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A higher harmonic cavity (HHC) is popularly employed in synchrotron light storage rings to enhance the
machine performance, which requires its fundamental mode resonant frequency to be tuned above the
radio-frequency harmonic. However, this detuning is likely to cause Robinson instability. In this paper, we
focus on a mode-zero Robinson instability driven by the fundamental mode of a passive superconducting
harmonic cavity (PSHC). This instability oscillates slightly below the detuning frequency of PSHC and was
recently observed in tracking simulations or experiments for several synchrotron light sources, but the
underlying mechanisms have not been well understood. To investigate this instability, we modify the
conventional Robinson instability equation with the inclusion of the damping effect. By solving directly
this modified equation combined with performing macroparticle tracking simulation, it is found that this
instability is largely dependent on the momentum compaction factor, the Q value and detuning of PSHC,
and even the radiation damping time. Most importantly, this instability can be significantly enhanced by a
higher Q of PSHC and a lower radiation damping time, which is completely contrary to the conventional
Robinson instability.

DOI: 10.1103/PhysRevAccelBeams.26.064403

I. INTRODUCTION

In synchrotron light storage rings, the higher harmonic
cavity (HHC) is an essential component to attain the
machine performance. By operating the HHC in the bunch
lengthening mode, it can mitigate the intrabeam scattering
induced emittance growth, increase the Touschek lifetime,
and reduce the beam-induced heating of critical vacuum
components. In addition, the HHC can also provide Landau
damping by flattening the potential well to suppress the
coupled bunch instability driven by higher-order modes in
cavities [1,2]. However, the operation of HHC in bunch
lengthening mode requires its fundamental mode resonant
frequency has to be tuned higher than the radio-frequency
(rf) harmonic. According to Robinson instability theory [3],
it is known that this detuning is likely to cause beam
instability, which may pose a limitation on the maximum
bunch lengthening.
The instabilities related to the HHC fundamental

mode and well understood mainly include the coupled

dipole-quadrupole instability [4], typical mode-zero insta-
bility [5], and periodic transient beam-loading (PTBL)
instability [6,7] (also known as the mode-1 instability [8]).
The specific type of instability primarily depends on the
relevant parameters, especially the parameters of HHC.
In general, lowering the R=Q of HHC is beneficial to
improve the current threshold of Robinson instability
and mitigate the transient beam-loading effect introduced
by uneven beam filling [9]. In this respect, the super-
conducting HHC has the advantage of considerably low
R=Q and high Q, which is essential to alleviate such
Robinson instabilities and beam-loading transients. So
far, it has been installed in several third-generation
storage rings and successfully operated in passive mode
[10–12]. The passive superconducting harmonic cavity
(PSHC) is also adopted by several fourth-generation
storage rings [13–15]. Therefore, the instabilities related
to PSHC will be focused on in this paper.
For PSHC, in addition to the aforementioned PTBL

instability, which may limit the bunch lengthening at
relatively high beam current, we also need to attach
importance to another new Robinson instability, which is
a mode-zero instability that oscillates slightly below the
detuning frequency of PSHC and may lead to a lower
current threshold to achieve optimum or near-optimum
bunch lengthening. This new instability actually has
already appeared in tracking simulations for several syn-
chrotron light sources, such as ESRF-EBS [16], SLS [17],
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and SOLEIL-II [18], and also in an experiment [17].
However, its mechanism has not been well understood.
Since the PSHC is adopted by several storage rings, it is
necessary to further explore the mechanism of this insta-
bility. In this paper, we modify the conventional Robinson
instability equation by including the damping effect so that
it can be well used to study this instability. By solving this
equation, we find two solutions corresponding to two
unstable modes. One of the modes corresponds exactly
to this instability, which is found to be enhanced by a higher
Q of PSHC and strong external damping. We perform a
comprehensive study of its characteristics, which can help
us find measures to suppress this instability.
This paper is organized as follows: In Sec. II, we

introduce the formulas and the tracking method for the
mode-zero Robinson instability. Both methods predict an
unstable mode that has a frequency slightly lower than the
detuning of PSHC and their results are in good agreement.
In Sec. III, using the planned Hefei Advanced Light Facility
(HALF) storage ring as an example, the dependence of the
instability on relevant parameters is studied in detail, and
the possible mode coupling and the influence of the main
cavity fundamental mode are analyzed. Section IV dis-
cusses the instability of both SLS and SSRF storage rings.
The conclusions and discussions are presented in Sec. V.

II. METHOD AND VERIFICATION

A. Mode-zero Robinson instability formulas

Following the typical derivations in Ref. [5] for the
Robinson instability, the electron bunches circulating in the
ring are modeled as pointlike rigid bunches, uniformly
filled in rf buckets. Its longitudinal displacement can be
written in the form of z ∝ e−iΩt, where Ω is the complex
mode angular frequency of the beam oscillation. The real
part Re½Ω� gives the synchrotron frequency measured in a
real operation, and the imaginary part Im½Ω� gives the
Robinson instability growth rate if Im½Ω� > 0 (or damping
rate if Im½Ω� < 0). Then the Robinson instability driven by
an arbitrary longitudinal impedance Zjj can be described by

Ω2 − ω2
s ¼ −i

ω0I0αc
2πE=e

X∞

i¼−∞
½pω0Zjjðpω0Þ

− ðpω0 þ ΩÞZjjðpω0 þΩÞ�; ð1Þ

where ω0 is the revolution angular frequency, I0 is the
average beam current, αc is the momentum compaction
factor, E is the beam energy, e is the electronic charge.
ωs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eVrfhω0αc sinφs=ðET0Þ

p
is the unperturbed syn-

chrotron angular frequency, T0 is the revolution period,
h is the harmonic number, Vrf is the main cavity voltage
assumed to be constant, φs is the corresponding synchro-
nous phase, determined by Vrf sinφs ¼ U0, with U0 being
the energy loss per turn.

Note that the external damping effect is not considered in
the above equation. When it is considered, Eq. (1) should
be modified as

Ω2 þ i
2Ω
τz

− ω2
s ¼ −i

ω0I0αc
2πE=e

X∞

i¼−∞
½pω0Zjjðpω0Þ

− ðpω0 þ ΩÞZjjðpω0 þΩÞ�; ð2Þ

where τz is the damping time from radiation damping or
other damping mechanisms. The corresponding damping
rate is given as 1=τz.
Regarding the impedance contributor for the right-hand

side of Eq. (2), for simplicity, we will only consider the
PSHC fundamental mode. In other words, we will assume
an ideal sine wave for the main rf cavity, ignoring the
influence of its fundamental mode on beam dynamics such
as the synchrotron frequency shift [19] and the Robinson
damping rate. As for PSHC, its fundamental mode can be
expressed by

ZjjðωÞ ¼
R

1þ iQðωr
ω − ω

ωr
Þ ; ð3Þ

whereQ is the quality factor, R is the shunt impedance, and
ωr ¼ nhω0 þ 2πΔfr is the resonant angular frequency,
where n is the harmonic order of PSHC, and Δfr is the
detuning frequency of PSHC.
For the mode-zero Robinson instability, the only sig-

nificant contributions on the right-hand side of Eq. (2)
come from terms p ¼ �nh in the summation, because ωr is
very close to nhω0. This gives

Ω2 þ i
2Ω
τz

− ω2
s ¼ −i

ω0I0αc
2πE=e

fi2nhω0Im½Zjjðnhω0Þ�

− ωþ
pZjjðωþ

p Þ − ω−
pZjjðω−

pÞg; ð4Þ

where ω�
p ¼ �nhω0 þ Ω. Since the deviation Δfr=fr is

normally small, we have

Im½Zjjðnhω0Þ� ≈ −
Rfr

2QΔfr
. ð5Þ

Substitute Eq. (5) into Eq. (4), then we finally obtain

Ω2þ i
2Ω
τz

−ω2
s þ i

ω0I0αc
2πE=e

×

�
−i

nhω0Rfr
QΔfr

−ωþ
pZjjðωþ

p Þ−ω−
pZjjðω−

pÞ
�
¼ 0: ð6Þ

The above equation can in principle be solved to obtain Ω.
Some authors introduce the assumption that Ω does not
deviate much from ωs for the modest beam intensities so
that Ω can be solved analytically [5]. However, in doing so,
one will miss another unstable solution related to the
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detuning frequency for the case of PSHC. So it is better to
solve Eq. (6) numerically without approximation.
It is known that Ω is a complex number, so it can be

expressed by Ωrþ iΩi. We need to find the specific
ðΩr0;Ωi0Þ to satisfy Eq. (6), that is, to make that
gðΩr0 þ iΩi0Þ ¼ 0, where we define

gðΩÞ¼Ω2þ i
2Ω
τz

−ω2
s þ i

ω0I0αc
2πE=e

×

�
−i

nhω0Rfr
QΔfr

−ωþ
pZjjðωþ

p Þ−ω−
pZjjðω−

pÞ
�
: ð7Þ

We can scan the complex angular frequency in a certain
range to find the roots. Ωr is in the range from 0 to Δωr,
and Ωi should be in a wide enough range, such as −2000
to 2000 1=s. That is, ðΩr0;Ωi0Þ is limited in a rectangular
two-dimensional (2D) domain. A direct idea is to dis-
cretize this 2D domain with a suitable mesh size and
then calculate the value of gðΩÞ for all discrete points,
where the minimum of jgðΩÞj corresponds to the required
Ωr0 þ iΩi0. It will be shown later that for the PSHC case,
jgðΩÞj generally has two local minima, one’s real part
close to the synchrotron frequency and another close to
the detuning frequency. To facilitate the subsequent
discussion, the former is labeled as S mode and the latter
as D mode. It should be mentioned that a similar analysis
but for the main cavity accelerating mode was done by
Towne and Wang [20]. They obtained an equation similar
to Eq. (6). Two modes of oscillation were also derived,
named separately beam mode and cavity mode, which
correspond to the S mode and D mode here, respectively.
The D-mode oscillation is exactly related to the mode-
zero Robinson instability and is focused on in this paper.

B. Macroparticle tracking

The STABLE code will be used to conduct the tracking
simulations for the mode-zero Robinson instability study.
This code is implemented in a MATLAB environment with
the usage of the state-of-the-art of graphics-processing-unit
acceleration technique so that the tracking efficiency is
significantly improved, and the postprocessing of tracking
results can be very convenient. It can be used to study
longitudinal beam dynamics considering arbitrary fill
patterns, passive harmonic cavities, higher order modes,
and arbitrary short-range wake. More details about the
STABLE are given in Ref. [21]. For the case of PSHC, to be
consistent with Eq. (6), which is derived based on pointlike
rigid bunch model and includes only the effects of damping
and the fundamental mode of PSHC, we perform the
STABLE tracking with a single macroparticle per bunch
and ignoring the main cavity beam loading. While, when it
comes to analyzing the influence of the main cavity beam
loading in Sec. III F, each bunch is modeled as 10,000
macroparticles and the quantum excitation is included

automatically. At the beginning of tracking, the voltage
phasor of PSHC should be initialized and can be deter-
mined by the following formula:

Ṽhc ¼ I0
R
Q

fr
Δfr

expðiφhcÞ; ð8Þ

where φhc is the detuning phase and related to the detuning
frequency by φhc ¼ arctanð2QΔfr

fr
Þ.

C. Verification of Eq. (6)

To verify Eq. (6), the HALF storage ring that will install
a one-cell PSHC for bunch lengthening is taken as the
research object. The main parameters of the HALF storage
ring with insertion devices are summarized in Table I. To
create conditions for mode-zero instability, the average
current is set to 40 mA and the assumed filling pattern is
eight equally spaced and charged bunches. At this current,
the corresponding near-optimum detuning of PSHC is
about 6 kHz. The radiation damping time is τz ¼ 14 ms.
For comparison, we also study the case of τz ¼ 2 ms, and
additional damping could be provided by a bunch-by-
bunch feedback system. In the calculation of Eq. (7), we
typically take the scan range of Ωr ∈ ½0;Δωr� and Ωi ∈
½−2000; 2000� 1=s with step size ΔΩr ¼ 4π Hz rad and
ΔΩi ¼ 2 1=s.
The contour map of the logarithm of jgðΩÞj for the cases

of τz ¼ 2 ms and τz ¼ 14 ms is shown in Fig. 1. We can
see that there are two local minima, as mentioned earlier,
the left one is related to the S-mode solution and the other
D-mode solution. The imaginary part of S-mode one is
negative, and its value is approximately equal to the
external damping rate; while the imaginary part of D-mode
one is 18 1=s for τz ¼ 2 ms, and −20 1=s for τz ¼ 14 ms. It
indicates that, interestingly, the beam becomes unstable
with a stronger damping rate, which is completely contrary
to any other typical collective beam instability.

TABLE I. Main parameters of the HALF storage ring used for
mode-zero Robinson instability study.

Parameter Symbol Value

Beam energy E 2.2 GeV
Ring circumference C 479.86 m
Assumed beam current I0 40 mA
Longitudinal damping time τz 14 ms
Momentum compaction αc 9.4 × 10−5

Harmonic number h 800
Energy loss per turn U0 400 keV
Main cavity voltage Vrf 1.2 MV
HHC harmonic order n 3
HHC normalized shunt impedance R=Q 39 Ω
HHC quality factor Q 2 × 108

HHC near-optimum detuning Δfr 6 kHz
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To check the semianalytical calculation, the STABLE code
is used to conduct tracking simulations for the above cases.
Each bunch is modeled as a single macroparticle, and
50,000 turns are tracked. The growth or damping rate can
be obtained by fitting the oscillation of averaged relative
momentum deviation in its exponential rising or falling
stage. The tracking results are 17.9 and −19.5 1=s for
τz ¼ 2 ms and τz ¼ 14 ms, respectively, which are in good
agreement with the semianalytical results. More verifica-
tion of Eq. (6) can be found in Sec. III.

D. Analysis of the D-mode instability

Let us further analyze it mathematically. The root
ðΩr0;Ωi0Þ of Eq. (6) needs to satisfy that both the real
and imaginary parts of function gðΩr0 þ iΩi0Þ become
zero. Assume that Ωr0 is already known but Ωi0 unknown,
then one can obtain

Im½gðΩr0 þ iΩiÞ� ¼ 2Ωr0Ωi þ
2Ωr0

τz
þ ω0I0αc

2πE=e

× Ref−ωþ
pZjjðωþ

p Þ − ω−
pZjjðω−

pÞg ¼ 0:

ð9Þ

For a certain Ωr0, it is found that the third term on the
right-hand side of Eq. (9) is approximately linearly depen-
dent on Ωi in an appropriate range as shown in Fig. 2,
then we have

ω0I0αc
2πE=e

Ref−ωþ
pZjjðωþ

p Þ − ω−
pZjjðω−

pÞg ≈ kΩi þ b; ð10Þ

where k and b are real coefficients that depend on Ωr0 and
can be obtained by data fitting. Substitute Eq. (10) into
Eq. (9), then we have

Ωi0 ¼ −
bþ 2Ωr0

τz

2Ωr0 þ k
: ð11Þ

Still using the parameters listed in Table I for the case
of 2 ms, the value of the left-hand side of Eq. (10) and the
fitting curves kΩi þ b as a function of Ωi for both S and D
modes are shown in Fig. 2, and the values of each item in
Eq. (11) are summarized in Table II. As seen in Fig. 2, the
left-hand side of Eq. (10) for S mode has a relative large
linear regime over Ωi ∈ ½−1000; 1000�, while that of D
mode has a smaller linear regime Ωi ∈ ½−300; 300�, but
the growth rate of D mode is only about 18 1=s as
mentioned in Sec. II C and still located in the linear
regime.
For the S mode, the denominator on the right-hand side

of Eq. (11) is 2Ωr0 þ k ≈ 2Ωr0, and the numerator is
bþ 2Ωr0=τz ≈ 2Ωr0=τz, so it indicates that the damping
rate of S mode is dominated by radiation damping. It
should be noted that the approximation made here is only
valid for the parameters that have been chosen. Of course,

FIG. 1. The contour map of logðjgðΩÞjÞ for the cases of
damping time τz ¼ 2 ms (top) and τz ¼ 14 ms (bottom). The
longitudinal coordinate represents the growth rate (if Ωi > 0) or
damping rate (if Ωi < 0).
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FIG. 2. Linear fitting of Eq. (10) for both S and D modes. The
solid data are obtained by calculating the left part of Eq. (10), and
the dashed data by linear fitting of the solid data. For both S and D
modes, the linear fitting is accurate in an appropriate range.

TABLE II. Values of each item in Eq. (11) for both S and D mode.

Mode Ωr0=2π [1=s] 2Ωr0=τz [1=s2] b [1=s2] 2Ωr0 [1=s] k [1=s] Ωi0 [1=s]

S 1609 1.0 × 107 −3.8 × 104 2.0 × 104 −1.6 × 103 −541
D 5773 3.6 × 107 −2.1 × 107 7.3 × 104 −9.0 × 105 18.1
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for other parameters, the Robinson (S mode) growth rate
may not be dominated by the radiation damping. In
addition, the value of k is negative, and it implies that
the radiation damping plays a role in the energy exchange
between the beam and rf field in the PSHC and enhances
the total damping of S mode further. For the D mode, the
denominator of 2Ωr0 þ k is even less than zero as seen in
Table II, and it indicates that the radiation damping, on the
contrary, will contribute to the total growth rate of D mode.

III. DEPENDENCE OF THE MODE-ZERO
ROBINSON INSTABILITY

We have shown that the D-mode oscillation growth is
enhanced with a shorter damping time in the presence of
PSHC. For storage rings employing PSHC, it is of practical
significance to explore how to avoid this atypical Robinson
instability. In this section, we will investigate the depend-
ence of the Robinson instability on relevant parameters,
including damping time, Q value and detuning of PSHC,
and momentum compaction factor. Moreover, the possible
mode coupling and the impact of the main cavity funda-
mental mode are also investigated.

A. Damping time

We first study the effect of the damping time with the
parameters listed in Table I. The cases with two different
damping times have been displayed in Sec. II C. To explore
more cases, the damping time is varied from 0.2 to 20 ms
with a step of 0.2 ms, and the growth rates obtained from
Eq. (6) and tracking are illustrated in Fig. 3. It should be
pointed out that the instability growth rates (or damping
rates) given by tracking are dominated by the least stable
mode, so the tracking method here can only provide the
D-mode growth rates. It can be seen that the S-mode growth
rates are dominated by the damping rate −1=τz and always
less than zero, while the D-mode growth rates show the
approximate inverse dependence on the damping time, and

beam stability requires τz > 3.4 ms. That is consistent
with the analysis in Sec. II D. Thus, for HALF with a
damping time of 14 ms, the mode-zero Robinson insta-
bility can be avoided.
Figure 4 shows the oscillation frequency as a function of

damping time for both S and Dmodes. The damping time is
also scanned in the range from 0.2 to 20 ms with a step of
0.2 ms. We can see that the damping affects hardly the
frequency of both modes. Only when less than 1 ms,
reducing the damping time increases and decreases the
D-mode and S-mode frequencies, respectively.

B. PSHC quality factor

In our previous study of bunch lengthening for the
HALF storage ring, we have shown that a smaller R=Q of
HHC is conducive to obtaining a longer bunch length-
ening without PTBL at a higher beam current [6]. This
impelled HALF to adopt one-cell PSHC with R=Q less
than 40 Ω. For PSHC around 1.5 GHz, a typical unloaded
Q factor is of order 108, but combined with a power
coupler, the loaded quality factor can be adjusted to about
2 × 105, such as the PSHC of APS Upgrade storage
ring [13]. Thus, we vary the Q value from 2 × 105 to
109 while keeping the detuning constant and assume the
HALF storage ring has a damping time of 2 ms. For these
cases, the corresponding growth rates obtained by both
solving Eq. (6) and tracking simulation are shown in
Fig. 5. A smaller Q helps suppress the D-mode instability
but may enhance the S-mode instability. So a moderate Q
of order 106–107 is better suited to damp both S- and
D-mode instabilities.
We note that the D-mode oscillation will be strongly

damped when the Q value is lower than 107, which is why
the D-mode instability only occurs in the case of a high Q
of PSHC. For the case of low Q, such as PSHC with a
coupler to extract beam power, the D-mode instability is not
expected to occur.

FIG. 3. Growth rate of the mode-zero Robinson instability as a
function of the damping rate (1/damping time).
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C. PSHC detuning

Figure 6 shows the D-mode growth rates as a function of
PSHC detuning for the case of HALF with damping times
of 2 and 14 ms. The D-mode growth rate increases as the
detuning decreases. For the case of τz ¼ 14 ms, the D
mode is always damped in the detuning range from 5 to
12 kHz, indicating that it can be avoided by HALF in
reality. While, for the case of τz ¼ 2 ms, there is a threshold
detuning, below which the D-mode oscillation will expo-
nentially grow and eventually lead to beam loss. Therefore,
when it is necessary to lower the detuning to obtain the
required bunch lengthening at a relatively low beam
current, the D-mode instability may be excited, especially
for those rings with relatively small damping time.

D. Momentum compaction factor

Since the momentum compaction factor plays an impor-
tant role in longitudinal beam dynamics, it is necessary,
in detail, to study its impact on the mode-zero Robinson

instability in the case of PSHC. Still using the parameters
listed in Table I but only changing the momentum com-
paction factor from αc0 to 4αc0 with αc0 being 9.4 × 10−5,
the complex angular frequencies obtained by solving
Eq. (6) are shown in Fig. 7. For both damping times, as
momentum compaction factor increases, the oscillation
frequencies of S and D modes are increased and decreased
respectively, while, the growth rates of S and D modes are
decreased and increased, respectively. Therefore, the larger
the momentum compaction factor, the more unstable the
D-mode oscillation.
For the storage ring with a large momentum compaction

factor and the requirement to achieve sufficient bunch
lengthening at a relatively low beam current, the coupling
of the S and D modes is likely to occur. Because the
S-mode frequency is relatively high, and on the other hand,
the PSHC detuning has to be low to obtain the desired
voltage, thus lowering the D-mode frequency. Both factors
create conditions for mode coupling. In the next subsection,
we will further discuss the case of mode coupling.

E. Coupling of S and D modes

It is noteworthy that this coupling of S and D modes was
also observed in the simulation for SOLEIL-II [22], in
which the detuning was reduced to close to the synchrotron
frequency, thus creating conditions for the mode coupling.
However, this mode coupling was yet fully understood. In
this subsection, we take HALF parameters as an example to
study it further via solving Eq. (6). To create conditions for
the mode coupling, the momentum compaction factor is
magnified by a factor of 4.
Figure 8 shows the complex angular frequency as a

function of PSHC detuning in the range from 4 to 7 kHz.
For the cases of both damping times of 2 and 14 ms, it can
be seen that as the detuning decreases, the two modes
finally merge at a detuning of about 6200 Hz. After that,
the complex frequency values of S and D modes are

FIG. 6. Growth rate of the D-mode Robinson instability as a
function of PSHC detuning.
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approximately conjugate with each other, which is strong
evidence for the mode coupling. It should be noted that
after the mode coupling occurs, the D-mode growth rate
will be very large and not be easily calculated accurately by
tracking simulation because of the beam being lost in a few
tracking turns. Solving Eq. (6) provides us with a conven-
ient and accurate method to study the mode coupling effect.
This kind of mode coupling phenomenon is unlikely to

appear in the new generation of storage rings because of the
generally suppressed horizontal dispersion that reduces the
momentum compaction factor and the synchrotron fre-
quency unless the detuning of PSHC is very low to achieve
the required bunch lengthening at low beam current.

F. Main cavity fundamental mode

The influence of the main cavity fundamental mode
on the mode-zero Robinson instability, which was not
covered in the previous analysis, will be analyzed by using
macroparticle tracking in this subsection. As shown in
Fig. 5, with an external damping time of 2 ms, the S mode
and D mode will become unstable when Q ≤ 6 × 105 and
Q ≥ 2 × 108, respectively. These cases can be chosen as
good examples to investigate the influence of the main
cavity fundamental mode on the mode-zero Robinson
instability. For the HALF storage ring, we consider two
schemes of main cavity: two normal-conducting (NC) rf
cavities with total R=Q ¼ 160 Ω, loaded Q ¼ 2 × 104 and
detuning frequency −6 kHz; and one-cell superconducting
(SC) rf cavity with R=Q ¼ 45 Ω, loaded Q ¼ 2 × 105 and
detuning frequency −1 kHz. The detuning frequencies
given above are to make the loaded angle (the angle
between the cavity voltage phasor and the generator current
phasor) approximately −10 deg at 40 mA.
The STABLE code is used to perform tracking simulations

with 10,000 macroparticles per bunch. The newly imple-
mented proportional-integral feedback (PI FB) control

module in the STABLE code can be used to model the
low-level rf control system more realistically, aiming at
keeping constant the cavity voltage phasor. The PI FB
module will be turned on when considering the main cavity
fundamental mode. For the two types of main cavities,
complete simulations including the quantum excitation are
performed. As a comparison, the case of the ideal main
cavity is also computed. The instability growth rates as a
function of the PSHC Q values obtained from tracking
simulations for the above three cases and from Eq. (6) for
the case without the main cavity fundamental mode effect
are shown in Fig. 9.
It can be seen that the D-mode growth rates are almost

unaffected by the main cavity fundamental mode, no matter
for the NC or SC main cavity. For the S-mode growth
rates, there are clear discrepancies between the cases of SC
and NC: The S-mode growth rates are effectively reduced
with the inclusion of the SC main cavity; while they are
almost unchanged for the NC main cavity. That is to say,
the main cavity fundamental mode can reduce the S-mode
growth rate contributed by the PSHC, but the degree of
reduction largely depends on the specific parameters of the
main cavity.

IV. APPLICATION TO SLS AND SSRF
STORAGE RINGS

For the HALF storage ring, we have studied the
characteristics of mode-zero Robinson instability driven
by the fundamental mode of PSHC by artificially changing
its relevant parameters. Due to its relatively long damping

FIG. 9. The mode-zero Robinson instability growth rates as a
function of the PSHC quality factor. The S-mode instability
corresponds to the cases of Q ¼ 3 × 105, 4 × 105, and 5 × 105,
and the D-mode instability corresponds to the cases of
Q ¼ 2 × 108, 5 × 108, and 1 × 109. The legend gives the calcu-
lation consideration: “ideal MC” means ignoring the main cavity
fundamental mode effect; “NC-MCþ PI FB” and “SC-MCþ PI
FB” mean, respectively, the normal-conducting and the super-
conducting main cavity with turning on the PI feedback
controller.
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time of 14 ms, the D-mode instability can be avoided at
near-optimum detuning and beam current of 40 mA. When
reducing the damping time to 2 ms, the conditions of the
D-mode instability are created artificially, so its character-
istics can be studied. In addition to the damping time, we
have known that in the case of a relatively large momentum
compaction factor, low detuning, and high Q of PSHC, the
D-mode instability is more likely to occur.
Now, let us turn our attention to some existing synchro-

tron light sources that have already run PSHC, including
SLS [10], ELETTRA [11], and SSRF [12]. According to
their parameters, we take SLS and SSRF as examples, since
they have a relatively short damping time and a relatively
large momentum compaction factor and thus are more
likely to encounter such D-mode instability. In fact, for the
case of SLS with 100 mA beam current and 40 filled
bunches, it was already reported that there is a threshold
detuning of about 23.6 kHz [17], below which, both the
bunch energy spread and the PSHC voltage start to
oscillate, ultimately leading to beam loss. In Ref. [17],
the threshold detuning for the beam loss was explained by
Bosch’s dipole-quadrupole coupling theory [4]. For this
case, we study the D-mode instability using the same SLS
parameters given in Ref. [17]. The growth rates as a
function of detuning frequency obtained by solving
Eq. (6) and tracking simulation are shown in Fig. 10.
The threshold detuning is about 22.5 kHz, which is in good
agreement with the aforementioned 23.6 kHz. It indicates
that the beam loss observed in Ref. [17] can also be
explained by the D-mode Robinson instability mechanism.
In particular, the PSHC of SSRF is made in pure

niobium, which has a relatively large internal quality factor
at an operating temperature [12]. Therefore, SSRF may
encounter D-mode instability at a modest beam current. For
the case of SSRF at 200 mA, we evaluate its D-mode
growth rates and bunch lengthening ratio as a function of

PSHC detuning. The new lattice parameters of SSRF used
for this calculation are taken from [23]. The main cavity
voltage and the PSHC R=Q are set to 4.5 MV and 88 Ω,
respectively, according to Ref. [12]. In addition, the damping
time is set to 3.5 ms [24]. The corresponding results are
shown in Fig. 11. It can be seen that for the case of PSHC
Q ¼ 2 × 108, SSRF is likely to encounter D-mode insta-
bility at a detuning of less than 20 kHz, which may limit the
bunch lengthening ratio. To suppress the D-mode instability,
the loaded quality factor of PSHC can be appropriately
reduced, e.g., for the case of Q ¼ 5 × 107, PSHC can work
even at a lower detuning of 15 kHz without the D-mode
instability, allowing a larger bunch lengthening ratio.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, by adding the damping effect to the
conventional Robinson instability equation, we obtained
a modified equation that can be used to analyze the mode-
zero Robinson instability driven by the PSHC fundamental
mode. By solving this equation, it was found that there are
two oscillation modes related to mode-zero Robinson
instability, one of which is related to the synchrotron
frequency, called S-mode instability, and the other is related
to the detuning of PSHC, called D-mode instability. For the
D-mode instability, one of its major characteristics is that it
is antidamped by radiation damping, which is contrary to
the conventional Robinson instability. Another is that it
can be mitigated by reducing the loaded quality factor of
PSHC. In addition, the coupling of S and D modes can
appear if the PSHC detuning is reduced further to approach
the synchrotron frequency for the required PSHC voltage
at a relatively low current. For the new generation of
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synchrotron light sources, due to their relatively long
damping time and small momentum compaction factor,
the D-mode instability is suppressed to some extent, while
the S-D mode coupling may limit the bunch lengthening
ratio in the case of relatively low current.
It should be noted that we ignored the influence of the

short-range wake on the S-D mode coupling. The short-
range wake will lead to a synchrotron frequency shift,
which will affect the coupling of S and D modes. As is
observed by tracking simulation in Ref. [22], the short-
range wake intensifies the mode coupling. Because Eq. (6)
does not contain the short-range wake, it may lose accuracy
for the mode coupling in the case of a strong short-range
wake. We demonstrated the influence of the main cavity
fundamental mode on the mode-zero Robinson instability
driven by the PSHC using the HALF storage ring param-
eters. For the D-mode instability, the influence can be
ignored. While, for the S-mode instability, the influence
largely depends on the parameters of the main cavity
fundamental mode. Further exploration and confirmation
are needed to determine whether the above conclusions are
applicable to other synchrotron light source ring parame-
ters. To sum up, the PSHC fundamental mode can play a
dominant role in the mode-zero Robinson instability, and
solving Eq. (6) can provide convincing results for the
D-mode instability.
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