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We present analytical and numerical studies of short-range wakefields in an L-shaped corrugated
structure. This structure has variable streaking polarization and the quadrupole wakefield component is
suppressed when the beam moves with equal distances to both plates. These features provide promising
capability in multidimensional beam phase space diagnostic and fresh-slice applications. We first give
zeroth-order analytical expressions of the longitudinal and the transverse wake functions using the
conformal mapping method. Then we combine these results with the first-order approximate formulas of a
single-plate structure to obtain more accurate analytical approximations of the wake functions of the
L-shaped structure. In order to confirm the accuracy of the analytical model, we have developed a
numerical method based on integral equations in the frequency domain for arbitrarily shaped waveguides
with surface impedance boundary conditions.
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I. INTRODUCTION

X-ray free-electron lasers (XFELs) have been steering
scientific applications in a broad range owing to their
highest brightness. The customization of the x-ray pulse
properties for unique user requirements has involved
various types of active or passive devices. Over the past
few years, the utilization of the wakefields originated from
a metallic corrugated structure [1], also called a dechirper,
has successfully demonstrated applications such as electron
beam energy chirp control [2,3], multicolor pulse gener-
ation [4,5], pulse duration shortening [6,7], and time-
resolved diagnostic [8,9] in XFELs. Dielectric structures
were also used [10] at XFEL facilities, but so far limited to
low electron beam energy.
The passive, metallic corrugated structure was first

proposed to be a round one [1] and later built at several
FEL facilities to be two parallel plates for better adjust-
ability. In such a flat geometry structure, both the dipole
and quadrupole components of the transverse wake exist
near the symmetry plane between the two plates. When the
electron beam passes through the structure away from
the symmetry plane, an extra monopole component of the
transverse wake is also excited and streaks the beam
transversely. For applications that only utilize the longi-
tudinal wake, such as energy chirp control, two identical

parallel-plate sections are usually orthogonally placed with
the electron beam passing through the axis to minimize the
effect of the quadrupole component [11]. For applications
that mainly utilize the monopole kick of the corrugated
structure, such as short pulse generation and two-color
generation, the electron beam is usually placed far away
from the symmetry plane of the two plates or simply only a
single plate is used [12–14]. In such a setup, the quadrupole
wakefield effect could not be easily compensated and it is
favorable to have small β functions at the location of the
structure to reduce the time-dependent mismatch along the
beam [14,15]. It is worth noting that a small β function at
the corrugated structure location also reduces the streaking
effect, which can be compensated by a closer distance to
the plate.
Recently, an L-shaped corrugated structure with the

electron beam passing near the corner of the L-shape
was proposed to cancel the quadrupole component of
the transverse wakefields while maintaining the streaking
strength [16]. Such a structure also allows the possibility to
switch between L-shape operation and single-plate oper-
ation by adjusting the distances between the electron
beam and the two plates. These features of the L-shaped
corrugated structure can potentially facilitate “quadrupole-
free” streaking of the electron beam in advanced FEL
lasing schemes and multidimensional beam phase space
diagnostics.
Despite the promising applications, an accurate wake-

field model of such a structure has not yet been developed.
The calculation of the wakefields for corrugated struc-
tures with round and parallel-plate geometry has been
performed numerically using the field matching method
[11] and time-domain simulations [17–19]. Analytical
models for the short bunch wakefields were developed
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to the zeroth-order [20] and the first-order [12] approxi-
mation, assuming that the impedance of corrugations can
be represented by a surface impedance [21]. The first-order
model was further extended to single-plate flat geometry by
taking the limit of the aperture for the parallel-plate
geometry to infinity [13]. In Ref. [16], wakefield calcu-
lations for the L-shaped structure were performed numeri-
cally in the time domain for a relatively long electron beam.
In this paper, we present an analytical model and a

numerical method for calculating the short-range wake-
fields of the L-shaped corrugated structures. The analytical
expressions are given at zeroth-order and at first-order
approximations. The zeroth-order formulas are obtained
through the conformal mapping method [22,23]. Com-
bining the zeroth-order results with the first-order approxi-
mate formulas of a single-plate structure, we obtain more
accurate “first-order” analytical approximations for the
wake functions of the L-shaped structure. In order to
confirm the accuracy of the analytical model, we have
developed a numerical method based on integral equations
in the frequency domain for arbitrarily shaped waveguides
with surface impedance boundary conditions. We assume
that the corrugated structure can be described by a surface
impedance as it was done for flat geometry in Ref. [21].
The accuracy of such an approach is proven by comparison
of the results with those obtained by direct solution of
Maxwell’s equations in the time domain for a full model of
corrugations using ECHO2D [19].
It is of special interest to compare the wakefields of the

L-shaped structure to a single-plate one as both operation
modes can be realized with the L-shaped structure. The
numerical codes, however, have restrictions on the simu-
lated geometries. The integral equation method we devel-
oped is capable of calculating steady-state wakefields for
arbitrary longitudinally uniform but transversely closed
geometry. Open structures such as single-plate and L-shape
could be approximated by assuming a rectangle and placing
the electron beam toward one plate (for single-plate case)
or one corner (for L-shape case). The time-domain code
ECHO2D can model only two horizontal corrugated plates
placed between two vertical perfectly conducting walls. In
this regard, we consider in the paper four different flat
geometries shown in Fig. 1. We will show that when the
rectangle geometry is properly chosen and the electron
beam is properly placed, the effect from the far-away plates
can be neglected and it is possible to compare results
between different numerical models.
The four geometries studied here are sketched in Fig. 1,

namely, (a) L-shape, (b) single-plate, (c) parallel-plate, and
(d) rectangular structures. The geometries are shown as
front views and the corrugations are drawn as a yellow layer
therein. The side view of the corrugations and correspond-
ing corrugation parameters are shown in Fig. 1(e). For the
unbounded geometries in Figs. 1(a)–1(c), the plates are
assumed to be wide enough so that they can be treated as
they extend to infinity. The electron beams, located at (x̄; ȳ),

are represented with a green dot in the front view and a green
ellipse in the side view. It should be noted that in this paper,
the electron beam is not fixed at the shown location but can
move freely toward or away from any corrugated plate.
The rest of this paper is organized as follows: We first

give zeroth-order analytical formulas for the wakefields of
the studied geometries in Sec. II A. Then, in Sec. II B, we
summarize the existing first-order analytical approximation
for single-plate and parallel-plate structures and propose
first-order analytical expressions for the L-shaped structure.
Numerical methods are introduced in Sec. III. In Sec. IV,
we first show that with a proper choice of the rectangle
geometry, the single-plate and the L-shape structures can
be simulated. Then, we give examples of a single-plate
structure and an L-shaped structure to show the validity of
the analytical formulas and numerical methods. The fea-
tures of the L-shaped corrugated structure are discussed.
Finally, we give concluding remarks in Sec. V.

II. ANALYTICAL METHODS

In the following, we will work in a Cartesian coordi-
nate system, where x is the horizontal coordinate and

FIG. 1. Sketches of four types of corrugated structure geom-
etries. Front views: (a) L-shape, (b) single-plate, (c) parallel-plate,
and (d) rectangular structures. The corrugations are drawn as a
yellow layer in the front views and shown with corrugation
parameters in the side view (e). The electron beams, located at
(x̄; ȳ), are represented with a green dot in the front view and a
green ellipse in the side view. In the side view (e), only the
corrugations for the lower plate and its distance to beam d are
shown for simplicity.
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y is the vertical one. The longitudinal wake function
wkðx; y; x0; y0; sÞ describes the energy loss of the witness
particle with transverse coordinates ðx; yÞ caused by the
source particle with transverse coordinates ðx0; y0Þ, which
moves ahead of the witness particle by a longitudinal
distance s. The transverse wake function can be found
through the Panofsky-Wenzel theorem:

∂

∂s
w⃗⊥ ¼ −∇⊥wk: ð1Þ

For geometries considered in this paper, the com-
ponents of the transverse wake function near a reference
trajectory with coordinates ðx̄; ȳÞ can be presented through
expansion:

wxðx; y; x0; y0; sÞ ≈ wxmðx̄; ȳ; sÞ þ wdðx̄; ȳ; sÞðx0 − x̄Þ
− wqðx̄; ȳ; sÞðx − x̄Þ; ð2Þ

wyðx; y; x0; y0; sÞ ≈ wymðx̄; ȳ; sÞ þ wdðx̄; ȳ; sÞðy0 − ȳÞ
þ wqðx̄; ȳ; sÞðy − ȳÞ: ð3Þ

The coefficients of the expansion wxm; wym are the monop-
ole transverse wake functions in x and y directions.
The other coefficients wd, wq are dipole and quadrupole
transverse wake functions, respectively. We note that in
Refs. [12,13], the “dipole” component was what is referred
to as the monopole component here. Other linear terms
in the expansion are neglected. In the following, we
are looking for the analytical approximation of these
coefficients.

A. Zeroth-order approximation

It has been shown [22–24] that exact calculations of the
upper limits of the longitudinal electric field and of the
transverse component of the Lorentz force can be obtained
by the conformal mapping technique. This method applies
to longitudinally homogeneous waveguides with arbitrary
retarding layers (which in our case are the corrugations).
In this analysis, the cross section of the waveguide is
represented in a complex plane z ¼ xþ iy and conformally
mapped onto a disk with radius a in another complex plane
ω. The location of the source particle z0 is mapped to the
center of the disk ω0 ¼ 0. Knowing the conformal mapping
as ω ¼ fðz; z0Þ, the upper limits of the longitudinal electric
field and of the transverse component of the Lorentz force
can be obtained through its derivatives with respect to z
by [24]

Ekðz; z0; 0þÞ ¼ −
Z0c
π

Q
a2

R½f0ðz; z0Þ�f0ðz0; z0Þ�; ð4Þ

∂

∂s
F⊥ðz; z0; 0þÞ ¼

Z0c
π

qQ
a2

f00ðz; z0Þ�f0ðz0; z0Þ; ð5Þ

where R denotes the real part, Z0 ¼ 377 Ω is the vacuum
impedance, c is the speed of light in vacuum, s is the
longitudinal distance behind the source particle, Q is the
charge of the source particle, q is the charge of the witness
particle, and the asterisks denote the complex conjugation.
Here F⊥ is a complex function defined as F⊥ ¼ Fx þ iFy

with Fx and Fy being the x and y components of the force.
For simplicity, we define the longitudinal and transverse

form factors as

Fkðz; z0Þ ¼ R½f0ðz; z0Þ�f0ðz0; z0Þ�; ð6Þ

F⊥ðz; z0Þ ¼ f00ðz; z0Þ�f0ðz0; z0Þ: ð7Þ

The longitudinal and transverse wakes can be then approxi-
mated via

wkðz;z0; sÞ≈−
Ekðz;z0;0þÞ

Q
θðsÞ ¼ Z0c

πa2
Fkðz;z0ÞθðsÞ; ð8Þ

w⊥ðz; z0; sÞ ≈
s
qQ

∂

∂s
F⊥ðz; z0; 0þÞθðsÞ

¼ Z0cs
πa2

F⊥ðz; z0ÞθðsÞ; ð9Þ

where θðsÞ is the Heaviside step function. Similarly, the
transverse wake w⊥ is expressed as a complex function
with w⊥ ¼ wx þ iwy.

1. Single-plate structure

For the single-plate case, the corrugated plate is put at
y ¼ 0 and faces the upper half plane. The conformal
mapping from the upper half plane in the z plane to a
disk with a radius of a is given by [25]

ψðzÞ ¼ a
z − i
zþ i

: ð10Þ

Assuming the source particle is located at z0 in the upper
half plane, the corresponding location in ψ plane can be
found with ψ0 ¼ ψðz0Þ. The disk can be further mapped to
another disk in ω plane with the same radius a and ψ0

mapped to the center of the disk using

ωðψÞ ¼ a2
ψ − ψ0

a2 − ψψ�
0

; ð11Þ

where ψ�
0 is the complex conjugate of ψ0. Combine the

above mapping, it is then found that the conformal mapping
from the upper half plane to a disk with source particle at z0
mapped to the center of the disk can be expressed as

fðz; z0Þ ¼ −a
z�0 − i
z0 þ i

z − z0
z − z�0

: ð12Þ
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With Eq. (12), we obtain the form factors for the single-
plate structure as

Fkðz; z0Þ ¼ −a2R
�

1

ðz0 − z�Þ2
�
; ð13Þ

F⊥ðz; z0Þ ¼ 2ia2
z0 −Rðz0Þ

ðz0 − z�Þ3Iðz0Þ
; ð14Þ

whereI denotes the imaginary part. Taking z ¼ xþ iy and
z0 ¼ x0 þ iy0, we obtain the longitudinal and transverse
wakes as a function of the transverse position of the source
and witness particles:

wS
kðx; y; x0; y0; sÞ ¼ −

Z0c
π

R

�
1

ðx0 − xþ iðy0 þ yÞÞ2
�
θðsÞ;

ð15Þ

wS⊥ðx; y; x0; y0; sÞ ¼ −
2Z0c
π

s
ðx0 − xþ iðy0 þ yÞÞ3 θðsÞ;

ð16Þ
here S stands for single-plate structure.
The longitudinal wake is usually taken when x ¼ x0 ¼ x̄

and y ¼ y0 ¼ ȳ, giving

wS
kðȳ; sÞ ¼ AS

kðȳÞθðsÞ; AS
kðȳÞ ¼

Z0c
4π

1

ȳ2
: ð17Þ

We note that in the above expressions, the distance from the
beam reference position to the plate is ȳ. This result is the
same as obtained in Ref. [13].
For the transverse wake, we first obtain wx and wy as

wS
x ¼

2Z0c
π

ðx − x0Þ½ðx − x0Þ2 − 3ðyþ y0Þ2�
½ðx − x0Þ2 þ ðyþ y0Þ2�3

sθðsÞ; ð18Þ

wS
y ¼ −

2Z0c
π

ðyþ y0Þ½−3ðx − x0Þ2 þ ðyþ y0Þ2�
½ðx − x0Þ2 þ ðyþ y0Þ2�3

sθðsÞ:

ð19Þ

Following Eqs. (2) and (3), we obtain the transverse
monopole, dipole, and quadrupole components for the
single-plate structures as

wS
xmðȳ; sÞ ¼ 0; ð20Þ

wS
ymðȳ; sÞ ¼ AS

mðȳÞsθðsÞ; AS
mðȳÞ ¼ −

Z0c
4π

1

ȳ3
; ð21Þ

wS
dðȳ; sÞ ¼ AS

dðȳÞsθðsÞ; AS
dðȳÞ ¼

Z0c
π

3

8ȳ4
; ð22Þ

wS
qðȳ; sÞ ¼ wS

dðȳ; sÞ: ð23Þ

The results we obtained here are in agreement with the
results from Ref. [13].

2. Parallel-plate structure

The parallel-plate geometry is modeled as parallel strips
with plates located at y ¼ �a. The conformal mapping
from the parallel strips to a disk with the source location z0
mapped to the center of the disk is found to be [24]

fðz; z0Þ ¼
ia½tanhðπz

4aÞ − tanhðπz0
4a Þ�

1 − tanhðπz
4aÞ tanhð

πz�
0

4a Þ
: ð24Þ

Inserting the mapping into Eqs. (6) and (7), we obtain the
form factors for parallel-plate geometry as

Fkðz; z0Þ ¼
π2

16
R

�
sech2

�
πðz0 − z�Þ

4a

��
; ð25Þ

F⊥ðz; z0Þ ¼
π3

32a
sech2

�
πðz0− z�Þ

4a

�
tanh

�
πðz0 − z�Þ

4a

�
: ð26Þ

Substituting with z ¼ xþ iy and z0 ¼ x0 þ iy0, we
obtain the longitudinal and transverse wakes as a function
of the transverse position of the source and witness
particles:

wP
k ðx; y; x0; y0; sÞ

¼ πZ0c
16a2

R

�
sech2

�
π½x − x0 − iðyþ y0Þ�

4a

��
θðsÞ; ð27Þ

wP⊥ðx; y; x0; y0; sÞ ¼
π2Z0cs
32a3

sech2
�
π½x0 − xþ iðyþ y0Þ�

4a

�

× tanh

�
π½x0 − xþ iðyþ y0Þ�

4a

�
θðsÞ;

ð28Þ

where P stands for parallel plates.
By taking x ¼ x0 ¼ x̄ and y ¼ y0 ¼ ȳ, we obtain the

longitudinal wake for parallel-plate structure as

wP
k ðȳ; sÞ ¼ AP

k ðȳÞθðsÞ; AP
k ðȳÞ ¼

πZ0c
16a2

sec2
�
πȳ
2a

�
: ð29Þ

Note that here the distance from the beam reference
position to the upper plate is a − ȳ.
For the transverse wake, we again use w⊥ ¼ wx þ iwy to

obtain wx and wy, then expand in Taylor series near the
reference trajectory x̄ and ȳ to get monopole, dipole, and
quadrupole transverse wake functions. The coefficients of
the expansion are as follows:

wP
xmðȳ; sÞ ¼ 0; ð30Þ
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wP
ymðȳ; sÞ ¼ AP

mðȳÞsθðsÞ;

AP
mðȳÞ ¼

Z0c
4π

π3

8a3
sec2

�
πȳ
2a

�
tan

�
πȳ
2a

�
; ð31Þ

wP
d ðȳ; sÞ ¼ AP

d ðȳÞsθðsÞ;

AP
d ðȳÞ ¼

Z0c
4π

π4

32a4

�
2 − cos

�
πȳ
a

��
sec4

�
πȳ
2a

�
; ð32Þ

wP
q ðȳ; sÞ ¼ wP

d ðȳ; sÞ: ð33Þ

The results we obtained here are in agreement with the
results from Ref. [12].

3. L-shaped structure

The L-shaped geometry is modeled as the first quadrant
of a Cartesian coordinate system, with the two plates
located at y ¼ 0 and x ¼ 0, respectively. The corrugations
of the two plates face toward the first quadrant. The
conformal mapping from the first quadrant in the z plane
to a disk in ω plane with the source location z0 mapped to
the center of the disk is found to be [25]

fðz; z0Þ ¼ −a
z�20 − i
z20 þ i

z2 − z20
z2 − z�20

: ð34Þ

The form factors for the L-shaped structure then follow as

Fkðz; z0Þ ¼ −4a2R
�

z0z�

ðz20 − z�2Þ2
�
; ð35Þ

F⊥ðz; z0Þ ¼ −
4a2z0ðz20 þ 3z�2Þ

ðz20 − z�2Þ3 : ð36Þ

Substituting with z ¼ xþ iy and z0 ¼ x0 þ iy0, we
obtain the longitudinal and transverse wakes as a function
of the transverse position of the source and witness
particles:

wL
k ðx;y;x0;y0; sÞ ¼−

4Z0c
π

R

� ðx− iyÞðx0þ iy0Þ
½ðx− iyÞ2− ðx0þ iy0Þ2�2

�

¼wS
kðx;y;x0; y0; sÞþwS

kðy;x;y0; x0; sÞ;
ð37Þ

wL⊥ðx; y; x0; y0; sÞ ¼ wS⊥ðx; y; x0; y0; sÞ
þ iwS⊥ðy; x; y0; x0; sÞ�; ð38Þ

where L stands for L-shaped structure. Eqs. (37) and (38)
mean that in zeroth-order approximation, the wake func-
tions of the L-shaped structure can be obtained as a direct
sum of the wake functions of the single plates.

Taking the longitudinal wake at the reference trajectory
x ¼ x0 ¼ x̄, y ¼ y0 ¼ ȳ, we have

wL
k ðx̄; ȳ; sÞ ¼ ðAS

kðx̄Þ þ AS
kðȳÞÞθðsÞ: ð39Þ

Comparing the result with Eq. (17), we see that at zeroth
order, when the beam has an equal distance toward the two
plates, ȳ ¼ x̄, the L-shaped corrugated structure generates
twice the longitudinal wake as the single-plate structure.
Similarly, for the transverse wake, we again use w⊥ ¼

wx þ iwy to obtain wx and wy, then expand in the Taylor
series to get monopole, dipole, and quadrupole wakes for x
and y, respectively. We have

wL
xmðx̄; ȳ; sÞ ¼ AS

mðx̄ÞsθðsÞ; ð40Þ

wL
ymðx̄; ȳ; sÞ ¼ AS

mðȳÞsθðsÞ; ð41Þ

wL
d ðx̄; ȳ; sÞ ¼ ½AS

dðx̄Þ þ AS
dðȳÞ�sθðsÞ; ð42Þ

wL
q ðx̄; ȳ; sÞ ¼ ½AS

dðȳÞ − AS
dðx̄Þ�sθðsÞ: ð43Þ

Compared to the single-plate structure, when ȳ ¼ x̄, the
total monopole kick strength is increased by a factor of

ffiffiffi
2

p
and rotated by π=4. The dipole wake is twice as large. The
quadrupole wake is canceled. Taking x̄ → ∞, the results of
the single plate are recovered. The results at zeroth order
already indicate a few unique features of the L-shaped
corrugated structure. First, it is possible to operate the
structure in either L-shape mode or single-plate mode by
properly adjusting the distance between the electron beam
and the plates. Second, in the L-shape operation mode, the
overall streaking is enhanced compared with a single plate,
and it is possible to realize “quadruple-free” streaking.

4. Rectangular structure

The conformal mapping from a rectangle with half-width
b and half-height a in z plane to a disk with radius a in ψ
plane takes the form [26]

ψðzÞ ¼ a
1þ i

ffiffiffi
κ

p
snðiaþz

b K; κ2Þ
iþ ffiffiffi

κ
p

snðiaþz
b K; κ2Þ : ð44Þ

Here sn is the Jacobi elliptic sine function with

κ¼
�
θ2ð0;mÞ
θ3ð0;mÞ

�
2

; K ¼ π

2
θ23ð0;mÞ; m¼ e−2πa=b; ð45Þ

where θ2 and θ3 are the Jacobi theta functions. Here,
the source location z0 is mapped to ψ0 ¼ ψðz0Þ. Using
Eq. (11), we further center the source location and obtain

fðz; z0Þ ¼ a
½1þ i

ffiffiffi
κ

p
snðξ0Þ��½snðξÞ − snðξ0Þ�

½ ffiffiffi
κ

p
snðξ0Þ þ i�½snðξ0Þ� − snðξÞ� : ð46Þ
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Here we have used ξ ¼ iaþz
b K, ξ0 ¼ iaþz0

b K, and omitted κ2 in the second argument of the sn function for simplicity.
Using the mapping in Eq. (46), we obtain the expressions of longitudinal and transverse wakes for a rectangular structure

as functions of the positions of the source and witness particles

wR
k ðz; z0; sÞ ¼ −

Z0cK2

πb2
R

�
cnðξ0Þdnðξ0ÞcnðξÞ�dnðξÞ�

½snðξÞ� − snðξ0Þ�2
�
θðsÞ; ð47Þ

wR⊥ðz;z0; sÞ ¼−
Z0cK3s
πb3

cnðξ0Þdnðξ0Þfdn2ðξÞ½snðξ0Þ�− snðξÞ�snðξÞ− cn2ðξÞ½−snðξ0Þ�snðξÞκ2þ dn2ðξÞþ 1�g�
½snðξÞ�− snðξ0Þ�3

θðsÞ: ð48Þ

Here, cn, dn, and sn are Jacobi elliptic functions.
For the longitudinal wake, at the source particle location,

z ¼ z0 ¼ z̄ ¼ x̄þ iȳ, we have

wR
k ðz̄; sÞ ¼

Z0cK2

4πb2
jcnðξ̄Þj2jdnðξ̄Þj2

I½snðξ̄Þ�2 θðsÞ; ð49Þ

where ξ̄ ¼ iaþz̄
b K and jcnj means to take the modulus. For

the case that the source particle is located at the center of
the rectangle, z̄ ¼ 0, we have

wR
k ð0; sÞ ¼

Z0cK2

4πb2
jcnðiKa=bÞj2jdnðiKa=bÞj2

I½snðiKa=bÞ�2 θðsÞ: ð50Þ

Further assuming a=b → 0, we recover the results for
parallel-plate geometry: wR

k ð0; sÞ ¼ wP
k ð0; sÞ.

For the transverse wake, here we only give the
monopole wake for a rectangular structure by taking
z ¼ z0 ¼ z̄, as

wR
mðz̄; sÞ ¼ −

Z0cK3s
πb3

cnðξ̄Þdnðξ̄Þfdn2ðξ̄Þ½jsnðξ̄Þj2 − snðξ̄Þ2� − cn2ðξ̄Þ½−jsnðξ̄Þj2κ2 þ dn2ðξ̄Þ þ 1�g�
½snðξ̄Þ� − snðξ̄Þ�3 θðsÞ: ð51Þ

B. First-order approximation

The above analysis by means of conformal mapping
gives a zeroth-order approximation of the wake functions,
where the longitudinal wake is a constant and the transverse
wakes have constant slopes. The zeroth-order approxima-
tion gives the upper limits of the wake functions and is valid
for extremely short bunches. For longer bunches, the
deviation from the zeroth-order approximation can be
large. Therefore, it is necessary to develop a higher-order
approximation of the wake functions. For the corrugated
structures, such an approximation has been developed
using a surface impedance approach.
The use of the surface impedance concept for calculating

the beam impedance in accelerators was first introduced to
study the impedance of surface roughness [27]. It is defined
as the ratio of the longitudinal electric field and the
azimuthal magnetic field on the surface. Several surface
impedance models have been developed for roughness
[27,28] and small, periodic corrugations [29–31].
It was shown in Ref. [12] that the interaction of the

charged beam with the perfectly conducting flat corrugated
structure can be described by the same surface impedance
as for an infinite chain of pillboxes [32]:

ZSðkÞ ¼ Z0

1þ iffiffiffiffiffiffiffi
ksc

p ; sc ¼
π

t
ðαðt=pÞpÞ2; ð52Þ

with αðxÞ ¼ 1 − 0.465
ffiffiffi
x

p
− 0.070x, and t, p being the

corrugation parameters. Using this surface impedance,

Bane and Stupakov derived the generalized longitudinal
and transverse impedance for calculating wakefields in
parallel-plate geometry with boundaries at y ¼ �a in
Ref. [21]. First-order approximation has then been derived
for parallel-plate structure [12] and single-plate structure
[13], respectively. In the following, we first give an overview
of the obtained wakes for parallel-plate and single-plate
structures, then we combine the formal expression with the
zeroth-order approximation obtained in the previous section
to give a first-order approximation for theL-shaped structure.

1. Parallel-plate structure

The longitudinal wake function for the source and
witness charges at position ȳ can be approximated by an
exponential function

wP1
k ðȳ; sÞ ¼ AP

k ðȳÞe
−

ffiffiffiffiffiffi
s

skðȳÞ
p

θðsÞ; ð53Þ
where P1 stands for first-order approximation of parallel-
plate structure, AP

k ðȳÞ is given in Eq. (29) and

skðȳÞ ¼ 4sr

�
1þ 1

3
cos2β þ β tan β

�
−2
;

β ¼ πȳ
2a

; sr ¼
a2

2sc
: ð54Þ

The transverse monopole wake function can be approxi-
mated as
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wP1
ymðȳ; sÞ ¼ 2AP

mðȳÞsmðȳÞ

×

�
1 −

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
s

smðȳÞ
r �

e−
ffiffiffiffiffiffiffi

s
smðȳÞ

p �
θðsÞ; ð55Þ

where AP
mðȳÞ is given in Eq. (31) and the characteristic

distance reads

smðȳÞ ¼ 4sr

�
3

2
− β cot 2β þ 2β csc 2β

�
−2
: ð56Þ

The same form of the expression Eq. (55) can be used
to approximate the dipole and quadrupole wake func-
tions. The coefficient AP

d ðȳÞ is given in Eq. (32) and the
quadrupole coefficient coincides with the dipole one:
AP
q ðȳÞ ¼ AP

d ðȳÞ. From Ref. [12], the characteristic distance
for the quadrupole wake is

sqðȳÞ ¼ 4sr

�
56 − cos 2β

30
þ 0.3þ β sin 2β

2 − cos 2β
þ 2β tan β

�
−2
:

ð57Þ

Following the same procedure, we can derive the dipole
coefficient not considered earlier in Ref. [12]

sdðȳÞ ¼ 4sr

�
64þ cos 2β

30
−
0.3 − β sin 2β
2 − cos 2β

þ 2β tan β

�
−2
:

ð58Þ

2. Single-plate structure

For the single-plate structure, the first-order wake
functions are approximated by the same formal expressions
as in the previous section. The coefficients AS

kðȳÞ, AS
mðȳÞ,

AS
dðȳÞ are obtained above in Eqs. (17), (21), (22), and

AS
qðȳÞ ¼ AS

dðȳÞ. If we define ȳ as the distance to the plate,
then in the limit a → ∞, Eqs. (54) and (56)–(58) reduce to
the expressions

skðȳÞ ¼
2ȳ2

sc
; ð59Þ

smðȳÞ ¼
8ȳ2

9sc
; ð60Þ

sdðȳÞ ¼ sqðȳÞ ¼
ȳ2

2sc
; ð61Þ

and the wake functions can be written as

wS1
k ðȳ; sÞ ¼ AS

kðȳÞe
−

ffiffiffiffiffiffi
s

skðȳÞ
p

θðsÞ; ð62Þ

wS1
xmðȳ; sÞ ¼ 0; ð63Þ

wS1
ymðȳ; sÞ ¼ 2AS

mðȳÞsmðȳÞ

×

�
1 −

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
s

smðȳÞ
r �

e−
ffiffiffiffiffiffiffi

s
smðȳÞ

p �
θðsÞ; ð64Þ

wS1
d ðȳ; sÞ ¼ 2AS

dðȳÞsdðȳÞ
�
1−

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
s

sdðȳÞ
r �

e−
ffiffiffiffiffiffis
sdðȳÞ

p �
θðsÞ;

ð65Þ

wS1
q ðȳ; sÞ ¼ wS1

d ðȳ; sÞ: ð66Þ

Let us note that we corrected the expression for sq
published earlier in Ref. [13].

3. L-shaped structure

We assume that Eqs. (37) and (38) hold for the first-order
approximation as well and the wake functions of the
L-shaped structure can be obtained as a direct sum of
the wake functions of the single plates.
If we define x̄; ȳ as the distance to the plates, then we

obtain

wL1
k ðx̄; ȳ; sÞ ¼ wS1

k ðx̄; sÞ þ wS1
k ðȳ; sÞ; ð67Þ

where wS1
k is given by Eq. (62). The transverse wake

functions are

wL1
xmðx̄; ȳ; sÞ ¼ wS1

ymðx̄; sÞ; ð68Þ

wL1
ymðx̄; ȳ; sÞ ¼ wS1

ymðȳ; sÞ; ð69Þ

wL1
d ðx̄; ȳ; sÞ ¼ wS1

d ðȳ; sÞ þ wS1
d ðx̄; sÞ; ð70Þ

wL1
q ðx̄; ȳ; sÞ ¼ wS1

d ðȳ; sÞ − wS1
d ðx̄; sÞ; ð71Þ

where wS1
ym, wS1

d are given by Eqs. (64) and (65). When
x̄ → ∞, the equations agree with those of a single-plate.

III. NUMERICAL METHODS

A. Integral equation method in frequency domain

In the following, we present a numerical scheme to
calculate the high-frequency impedance of relativistic point
charge. It is based on the boundary element method. This
numerical technique allows us to calculate the steady-state
wake function for an arbitrary cross section of the pipe. Our
equations and the approach are similar to those presented in
Ref. [26] for resistive wall conductivity. However, we use
different integral equations and different numerical meth-
ods. Let us describe shortly our numerical method and the
obtained results.
The charge of a relativistic bunch in the frequency

domain reads ρðx; yÞeiðωt−kzÞ, ω ¼ kc, where z is the
longitudinal coordinate, k is the wave number. Due to
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the linearity of the Maxwell equations, all other quantities
of interest will have the same form. Hence the Maxwell
equations in the frequency domain can be reduced to the
second-order differential equations for the transverse com-
ponents of the electromagnetic field, E⃗⊥ ¼ ðEx; EyÞT ,
H⃗⊥ ¼ ðHx;HyÞT , in the pipe cross section S:

Δ⊥E⃗⊥ ¼ ϵ−10 ∇!⊥ρ; Δ⊥H⃗⊥ ¼ 0⃗; ð72Þ

where ϵ0 is the permittivity of the vacuum and the trans-
verse operators are defined by expressions Δ⊥ ¼ ∂

2
x þ ∂

2
y,

∇!⊥ ¼ ð∂x; ∂yÞT . Here symbols ∂x, ∂y mean the partial
derivatives in the transverse directions.
The longitudinal components of the electromagnetic

field can be found through the transverse ones

Ez ¼
1

ik

�
∇⊥E⃗⊥ −

ρ

ϵ0

�
; Hz ¼

1

ik
∇⊥H⃗⊥: ð73Þ

It is shown in Appendix A that the surface impedance
boundary condition in the high-frequency approximation,
k ≫ 1, can be written as

Ez ¼
Zs

Z0

En; Et ¼ 0: ð74Þ

Let us present the full electric field E⃗⊥ at the position
r⃗ ¼ ðx; yÞT of the point charge e at the position r⃗0 ¼
ðx0; y0ÞT as the sum

E⃗⊥ ¼ E⃗s⊥ þ E⃗0⊥; ð75Þ

where E⃗0⊥ ¼ eðr⃗ − r⃗0Þð2πϵ0cjr⃗ − r⃗0j2Þ−1 is the field of the
point charge in the free space and E⃗s⊥ is the field scattered
from the surface of the pipe. The components of the
scattered field fulfill the boundary value problem for the
Laplace equation

Δ⊥E⃗s⊥ ¼ 0; r⃗ ∈ S; ð76Þ

with the boundary conditions

1

ik
∇⊥E⃗s⊥ þ Zs

Z0

n⃗E⃗s⊥ ¼ −
Zs

Z0

n⃗E⃗0⊥; ð77Þ

τ⃗E⃗s⊥ ¼ −τ⃗E⃗0⊥; r⃗ ∈ ∂S; ð78Þ

where τ⃗ ¼ ð−ny; nxÞT is the tangential vector to the
pipe contour ∂S and we have used the relations Es

z ¼
ðikÞ−1∇⊥E⃗s⊥, E0

z ¼ 0 in the boundary conditions given
by Eq. (74).

Let us introduce an integral operator A of a simple layer

½Af�ðr⃗Þ ¼ 2π

Z
∂S
Gðr⃗ − r0

!Þfð r0!Þdsð r0!Þ; r⃗ ∈ S; ð79Þ

where Gðr⃗Þ ¼ ð2πÞ−1 logðjr⃗jÞ is the Green function of the
two-dimensional Laplace operator.
We present the transverse components of the electric

field Es
x and Es

y in form of the simple layer, Eq. (79), with
unknown charge densities qx and qy, correspondingly.
Then the boundary conditions, Eqs. (77) and (78), can
be rewritten as a boundary integral equation with unknown
charge densities qx and qy on the pipe boundary ∂S

�
πnx þ ∂xAþ αnxA πny þ ∂yAþ αnyA

−nyA nxA

��
qx
qy

�

¼
�−αðnxE0

x þ nyE0
yÞ

nyE0
x − nxE0

y

�
; ð80Þ

where α ¼ ik Zs
Z0
, and the integral operator ∂xA is defined as

½∂xAf�ðr⃗Þ ¼
Z
∂S

x − x0

jr⃗ − r0
!j2

fð r0!Þdsð r0!Þ; r⃗ ∈ ∂S: ð81Þ

The integral operator ∂yA has a similar form. For r⃗ on the
pipe boundary ∂S, the integral has to be calculated as
Cauchy principal value. Here we have used the relation [33]

∇⊥½Af�ðr⃗Þ ¼ ½∇⊥Af�ðr⃗Þ þ πn⃗fðr⃗Þ; r⃗ ∈ ∂S: ð82Þ

The approximation of the singular integrals and the
numerical method of the solution are outlined in
Appendix B.
If the charge densities qx and qy are known then the

longitudinal impedance can be found from the longitudinal
electric field

Zjjðr⃗; r0!;ωÞ ¼ −Ezðr⃗Þ
ec

;

Ezðr⃗Þ ¼
1

ik
ð½∂xAqx�ðr⃗Þ þ ½∂yAqy�ðr⃗ÞÞ; r⃗ ∈ S:

ð83Þ

The point charge longitudinal wake function can then be
found through an inverse Fourier transform of the
impedance.

B. Finite-difference method in time domain

Another numerical method we use in this paper is the
finite-difference method in time domain. Here we obtain
the wake for a short Gaussian bunch using the time
domain, wakefield solving program for “rectangular”
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geometry ECHO2D [19]. The code can solve the problems
for the parallel-plate geometry shown in Fig. 1(c). It models
accurately the corrugated geometry between two conduc-
tive walls with distance w. The single-plate geometry can
also be approximated if the beam is close to one plate while
far enough away from the other plate. The code is not able
to simulate L-shaped or rectangular geometries with
corrugations on all four walls.
In ECHO2D, the longitudinal wake potential is found

through modal expansion in the form

Wkðx; y; x0; y0; sÞ

¼ 1

w

X∞
m¼1

Wmðy; y0; sÞ sinðkx;mx0Þ sinðkx;mxÞ; ð84Þ

where kx;m ¼ π
2wm, and

Wmðy; y0; sÞ ¼ Wcc
m ðsÞ coshðkx;my0Þ coshðkx;myÞ

þWss
m ðsÞ sinhðkx;my0Þ sinhðkx;myÞ: ð85Þ

The earlier analytical calculations were for flat geometry,
which means for a vertical dechirper parallel plates that
extend to infinity in both horizontal directions, and have
corrugations in y vs z. ECHO2D, however, assumes smooth
side walls and the wakes come as a sum of discrete modes.
If the aspect ratio 2a=w is small enough, and a sufficient
number of modes are summed, then the flat, short-range
wake result and the ECHO2D result should agree. For our
ECHO2D calculations, we take a ¼ 2 mm and w ¼ 12 mm,
and the aspect ratio 2a=w is sufficiently small. The highest
mode number in the calculations is m ¼ 120; such a large
number was needed for good convergence of the off-axis
cases discussed below. For the ECHO2D runs, we simulated a
Gaussian driving bunch with rms length of σz ¼ 10 μm
passing through L ¼ 1 m and L ¼ 2 m of structure,
respectively. Then the wakefields were obtained by sub-
tracting the 1-m results from the 2-m results. Since the
catch-up distance a2=ð2σzÞ is short compared to the
structure length, this subtraction removes the transient
wake contribution.

IV. EXAMPLES

A. Geometry convergence

The numerical methods used in this paper are not
able to simulate open structures like those shown in
Figs. 1(a)–1(c). The time-domain method can model only
two horizontal corrugated plates [see Fig. 1(c)] placed
between two vertical perfectly conducting walls. The
frequency-domain code described above uses the rectangle
geometry shown in Fig. 1(d). To calculate the wakes for
nonclosed geometries like the single plate, parallel plate,
and L-shape structures, we use a large dimension of the
rectangle and place the charge close to the interested plates

while away from others to represent the nonclosed geom-
etries. Therefore, it is important to show that the choice of
the rectangle dimension is sufficient so that those far-away
plates can be neglected. To show this, we take the
advantage of the zeroth-order analytical results and plot
the longitudinal wake and slope of the transverse monopole
wake as a function of the distance to the plate. In our
calculation, we take a rectangle with half-width b ¼ 6 mm
and half-height a ¼ 2 mm. The corrugation parameters
used in this paper are listed in Table I.
We first offset the beam in the vertical direction from the

rectangle center to the upper plate located at y ¼ 2 mm.
The longitudinal wake and the slope of the vertical
monopole wake as a function of the distance to the plate
are shown in Fig. 2. Comparing the wakes of single plate
(SP, blue circle) with L-shape (yellow line), and the wakes
of parallel plate (PP, red circle) with rectangle (purple line),
it can be seen that the half-width of 6 mm is sufficient and
the side plates can be ignored. The wakes from the lower
plate become small as the beam is far enough from the
lower plate. When the distance of the beam toward the
upper plate is 0.5 mm (offset ¼ 1.5 mm), the wakes of
the rectangle geometry deviate from the single-plate geom-
etry by 5% for the longitudinal wake and 0.2% for the slope
of the vertical monopole wake.
Setting the distance to the upper plate to 0.5 mm, we

further shift the beam in the horizontal direction and
compare the longitudinal wake and the slope of the
horizontal monopole wake from the L-shape and the

TABLE I. Corrugation parameters used in the calculations.

Parameter Value Units

Period, p 0.5 mm
Longitudinal gap, t 0.25 mm
Depth, h 0.5 mm
Nominal distance to plate, d 0.5 mm

FIG. 2. Longitudinal wake (left) and the slope of vertical
monopole wake (right) as a function of beam distance to the
corrugated plate calculated using zeroth-order analytical formulas
for single-plate (SP, blue circle), parallel-plate (PP, red circle),
L-shaped (yellow line), and rectangular (purple line) structures.
In the horizontal direction, the beam is at the center.
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rectangle. The results are shown in Fig. 3. Both the
longitudinal wake (left) and the slope of the horizontal
monopole wake (right) of the rectangular geometry con-
verge to the L-shape geometry as the beam gets close to
the right-side plate. At a distance of 0.5 mm to the plate,
the deviations of wakes are below 0.2% for both the
longitudinal wake and the slope of the horizontal monopole
wake.

B. Single-plate structure

Using the rectangular geometry with half-width
b ¼ 6 mm and half-height a ¼ 2 mm, we have calculated
the bunch wakes of the single-plate corrugated structure for

a Gaussian electron bunch with rms length σz ¼ 10 μm.
The bunch is placed at a distance from the upper plate of
0.5 mm. In Fig. 4, we show the longitudinal wake and
transverse monopole, dipole, and quadrupole wakes
obtained through analytical and numerical methods. For
the analytical models, the bunch wake is obtained by
convolving the charge density λ with the wake function
w as

WðsÞ ¼
Z

∞

0

wðs0Þλðs − s0Þds0: ð86Þ

For the numerical methods, we have used both the integral
equation method and ECHO2D calculations with the same
dimension. We note that for the integral equation method,
all four walls have corrugations, while for the ECHO2D

simulation, the two side walls are assumed smooth. As
shown in the above section, the choice of the rectangle
dimension ensures that the effect from the side walls
is small.
It is clear from Fig. 4 that the zeroth-order analytical

formulas (blue line) overestimate the longitudinal and
transverse wakefields significantly. The deviations arise
from the assumption of a constant longitudinal wake and
constant slopes of the transverse wakes in the zeroth-order
formulas. The first-order approximation (red line) improves
the estimation of wakefields significantly compared with
the zeroth-order approximation. The first-order results
coincide with the integral equation method (yellow line)
for transverse wakes, while it is slightly smaller than the
integral equation method for the longitudinal wake and

FIG. 3. Longitudinal wake (left) and the slope of transverse
horizontal monopole wake (right) as a function of distance to the
plate in the horizontal direction using zeroth-order analytical
formulas for L-shaped (blue circle) and rectangular (red line)
structures. The distance to the plate in the vertical direction is
fixed at 0.5 mm.

FIG. 4. Longitudinal (a) and transverse bunch wakes (b), (c), and (d) for a single-plate corrugated structure. The wakes are calculated
for a Gaussian bunch (black dashes) with rms bunch length of 10 μm and the distance from the beam to the corrugated plate is 0.5 mm.
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coincides with the ECHO2D result (purple line). This is
because at the distance of 0.5 mm, the longitudinal wake
still has some effect from the lower corrugated plate, as is
discussed in Fig. 2. Using the first-order formula for the
parallel plate (not shown in the plot) instead of the single
plate, the analytical results agree with the integral equation
results for all four wakes. The difference between the
integral equation method and the ECHO2D simulation at the
bunch tail (3σz from the beam center) is about 5%.
To show the agreement of the analytical formula with

numerical results at various beam positions, we performed
a scan of the distance between the beam and the plate as in
Fig. 2 and calculated the longitudinal loss factors (a),
transverse monopole (b), dipole (c), and quadrupole (d) kick

factors, with the results shown in Fig. 5. These factors were
calculated from the wake potential WðsÞ as follows:

hWðsÞi ¼
Z

∞

−∞
WðsÞλðsÞds: ð87Þ

In Fig. 5, it can be seen that good agreements between
the first-order analytical formulas for a single plate (blue
line), the integral equation method (red circle), and the
ECHO2D simulations (yellow circle) are reached around the
nominal 0.5 mm distance to the plate. At larger distance
values, the deviations in the longitudinal loss factors are
due to the use of rectangle geometry in numerical calcu-
lations while the analytical formula used is for single-plate
structure. Again, the integral equation method and the
ECHO2D results agreed well, confirming that the effect of
different side walls used in these two codes can be ignored.
It should be noted that when the beam is very close to the
plate, at a distance of 0.1 mm in Fig. 5, the integral equation
method results are about 20% larger than the ECHO2D

results. The deviation could be due to the inaccuracy of the
surface impedance model at a distance much smaller than
the dimension of one corrugation period. The first-order
analytical results agree better with the ECHO2D results at
this close distance. This deviation at a small distance to
the plate was also discussed in Ref. [12]. Nevertheless,
the 0.1-mm distance to the plate is much smaller than the
typically used 0.5 mm at several XFEL facilities where the
disagreement is only on the level of a few percent.

C. L-shaped structure

For the L-shaped structure, the ECHO2D code is no longer
applicable. As shown in the previous section, the agreement
between the integral equation method and ECHO2D is
reasonable, we will use the integral equation method alone
to obtain the wakes for the L-shaped structure. We use the
numerical results to validate the analytical formulas pro-
posed earlier.
In Fig. 6, we show the longitudinal, transverse monop-

ole, and dipole point charge wakes for the L-shaped

FIG. 5. Longitudinal loss factor (a) and transverse kick factors
(b), (c), and (d) as a function of beam distance to the plate for a
single-plate corrugated structure. Note the deviations at large
distance values for the longitudinal loss factor are due to the use
of rectangle geometry in numerical methods.

FIG. 6. Longitudinal (a) and transverse point charge wakes (b) and (c) for an L-shaped corrugated structure. The distances to both
corrugated plates are 0.5 mm. For comparison, the corresponding wakes for a single-plate structure with the same distance to the plate
are also plotted. Here, SP stands for single-plate and IE stands for integral equation.
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structure with distance to both the horizontal and vertical
plates being 0.5 mm. For each wake, we compare the
results from the proposed analytical formula (red line) for
the L-shaped structure with the integral equation method
(red circle). Furthermore, it is interesting to compare the
wakefields of an L-shaped structure with a single-plate
structure with the same distance to its plate, shown as
blue line and blue circle for the first-order analytical and
integral equation results, respectively. Overall, the analyti-
cal formulas for the L-shaped structure agree well with the
integral equation method. The longitudinal wake for
the L-shaped structure is slightly smaller than twice of
the corresponding single-plate wakes. The transverse
monopole wake is slightly smaller than the monopole
wake of a single-plate structure. Note that for the L-shape,
the monopole wake in x also exists and has the same
amplitude as y when the distances to both plates are equal.
The transverse dipole wake is twice the dipole wake of the
single plate. For the quadrupole wake of the L-shaped
structure, the analytical formula gives exactly canceled
wake, which also holds for the integral equation method.
Similar to the single-plate case, we performed a scan

of the beam position in both x and y for the L-shaped
structure, keeping the distance of the beam to the two plates
equal. The longitudinal loss factors (a), transverse monop-
ole (b), and dipole (c) kick factors are calculated corre-
spondingly and shown in Fig. 7. The agreement between
the analytical formulas and simulations using the integral
equation methods is overall good, where the first-order
analytical formula overestimates the longitudinal loss
factors and transverse monopole kick factors by a few
percent. At 0.1 mm distance to the plate, the deviation
between the integral equation method and the analytical
approximation becomes large. This is similar to what is
observed in the single-plate case.
Furthermore, we also performed a scan of the beam

position only in the x direction, while keeping the distance
to the plate in y a constant at 0.5 mm. The longitudinal
loss factors (a), transverse monopole (b), dipole (c), and
quadrupole (d) kick factors are shown in Fig. 8. It can be
seen that the agreement between the analytical formula and

integral equation method is good except when the beam is
0.1 mm from the plate. It should also be noted that the first-
order analytical formula predicts constant vertical monop-
ole when varying the distance to the horizontal plate, while
the integral equation method shows some deviation from
the constant value.
From Fig. 8(d), the cancelation of the quadrupole

component can be seen when the distances to both plates
are equal. It is important to know how accurate the equal
distance condition should reach. We define the quadrupole
reduction factor as

FðΔ; yÞ ¼ max
�hWL1

q ðx̄� Δ; ȳ; sÞi
hWS1

q ðȳ; sÞi
�

ð88Þ

FIG. 7. Longitudinal loss factor (a) and transverse kick factors (b), and (c) as a function of beam distance to both plates in an L-shaped
corrugated structure. The beam is shifted in both the x and y planes such that the distances from the beam to the two plates are kept equal.

FIG. 8. Longitudinal loss factor (a) and transverse kick factors
(b), (c), and (d) as a function of beam distance to the horizontal
plate in an L-shaped corrugated structure. The beam is shifted in
x direction only while keeping the distance to the vertical plate
fixed at 0.5 mm.
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where Δ is a small offset from the quadrupole cancelation
location. Using the first-order approximation for the single-
plate and L-shaped structure, we show the reduction factor
as a function of the offset Δ from the 0.5-mm position in
Fig. 9. At F ¼ 0.1, the quadrupole component is reduced
by 1 order of magnitude. The corresponding offset Δ is
found to be 13 μm, which is tight but reachable in a high-
energy superconducting accelerator. A slightly relaxed Δ to
20 μm allows an 85% reduction of the quadrupole
component.

V. CONCLUSION

In this paper, we have performed a systematic study on
the wakefields of an L-shaped corrugated structure using
analytical and numerical methods. We first obtained zeroth-
order analytical formulas for the L-shaped structure, along
with other geometries like single plate, parallel plate,
and rectangle using the conformal mapping method.
Taking advantage of the zeroth-order results and the
existing formulation of first-order approximation for the
parallel-plate and single-plate structures, we adopted sim-
ilar formal expressions and gave empirical first-order
analytical approximation for the L-shaped corrugated
structure. Independently, we developed a numerical integral
equation method for calculating steady-state wakefields in
arbitrary transverse geometry, given that the surface, like
the resistive wall, corrugations, and so on, can be modeled
by a given expression of surface impedance.
The results obtained are demonstrated in two numerical

examples. First, we calculated the wakefields for a single-
plate corrugated structure using the existing analytical
formulation, the numerical method developed here, and
the time-domain simulation code ECHO2D. We have shown
the agreement of our numerical integral equation method
with the analytical approximations and ECHO2D simula-
tions. Then, the wakefields of the L-shaped corrugated
structure were studied using the integral equation method
and they confirmed the validity of the empirical first-
order analytical approximation proposed in this paper.
Although there is some overestimation in the longitudinal

and transverse monopole wake, the first-order model is
rather simple and directly follows the pattern found in the
zeroth order.
Several unique features that are found in the L-shaped

corrugated structure can be summarized as follows: First,
the direction of the passive streaking can be varied by
changing the position of the beam with respect to the
horizontal and vertical corrugated plates. The total streak-
ing strength depends on the beam distance to both plates
and can be modeled by the analytical formula we gave.
Second, when the beam has an equal distance to both plates
compared with the single-plate structure with the same
distance to the plate, the transverse quadrupole wake is
canceled. The longitudinal wake is enhanced but smaller
than twice the longitudinal wake from a single-plate
structure; the transverse dipole wake is doubled.
The unique features of the L-shaped structure as a

passive streaking device highlight a few promising appli-
cations in FELs. First, the variable polarization of the
streaking could facilitate multidimensional beam phase
space reconstruction. Such a streaking device is self-
synchronized with the electron beam and is cost-effective.
Second, the quadrupole-free streaking could ease the
operation of current fresh-slice applications using single-
plate configurations, which suffer from the time-dependent
mismatch caused by the quadrupole wakefield. Since it
removes the beam size variation along the bunch, it can also
improve the resolution of the phase space diagnostic using
passive streaking.
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APPENDIX A: APPROXIMATE BOUNDARY
CONDITIONS

The surface impedance boundary condition between
the tangential components of the electric field E⃗ and the
magnetic field H⃗ reads

n⃗ × E⃗ ¼ Zsn⃗ × n⃗ × H⃗; ðA1Þ

where n⃗ is the vector normal to the pipe surface ∂S. It
reduces to the relations

Ez ¼ −ZsHt; Et ¼ ZsHz; ðA2Þ

where Et and Ht are the components of the electric and
magnetic fields, respectively, tangential to the pipe surface
∂S. In order to exclude the magnetic field from the first
equation, let us consider the Maxwell equations in the

FIG. 9. Reduction factor as a function of deviation from the
position where the quadrupole component can be exactly
canceled.
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component form for a relativistic bunch with current
density Jz ¼ jzeiðωt−kzÞ, ω ¼ kc,

∂yEz þ ikEy ¼ −ikZ0Hx;

∂yHz þ ikHy ¼ ikZ−1
0 Ex;

∂xEz þ ikEx ¼ ikZ0Hy;

∂xHz þ ikHx ¼ −ikZ−1
0 Ey;

∂xEy − ∂yEx ¼ −ikZ0Hz;

∂xHy − ∂yHx ¼ −ikZ−1
0 Ez þ jz: ðA3Þ

where Z0 is the free-space impedance. The tangential
component of the magnetic field H⃗⊥ can be written as

Ht ¼ nxHy − nyHx ¼ nx

�
1

Z0

Ex þ
1

ikZ0

∂xEz

�

þ ny

�
1

Z0

Ey þ
1

ikZ0

∂yEz

�

¼ 1

Z0

En þ
1

ikZ0

ðnx∂xEz þ ny∂yEzÞ

¼ 1

Z0

En þ
1

ikZ0

∂n⃗Ez: ðA4Þ

Hence the impedance boundary condition can be
rewritten as

Ez ¼
Zs

Z0

�
En þ

1

ik
∂n⃗Ez

�
; Et ¼

Zs

ik
∇⃗⊥H⃗⊥; ðA5Þ

where we have used Eq. (73). In the high-frequency
approximation, k ≫ 1, these equations can be simplified
to the form

Ez ¼
Zs

Z0

En; Et ¼ 0: ðA6Þ

APPENDIX B: APPROXIMATION OF THE
INTEGRAL OPERATORS

In order to find in Eq. (80) the unknown densities qx
and qy, we approximate contour ∂S byN linear segments of
length Δi, i ¼ 1; 2;…; N and suggest that the densities
are constant on each such segment. On the boundary ∂S,
we assign N equally spaced collocation points r⃗i,
i ¼ 1; 2;…; N, at the centers of the segments. The singular
integrals are approximated as follows:

½Af�ðr⃗iÞ ¼
Z
∂S
log jr⃗i − r⃗0jfðr⃗0Þdsðr⃗0Þ ¼

�
log

Δi

2
− 1

�
Δi

þ
XN

j¼1;j≠i
log jr⃗i − r⃗jjfðr⃗jÞΔj; ðB1Þ

∂x½Af�ðr⃗iÞ ¼ ½∂xAf�ðr⃗iÞ þ πnxðr⃗iÞfðr⃗iÞ ¼ πnxðr⃗iÞfðr⃗iÞ

þ
XN

j¼1;j≠i

xi − xj
jr⃗i − r⃗jj2

fðr⃗jÞΔj; ðB2Þ

∂y½Af�ðr⃗iÞ ¼ ½∂yAf�ðr⃗iÞ þ πnyðr⃗iÞfðr⃗iÞ ¼ πnyðr⃗iÞfðr⃗iÞ

þ
XN

j¼1;j≠i

yi − yj
jr⃗i − r⃗jj2

fðr⃗jÞΔj; ðB3Þ

where nxðr⃗iÞ, nyðr⃗iÞ are components of normal n⃗ to the
boundary at the point r⃗i. The obtained matrix equation is
solved by the direct method of LU factorization with partial
pivoting.
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