser pulse
energy, it is possible to use a line focus, i.e., wηj < wρj , to
increase the laser intensity during interaction. The smallest
practicable line focus is limited by the electron beam waist
and diffraction (see Appendix E).
To calculate the bunching factor, we consider a Gaussian

distribution of monoenergetic electrons described by f0 ¼
½ð2πÞ3=2σe;xσe;yσe;z�−1 exp½−x20=ð2σ2e;xÞ − y20=ð2σ2e;yÞ − z20=
ð2σ2e;zÞ�, where σe;ðx;y;zÞ are the rms waists of the electron
beam. Using the phase φ ¼ φ0 þ ζgðx0; y0; z0Þ sinφ0, with
gðx0; y0; z0Þ, the modulation envelope and ζ ¼ L=f with
f ¼ cγ3β3=½Δγðω1 − ω2Þ�, the focal length of the center of
the electron bunch with Δγ the maximum energy modu-
lation amplitude for an electron at the center of the bunch,
we find that the bunching factor at κ ¼ n is given by
bðκÞ ¼ ð−1Þn R dx0dy0dz0f0ðx0; y0; z0ÞJn½nζgðx0; y0; z0Þ�.
This expression is the three-dimensional analog of
Eq. (18). The integral can be evaluated if the Bessel
function is represented by its power series JnðxÞ ¼P∞

m¼0 Cm;nðx=2Þ2mþn with Cm;n ¼ ð−1Þm=½m!ðmþ nÞ!�,
which reduces the three-dimensional integral to a single
sum written as

bn ¼ bðnÞ ¼
X∞
m¼0

ð−1ÞnCm;nð12 nζÞ2mþnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ ð2mþnÞσ2e;y

σ2y

�h�
1þ ð2mþnÞσ2e;x

σ2x

��
1þ ð2mþnÞσ2e;z

σ2z

�
− ð2mþnÞ2σ2e;xσ2e;z

4σ4xz

ir : ð24Þ

This expression gives the bunching factor for a three-
dimensional electron beam without emittance or energy
spread with three-dimensional laser pulses without

diffraction. The effects of energy spread and emittance
can be included by taking into account the terms given in
Eqs. (12) and (15), respectively. Note that these amendments

FIG. 8. Simulated (dots) and analytically calculated (black solid
curve) energy modulation amplitude for σφ ¼ 50, with σφ1

¼ σφ2
,

wρ ¼ wρ1 ¼ wρ2 ¼ 50 μm and A1 ¼ A2 ¼ 0.01.
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hold only by approximation since they do not explicitly take
into account the energy modulation envelope.
In Fig. 9(a), the bunching factor is shown including all

effects for a 4.6-MeV electron beam with σγ ¼ 10−3,
σθ ¼ 1 mrad, σe;z ¼ 1 μm, and σe;x ¼ σe;y ¼ 5 μm, and
σφ ¼ 100 laser pulses of 100 and 300 μJ, respectively, both
focused to waists of 20 μm. The combination of Eqs. (12),
(15), and (24) also are in good agreement with the particle
tracking simulations. The bunching factor of the funda-
mental is close to the plane wave case, given by the dashed
curve. The eighth harmonic, however is significantly
affected: The maximum bunching factor of the eight
harmonics is about b8 ¼ 5% at ζ ¼ 1.2, while it is 32%
for the plane wave case. In Figs. 9(b) and 9(c), the separate
effect (relative to the ideal case) of energy spread, angular
spread, and finite size on the bunching factor is illustrated
for the fundamental (b) and the eighth harmonic (c). From
these figures, it is clear that the higher harmonic order is
more significantly reduced by each effect.

V. PROPOSAL SUPERRADIANT
EUV THOMSON SOURCE

To illustrate the practical use of the expressions derived in
this paper, we will apply them to propose a superradiant
extreme ultraviolet (EUV) (λ ¼ 13.6 nm) Thomson source.
Webase the proposal on the beamline of Smartlight,which is
an incoherent hard x-ray Thomson source that is currently

being commissioned at the Eindhoven University of
Technology [4]. The Thomson source will be driven by the
advanced continuous-wave electron injector, which gener-
ates electron bunches up to 3 pC with ultralow normalized
transverse emittance of 50 nm rad at a repetition rate of
1.5GHz [26].Downstream theelectrongun is ahighgradient
X-band accelerator, based on a design for the compact linear
collider at CERN, which accelerates bursts of 100 electron
bunches to a beam energy between 6.4 MeV at 1-kHz
repetition rate. Furthermore, we assume that the electron
bunches exiting the accelerator have a FWHMbunch length
of 50 fs with a relative rms energy spread of 10−4.
We assume that the superradiant EUV Thomson source is

driven by a longwave infrared (LWIR) laser which generates
1.5 ps pulses with a central wavelength of 10 μm, 1.5 ps
pulse length, and 26 mJ at the same repetition rate as the
electron bunches. The LWIR laser pulses are split into 25 mJ
for Thomson scattering and 1 mJ for ponderomotive bunch-
ing. The second laser pulse used for the ponderomotive
buncher has an ultraviolet (UV) central wavelength of
266 nm, 37 fs pulse length, and 100 μJ pulse energy. The
modulation wavelength using these laser pulses is 272 nm.
To generate a beat wave resonant with the 6.4-MeV

electron beam, the angles [Eq. (5)] with respect to the
propagation axis of the electron beam are 457 and 11.7 mrad
for the LWIR and UV laser pulse, respectively. We assume
that for both the laser pulses, a line focus is applied with the
following waist sizes: wρ1 ¼ 43 μm, wρ2 ¼ ω2wρ2=ω1,
wη1 ¼ 33 μm, and wη2 ¼ 0.55 μm. This results in an effec-
tive beat wave pulse length σ3D ¼ 45, which is further
reduced by about 63% by diffraction (ψ ¼ 1.38). The short
interaction length ensures that the phase drift during inter-
action is negligible.
The energy modulation amplitude [Eq. (20)] including

diffraction in the proposed geometry is 35 keV resulting in a
focal length [Eq. (7)] of about 1.5 mm. Considering the ratio
of the initial electron beamenergy spread and induced energy
modulation we know from Eq. (12), there still should be
significant bunching up to the 20th harmonic. The energy
modulation waists, calculated using (21a)–(21c), are larger
than the electron beam waist sizes, which in the transverse
plane are taken to be σe;x ¼ σe;y ¼ 3.6 μm. The rms number
of microbunches Nb ≃ 20. We find through Eq. (24) that the
20th harmonic is optimized around 1.8 mm after interaction
with b20 ¼ 10% bunching at a wavelength of 13.6 nm.
To generate EUV radiation, we consider a head-on

scattering geometry with the laser pulse counterprogating
the electron beam at an interaction angle of θ0 ¼ πrad with
respect to the propagating axis and pulse energy of
U0 ¼ 25 mJ. A strong focus is applied to the Thomson
laser beam with waists sizes wρ0 ¼ wη0 ¼ 20 μm. Using
this together with Eq. (8) and the efficiency factor that
takes into account, the effect of the finite beam size
(σe;x ¼ σe;y ¼ 4.1 μm at interaction), angular and energy
spread on the superradiant yield into account, as given

FIG. 9. (a) Simulated (dots) and analytically calculated (con-
tinuous curves) bunching factor including beam energy spread,
angular spread, and finite beam size (parameters given in text).
For reference, the plane wave case (dashed curves) is also shown.
(b) and (c) Breakdown of bunching factor.
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in [18], we calculate that the average superradiant power at
the 20th harmonic is PSR ¼ 1.6 μW in 0.25% bandwidth
assuming the laser pulses adhere to the 100-kHz repetition
rate (in bursts). This is an increase of 862 with respect to the
in-band incoherent emission. As a result of the smaller
emission cone, the superradiant brightness is about 105

times higher than the incoherent brightness. Note that the
total average power can be higher since, at this high order,
neighboring harmonics might also contribute to the scat-
tered radiation.
In terms of spectral power, this superradiant Thomson

source compares to the best available high harmonic sources
at the EUV wavelength [27]. To achieve an even higher
average power, the X-band accelerator can be replaced by a
superconducting accelerator operating atGHz repetition rate.
In this case, the coherent flux is sufficient for advanced
applications typically performed at FEL facilities such as
ptychographic photomask inspection [28].
A method to achieve considerable bunching at higher

order harmonics is by applying the energy modulation
twice with a drift of many times the focal length in between.
This has the advantage of requiring much lower energy
modulation amplitude for a given energy spread to reach
high order harmonics. At GeV electron beam energy, this
so-called echo-enhanced modulation scheme [29] has been
applied using magnetostatic modulators to achieve bunch-
ing at soft x-ray wavelengths [30]. Echo-induced ponder-
omotive bunching is beyond the scope of this paper but will
be subject to future research.

VI. CONCLUSION

We have thoroughly analyzed the microbunching of an
electron beam by two laser pulses at different frequencies
and characterized the nonideal effects that are relevant to
superradiant Thomson scattering experiments. The result-
ing expressions allow for fast (numerical) optimization of
the electron beam phase space distribution to extremize the
microbunching and, together with the expressions in [18],
the yield of superradiant Thomson scattering. From our
analysis, we find that using this method, significant
bunching at EUV frequencies can be imposed on MeV
electron beams. This results in a relative increase of ∼103 in
power and ∼105 in brightness with respect to the incoherent
mode. These findings can have a great impact on the
development of compact powerful Thomson sources.
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APPENDIX A: THE TIME-AVERAGED
PONDEROMOTIVE FORCE

We use a pertubative approach where the four-velocity
can be written as a uμ ¼ P∞

j¼0 u
μ
j , where uμn ∝ An with

vector potential amplitude satisfying the condition A < 1 to
evaluate the Lorentz force equation

∂cτðuμ − AμÞ ¼ −uν∂μAν ðA1Þ

up to the second order. Assuming that the propagation
direction of the electrons is normal to the laser polarization
direction such that ϵνuν0 ¼ 0, ensures that the right-hand
side of Eq. (A1) is equal to zero. In this case the first order
four-velocity is uμ1 ¼ Aμ, which is substituted into (A1) to
find the second order four-velocity

∂cτu
μ
2 ¼ −

1

2
∂
μAνAν: ðA2Þ

Using the plane wave four-potential Eq. (1), the contraction
can be written as

AνAν ¼ −
1

2
ðA2

1 þ A2
2 þ A2

1 cos 2φ1 þ A2
2 cos 2φ2Þ

− A1A2 cosφþ − A1A2 cosφ−; ðA3Þ

where φ� ¼ φ1 � φ2. Averaging over the fast time scales
leads to the ponderomotive potential [Eq. (3)]. The four-
velocity uμ ≃ uμ0 þ uμ1 þ uμ2 averaged over the fast time
scales is given by ūμ ¼ uμ0 þ uμ2. Note that Eq. (A3) also
holds for varying four-potential amplitude.

APPENDIX B: IMPULSIVE APPROXIMATION

The ponderomotive force [Eq. (2)] with the ponder-
omotive potential (3) can be rewritten to a second order
pendulum equation by taking the contraction with kμ− on
both sides:

∂
2
cτφ− þ 1

2
A1A2kν−k−ν sinφ− ¼ 0; ðB1Þ

where we used kν−ūν ¼ ∂cτφ−. This is a laser pulse based
analog to the familiar pendulum equation for low-gain FEL
[31]. It is straightforward to show that for small ponder-
omotive phasesφ− ≪ 1, a solution to the pendulum equation
for a resonant electron is given byφ− ¼ φ0 cosΩτ, where the
oscillation frequency is given by Ω ¼ cðA1A2kν−k−ν=2Þ1=2.
The phase drift of a resonant electron is negligible when the
interaction proper time τ0 satisfies the following condition:

τ0 ≪
2π

Ω
¼ 2

ffiffiffi
2

p
π

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1A2kν−k−ν

p : ðB2Þ

If this condition holds, we can write the four-position of the
electron during interaction as the ballistic motion before
interaction xμ ≃ xμ0 þ uμ0cτ, which we refer to as the impul-
sive approximation.
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APPENDIX C: BUNCH TILT

The ponderomotive bunching method also allows for the
generation of bunches with a tilt angle in one of the
transverse planes as shown in Fig. 10. In a FEL, such tilted
microbunches have led to the generation of strong off-axis
radiation [32]. Conversely, in an oblique Thomson scatter-
ing geometry, a tilt angle is highly relevant since it could
direct the superradiance back on-axis, permitting the use of
higher electron beam energy which may result in an
increase of yield by orders of magnitude [18].
To produce a tilted densitymodulation, the ponderomotive

beat wave and consequently the four-velocity modulation,
given by Eq. (4), should have a nonzero component in the x
direction. The ratio between the transverse and longitudinal
momentum modulation determines tilt angle α such that
tan α ¼ kð1Þ− =kð3Þ− . Also in this case, the resonance condition
kν−u0ν ¼ 0 requires that the longitudinal component of the
beat wave four-vector kð3Þ− ¼ ω1=c cos θ1 − ω2=c cos θ2 ¼
ðω1 − ω2Þ=ðcβÞ remains the same as for nontilted micro-
bunching since the beat wave should propagate at the same
velocity as the electron beam for optimal energymodulation.
By substituting kð3Þ− in the expression for the tilt angle,
we find that the transverse component is given by
kð1Þ− ¼ ω1=c sin θ1 − ω2=c sin θ2 ¼ ðω1 − ω2Þ tan α=ðcβÞ.
These two conditions generalize the laser beam angles at
which resonance is attained given by Eq. (5) to include the
tilt angle. For a relativistic electron beam, these angles are
given by

cos θ1 ¼
cos2α
β

�
1 −

1

2γ2
ω1 þ ω2

ω1

þ ω1 − ω2

2ω1

tan2α

�

∓ jω1 − ω2j
βω1

X
2γ2

; ðC1Þ

where X¼ftan2αð1−β2cos2αÞ½β2cos2αðω1þω2Þ2=ðω1−
ω2Þ2−1�g1=2. The angle θ2 can be found by changing the
subscripts in (C1) from 1 → 2 and vice versa. For finite
bunch tilt angle, there are two pairs of possible laser beam

angles that produce a resonant beatwave,which produces the
correct bunch tilt depending on the respective sign of the laser
beam angles. When the laser beam angles θj have the same
(opposite) sign the minus (plus) sign is correct. The inter-
action time is shorter for laser incidence angles with opposite
sign, resulting in a lower energymodulation amplitude. Note
that Eq. (C1) reduces to Eq. (5) for a tilt angle of zero.
The bunching tilt that can be imposed using this method

is determined by the laser frequencies. The largest tilt angle
attainable is αmax ¼ arccos½ðω1 − ω2Þ=ðω1 þ ω2Þ=β�. For
larger tilt angles, the parameter X, and subsequently the
laser beam angles described by Eq. (C1), become complex.
In principle, large tilt angles near 90° can be induced by
using laser pulses with central frequencies that are close to
each other. However, this limits the energy modulation
amplitude and the modulation frequency significantly. For
the nominal set of parameters, the maximum tilt angle
is 60°.
For relativistic electron beams, the modulation of the

transverse velocity is much larger than the modulation in
axial velocity. As a consequence, the focal length for large tilt
angles can be considerably reduced with respect to longi-
tudinal modulation. This becomes clear from the phase after
energy modulation, which for nonzero tilt angle is given by
φ¼kν−ðu0νþΔuνÞ¼φ0þLΔγ=ðγ3β2Þð1þγ2tan2αÞsinφ0.
Expanding the phase around φ0 ¼ π and setting it to zero
gives the focal length

f ¼ cγ3β3

Δγð1þ γ2tan2αÞ
1

ω1 − ω2

: ðC2Þ

For the same energy modulation amplitude as the nominal
set, the focal length for the maximum tilt angle is 66 μm,
several orders of magnitude shorter than the longitudinal
modulation focal length. However, note that more pulse
energy is required to attain an energy modulation in a
geometry that induces microbunch tilt since the laser angles
of incidence change are larger.

APPENDIX D: MODULATION ENVELOPE

The ponderomotive force equation for three-dimensional
laser pulses has the following form:

∂cτūμ ¼ −
1

2
A1A2 exp ð−WμνxμxνÞ sin ðkν−xνÞkμ−; ðD1Þ

where Wμν¼ðrμ1rν1þrμ2r
ν
2Þ=w2

ρþ2ϵμϵν=w2
ηþkμ1k

ν
1=ð2σ2φ1

Þþ
ðkμ2kν2Þ=ð2σ2φ2

Þ. By imposing the impulsive approximation
xμ ≃ xμ0 þ uμ0cτ, where uμ0 is considered on-resonance
such that kν−xν ≃ φ0, we can identify that the argument
of the exponent can bewritten as a second order polynomial
in τ given by Wμνxμxν ≃ c2τ2 þ c1τ þ c0, where c0 ¼
Wμνx0μx0μ, c1 ¼ 2Wμνcu0νx0μ, and c2 ¼ Wμνc2u0νu0μ.
Here τ3D ¼ 1=

ffiffiffiffiffi
c2

p
is the eigen interaction time on an

µ

µ

FIG. 10. Simulated electron bunch with microbunch tilt.
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electron with the beat wave. Substituting the polynomial
into Eq. (D1) and integrating using the standard integralR∞
−∞ expð−c2x2 − c1x− c0Þdx¼

ffiffiffiffiffiffiffiffiffiffi
π=c2

p
exp½c21=ð4c2Þ− c0�

results in the modulation four-velocity

Δuμ ¼ ffiffiffi
π

p
A1A2cτ3D exp ð−Wμν

modx0μx0νÞ sinφ0kμ−; ðD2Þ

where the modulation amplitude tensor is given by

Wμν
mod ¼ Wμν −

WμκWνλu0κu0λ
Wαβu0αu0β

ðD3Þ

which for the geometry discussed in this paper and x00 ¼ 0

reduces to the form found in Eq. (20).

APPENDIX E: LASER BEAM DIFFRACTION

In Sec. IV, we considered the interaction to take place
near the waist of the laser pulses. For tightly focused lasers
(e.g., with a line focus), however, diffraction might
adversely affect the bunching process by the reduced
interaction time as a result of decreasing laser intensity
or by electrons probing different phases of the beat wave
due to the nonplanar wavefronts. Here, we will approxi-
mate the effect of diffraction by only taking into account the
reduction of laser intensity.
The reduction of the four-potential amplitude due to

diffraction is considered by making the substitution Aj →
Aj=gj in Eq. (19), where

gj ¼ ð1þ ζ2j=z
2
Rρj

Þ1=4ð1þ ζ2j=z
2
Rηj

Þ1=4: ðE1Þ

Here, ζj ¼ sνjxν is the longitudinal laser coordinate with
sμj ¼ ð0;− sin θjex þ cos θjezÞ, a four-vector denoting the
longitudinal direction of the jth laser pulse, and zRρj ¼
ωjw2

ρj=ð2cÞ and zRηj ¼ ωjw2
ηj=ð2cÞ the Rayleigh lengths of

jth laser pulse corresponding to the mutually orthogonal
transverse directions.
To find an analytical solution to the resulting equation of

motion, we have to make the following two approxima-
tions. First, we impose the impulsive approximation for a
resonant central electron such that xμ ≃ uμ0cτ. Second, the
resulting product of the diffraction terms g1g2 should be
expanded to second order in τ such that

g1g2 ≃ 1þ τ2=τ2R; ðE2Þ

where

τR ¼ 2γ

c2

�ðω1 þ ω2 − 2γ2ω1Þ2
ω4
1

�
1

w4
ρ1

þ 1

w4
η1

�

þ ðω1 þ ω2 − 2γ2ω2Þ2
ω4
2

�
1

w4
ρ2

þ 1

w4
η2

��
−1=2

ðE3Þ

is the approximated proper interaction time of a central
electron with the ponderomotive beat wave due to dif-
fraction only. Integration over proper time leads to the
following energy modulation:

Δγ ¼ πA1A2γσ3D
ω1 − ω2

ω1 þ ω2

erfcxðψ−1Þ
ψ

; ðE4Þ

where erfcxðxÞ ¼ expðx2Þ½1 − 2=
ffiffiffi
π

p R
x
0 expð−y2Þdy� is the

scaled complementary error function and diffraction
parameter ψ is the interaction time scaled by the interaction
time due to diffraction only:

ψ ¼ 2σ3Dγ

ðω1 þ ω2ÞτR
: ðE5Þ

When ψ ≪ 1, the effect of diffraction is negligible and
Eq. (E4) condenses to Eq. (20) (with xμ0 ¼ 0). On the
other hand, when ψ ≫ 1, diffraction dominates such
that the diffraction term can be approximated by
erfcxðψ−1Þ=ψ ≃ 1=ψ .
In Fig. 11, the results of particle tracking simulations

show that Eq. (E4) describes the energy modulation
reasonably well. In the simulations, a line focus was
applied for the nominal set and Gaussian laser pulses with
fixed energy (both 0.3 mJ). To this end, the waists wρ ¼
wρ1 ¼ wρ2 ¼ 15 μm is kept constant (for a constant
interaction time without diffraction) and wη ¼ wη1 ¼ wη2
is varied. The maximum energy modulation amplitude is
found around wη ¼ 2.5 μm. However, this might not be the
optimal setting for microbunching when taking into
account the finite transverse waist of the electron beam.
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