
One-dimensional theory of harmonically seeded free-electron laser

Ganesh Tiwari
Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 10 January 2023; accepted 31 May 2023; published 20 June 2023)

We revisit free-electron laser (FEL) equations in the presence of a planar undulator to investigate effects
on longitudinal FEL dynamics upon seeding by a harmonic. For this study, we adopt slowly varying phase
approximation, collective variables, and Klimontovich description of particle beams to explore the effects
of harmonic seeding on low-gain saturation, low-gain amplification, and exponential growth for on-axis
radiation emission. We also investigate the effects of frequency detuning and nonzero energy spread on
power gain and growth rate for low-gain and high-gain FELs, respectively.
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I. INTRODUCTION

Madey proposed passing “free” electrons through a
periodic magnetic field to extend laser wavelength to
x-ray region [1]. Although one could expect to generate
coherent radiation of arbitrary wavelength using Madey’s
free-electron laser (FEL) idea, practical implementations
are often limited by available technologies for particle
acceleration and beam manipulation, magnet design and
fabrication, and optics for radiation beam transport. In fact,
soft and hard x-ray FEL facilities began construction and
operation only after 2000s [2–9]. These facilities exploit
high-gain configurations such as the self-amplified sponta-
neous emission (SASE) technique as well as harmonic
generation via seeding and/or electron beam manipulation
(see Refs. [2–9]). On the other hand, prospects of, and later
demonstrations, of Bragg crystals [10] and compound
refractive lenses [11] for transporting coherent and intense
hard x-ray pulses have sparked significant interest in the
cavity based x-ray FELs for both low-gain and high-gain
cases [12–20]. In principle, cavity based FELs (CBFELs)
allow harmonic lasing of harmonic content (h > 1) by
filtering the undesired part of the radiation spectrum in
optics, thereby extending the possibility of generating
coherent, stable, and narrow bandwidth radiation pulses
from FEL based light source [21,22]. CBFELs can also be
used to seed harmonic content to a FEL via out-coupling
schemes [22,23]. Since the field amplitude of this harmonic
content becomes higher than that of the spontaneous
emission as required by lasing criterion, FEL dynamics
evolves primarily under the influence of the harmonic seed.

The follow-up question is straightforward: How do we
determine the effects of harmonic seed in the FEL dynam-
ics? While a lot of work has been done on FEL theory since
Madey’s FEL idea, here we skim through only relevant
work and refer the audience to Refs. [22,24] and within
to satisfy their curiosities. Colson derived the FEL pendu-
lum equations by solving for longitudinal electron motion
in the presence of radiation and undulator fields [25];
he extended this treatment to apply for the generation
of harmonics [26]. While Bonifacio et al. [27] applied
collective variables approach for high-gain FELs, Kim
applied Colson’s formulation along with the microscopic
description of electron beams by Klimontovich distri-
bution function to formulate 1D and 3D models for
SASE in high-gain FELs [28,29] and brightness func-
tions based gain formula for low-gain FELs [30]. Later,
Bonifacio et al. studied nonlinear harmonic generation
in high-gain FELs with fundamental seed using one-
dimensional model [31]; Huang and Kim [32] applied
coupled Maxwell-Klimontovich equations to extend this
model in three dimension, whereas Freund et al. [33]
applied a three-dimensional code capable of treating
multiple frequencies to study nonlinear harmonic gener-
ation. Alternate schemes of variable delay or phase shifting
have been proposed to suppress fundamental emission in
favor of harmonic generation [34,35]. Yu proposed using a
modulator and a radiator configuration with a dispersive
element in between to introduce harmonic bunching in the
electron beam to improve coherence in harmonic emission
[36,37]; Penn et al. investigated this scheme for low-gain
FELs in Ref. [38]. An extension of Yu’s modulator scheme
involves using two modulators instead of one to exploit
the echo effect enabling density modulations at a higher
harmonic number as proposed by Stupakov and Xiang
[39,40]. Feng and colleagues proposed the phase-merging
technique based on enhanced harmonic generation to boost
FEL efficiency further [41,42]. Moreover, standard FEL
codes like TDA3D [43,44], GINGER [45], GENESIS [46],
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FAST [47], PUFFIN [48], and MINERVA [49] have been
brought into existence and used to compare and evaluate
the performance of FEL facilities and mentioned schemes.
Recently, Yu extended the low-gain formula with no
focusing approximation to achieve harmonic lasing in
transverse gradient undulator based FEL [18,50].
Nevertheless, the mentioned theory works are not fully

equipped to solve harmonically seeded FEL systems. While
one could potentially simulate a harmonically seeded FEL
system using standard FEL codes, such studies will be
assigned to a limited parameter space and be restricted from
generalization. To address the effects of harmonic seed in
FEL dynamics, we adopt a slowly changing pondermotive
phase description [25,26] and collective variables [27] as
well as Klimontovich description of particle beams [29,30].
In this report, we derive equations governing longitudinal
dynamics for a FEL in the presence of harmonic seeding
and a planar undulator neglecting space charge and recoil
effects for on-axis radiation emission. We note that calcu-
lation techniques explored here have been previously applied
and most expressions thoroughly derived and investigated
previously for fundamental radiation seeding [22,24,51].
We tried our best to minimize repetitions of derivations
and keep only the pertinent ones necessary for our study here.
In addition, we assume that both the seed and emitted
radiation are on-axis and odd harmonics of fundamental
radiation to comply with 1D model approximation.
The rest of this article is organized as follows: Section II

applies single particle motion from Appendix A and slowly
changing approximation to obtain pendulum equations
governing longitudinal dynamics for single electrons. In
Sec. III, we apply the collective variables approach to solve
for power gain length using the phase and energy expressions
obtained from Sec. II and the Maxwell equation for emitted
harmonic radiation from Appendix B. Then, we introduce
Klimontovich distribution function for the electron beam
to formulate coupled equations governing longitudinal
FEL dynamics in Sec. IV; we solve these equations to obtain
expressions for the spectral power density of spontaneous
radiation, power gain for low-gain amplification, and
growth rate in Secs. IVA–IV C, respectively. We wrap up
this report in Sec. V.

II. FEL PENDULUM EQUATIONS

We proceed to derive the FEL pendulum equations for
electrons. The electron is under the influence of both
undulator and radiation fields with the undulator field as a
primary source of particle motion as covered in Appendix A.
The energy exchange only occurs between electron and
radiation fields. Electrons lose energy via radiation emission
and gain energy from seed radiation. Assuming the radiation
spectrum consists of all harmonics, we can model the
radiation fields as a collection of discrete electromagnetic
waves given by

Eðz; tÞ ¼ x̂
X
h

Eh
0 cosðkhz − ωhtþ ϕhÞ; ð1Þ

where the waves are polarized in the x direction and
copropagating with the electron beam. Eh

0 is the field
amplitude and ϕh is the phase of a harmonic h with wave
numberkh and frequencyωh. The rate of energy transfer from
the radiation spectrumofEq. (1) to an electron is given by the
incremental work W ¼ F:v ¼ −eE:v where e is electron
charge and v is its velocity. Substituting the electron velocity
from Eq. (A3a) and field amplitude from Eq. (1), we obtain

W ¼ −eE:v

¼ eKc
γ

cosðkuzÞ
X
h

Eh
0 cosðkhz − ωhtþ ϕhÞ; ð2Þ

with γ being electron’s relativistic Lorentz factor and K ¼
0.9343λu½cm�B0½T� is the undulator deflection parameter.
Since the rate of energy change for an electron is
dðγmc2Þ=dt, we obtain

dγ
dt

¼ eK
γmc

X
h

Eh
0 cosðkuzÞ cosðkhz − ωhtþ ϕhÞ

¼ eK
2γmc

X
h

Eh
0fcos½ðku þ khÞz − ωhtþ ϕh�

þ cos½ðku − khÞzþ ωht − ϕh�g: ð3Þ
The argument in the first cosine term (in second line) gives
rise to the particle’s slowly varying pondermotive phase in
the presence of combined radiation and undulator fields,
whereas the second cosine term (in the final line) gives
rise to fast oscillations that tend to average to zero. Each
harmonic h has a slowly varying pondermotive phase (θh)
associated with it (the superscript added to indicate associ-
ationwithharmonich) and theoverall pondermotive phase of
an electron is the result of contribution from all harmonics,
i. e., θ ¼ P

h θ
h. Since the particle arrival time t is fast

varying component as defined in (A4), we assign the average
particle time t̄ to define a slowly varying phase ψh given by

ψh ¼ ðkh þ kuÞz − ωht̄: ð4Þ
Then, we differentiate on both sides with respect to t̄ to get

d
dt̄

ψh ¼ dψh

dz
v̄z ¼ ðkh þ kuÞv̄z − ωh;

for ωh ¼ ckh and v̄z ¼ c½1 − 1þK2=2
2γ2

�, we rearrange and
expand for γ ≫ 1 to get

dψh

dz
¼ ku þ kh −

ckh
v̄z

¼ ku þ kh − kh

�
1þ 1þ K2=2

2γ2

�

¼ ku

�
1 −

kh
ku

1þ K2=2
2γ2

�
: ð5Þ
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The resonant condition for a harmonic radiation emission in
planar undulator is given by

kh
ku

¼ 2hγ2r
1þ K2=2

; ð6Þ

where γr is the resonant Lorentz factor associated with
the resonant energy. For an electron starting with resonant
energy, we assume it loses energy via radiation emission in
the harmonic seed. If ηh ¼ ðγ − γrÞ=γr ≪ 1 is the energy
deviation due to radiation emission in the harmonic h seed,
we can rewrite Eq. (5) as

dψh

dz
¼ ku½1 − hð1þ ηhÞ−2�

dψh

dz
≈ kuð1 − hÞ þ 2hkuηh

dθh

dz
≈ 2hkuηh: ð7Þ

Here we have introduced the reduced phase notation
θh ¼ ψh þ ðh − 1Þkuz to track slowly changing dependence
on the particle’s energy offset from the FEL resonance
condition. Equation (7) is one of the equations that describes
pendulumlike behavior of the longitudinal electron motion
in FEL.
Now we derive the second equation relevant to the

pendulum behavior. For radiation emission at harmonic h
and using the definition of energy deviation η ¼
ðγ − γrÞ=γr and the definition of ponderomotive phase
and average particle time expression of Eq. (A4) which
gives

khz − ωht ¼ θh − hkuz −
kh
ku

K2

8γ2
sinð2kuzÞ;

we can rewrite Eq. (3) by expanding cosine in terms of
complex exponential as

dηh

dt
¼ eKEh

0

4γrγmc
ðeikuz þ e−ikuzÞ

�
eiθ

h−ihkuzþiϕh exp

�
−i

kh
ku

K2

8γ2
sinð2kuzÞ

�
þ c:c:

�
:

From Jacobi-Anger identity eix sinφ ¼ P∞
n¼−∞ JnðxÞeinφ, we get

¼ eKEh
0

4γrγmc
eiðθhþϕhÞ

X∞
n¼−∞

Jn

�
kh
ku

K2

8γ2

�
½eið1−h−2nÞkuz þ e−ið1þhþ2nÞkuz� þ c:c:

¼ eKEh
0

4γrγmc
eiðθhþϕhÞ

�
J−ðh−1

2
Þ

�
kh
ku

K2

8γ2

�
þ J−ðhþ1

2
Þ

�
kh
ku

K2

8γ2

��
þ c:c:

¼ eKEh
0½JJ�h

2γrγmc
cosðθh þ ϕhÞ: ð8Þ

We kept only the terms associated with factors n ¼ ð1 −
hÞ=2 and n ¼ −ð1þ hÞ=2 which give rise to slowly
changing phase. We apply two more approximations to
obtain a simpler expression for Eq. (8). The first approxi-
mation is vz ¼ dz=dt ≈ c and the second approximation
that γ ¼ γrð1þ ηÞ ≈ γr. This results in a simplified version
of the energy equation given by

dηh

dz
¼ eKEh

0½JJ�h
2γ2rmc2

cosðθh þ ϕhÞ

¼ ϵh
2kuL2

u
cosðθh þ ϕhÞ; ð9Þ

where ϵh ¼ eEh
0
K½JJ�h

γ2rmc2 kuL2
u is the dimensionless field

strength. This treatment lets us explore effect of harmonic
h emission in the presence of the same harmonic seed,
however we will explore the effect of emission at a different
harmonic from seed later. Now we can also express the

Bessel function factor of Eq. (8) in a more convenient form
by using the resonance condition [Eq. (6)] and Bessel
function identity J−nðxÞ ¼ ð−1ÞnJnðxÞ as

½JJ�h ¼ J−ðh−1
2
ÞðξÞ þ J−ð1þh

2
ÞðξÞ

¼ ð−1Þðh−1Þ=2
h
Jðh−1

2
ÞðξÞ − Jð1þh

2
ÞðξÞ

i
; ð10Þ

where ξ ¼ hK2=ð4þ 2K2Þ. For odd harmonics, it is easy to
note that alternate h results in sign flip of ½JJ�h as ð−1Þh−12
does. Figure 1 clearly shows this pattern for harmonic 3 to
23 with undulator deflection parameter (K) ranging from 0
to 5. In other words, h ¼ 1; 5; 9; 11;… take positive values,
whereas alternate h ¼ 3; 7; 11; 13;… retain negative values
as shown in Fig. 1. Moreover, the absolute value of ½JJ�h
decreases with increasing harmonic number h. For each
harmonic h, the absolute of ½JJ�h retains values close to
zero and increases slowly toward a fixed value at a
threshold K beyond which it maintains that value as clearly
observed for h ¼ 3 in Fig. 1.
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In the presence of a constant electric field of a harmonic
h (i.e., ϵh ¼ constant), θh and ηh become conjugate
variables of the constant of motion given by

Hh ¼ hkuðηhÞ2 −
ϵh

2kuL2
u
½sinðθh þ ϕhÞ − sinðϕhÞ�: ð11Þ

At the separatices (ηh ¼ 0 and θh ¼ �π), Hh ¼ ϵh
kuL2

u
sinϕh

which means

ηh ¼ �
ffiffiffiffiffiffiffijϵhj

p
kuLu

ffiffiffi
h

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signð½JJ�hÞ sin

�
θh

2
þ ϕh

�
cos

�
θh

2

�s

¼ �ηhmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signð½JJ�hÞ sin

�
θh

2
þ ϕh

�
cos

�
θh

2

�s
;

with ηhmax ¼
ffiffiffiffiffiffiffijϵhj

p
=ðkuLu

ffiffiffi
h

p Þ. The motion outside the
separatices is unbounded and unidirectional, whereas the
particle exhibits periodic behavior about the stable orbit
inside these separatices which corresponds to the vibra-
tional motion of the pendulum (see Ref. [22] for more
details). The latter region is often referred to as ponder-
motive bucket in which particles are trapped for a constant
field. The maximum height of this bucket is ηhmax and is
directly proportional to the square root of the absolute value
of the Bessel function factor and inversely proportional to
square root of the harmonic number h. Figure 2(a) shows
the separatices in the longitudinal phase space of the
electron in odd harmonic potentials for h ranging from 1
to 15 where the pondermotive bucket is bounded by the
solid lines. The bucket boundary is drawn for ϕh ¼ π

2
for

h ¼ 1, 5, 9, 13 and ϕh ¼ − π
2
for h ¼ 3, 7, 11, 15. The

bucket size shrinks with increasing harmonic number,
indicating less area for trapping electrons and energy
exchange. Figure 2(b) shows the ratio of maximum bucket
height for different harmonic with respect to that of the
fundamental radiation with Eh

0 ¼ E1
0 for K ranging from 0

to 5. It is clear that bucket height decreases with increasing
harmonic number as seen before in Fig. 2(a). For each
harmonic number, the maximum bucket height keeps
on increasing until a threshold value for K is reached,

beyond which the bucket height remains fixed. For h < 10,
Kthres ≈ 3 as shown in Fig. 2(b).
The oscillatory motion in the pondermotive bucket occurs

at a frequency that is dependent on the energyHh. However,
the motion close to the stable fixed point is similar to that of a
simple harmonic oscillator for small phase (jθhj ≪ 1). In this
case, the oscillation wave number is given by

Ωs ¼
ffiffiffiffiffiffiffiffiffiffi
hjϵhj

p
Lu

; ð12Þ

also known as the synchrotron wave number. The corre-
sponding synchrotron period of the particle in the ponder-
motive bucket is

FIG. 2. (a) Separatices of harmonic potentials in longitudinal
phase space for ϕh ¼ π

2
for h ¼ 1, 5, 9, 13 and ϕh ¼ − π

2
for

h ¼ 3, 7, 11, 15. Ratios of (b) maximum bucket height in the
presence of harmonic h with respect to that with fundamental and
(c) oscillation frequency near stable points in harmonic h
potential with respect to that in fundamental potential.

FIG. 1. Plot of Bessel function factor ½JJ�h for harmonic from 3
to 23 versus undulator deflection parameter K.
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Ts ≡ 2π

Ωs
¼ 2πLuffiffiffiffiffiffiffiffiffiffi

hjϵhj
p : ð13Þ

Figure 2(c) shows the ratio of the synchrotron frequency of a
particle in the bucket formed by harmonic h to that in
the bucket formed by the fundamental radiation with the
same electric field amplitude. The frequency increases with
increasing undulator strength and becomes greater for
potentials formed by harmonic h > 1 compared to frequen-
cies of oscillation in a bucket formed by fundamental
radiation. There exists a threshold undulator strength after
which the frequency of oscillation remains more or less
constant for a given harmonic h. These peculiar behaviors in
Fig. 2 may be formulated in terms of scaling laws, however,
it is beyond the scope of this article.
Following the discussion in sections 3.3.2 and 7.1.1

of Ref. [22], we can roughly estimate the saturated
radiation power in low-gain scenarios in single pass and
oscillator based FELs. For a harmonic h, the maximum
saturated power in a single pass FEL would be given
by Ps

sat ≈ Pbeam=ð
ffiffiffi
h

p
NuÞ, where Nu is the total undulator

periods and Pbeam is the power of the electron beam. For
cavity based oscillator, the saturated power becomes
Posc
sat ¼ Ps

sat=ð1 − RÞ ≈ Pbeam=½ð1 − RÞ ffiffiffi
h

p
Nu�. Here R is

the net power reflectivity of the optical cavity forming
the oscillator. It is clear that the saturated power of a
harmonic h gets reduced by the square root of the harmonic
number itself when compared to the fundamental. This
means that the saturated power of an FEL operating at
harmonic h is lower than that for fundamental radiation,
which sets the upper limit on maximum achievable radi-
ation power in an operating low-gain FEL.

III. COLLECTIVE VARIABLES APPROACH

The FEL pendulum equations (7) and (9) and the
Maxwell equation (B6) for emitted radiation in time
domain together determine the 1D FEL dynamics. To
collect these equations in time domain, we use an alter-
native expression for energy change equation (9) for the
jth particle after the radiation emission of harmonic p in the
presence of harmonic h seed given by

dηhj
dz

¼ χp

�Z
dνEνðzÞeiνθ

h
j =h þ c:c:

�
; ð14Þ

where χp ¼ eK½JJ�p
2mc2γ2r

. Here we have assumed that ν ≈ p with

ν − p ¼ Δν for Δν ≪ 1 following Appendix B. Hence, we
obtain the following set of 1D FEL equations

dθhj
dz

¼ 2hkuηhj ; ð15aÞ

dηhj
dz

¼ χpðEðθ; zÞeipθ
h
j =h þ c:c:Þ; ð15bÞ

�
∂

∂z
þ hku

∂

∂θ

�
Eðθ; zÞ ¼ −κpnehe−ipθ

h
j =hiΔh

: ð15cÞ

In the field equation, we have introduced κp ¼ eK½JJ�p
4ϵ0γr

and the bunching expression he−ipθhj =hiΔh
¼

ð1=NΔh
ÞPNe

j¼1 e
−ipθhj =h for NΔh

¼ Nλh=2π ¼ Nλ1=2πh.
In other words, only NΔh

electrons with pondermotive
phase jθhj − θj ≤ Δθ=2 contribute to the coherent radiation
emission at position z [27].
Moreover, we can adopt the dimensionless coordinate

system to get insights into FEL evolution (see Refs. [22,24]
for instance); we introduce ẑ¼2kuρz, η̂h ¼ ηh=ρ, and
aðθ; ẑÞ ¼ χp

2kuρ2
Eðθ; zÞ. Then, Eq. (15) takes the following

form:

dθhj
dẑ

¼ hη̂hj ; ð16aÞ

dη̂hj
dẑ

¼ aðθ; ẑÞeipθhj =h þ aðθ; ẑÞ�e−ipθhj =h; ð16bÞ
�
∂

∂ẑ
þ h
2ρ

∂

∂θ

�
aðθ; ẑÞ ¼ −

hκpχpne
4k2uρ3

he−ipθhj =hiΔ1
: ð16cÞ

The coefficient of bunching expression in the right side
of field equation becomes unity if we define the Pierce
parameter by

ρ≡ ρhp ¼
�
hneκpχp
4k2u

�
1=3

¼
�
he2K2ne½JJ�2p
32ϵ0γ

3
rmc2k2u

�1=3

: ð17Þ

The Pierce parameter is a real positive number and the
subscripts represent emitted harmonic p and seed harmonic
h. Assuming that aðθ; ẑÞ ∼ 1 at saturation, we can heuris-
tically claim that the gain length is on the order of
1=ð2kuρhpÞ while the saturated power of harmonic p scales
as Pp ∼ ρhpPbeam in the presence of a harmonic seed h
(refer to Refs. [22,24] for similar analysis with fundamental
seed). We note that the bunching expression is normalized
to average over electrons present within fundamental
wavelength instead of harmonic wavelength for consis-
tency; this choice becomes obvious in Sec. IV C.
To obtain a simpler understanding of the electron beam

and radiation interaction in a high-gain FEL, we ignore
the radiation slippage (or radiation dependence on θ) in
Eq. (16) and introduce the following collective variables:

bh ¼
1

h
he−ipθhj =hiΔh

¼ he−ipθhj =hiΔ1
; ð18aÞ

Pc ¼
1

h
hη̂he−ipθhj =hiΔh

¼ hη̂he−ipθhj =hiΔ1
: ð18bÞ
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Expression (18a) is bunching factor bh associated with
density modulation of electron beam upon seeding with
harmonic h. The collective momentum (or energy modu-
lation) in electron beam Pc is given by expression (18b).
Substituting these variables in Eq. (16) with no slippage
approximation and keeping only the lowest order terms in
expansion, we obtain the following set of equations:

da
dẑ

¼ −bh; ð19aÞ

dbh
dẑ

¼ −ipPc; ð19bÞ

dPc

dẑ
¼ a: ð19cÞ

These linear coupled equations can be rearranged to
obtain a third-order differential equation for each collective
variable. For the radiation field amplitude a, it becomes

d3a
dẑ3

¼ ipa: ð20Þ

The complete solution of this equation is derived in
Appendix C. The second root results in a growing mode
solution. For large propagation distance, the growing mode
dominates and drives the laser amplification which can be
approximated from Eq. (C4) as

aðẑÞ ≈ 1

3

�
a0 þ

ffiffiffi
3

p

2

� ffiffiffiffi
p3

p
P0 −

b0ffiffiffiffi
p3

p
�
þ i
2

� ffiffiffiffi
p3

p
P0 þ

b0ffiffiffiffi
p3

p
��

exp

� ffiffiffiffi
p3

p ffiffiffi
3

p þ i
2

ẑ

�
: ð21Þ

Here we substituted initial values að0Þ ¼ a0 for the field
amplitude which gets amplified coherently, bhð0Þ ¼ b0 for
the bunching, and Pcð0Þ ¼ P0 for the energy modulation.
Nonzero bunching and energy modulation result in radi-
ation power growth in the absence of input radiation að0Þ.
The exponential power gain length is given by

Lg;hp ¼ λu
4π

ffiffiffi
3

p ffiffiffiffi
p3

p
ρhp

; ð22Þ

where the Pierce parameter is given by expression (17).
Therefore, we have generalized the 1D power gain length
formulas for high-gain FEL for harmonic p emission with
harmonic h seed.
An intuitive idea on the scale of this gain length can be

obtained by comparing how harmonic seed and harmonic
emission fare against fundamental seeding and/or emission.
The gain length ratio for harmonic p generation with
harmonic h seed compared to fundamental seed becomes

Lg;hp

Lg;1p
¼ 1ffiffiffi

h3
p : ð23Þ

In other words, seeding with a higher harmonic number h is
more efficient than fundamental seeding for harmonic p
emission by a factor of

ffiffiffi
h3

p
. Likewise, the gain length ratio

for harmonic p > 1 emission to fundamental emission in
harmonic h ≥ 1 seed is given by

Lg;hp

Lg;h1
¼

� ½JJ�1ffiffiffiffi
p

p ½JJ�p

�
2=3

: ð24Þ

This expression has also been obtained by McNeil et al.
[34] and Schneidmiller and Yurkov [35] for harmonic
emission in a FEL amplifier with fundamental seed.
Harmonic p > 1 is favored less than fundamental emission
resulting in larger gain lengths for p > 1 as shown in Fig. 3
for K ranging from 0 to 5. For K > 3, the gain length for
harmonic emission becomes less than twice the gain length
for fundamental emission. For larger p values, the gain
length shortens significantly with increasing K as well,
asymptomatically approaching Lg;h1 for K → ∞. We will
cover additional effects of frequency detuning and energy
spread on the growth rate for high-gain FELs in Sec. IV C.

IV. COUPLED MAXWELL-KLIMONTOVICH
EQUATIONS

Various aspects of high-gain FELs such as the SASE
process and nonlinear harmonic generation and low-gain
FELs can be understood by adopting the microscopic
description of electron beam given by Klimontovich

FIG. 3. Plot of gain lengths ratio versus undulator deflection
parameter K for harmonic p > 1 emission with respect to
fundamental emission in the presence of harmonic h.
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distribution function [28–30,32]; the discrete distribution
function for describing these electrons in the longitudinal
phase space is

Fðθ; η; zÞ ¼ k1
dNe=dz

XNe

j¼1

δ½θ − θhj ðzÞ�δ½η − ηhj ðzÞ�: ð25Þ

Here dNe=dz ¼ I=ec is the electron line density for beam
current I and Ne is the total number of electrons in the
beam. Under the assumption that FEL interaction is a
perturbative process, the Klimontovich distribution func-
tion can be expanded using a coasting beam approximation.
Similar techniques of perturbative expansions are also
applied in plasma physics (see Refs. [52,53] for instance).
In this expansion, the distribution is separated into the
smooth background part and a perturbative part, where the
perturbative part contains the shot noise and bunchinglike
features as follows

Fðθ; η; zÞ ¼ F̄ðη; zÞ þ δFðθ; η; zÞ: ð26Þ

Here the smooth background function represented by F̄ðη; zÞ
is independent of phase and satisfies

R
dηF̄ðη; zÞ ¼ 1.

The continuity equation for the Klimontovich distribution
function dFðθ; η; zÞ=dz ¼ 0 can be broken into two parts
as follows:

�
∂

∂z
F̄ þ dη

dz
∂

∂z
δF

�

þ
�
∂

∂z
δF þ dθ

dz
∂

∂θ
δF þ dη

dz
∂

∂η
F̄

�
¼ 0: ð27Þ

The first bracket in the first line is for the terms that vary
slowly along the bunch and also attributes nonlinear har-
monic contributions, whereas the second bracket in the
second line groups terms with fluctuations from FEL
interaction dominated by harmonics. Since these brackets
indicate processes that occur at different time scales,
each bracket should separately vanish to satisfy continuity
condition [22]. Our interest lies in obtaining an equivalent
expression for the second bracket in frequency space. In
order to do so, we introduce the frequency representation of
the distribution function as

Fνðη; zÞ ¼
1

2π

Z
dθe−iνθ=hFðθ; η; zÞ

¼ 1

Nλ1

XNe

j¼1

e−iνθ
h
j =hδðη − ηhj Þ: ð28Þ

This implies δFðθ; η; zÞ ¼ 1
h

R
dνeiνθ=hFνðη; zÞ. Using the

alternative expression for the energy change equation given
by Eq. (14), we obtain the Fourier transform version of the
second bracket in Eq. (27) to be

�
∂

∂z
þ 2iνkuη

�
Fvðη; zÞ ¼ −hχpEvðzÞ

∂F̄ðη; zÞ
∂η

: ð29Þ

Here we are assuming that the fluctuations are induced by
single harmonic h seed and η≡ ηh for harmonic p emission
in that seed. Using the definition of Fν from Eq. (28) and
since ν ≈ p for Δν ≪ 1 (i.e., κν ≡ κp), Eq. (B5) for field
evolution of harmonic p when seeded by harmonic h
becomes�

∂

∂z
þ iΔνku

�
EνðzÞ ¼ −κpne

Z
dηFνðη; zÞ: ð30Þ

The evolution of radiation field and electron beam fluctua-
tions in the FEL can be now solved using Eqs. (29) and (30).
A complete solution of the coupled Maxwell-

Klimontovich equations (29) and (30) can be obtained
by using Laplace transform [28,54] given by

Sν;μ ¼
Z

∞

0

dzei2μρkuzSνðzÞ: ð31Þ

Here S is a dummy representation for E and F. This allows
us to obtain solution for SνðzÞ using the inverse Laplace
transform given by

SνðzÞ ¼ −
ρku
π

I
dμe−i2μρkuzSν;μ: ð32Þ

ρ is the FEL scaling parameter introduced in Eq. (17) for
dimensionless equations. After careful calculation steps
and substituting for Fνðη; 0Þ from Eq. (28), the electric field
amplitude becomes

EνðzÞ ¼
I

dμ
2πi

e−i2μρkuz

DðμÞ

"
Eνð0Þþ

iκpne
2kuρNλ1

XNe

j¼1

e−iνθjð0Þ=h

ðνηjð0Þρ −μÞ

#
;

ð33Þ

where the dispersion function DðμÞ is given by

DðμÞ≡ μ −
Δν
2ρ

− ν

Z
dη

F̄ðηÞ
ðνηρ − μÞ2 : ð34Þ

The radiation evolution in a FEL is mainly dictated by the
poles of 1=D, which can be obtained from the roots of
DðμÞ ¼ 0. For ρ given by Eq. (17) and in the limits of
vanishing energy spread, i.e., F̄ðηÞ → δðηÞ, DðμÞ ¼ 0
becomes

μ −
Δν
2ρ

−
ν

μ2
¼ 0;

μ2
�
μ −

Δν
2ρ

�
¼ ν: ð35Þ
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For the FEL resonance condition, Δν ¼ 0 and μ3 ¼ p

which has three solutions μ ¼ ffiffiffiffi
p3

p ½1; i
ffiffi
3

p
−1
2

; 1−i
ffiffi
3

p
2

�, as
covered in Sec. III and Appendix C, with the second root
representing growing solution from Eq. (33). In the
exponentially growth regime, the radiation power grows
as P ∝ e4ℑðμ2Þρkuz along the undulator [22,28], where
ℑðμ2Þ ¼ ðpÞ1=3 ffiffiffi

3
p

=2. The gain length in this exponential
growth region is effectively given by Eq. (22). Since we
already covered the behavior of gain length for both
harmonic seeding and harmonic emission in Sec. III, we
carry on to investigate features of spontaneous emission
and low-gain and high-gain scenarios. For spontaneous and
low-gain radiation emission, we can expand the inverse of
the dispersion function in the limits of the vanishing Pierce
parameter, i.e., ρ → 0 as follows:

1

DðμÞ¼
1

μ−Δν=2ρ
þ ν

ðμ−Δν=2ρÞ2
Z

dη
F̄ðηÞ

ðνηρ −μÞ2 : ð36Þ

The first term in the expansion on the right side yields
spontaneous radiation whereas low-gain amplification can
be studied by keeping the last term in the second line.

A. Spontaneous radiation

In the absence of input radiation, the FEL process begins
with spontaneous emission. From Eqs. (33) and (36), the
field amplitude of the spontaneous radiation at any location
z along the undulator is given by

EνðzÞ ¼
iκpne
2kuNλ1

XNe

j¼1

e−iνθj=he−iΔνkuz

νηj − Δν=2
½1 − e−i2ðνηj−Δν=2Þkuz�:

ð37Þ

Here we applied Cauchy’s residue theorem to integrate over
μ and ηj ¼ ηjð0Þ and θj ¼ θjð0Þ represent initial scaled
energy shift and phase of the jth particle, respectively.
Assuming that the initial phase distributions are uncorre-
lated [22,28], we can express the power spectral density of
spontaneous radiation at the undulator end as follows:

dP
dω

¼ γ2rmc2N2
u

�
λ21
Atr

��
I
IA

��
K½JJ�p

ð1þ K2=2Þ
�

2

×
Z

dηF̄ðηÞ
�
sin ½2πNuðνη − Δν=2Þ�
2πNuðνη − Δν=2Þ

�
2

; ð38Þ

where IA ¼ 4πϵ0mc3=e ≈ 17045A is the Alfven current
and F̄ðηÞ is the energy distribution of the electron beam.
Besides depending on factors in the first line such as beam
current (I), resonant relativistic Lorentz factor γr, and
undulator strength K and length Nu ¼ Lu=λu, the sponta-
neous radiation spectral power density depends on fre-
quency/energy detuning as well as energy distribution of

the electron beam as indicated by the integral in the second
line. For comparative analysis of spontaneous power
density for electron beams having a uniform or Gaussian
energy distribution, we adopt scaled parameters given by

x ¼ 2πNuðνη − Δν=2Þ and y ¼ 2πνσηNu:

ση is the rms energy spread in a Gaussian distribution. For

Cp ¼ ðγ2rmc2N2
uÞð λ2

1

Atr
Þð I

IA
Þð K½JJ�p

ð1þK2=2ÞÞ
2
, Eq. (38) reduces to

dP
dω

¼ Cp

Z
dxF̄ðx; yÞ

�
sin x
x

�
2

: ð39Þ

For an electron bunch with uniform and large energy
spread (ση ≥ 10−3) typical of laser-driven plasma accel-
erators [55–59], we can effectively approximate F̄ðx; yÞ≈
1=4y, where we assumed the uniform distribution to have
half-width equivalent to a Gaussian distribution’s radius
2σηð≡2yÞ. In this simple approximation, dP=dω ¼
Cpπ=4y, where the subscript p indicates harmonic p.
The increase in energy spread results in a decrease in
spontaneous emission; this follows intuitively as a large
energy spread brings more electrons out of resonance
condition [Eq. (6)] necessary for radiation emission at a
desired wavelength.
For practical constraints in energy spread of linear

accelerators and storage rings (ση ≤ 10−3), we evaluate
the integral numerically for Gaussian distribution given by

F̄ðx; yÞ ¼ 1ffiffiffiffiffiffi
2π

p
y
exp

�
−
ðx − x0Þ2

2y2

�

within the limits of ½−3y; 3y�. Figure 4(a) shows the scaled
power density of spontaneous radiation against scaled
variables x0 ¼ 2πNuðνη0 − Δν=2Þ and y. The density is
peaked at x ≈ 0, corresponding to η0 ≈ 0, for harmonic p
(Δν ¼ 0) when y < 0.5. For y > 0.5, the spectral power
density drops significantly while maintaining nonzero
values for jxj ≤ 5. A simple comparison of the spontaneous
spectral power density of harmonic content to fundamental
at a tuned value of x0 ≈ 0 can be made by the following
estimate:

dP=dωjp
dP=dωj1

¼ Cp

C1

¼
�½JJ�p
½JJ�1

�
2

ð40Þ

as shown in Fig. 4(b). For K > 2.5, the harmonic content
power density scales roughly between 0.01 and 0.1 of
fundamental radiation. The spontaneous emission of har-
monic content is suppressed significantly at K < 2 with
higher harmonic suffering further reduction. At K ≈ 1, the
third harmonic fares quite well to ∼0.2, whereas p ≥ 9

attenuates by a factor of 10−4 and more. This implies that
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using electron beam shot noise does not favor harmonic
spontaneous emission at tuned energy for K < 2.

B. Low-gain amplification

Although we can use the second term in Eq. (36) to
obtain first-order amplification in the low-gain limit, we

revert to a well-known perturbation approach to obtain
power gain in the low-gain scenario [30]. In this case,
Eqs. (29) and (30) can be solved using iterative perturbation
expansion, after which the electric field amplitude of the
emitted radiation can be expressed in terms of the electric
field at the undulator center as follows:

EνðLuÞ ¼ G
�
Lu

2

�
Eν

�
Lu

2

�
− κpne

Z
Lu

0

dzGðLu − zÞ
Z

dηe−i2νkuηzFνðη; 0Þ

þ hχpκpne

Z
Lu

0

dzGðLu − zÞ
Z

dηe−i2νkuηz
Z

z

0

dsei2νkuηsEνðsÞ
∂F̄ðη; sÞ

∂η
;

where GðzÞ ¼ e−iΔνkuz is the homogenous solution. The
first term appears from the input coherent radiation, the
second term corresponds to the spontaneous undulator
radiation, and the third term is the result of FEL interaction
between the electron beam and radiation field. Ideally, we

would solve iteratively to find the evolving radiation field
in the undulator. However, an appropriate approximation
for EνðsÞ ¼ Gðs − Lu

2
ÞEνðLu

2
Þ can be used for weak inter-

action between electron beam and radiation field. In this
case, the electric field can be conveniently expressed as

EνðLuÞ ¼ G
�
Lu

2

�
Eν

�
Lu

2

�
− κpneG

�
Lu

2

�Z
Lu

0

dz
Z

dηUνðη; zÞFνðη; 0Þ

þ hχpκpneG
�
Lu

2

�
Eν

�
Lu

2

�Z
dη

Z
Lu

0

dzUνðη; zÞ
Z

z

0

dsU�
νðη; sÞ

∂F̄ðη;Lu=2Þ
∂η

: ð41Þ

Here we introduced 1D undulator field Uνðη; zÞ ¼
exp ½−iΔνkuðLu

2
− zÞ − i2νηkuz� and the transformation of

F̄ðη; sÞ → F̄ðη;Lu=2Þ follows naturally with the field
transformation. Since the field is complex in nature, the
gain of the field amplitude is complex. Therefore, it is more
convenient to obtain power gain by computing absolute

square of field amplitude in the above expression. The
absolute square of the first term gives input power, whereas
the square of the second term gives spontaneous undulator
radiation power. The cross terms involving the second term
(spontaneous radiation) sum over all particle phases leading
to zero. The lowest order power amplification appears from

FIG. 4. (a) Density plot of normalized spectral power density ð1=CpÞdP=dω versus scaled detuning factor x0 ¼ 2πNuðνη0 − Δν=2Þ
and scaled energy spread y ¼ 2πNuνση. (b) Ratio of spectral power density of spontaneous radiation for harmonic p to fundamental at
tuned x0 ≈ 0. The y axis in (b) is in log10 scale.
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the cross terms involving the first and third terms [22].
Hence, 1D FEL power gain is given by

G¼Pout−Pin

Pin

¼ hχpκpne

Z
dη

Z
Lu

0

dz
Z

Lu

0

dsU�
νðη;zÞUνðη;sÞ

∂F̄ðηÞ
∂η

:

Further simplification comes from substituting z̄ ¼
z − Lu=2 and s̄ ¼ s − Lu=2. This changes the limits of z
and s integrals to −Lu=2 and Lu=2 from 0 and Lu,
respectively. Moreover, the product of the undulator field
takes the following form:

U�
νðη; zÞUνðη; sÞ ¼ U�

νðη; z̄ÞUνðη; s̄Þ
¼ exp ½ið2νη − ΔνÞkuðz̄ − s̄Þ�:

For a Gaussian electron beam with rms energy spread of ση
and centered at energy η0, with the distribution function
given by

F̄ðηÞ ¼ e−ðη−η0Þ2=2σ2ηffiffiffiffiffiffi
2π

p
ση

and

∂F̄ðηÞ
∂η

¼ −
η − η0
σ2η

F̄ðηÞ;

the gain formula reduces to

G ¼ hχpκpne

Z
Lu=2

−Lu=2
dz

Z
Lu=2

−Lu=2
dsIηðz; sÞ; ð42Þ

where

Iηðz; sÞ ¼
Z

dη
∂F̄
∂η

U�
νðη; zÞUνðη; sÞ

¼ −
1ffiffiffiffiffiffi
2π

p
σ3η

Z
dηðη − η0Þe−ðη−η0Þ2=2σ2ηei2ðνη−Δν=2Þkuðz−sÞ

¼ −2iνkuðz − sÞei2ðνη0−Δν=2Þkuðz−sÞ expf−2½kuνσηðz − sÞ�2g:

We got rid of bars over z and s for convenience. Finally, the gain formula reduces to

G ¼ 2νhkuL3
uχpκpne

Z
1=2

−1=2
dz

Z
1=2

−1=2
dsðz − sÞ sin ½2x0ðz − sÞ�e−2½2πNuνσηðz−sÞ�2 ; ð43Þ

where x0 ¼ 2πNuðνη0 − Δν=2Þ. We now replace ν with p without breaking any assumptions of the low-gain analysis.
Following Colson, we define jC;hp ¼ 4phkuL3

uχpκpne ¼ hjC;p [26]. Hence, 1D gain formulas for low-gain FEL for
harmonic p upon seeding by harmonic h is given by

G ¼ jC;hp
2

Z
1=2

−1=2
dz

Z
1=2

−1=2
dsðz − sÞ sin ½2x0ðz − sÞ�e−2½2πNupσηðz−sÞ�2

¼ hG1: ð44Þ

G1 represents FEL gain for harmonic p upon seeding by
fundamental radiation. The above expression suggests that
the FEL gain at harmonic p increases by a factor h when
the seeding laser is switched from fundamental to harmonic
h. This extra factor of contribution comes from the phase
rate equation (7) where the harmonic h increases phase
change by a factor of h compared to that of fundamental.
In addition, the FEL gain depends on the scaled detuning

factor x0 and energy spread ση. Figure 5 shows density plot
of the normalized gain 2G=jC;hp with respect to scaled
detuning factor x0 as x axis and scaled energy spread y ¼
2πNuνση as y axis. Unlike spontaneous radiation which is
maximized at x0 ≈ 0 [see Fig. 4(a)], the maximal/minimal
gain for low-gain amplification occurs at optimal detuning

x0 ∼�1.3 for y ≤ 0.5; the optimal detuning value shifts
further away from zero for extremum gain for y > 0.5 as
indicated by the white lines. For y0 > 2, the normalized
gain is less than 0.05 (see also Ref. [22])). The energy
spread requirements for harmonic p > 1 emission are more
stringent than that for fundamental emission by a factor
of p. For instance, ση ≤ 1=4πNu can attain maximal gain at
tuned electron energy whereas for a harmonic emission,
this requirement becomes ση ≤ 1=4πpNu. This strict
requirement may be relaxed a bit by harmonic seeding
as discussed in the previous section. Similarly, the optimal
detuned energy shifts with harmonic number; the optimal
energy shift ηp0 for a harmonic number p to maintain
extremum FEL gain is given by
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ηp0 ¼ 1

p

�
Δν
2

� fðyÞ
2πNu

�
; ð45Þ

where

fðyÞ ≈
�
1.3 if y ≤ 0.5

0.08y2 þ 0.434yþ 1.12 if y > 0.5
: ð46Þ

Here fðyÞ is a fit function obtained by curve fitting to a
quadratic function and is represented by the black curve
in Fig. 5.

C. Exponential growth

In general, we obtain all modes (growing, decaying,
oscillating) for emitted radiation of Eq. (33) by setting the
dispersion function to zero, i.e., DðμÞ ¼ 0. Since the
dispersion function or its poles depend on both frequency
detuning (Δν ≠ 0) and the nature of electron beam energy
distribution function F̄ðηÞ as indicated by Eq. (34), finding
exact solutions for all modes or simply growing modes can
become a rigorous task; one often relies on approximate
and numerical approaches (see Refs. [22,24,60,61] and
references within) to study desired effects. For instance, we
can obtain relevant analytical expressions for the simplest
case scenario like Eq. (21) for the resonant case for a
particle beam with vanishing energy spread. Now we
continue to study the effects of frequency detuning from
the resonant condition and nonvanishing energy spread on
growth rate separately for convenience.
First, we consider the effects of Δν on growth rate in the

case of vanishing energy spread as given by Eq. (35).
Although Eq. (35) has roots with closed-form expressions,
a simpler approach of perturbation expansion of growth
rate upto the second order in Δν is enough to consider
frequency detuning effects for Δν ≪ 1 [22]. For this, we
expand μ as

μ ¼ μ0 þ μ1Δνþ μ2ðΔνÞ2;

and solve for μ1 and μ2, where μ0 ¼ ffiffiffiffi
p3

p ði ffiffiffi
3

p
− 1Þ=2 is the

root containing growing mode (second root) in Eq. (35).
Since ν ¼ pþ Δν, we obtain

μ ¼
ffiffiffiffi
p3

p
2

�
−1þ

�
1

3ρ
ffiffiffiffi
p3

p −
1

3p

�
Δν −

�
Δν

6ρ
ffiffiffiffi
p3

p
�

2

þ
�
Δν
3p

�
2
�
þ i

ffiffiffiffi
p3

p ffiffiffi
3

p

2

�
1þ Δν

3p
−
�
Δν
3p

�
2

−
�

Δν
6ρ

ffiffiffiffi
p3

p
�

2
�
: ð47Þ

Compared to Eq. (4.60) in Ref. [22], we obtain additional
factors for first and second orders in Δν because Ref. [22]
solves for ν≡ p ¼ 1 and ignores the correction factor of
Δν from right-hand side of Eq. (35). The contribution to the
growing radiation mode comes from the imaginary com-
ponent of root in Eq. (47) which depends on harmonic
number p, detuning Δν, and Pierce parameter ρ. To get a
sense of this dependence, we look at the density plot of
normalized growth rate ℑðμÞ= ffiffiffiffi

p3
p

as a function of Δν and ρ
for certain harmonics p as shown in Fig. 6. The small offset
of maximized growth rate from Δν ¼ 0 coming from the
first order Δν=3p is barely noticeable in the case of
fundamental (p ¼ 1) and 5th harmonic (p ¼ 5). Increasing
p indicates more area of maximized growth rate for
lower ρ ∼ 10−5 and below for larger detuning width Δν,
which further gets amplified by a factor of

ffiffiffiffi
p3

p
for p > 1.

The presence of both first order and second order terms of
Δν in the imaginary component of the root means that the
power of the growing mode suffers a change in gain length
from resonance condition as well as the shift in central
frequency with changing bandwidth. Particularly,

P ∝ e4ℑðμÞρkuz

∝ ez=Lg0 exp

�
−
1

2

�
ων − ωp0

σω

�
2
�
; ð48Þ

where the shifted central frequency is given by

ωp0 ¼ ω1

�
pþ 6pρ2

4ρ2 þ p4=3

�
≈ ω1ðpþ 6p1=3ρÞ;

and the rms frequency bandwidth is

FIG. 5. Density plot of normalized gain 2G=jC;hp versus scaled
detuning factor x0 ¼ 2πNuðνη0 − Δν=2Þ and scaled energy
spread y ¼ 2πNuνση.
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σω ¼ ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffi
3

p
ρp5=3

kuzð4ρ2 þ p4=3Þ

s
≈ ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffi
3

p
p1=3ρ

kuz

s
: ð49Þ

The rms frequency bandwidth reduces to the known result

σν ¼ σω=ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffi
3

p
ρ=ðkuzÞ

q
of Eq. (4.61) of Ref. [22]

for fundamental radiation, whereas the fundamental fre-
quency gets shifted by δω1 ≈ 6ρω1 for ρ ≪ 1. Likewise, the
coherence length of the growing mode becomes

σl ¼
1

2ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kuzð4ρ2 þ p4=3Þ

3
ffiffiffi
3

p
ρp5=3

s
≈

1

2ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kuz

3
ffiffiffi
3

p
ρp1=3

s
: ð50Þ

The change in gain induced by frequency detuning is on the
order of ∼ρ3, which is negligible for ρ ≪ 1.
The study of the exact effect of nonvanishing energy

spread in the e-beam on the growth rate by solving Eq. (34)
requires knowing the energy distribution function of the
e-beam. While closed-form solutions are known to exist for
uniform [22,28] and Lorentzian [24,62], other distribution
forms such as waterbag and Gaussian necessitate adopting
variational and numerical approaches [60,61,63]. Since the
energy distribution functions satisfy

R
dηF̄ðηÞ ¼ 1, we can

obtain simplified solution for growth rate by using pertur-
bation expansion upto second order in νη=ρ for ν≡ p and
νη=ρ ≪ ℜðμ0Þ. Substituting

μ ¼ μ0 þ μ1ðpη=ρÞ þ μ2ðpη=ρÞ2

and bringing the integral
R
dηF̄ðηÞ outside in the dispersion

expression of Eq. (34) gives the following solution for the
second mode (containing growth mode):

μ ¼
ffiffiffiffi
p3

p
2

�
−1þ 4

�
p2=3η

3ρ

�
þ
�
p2=3η

3ρ

�
2
�

× i

ffiffiffi
3

p ffiffiffiffi
p3

p
2

�
1 −

�
p2=3η

3ρ

�
2
�
: ð51Þ

Now we can solve for average growth rate by using
hμi ¼ R

dημF̄ðηÞ. For energy distributions given by

F̄ðηÞUn ¼
� 1

2wη
if η ≤ jwηj

0 otherwise
; ð52aÞ

F̄ðηÞLor ¼
wη

π½η2 þ w2
η�
; ð52bÞ

F̄ðηÞGauss ¼
1ffiffiffiffiffiffi
2π

p
ση

exp

�
−

η2

2σ2η

�
; ð52cÞ

for uniform, Lorentzian and Gaussian forms respectively,
we obtain,

�
2ℑðμÞffiffiffiffi
p3

p ffiffiffi
3

p
	

¼

8>>>>><
>>>>>:

1 − 1
27



p2=3wη

ρ

�
2

for uniform;

1 − 1
9



p2=3wη

ρ

�
2

for Lorentzian;

1 − 1
9



p2=3ση

ρ

�
2

for Gaussian:

ð53Þ

FIG. 6. Density plot of normalized growth rate ℑðμÞ= ffiffiffi
p3

p
versus frequency detuning Δν × 104 as x axis and Pierce parameter ρ as y

axis. The y axis is in the log10 scale.

FIG. 7. Plot of normalized growth rate h 2ℑðμÞffiffiffi
p3

p ffiffi
3

p i versus scaled

energy spread factors xUn ¼ p2=3wη=ρ for uniform, xLor ¼
p2=3wη=ρ for Lorentzian, and xGauss ¼ p2=3ση=ρ for Gaussian
energy distribution functions.
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In the above expressions, wη is full(half) width at half
maximum for uniform (Lorentzian) and ση is rms energy
spread for Gaussian distributions. We find the average
growth rate is attenuated faster for harmonic p > 1 com-
pared to fundamental for a given distribution. The attenu-
ation rate is quadratic in energy spread width with a
multiplicative factor of p4=3=ð3ρÞ2. Figure 7 shows the
normalized growth rate for three different distribution
functions as given by Eq. (53). The growth rate for
Gaussian and Lorentzian distributions follow a similar
trend and attenuates earlier compared to that for uniform
distribution; however, x axis scaling is different for each
distribution. For Gaussian distribution, we obtain an
extrafactor of 1=9 in the correction term when compared
to the textbook power gain length formulas for fundamental
radiation [22].

V. CONCLUSION

To sum up, we have derived governing equations for
longitudinal FEL dynamics for harmonic lasing by har-
monic seeding in the absence of transverse effects. A
simple analysis allowed us to compare the FEL power
of saturation for both harmonic seed and harmonic emis-
sion. We adopted collective variables to gain insight into
power gain length in high-gain FELs for ideal conditions.
Similarly, coupled Maxwell-Klimontovich equations
allowed us to investigate spontaneous radiation and coher-
ent amplification in low-gain and high-gain systems in the
presence of both frequency detuning from resonance
condition and energy spread. The model presented here
allows us to generalize FEL solutions and gain expressions
for harmonic emission in the presence of a harmonic seed in
1D. We hope the results obtained here could find potential
applications in the design and analysis of FEL devices
operating at various ranges of parameters. The extension of
this work in 3D will be presented elsewhere.
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APPENDIX A: SINGLE ELECTRON MOTION

For convenience, we solve for electron motion along the
z axis (at x ¼ 0 and y ¼ 0). For the undulator period λu, the
magnetic field of a planar undulator along the z axis is

By ¼ B0 sinðkuzÞ; ðA1Þ

where ku ¼ 2π=λu is the undulator wave number, B0 is the
peak magnetic field, and the field component is along the
vertical direction. For a relativistic electron with Lorentz
factor γ, velocity v, the Lorentz force equation becomes

d
dt

ðγmvÞ ¼ −eE − e½x̂ðvyBz − vzByÞ
− ŷðvxBz − vzBxÞ þ ẑðvxBy − vyBxÞ�; ðA2Þ

where v ¼ ðvx; vy; vzÞ and vi is the electron’s velocity
along ith direction, m is electron mass, and e is electron
charge. The electric field E contribution comes from the
seed radiation, and by using the Lorentz force equation,
we have effectively ignored the recoil effects of emitted
radiation on electron motion. Since jEj ∝ sinðkz − ωtþ ϕÞ
for a radiation with frequency ω and phase ϕ, the
effect of this electric field amplitude on electron velocity
is proportional to ℏ=γ ⋘ 1 for a relativistic electron
(γ ≫ 1), where ℏ ¼ h=2π with h being the Planck’s
constant. Thus, we ignore the electric field contribution
in Eq. (A2) and keep the remaining contribution from the
magnetic field using Eq. (A1). The magnetic field results in
wiggle motion in the x direction as well as a reduction in
the longitudinal velocity. Assuming electron energy loss is
negligible along the undulator (generally true for low-gain
FELs), it is easy to show that

vx ¼ −
Kc
γ

cosðkuzÞ; ðA3aÞ

vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − v2x − v2y

q

¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

1

γ2

�
−
�
vx
c

�
2

s

≈ v̄z −
K2c
4γ2

cosð2kuzÞ: ðA3bÞ

Here c is the speed of light and we introduced K ¼
eB0

mcku
¼ 0.9343λu½cm�B0½T� as the undulator deflection

parameter. The average longitudinal electron velocity is

given by v̄z ¼ c½1 − 1þK2=2
2γ2

�. Likewise, the time t it takes

an electron to arrive at location z can be obtained from vz
as follows:

tðzÞ ¼ tð0Þ þ
Z

dz
vz

¼ t̄ðzÞ þ K2

8kuγ2c
sinð2kuzÞ; ðA4Þ

where t̄ðzÞ ¼ tð0Þ þ z
c ð1þ 1þK2=2

2γ2
Þ represents average

particle time. We refer the audience to Ref. [22] for more
information.

ONE-DIMENSIONAL THEORY OF HARMONICALLY … PHYS. REV. ACCEL. BEAMS 26, 060701 (2023)

060701-13



APPENDIX B: MAXWELL EQUATION FOR
EMITTED RADIATION

The electric field amplitude of the emitted radiation due
to the motion of an electron beam current in the undulator
can be obtained by solving the Maxwell equation. The
slowly varying envelope approximation to the paraxial
wave equation results in the angular field representation
given by (Eq. (3.59) of Ref. [22])�
∂

∂z
þ ik

2
ϕ2

�
Ẽωðϕ; zÞ

¼
XNe

j¼1

eðvxj=c − ϕxÞ
4πϵ0cλ2

eik½ctjðzÞ−z�
Z

dxe−ikϕ:xδðx − xjÞ;

ðB1Þ

where ϵ0 is the free-space permittivity and λ is the radiation
wavelength. In one dimension, we can use the approxi-
mation δðx− xjÞ→A−1

tr with Atr being the transverse area.
From now on, we will be using shorthand notation ϕ⊥ ¼ ϕ
for all vectors since z is an independent variable; in
other words, ϕ ¼ ðϕx;ϕyÞ. Also,

R
dxe−ikϕ:xδðx − xjÞ →

A−1
tr

R
dxe−ikϕ:x ¼ λ2δðϕÞ=Atr. We complete the 1D limit

by defining the one-dimensional angular electric field
Ẽωðϕ; zÞ ¼ ẼωðzÞδðϕÞ ¼ ẼνðzÞδðϕÞ. Upon substituting
the velocity from Eq. (A3a) and integrating over angles,
Eq. (B1) becomes

∂

∂z
ẼνðzÞ ¼ −

eK cosðkuzÞ
4πϵ0cAtr

XNe

j¼1

eik½ctjðzÞ−z�

γj
: ðB2Þ

The slowly varying radiation field envelope requires find-
ing slowly varying current which we can do by substituting
tðzÞ with the average particle time from Eq. (A4). For
simplicity, we will assume that only harmonic h is the
dominating field providing the pondermotive potential
in conjunction with the undulator field so that θ≡ θh.
This means

k½ctjðzÞ − z�

¼ k

�
ct̄jðzÞ þ

K2

8kuγ2
sinð2kuzÞ

�
− kz

¼ ν

h
ðωht̄jðzÞ − khzÞ þ

kν
ku

K2

8γ2
sinð2kuzÞ

¼ −
ν

h
ðθhj − hkuzÞ þ

kν
ku

K2

8γ2
sinð2kuzÞ

¼ −
ν

h
θhj þ pkuzþ Δνkuzþ

kν
ku

K2

8γ2
sinð2kuzÞ; ðB3Þ

where we have substituted ν ¼ k=k1 ¼ ω=ω1 and Δν ¼
ν − p as a factor of deviation from harmonic p, where p is

not necessarily equal to h. In fact, p ≠ h would allow us
to explore the potential of achieving harmonic lasing
via nonoverlapping harmonic seeding. Now Eq. (B2)
reduces to

∂

∂z
ẼνðzÞ ¼ −

eK cosðkuzÞeipkuz exp ½i kνku K2

8γ2
sinð2kuzÞ�

4πϵ0cAtr

×
XNe

j¼1

e−iνθ
h
j =heiΔνkuz

γj
: ðB4Þ

Again applying the Jacobi-Anger identity and keeping only
the terms that give rise to pondermotive phase, we can write

cosðkuzÞeipkuz exp
�
i
kν
ku

K2

8γ2
sinð2kuzÞ

�

¼ 1

2

X∞
n¼−∞

Jn

�
kν
ku

K2

8γ2

�
½eið1þpþ2nÞkuz þ e−ið1−p−2nÞkuz�

¼ 1

2

�
J−ð1þp

2
Þ

�
kν
ku

K2

8γ2

�
þ J−ðp−1

2
Þ

�
kν
ku

K2

8γ2

��

¼ 1

2
½JJ�p:

In order to obtain the last expression, we used ν ≈ p
for Δν ≪ 1. and γ ≈ γr for η ≪ 1. Since we want to
connect physical field to the spectral field, we define
EνðzÞ ¼ ω1e−iΔνkuzẼνðzÞ. Finally, Eq. (B4) takes the form

�
∂

∂z
þ iΔνku

�
EνðzÞ ¼ −

ek1K½JJ�p
8πϵ0γrAtr

XNe

j¼1

e−i
ν
hθ

h
j

¼ −
κpne
Nλ1

XNe

j¼1

e−i
ν
hθ

h
j : ðB5Þ

Here κp ¼ eK½JJ�p
4ϵ0γr

, Nλ1 ¼ λ1dNe=dz ¼ λ1I=ec, and ne ¼
dNe=dz
Atr

is the electron volume density. We obtain the time
domain wave equation from Eq. (B5) by applying Fourier
transform, i.e., Eðθ; zÞ ¼ R

dνeiΔνθ=hEνðzÞ as
�
∂

∂z
þ hku

∂

∂θ

�
Eðθ; zÞ ¼ −

2πκpne
Nλh

XNe

j¼1

e−ipθ=hδðθ − θhj Þ;

ðB6Þ

where Nλh ¼ Nλ1=h ¼ λhdNe=dz is the number of elec-
trons contained within harmonic wavelength λh. The
derivative with respect to θ is the slippage effect. In one
undulator period, the radiation slips ahead of the emitting
electron by its wavelength. For information on harmonic
emission on fundamental seeding, please refer to Ref. [22].
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APPENDIX C: COMPLETE SOLUTION
OF CUBIC EQUATION

The cubic equation (20) has been solved for fundamental
seeding case [22,24]. Here we solve for the complete
solution for harmonic seed and harmonic emission by
seeking solution of the form aðẑÞ ∝ erẑ; the three roots for
this solution form are

ffiffiffiffi
p3

p ½e−iπ=2; eiπ=6; ei5π=6�. The first root
gives rise to the oscillatory solution, whereas the second
and third roots give rise to growing and damping solutions,
respectively, in addition to the oscillating components. The
complete solution for the field amplitude is given by

aðẑÞ ¼
X3
n¼1

cnernẑ; ðC1Þ

where the constants c1, c2, and c3 are determined by the
initial conditions. Writing the initial values as að0Þ ¼ a0,
bhð0Þ ¼ b0, and Pcð0Þ ¼ P0, the initial values give

c1 þ c2 þ c3 ¼ a0;

r1c1 þ r2c2 þ r3c3 ¼ −b0;

r21c1 þ r22c2 þ r23c3 ¼ ipP0: ðC2Þ

Solving for the coefficients yield

c1 ¼
r2r3a0 þ ½ðr2 þ r3Þb0 þ ipP0�

ðr1 − r2Þðr1 − r3Þ
;

c2 ¼
r1r3a0 þ ½ðr1 þ r3Þb0 þ ipP0�

ðr2 − r1Þðr2 − r3Þ
;

c3 ¼
r1r2a0 þ ½ðr1 þ r2Þb0 þ ipP0�

ðr3 − r2Þðr3 − r1Þ
: ðC3Þ

Using the fact that
P

3
n¼1 rn ¼ 0 and

P
3
n¼1

1
rn
¼ 0 along

with basic properties such as ðrl − rmÞðrl − rnÞ ¼ 3rmrn
for l ≠ m ≠ n, the complete solution of the cubic equation
takes the following form:

aðẑÞ ¼ 1

3

X3
n¼1

�
a0 −

b0
rn

þ rnP0

�
ernẑ: ðC4Þ
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