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Applications of laser-plasma accelerators (LPA) require independent control of electron beam
parameters. However, due to the complex coupling of the many variables governing the laser-plasma
interaction, precisely tuning these parameters based on simple scalings is often impossible or at least
suboptimal. Here, we apply multiobjective Bayesian optimization to derive optimal tuning curves for LPAs,
both in simulations and experiments. For electron energies between 150 and 250 MeV, we demonstrate
tuning of the charge over a range of nearly 100 pC, while preserving optimal beam loading conditions with
energy spreads below 5%. The derived tuning curves can explain the sometimes counterintuitive interplay
between laser and plasma control variables that is necessary to find the best trade-off between competing
beam properties.
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Over the past few years, laser-plasma accelerators (LPA)
[1,2] have shown rapid progress [3–5] promising compact
and cost-effective drivers for medical [6,7], high-energy
physics [8,9], and photon science [10–12] applications.
Past experiments often focused on showcasing the enor-
mous potential of LPAs with record beam properties. Real-
world applications, however, will in addition require to
precisely and independently control beam parameters over
an extended tuning range. LPAs have previously demon-
strated some tunability [13] but reaching the desired level
of control is a very challenging task: Multiple tuning
parameters can act directly or indirectly on the same beam
property, and beam parameters may influence or even
counteract each other through the complex laser-plasma
interaction. For example, beam loading [14–17] couples
bunch charge and energy spread. Simply varying one
property (e.g., higher charger) can easily deteriorate
(e.g., higher energy spread) the other. Consequently, tuning
the electron beam phase space represents a multiobjective
optimization problem, with the goal to identify solutions
that provide the best trade-offs between multiple, conflict-
ing objectives. The set of all of these optimal trade-offs
forms a hypersurface through the space of possible sol-
utions, which is commonly referred to as the Pareto front.

Gaining insight into the Pareto front is crucial for achieving
optimal beam properties, as it helps to identify and
reconcile the underlying conflicting mechanisms.
In this paper, we present Pareto-optimal tuning curves to

control the energy, charge, and energy spread in our laser-
plasma accelerator. We utilize multiobjective Bayesian
optimization (MOBO) [18–20] to sample the system’s
Pareto front and derive tuning curves that provide accurate
control over the relevant beam properties. We demonstrate
the concept using simulations and present a method to
handle the added complexity from noise under experimen-
tal conditions. Our experiments show that we can maintain
optimal beam loading conditions over a broad range of
beam configurations, allowing for flexible charge adjust-
ments while minimizing negative impacts on energy spread
at different specific design energies.
Bayesian optimization [21] (BO) is a method for effi-

ciently finding global extrema in black box functions that are
costly to evaluate and potentially noisy. Recently, it was
explored as a way to find optimal operation points in
conventional [22–24] and plasma accelerators [25,26]. To
avoid costly evaluations of the black box function, e.g., the
accelerator, BO builds a surrogate model (typically a
Gaussian process [27] model) of the system that allows to
make cheap and noise-free predictions. With the surrogate
model, an acquisition function is defined, which encodes the
search strategy to identify the next point for physical
evaluation. The acquired (experimental) data are used to
refine the surrogatemodel and further guide theoptimization.
In multiobjective optimization problems, there is no

unique optimal solution, but the goal is to find optimal
trade-offs between many objectives, which define the
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Pareto front. A trade-off is considered optimal, or non-
dominated, if it cannot be improved in one objective
without deteriorating another. To find a set of solutions
that is approaching the systems’s Pareto front, MOBO
maximizes the hypervolume that is spanned by the non-
dominated solutions. For this, MOBO uses the expected
improvement of the hypervolume as the acquisition func-
tion. As the hypervolume increases, the nondominated
solutions converge to the true Pareto front of the system.
So far, the application of MOBO has been limited to

simulation studies that recently have demonstrated its fea-
sibility for optimizing conventional [28] and laser-plasma
[29] accelerator setups. Implementation of the method under
experimental conditions adds significant complexity due to
measurement noise and shot-to-shot variations of the laser
and has not yet been shown successfully.
In the following, we derive a method to construct tuning

curves for our laser-plasma accelerator based on MOBO.
First, we illustrate our approach using particle-in-cell
simulations [30] with the code FBPIC [31,32], based on
the LUX laser-plasma accelerator operated at DESY. Our
setup is schematically shown in Fig. 1. The plasma
interaction is driven by the Ti:sapphire laser system
ANGUS. The laser pulses (2.5 J, 36 fs FWHM) are focused
to a spot size of 24 μm FWHMby a f=25 off-axis parabolic
mirror (OAP). The laser energy is controlled by a motorized
waveplate and a polarizer. The longitudinal focus position
is fine-tuned by driving a lens in a telescope at the end of
the laser chain. The plasma source, similar to the one used
in [17,26], is a capillarylike structure with three gas inlets
that allow to localize a mixture of argon and hydrogen for
electron injection in the front section, while providing a
plateau of pure hydrogen for acceleration in the back of the
gas profile. The flow through the inlets is controlled with
four individual mass flow controllers, two for the mixed gas
inlet (Ar, H2) and one for each of the inlets that make up the
plateau (H2). After the plasma exit, the electron beams are
focused into a spectrometer (energy resolution: 0.1%) with
a pair of quadrupole magnets. A cavity-based charge
monitor measures beam charge.

Starting from a working point of optimal beam loading
conditions with minimum energy spread [17,26], we want
to tune the beam charge while preserving the low energy
spread. A simple way to vary the bunch charge in our setup
is to shift the focal plane of the drive laser: Typically, the
focus is set to the second half of the plasma profile to
maximize the wakefield strength in the acceleration region.
Shifting the focus upstream toward the mixed gas region
increases the injection volume (ionization of inner shell Ar
electrons) and thus beam charge. This effect is shown in
Fig. 2(a), continuously shifting the focus upstream over a
range of 300 μm. Starting off with a beam that is optimally
beam loaded with 50 pC at 0.7% energy spread, the charge
increases as intended. However, with this simple increase in
charge, the previously flattened wakefield becomes over-
loaded and deforms, causing the bunch tail to experience a
lower accelerating gradient than the head. As a result, the
energy spread rapidly grows to unacceptable levels.
In principle, it is possible to counteract this effect by

increasing the wakefield strength. However, parameters that
control the wakefield do not act in an isolated manner: For
instance, raising the plasma density in return affects self-
focusing and the evolution of the drive laser. Further
adjustments of the laser energy and focus position would
be required to recover the injection conditions; yet, they
also influence the shape of the accelerating wakefield,
which in turn could make a different bunch current profile
necessary to achieve optimal beam loading. This requires
adjustments of the Ar-concentration, which not only
changes the injection rate but also the current profile by
affecting the plasma profile in the mixed gas region [26].

FIG. 1. LPA setup: The drive laser has a variable energy and
focus position. The plasma source has a mixed gas (magenta) and
a pure hydrogen (blue) filled region, which is controlled by four
mass flow controllers. The accelerated beams are focused into a
set of diagnostics, to measure beam charge and energy spectrum.

(a) (b)

(d)

(f)

(e)

(c)

FIG. 2. LPA tuning curves (simulations): The LPA setup is
optimized for both charge and energy spread at 200� 10 MeV
using MOBO. Panel (a): energy spread, tuning the charge with
the laser focus position only (crosses), or by a combined complex
tuning of many parameters (circles), which are individually
shown in panels (b)–(e). (A) and (B) mark two different tuning
strategies. Panel (f): longitudinal phase spaces for the optimized
tuning (blue) and the focus scan (violet). Solid lines, panels
(a)–(e) mark the continuous tuning curves, derived from the
optimization.
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This cascade of consequences illustrates, that manually
searching the functional dependencies that result in tuning of
the beam charge while maintaining optimal beam loading
and energy spread is futile. Instead, we apply MOBO to
systematically study the input parameters that make up this
optimal tuning behavior. Here, we use the tool BOTORCH

[19,33], and chose beam charge Q, relative energy spread
ΔE=Ẽ (median absolute deviation), and the deviation from a
design energy of 200 MeV, as objectives for optimization.
The results of our optimization, consisting of 700

individual simulations, are shown in Fig. 2(a). Compared
to the simple focus scan, we can increase the charge while
keeping the energy spread low. As expected, to achieve this
Pareto-optimal tuning, the input parameters (laser energy,
focus position, gas density, and Ar concentration) need to
be varied in nonobvious ways as shown in Figs. 2(b)–2(e).
Notably, for lower charges (region A) the focus position

zfoc and Ar concentration cAr have to be tuned in opposite
directions from what would be expected when increasing
the charge with these parameters individually. Instead, the
focus is moved away from the mixed gas region, the Ar
concentration is reduced, and gas density and laser energy
are increased. The higher gas density increases the plasma
density and the amount of Ar. Together with the higher
laser energy, this results in an increase of the injected
charge and a modification of the wakefield strength, which
prevents excessive beam loading. Shifting the focus down-
stream prevents diffraction of the drive laser toward the end
of the plasma and maintains optimal beam loading through-
out the acceleration process. Moreover, a slight decrease in
Ar concentration is necessary to match the injected current
profile to the wakefield at the increased plasma density.
The tuning behavior changes completely once the gas

density approaches the upper limit of the tuning range
(0.72 × 1024 cm−3) at around 100 pC (region B). Now, to
even further increase the charge, the focus needs to be tuned
in the opposite direction, i.e., upstream, and the Argon
concentration needs to be increased again slightly. The
laser energy that was previously also reaching the maxi-
mum of the permitted range is slightly reduced.
As shown in Fig. 2(f), this way of precisely balancing the

input parameters maintains a flattened phase space over a
wide range of charges, while keeping the beam energy
fixed. The residual energy spread increase is primarily
caused by correlated energy spread, building up only in the
head and tail of the bunch. In contrast, the beams from the
simple focus scan develop a significant energy correlation
and energy deviation.
To derive an actual tuning curve that can be used in

practice, the discrete, optimized working points have to be
generalized. We fitted a multivariate kernel ridge regression
model [34] to the data, which maps the desired beam charge
Q to the set of input parameters X, i.e., laser energy, focus
position, gas density, and Ar concentration, which provide
this charge at Pareto-optimal energy spread: XðQÞ.

The model is shown in Figs. 2(b)–2(e), with the solid line
indicating the continuous variation in input parameters as we
continuously increase the beam charge. Using these tuning
curves, the beam energy spread closely follows the Pareto
front, compare Fig. 2(a) (solid line). Following our tuning
curve, we can precisely set the beam charge, while providing
the best possible energy spread and retaining the design
energy.
Realizing the same concept experimentally is significantly

more challenging due to added measurement noise and shot-
to-shot variations (jitter) in the experimental conditions.
Conceptually, we need to distinguish several sources of

noise. First, the optimizer might set the machine to a certain
target state (e.g, laser energy and focus position), which
could be different from the actual shot. We can account for
this with online shot-to-shot measurements of the laser
parameters. Second, all measurements suffer from at least
some measurement noise, which we cannot avoid. This
random noise leads to uncertainty in the predictions of the
surrogate model that can only be mitigated with additional
data.
To cope with these effects, we recorded 40 shots at each

setpoint. If we would simply take the average of the
electron beam data from these shots, we would be averag-
ing over the shot-to-shot variations of the laser and
effectively treat them as random noise, which would lead
to additional uncertainty of the surrogate model. Instead, at
each working point, we trained a local Gaussian process
model using the onlinemeasurements of the laser energy and
focus position as inputs and the electron parameters as
outputs. This allowed us to disentangle the effects of the
laser jitter and interpolate the properties of the electron beam
for the exact input parameters that were requested by the
optimizer. Then we used this information to train the
surrogate model that guided the optimization. While pre-
vious experiments [26] trained the surrogate model directly
on all individual shots, the computational cost associated
with the MOBO algorithm when dealing with large datasets
led us to adopt this approach of local modeling.
To explore the capabilities of our setup, we performed a

series of experiments with MOBO runs at 150, 200, and
250 MeV. As before, the objectives for the optimization
were the beam charge, relative energy spread, and deviation
from the reference energy. The resulting Pareto fronts with
their corresponding input parameters after 100 iterations,
i.e., 4000 individual shots, are shown in Fig. 3.
For all three target energies, we find low energy spread

setpoints over a significant range of beam charges.
Consistent with the simulations, the energy spread grows
with increasing charge. For lower target energies, the
achievable charge increases as one would expect from
an aspect of energy conservation. As a result, for 150 MeV,
it was possible to tune the beam charge between 50 and
130 pC, while maintaining a relative energy spread of less
than 5%. Up to a charge of 100 pC, the energy spread only
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shows modest growth and stays below 2.5% but rapidly
increases from there on. This behavior implies that the
available input parameter range did not support optimal
beam loading beyond this point. Therefore, additional
charge can only be loaded into the wakefield at the cost
of significantly distorting the accelerating field. For the two
higher energy cases, this quick increase of the energy
spread is present already at a low charge, indicating that
here beam loading conditions immediately worsen so much
with increasing beam charge that a significant energy
correlation is imprinted.
Figures 3(b)–3(g) shows that the three different energies

populate very different islands in the input parameter space,
especially for Δzfoc, _VAr and _VH2;3. Also, the way some
parameters are tuned varies from energy to energy. For
example, for 150 MeV, the focus is moved downstream to
increase the charge similar to the lower charged beams in
the simulated setup before. For the other two cases, it is
moved upstream toward the mixed gas comparable to the
higher charge cases in the simulations. This again hints that
these two cases are already in a regime that is dominated by
strong beam loading. Assuming this is true, we expect that
these cases would behave similar to the 150-MeV case
when provided with more laser energy and exhibit lower
energy spread over a wider tuning range. The fact that these
three cases behave so diverse in regard to the input
parameters highlights the complexity of, first, finding
beams with acceptable quality and then, second, being
able to control them.
A general feature that is shared by nearly all configu-

rations in Fig. 3 is that the flow through the last gas inlet

_VH2;3 is higher than through the middle one _VH2;2. By
creating a slight density ramp, the slippage between the
electrons and the laser can be compensated through
contraction of the wakefield which is a way to increase
efficiency and load more charge.
The Pareto fronts in our experiment, Fig. 3, have fewer

sample points compared to the previous simulations, as a
result of the optimizer being run for a lower number of
iterations. Consequently, providing a continuous tuning
curve is evenmore important. The data show a less nonlinear
behavior than the simulations before, possibly because it is
less converged to the true Pareto front of the system. In this
case, it is sufficient to use a simple multivariate linear model
to describe the main parameter variations.We derived such a
model, exemplary for 250 MeV,

XðQÞ ¼ ðΔzfocðQÞ; _VArðQÞ; _VH2;3
ðQÞÞ

≈
�
½59 − 4Q�μm;

�
9.5
102

þ 1.25
103

Q
�
ml
s
;

�
1.8þ 4

102
Q

�
ml
s

�
;

with Q in units of pC. Here we only considered parameters
that made significant contributions to the tuning of the beam
charge, keeping the remaining inputs constant (Elaser ¼
2.15 J, _VH2;1 ¼ 2.24 ml=s, _VH2;2 ¼ 0.84 ml=s). For exam-
ple, to generate beams with 10 pC, according to the tuning
curve, an operator would set the machine toΔzfoc ¼ 19 μm,
_VAr ¼ 0.107 ml=s and _VH2;3

¼ 2.2 ml=s.
The input parameters over the full range of the tuning

curve and the underlying data is shown in Figs. 4(b)–4(d).
The tuning strategy is to shift the focus toward the mixed
gas region and to increase the flow of Ar to enhance the
beam charge. To support the additional charge and balance
beam loading, the flow of H2 in the back of the plasma

(a)

(b) (c)

(d) (e)

(f) (g)

FIG. 3. Experimental results: (a) Pareto fronts of the beam
charge and energy spread for beams within �10 MeV of the
target energies with corresponding input parameters (b)–(g), i.e.,
the shift of the focus position Δzfoc, laser energy Elaser, and the
flows of the gas supplies _V.

(a) (b)

(c)

(d)

FIG. 4. Experiment: Beam charge tuning curve at 250 MeV.
A linear model (green line) is fitted to the optimization result
mapping the requested beam charge to the corresponding input
parameters along the Pareto front (b–d). (a) The tuning curve was
validated and compared to the measured data (circles) with
predictions from a Gaussian process surrogate model. For
comparison, the effect of a laser focus position scan over
450 μm is shown (red line).
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source needs to go up. This leads to a higher gas pressure in
the plateau region and creates a density ramp toward the
back of the plasma profile, ensuring optimal performance.
To evaluate the effectiveness of the tuning curve, we

employ the surrogate model obtained from the optimization
process to forecast the response of the LPA when adjusted
based on the curve. For the example above, the surrogate
model predicts that the LPA generates beams with 10.9 pC
at 1.2% energy spread that is within 4.3 MeV of the
250 MeV design energy.
The green line in Fig. 4(a) shows the predicted behavior

of the energy spread when scanning the charge according to
the tuning curve. The resulting working points closely align
with those measured during optimization, indicating their
proximity to the presumed Pareto front of the system.
Remarkably, this behavior is achieved using only the three
most important input parameters identified through our
analysis. In contrast, when tuning the charge only with the
focus position, the resulting growth of energy spread is
roughly a factor of 2 larger than what is obtained with our
tuning curve. Provided with the simple tuning curve,
operators can precisely set the beam charge required for
their application, while still achieving the smallest possible
energy spread.
In conclusion, we have demonstrated dedicated control

over electron bunch parameters in our laser-plasma accel-
erator using continuous tuning curves, both in simulations
and experiments, which have been build via multiobjective
Bayesian optimization of the machine. In particular, the
bunch charge was varied over a range of nearly 100 pC and
at different electron energies (150–250 MeV), while
providing the smallest possible energy spreads (< 5%)
by moving the laser and plasma control parameters along
Pareto-optimal tuning curves. Even more importantly, we
could show that the derived tuning curves itself are mean-
ingful expressions of the control and output parameter
relationships, which allowed us to identify and explain
how different physics mechanisms have to be balanced to
provide optimal trade-offs between competing beam
parameters.
While we showcase the potential of our method with our

own LPA, our approach is generally valid and can be
readily applied to other laser-plasma accelerator setups: We
have introduced MOBO as a powerful tool to study the
complex interplay of the many mechanisms that eventually
result in a high-quality laser-plasma electron beams. We
believe this method will be broadly adopted in the future.
To drive applications, laser-plasma accelerators need to

be operated with tunability over a broad range of param-
eters, while still providing sub-percent-level energy spread
beams. In our experiment, we were limited to sub-5%
energy spread beams. However, studying the carefully
balanced mechanism at the Pareto front indicates that with
additional control parameters and a larger range of laser
energy and plasma density, we should be able to extend the

range of subpercent energy spread beams. We expect that in
the future, MOBOwill be used as an important tool to study
and design laser-plasma accelerators with the degrees of
freedom (control parameters) required to achieve extended
tuning ranges. Finally, tuning curves, as we present here,
will allow operators to precisely and quickly configure the
electron beam properties, which will be crucial for
applications.

We appreciate the support by the workshops and
technical groups at DESY. This work was funded by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation)—491245950.

[1] T. Tajima and J. M. Dawson, Laser Electron Accelerator,
Phys. Rev. Lett. 43, 267 (1979).

[2] E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of
laser-driven plasma-based electron accelerators, Rev. Mod.
Phys. 81, 1229 (2009).

[3] A. J. Gonsalves et al., Petawatt Laser Guiding and Electron
Beam Acceleration to 8 GeV in a Laser-Heated Capillary
DischargeWaveguide, Phys. Rev. Lett. 122, 084801 (2019).

[4] A. R. Maier, N. M. Delbos, T. Eichner, L. Hübner, S. Jalas,
L. Jeppe, S. W. Jolly, M. Kirchen, V. Leroux, P. Messner,
M. Schnepp, M. Trunk, P. A. Walker, C. Werle, and P.
Winkler, Decoding Sources of Energy Variability in a
Laser-Plasma Accelerator, Phys. Rev. X 10, 031039
(2020).

[5] L. T. Ke, K. Feng, W. T. Wang, Z. Y. Qin, C. H. Yu, Y. Wu,
Y. Chen, R. Qi, Z. J. Zhang, Y. Xu, X. J. Yang, Y. X. Leng,
J. S. Liu, R. X. Li, and Z. Z. Xu, Near-GeV Electron Beams
at a Few Per-Mille Level from a Laser Wakefield Accel-
erator Via Density-Tailored Plasma, Phys. Rev. Lett. 126,
214801 (2021).

[6] L. Labate, D. Palla, D. Panetta, F. Avella, F. Baffigi, F.
Brandi, F. Di Martino, L. Fulgentini, A. Giulietti, P. Köster,
D. Terzani, P. Tomassini, C. Traino, and L. A. Gizzi,
Toward an effective use of laser-driven very high energy
electrons for radiotherapy, Sci. Rep. 10, 17307 (2020).

[7] K. Svendsen, D. Guenot, J. B. Svensson, K. Petersson, A.
Persson, and O. Lundh, A focused very high energy
electron beam for fractionated stereotactic radiotherapy,
Sci. Rep. 11, 5844 (2021).

[8] C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Benedetti,
and W. P. Leemans, Physics considerations for laser-
plasma linear colliders, Phys. Rev. ST Accel. Beams 13,
101301 (2010).

[9] C. Benedetti et al., Linear colliders based on laser-plasma
accelerators, arXiv:2203.08366.

[10] H. Schwoerer, B. Liesfeld, H.-P. Schlenvoigt, K.-U.
Amthor, and R. Sauerbrey, Thomson-Backscattered
X Rays from Laser-Accelerated Electrons, Phys. Rev. Lett.
96, 014802 (2006).

[11] S. Kneip et al., Bright spatially coherent synchrotron
x-rays from a table-top source, Nat. Phys. 6, 980 (2010).

[12] W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu, R. Qi, Y. Chen, Z.
Qin, Z. Zhang, M. Fang, J. Liu, K. Jiang, H. Wang,
C. Wang, X. Yang, F. Wu, Y. Leng, J. Liu, R. Li, and Z. Xu,

TUNING CURVES FOR A LASER-PLASMA … PHYS. REV. ACCEL. BEAMS 26, 071302 (2023)

071302-5

https://doi.org/10.1103/PhysRevLett.43.267
https://doi.org/10.1103/RevModPhys.81.1229
https://doi.org/10.1103/RevModPhys.81.1229
https://doi.org/10.1103/PhysRevLett.122.084801
https://doi.org/10.1103/PhysRevX.10.031039
https://doi.org/10.1103/PhysRevX.10.031039
https://doi.org/10.1103/PhysRevLett.126.214801
https://doi.org/10.1103/PhysRevLett.126.214801
https://doi.org/10.1038/s41598-020-74256-w
https://doi.org/10.1038/s41598-021-85451-8
https://doi.org/10.1103/PhysRevSTAB.13.101301
https://doi.org/10.1103/PhysRevSTAB.13.101301
https://arXiv.org/abs/2203.08366
https://doi.org/10.1103/PhysRevLett.96.014802
https://doi.org/10.1103/PhysRevLett.96.014802
https://doi.org/10.1038/nphys1789


Free-electron lasing at 27 nanometres based on a laser
wakefield accelerator, Nature (London) 595, 516 (2021).

[13] A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S.
Shiraishi, T. Sokollik, C. Benedetti, C. B. Schroeder,
C. G. R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey,
C. Toth, and W. P. Leemans, Tunable laser plasma accel-
erator based on longitudinal density tailoring, Nat. Phys. 7,
862 (2011).

[14] M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori, T.
Katsouleas, J. Vieira, R. A. Fonseca, and L. O. Silva, Beam
Loading in the Nonlinear Regime of Plasma-Based Accel-
eration, Phys. Rev. Lett. 101, 145002 (2008).

[15] J. P. Couperus, R. Pausch, A. Köhler, O. Zarini, J. M.
Krämer, M. Garten, A. Huebl, R. Gebhardt, U. Helbig, S.
Bock, K. Zeil, A. Debus, M. Bussmann, U. Schramm, and
A. Irman, Demonstration of a beam loaded nanocoulomb-
class laser wakefield accelerator, Nat. Commun. 8, 487
(2017).

[16] J. Götzfried, A. Döpp, M. F. Gilljohann, F. M. Foerster, H.
Ding, S. Schindler, G. Schilling, A. Buck, L. Veisz, and S.
Karsch, Physics of High-Charge Electron Beams in Laser-
Plasma Wakefields, Phys. Rev. X 10, 041015 (2020).

[17] M. Kirchen, S. Jalas, P. Messner, P. Winkler, T. Eichner, L.
Hübner, T. Hülsenbusch, L. Jeppe, T. Parikh, M. Schnepp,
and A. R. Maier, Optimal Beam Loading in a Laser-Plasma
Accelerator, Phys. Rev. Lett. 126, 174801 (2021).

[18] M. T. M. Emmerich, K. C. Giannakoglou, and B. Naujoks,
Single- and multiobjective evolutionary optimization as-
sisted by Gaussian random field metamodels, IEEE Trans.
Evol. Comput. 10, 421 (2006).

[19] S. Daulton, M. Balandat, and E. Bakshy, Differentiable
expected hypervolume improvement for parallel multi-
objective Bayesian optimization, in Proceedings of the
34th International Conference on Neural Information
Processing Systems, Vancouver, Canada (2020), Vol. 33,
pp. 9851–9864, https://proceedings.neurips.cc/paper_files/
paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper
.pdf.

[20] S. Daulton, M. Balandat, and E. Bakshy, Parallel Bayesian
optimization of multiple noisy objectives with expected
hypervolume improvement, in Proceedings of the
35th International Conference on Neural Information
Processing Systems, Vancouver, Canada (2021), Vol. 34,
pp. 2187–2200, https://proceedings.neurips.cc/paper/2021/
file/11704817e347269b7254e744b5e22dac-Paper.pdf.

[21] D. R. Jones, M. Schonlau, and W. J Welch, Efficient global
optimization of expensive black-box functions, J. Global
Optim. 13, 455 (1998).

[22] J. Duris, D. Kennedy, A. Hanuka, J. Shtalenkova, A.
Edelen, P. Baxevanis, A. Egger, T. Cope, M. McIntire,
S. Ermon, and D. Ratner, Bayesian Optimization of
a Free-Electron Laser, Phys. Rev. Lett. 124, 124801
(2020).

[23] J. Kirschner, M. Mutný, A. Krause, J. Coello de Portugal,
N. Hiller, and J. Snuverink, Tuning particle accelerators
with safety constraints using Bayesian optimization, Phys.
Rev. Accel. Beams 25, 062802 (2022).

[24] C. Xu, T. Boltz, A. Mochihashi, A. Santamaria Garcia, M.
Schuh, and A.-S. Müller, Bayesian optimization of the
beam injection process into a storage ring, Phys. Rev.
Accel. Beams 26, 034601 (2023).

[25] R. J. Shalloo et al., Automation and control of laser
wakefield accelerators using Bayesian optimization, Nat.
Commun. 11, 6355 (2020).

[26] S. Jalas, M. Kirchen, P. Messner, P. Winkler, L. Hübner, J.
Dirkwinkel, M. Schnepp, R. Lehe, and A. R. Maier,
Bayesian Optimization of a Laser-Plasma Accelerator,
Phys. Rev. Lett. 126, 104801 (2021).

[27] C. E. Rasmussen and C. K. I. Williams, Gaussian Proc-
esses for Machine Learning (MIT Press, Cambridge, MA,
2006).

[28] R. Roussel, A. Hanuka, and A. Edelen, Multiobjective
Bayesian optimization for online accelerator tuning, Phys.
Rev. Accel. Beams 24, 062801 (2021).

[29] F. Irshad, S. Karsch, and A. Döpp, Multi-objective and
multi-fidelity Bayesian optimization of laser-plasma accel-
eration, Phys. Rev. Res. 5, 013063 (2023).

[30] The simulations had a grid resolution of Δz ¼ 0.02 μm,
Δr ¼ 0.3 μm with eight particles per cell and used qua-
sicylindrical geometry with two azimuthal modes.

[31] R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and
J.-L. Vay, A spectral, quasi-cylindrical and dispersion-free
particle-in-cell algorithm, Comput. Phys. Commun. 203,
66 (2016).

[32] M. Kirchen, R. Lehe, B. B. Godfrey, I. Dornmair, S. Jalas,
K. Peters, J.-L. Vay, and A. R. Maier, Stable discrete
representation of relativistically drifting plasmas, Phys.
Plasmas 23, 100704 (2016).

[33] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham,
A. G. Wilson, and E. Bakshy, Botorch: A framework for
efficient monte-carlo Bayesian optimization, in Proceedings
of the 34th International Conference on Neural Information
Processing Systems, Vancouver, Canada (2020), Vol. 33,
pp. 21524–21538, https://proceedings.neurips.cc/paper/
2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf.

[34] K. P. Murphy, Machine Learning: A Probabilistic Per-
spective (MIT press, Cambridge, MA, 2012), pp. 492–493.

S. JALAS et al. PHYS. REV. ACCEL. BEAMS 26, 071302 (2023)

071302-6

https://doi.org/10.1038/s41586-021-03678-x
https://doi.org/10.1038/nphys2071
https://doi.org/10.1038/nphys2071
https://doi.org/10.1103/PhysRevLett.101.145002
https://doi.org/10.1038/s41467-017-00592-7
https://doi.org/10.1038/s41467-017-00592-7
https://doi.org/10.1103/PhysRevX.10.041015
https://doi.org/10.1103/PhysRevLett.126.174801
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1109/TEVC.2005.859463
https://proceedings.neurips.cc/paper_files/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/11704817e347269b7254e744b5e22dac-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/11704817e347269b7254e744b5e22dac-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/11704817e347269b7254e744b5e22dac-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/11704817e347269b7254e744b5e22dac-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/11704817e347269b7254e744b5e22dac-Paper.pdf
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1103/PhysRevLett.124.124801
https://doi.org/10.1103/PhysRevLett.124.124801
https://doi.org/10.1103/PhysRevAccelBeams.25.062802
https://doi.org/10.1103/PhysRevAccelBeams.25.062802
https://doi.org/10.1103/PhysRevAccelBeams.26.034601
https://doi.org/10.1103/PhysRevAccelBeams.26.034601
https://doi.org/10.1038/s41467-020-20245-6
https://doi.org/10.1038/s41467-020-20245-6
https://doi.org/10.1103/PhysRevLett.126.104801
https://doi.org/10.1103/PhysRevAccelBeams.24.062801
https://doi.org/10.1103/PhysRevAccelBeams.24.062801
https://doi.org/10.1103/PhysRevResearch.5.013063
https://doi.org/10.1016/j.cpc.2016.02.007
https://doi.org/10.1016/j.cpc.2016.02.007
https://doi.org/10.1063/1.4964770
https://doi.org/10.1063/1.4964770
https://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf

