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We revisit free-electron laser (FEL) equations in the presence of a planar undulator to investigate effects
on longitudinal FEL dynamics upon seeding by a harmonic. For this study, we adopt slowly varying phase
approximation, collective variables, and Klimontovich description of particle beams to explore the effects
of harmonic seeding on low-gain saturation, low-gain amplification, and exponential growth for on-axis
radiation emission. We also investigate the effects of frequency detuning and nonzero energy spread on
power gain and growth rate for low-gain and high-gain FELSs, respectively.

DOI: 10.1103/PhysRevAccelBeams.26.060701

I. INTRODUCTION

Madey proposed passing “free” electrons through a
periodic magnetic field to extend laser wavelength to
x-ray region [1]. Although one could expect to generate
coherent radiation of arbitrary wavelength using Madey’s
free-electron laser (FEL) idea, practical implementations
are often limited by available technologies for particle
acceleration and beam manipulation, magnet design and
fabrication, and optics for radiation beam transport. In fact,
soft and hard x-ray FEL facilities began construction and
operation only after 2000s [2-9]. These facilities exploit
high-gain configurations such as the self-amplified sponta-
neous emission (SASE) technique as well as harmonic
generation via seeding and/or electron beam manipulation
(see Refs. [2-9]). On the other hand, prospects of, and later
demonstrations, of Bragg crystals [10] and compound
refractive lenses [11] for transporting coherent and intense
hard x-ray pulses have sparked significant interest in the
cavity based x-ray FELs for both low-gain and high-gain
cases [12-20]. In principle, cavity based FELs (CBFELSs)
allow harmonic lasing of harmonic content (k2 > 1) by
filtering the undesired part of the radiation spectrum in
optics, thereby extending the possibility of generating
coherent, stable, and narrow bandwidth radiation pulses
from FEL based light source [21,22]. CBFELSs can also be
used to seed harmonic content to a FEL via out-coupling
schemes [22,23]. Since the field amplitude of this harmonic
content becomes higher than that of the spontaneous
emission as required by lasing criterion, FEL dynamics
evolves primarily under the influence of the harmonic seed.
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The follow-up question is straightforward: How do we
determine the effects of harmonic seed in the FEL dynam-
ics? While a lot of work has been done on FEL theory since
Madey’s FEL idea, here we skim through only relevant
work and refer the audience to Refs. [22,24] and within
to satisfy their curiosities. Colson derived the FEL pendu-
lum equations by solving for longitudinal electron motion
in the presence of radiation and undulator fields [25];
he extended this treatment to apply for the generation
of harmonics [26]. While Bonifacio et al. [27] applied
collective variables approach for high-gain FELs, Kim
applied Colson’s formulation along with the microscopic
description of electron beams by Klimontovich distri-
bution function to formulate 1D and 3D models for
SASE in high-gain FELs [28,29] and brightness func-
tions based gain formula for low-gain FELs [30]. Later,
Bonifacio et al. studied nonlinear harmonic generation
in high-gain FELs with fundamental seed using one-
dimensional model [31]; Huang and Kim [32] applied
coupled Maxwell-Klimontovich equations to extend this
model in three dimension, whereas Freund er al. [33]
applied a three-dimensional code capable of treating
multiple frequencies to study nonlinear harmonic gener-
ation. Alternate schemes of variable delay or phase shifting
have been proposed to suppress fundamental emission in
favor of harmonic generation [34,35]. Yu proposed using a
modulator and a radiator configuration with a dispersive
element in between to introduce harmonic bunching in the
electron beam to improve coherence in harmonic emission
[36,37]; Penn et al. investigated this scheme for low-gain
FELs in Ref. [38]. An extension of Yu’s modulator scheme
involves using two modulators instead of one to exploit
the echo effect enabling density modulations at a higher
harmonic number as proposed by Stupakov and Xiang
[39,40]. Feng and colleagues proposed the phase-merging
technique based on enhanced harmonic generation to boost
FEL efficiency further [41,42]. Moreover, standard FEL
codes like TDA3D [43,44], GINGER [45], GENESIS [46],
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FAST [47], PUFFIN [48], and MINERVA [49] have been
brought into existence and used to compare and evaluate
the performance of FEL facilities and mentioned schemes.
Recently, Yu extended the low-gain formula with no
focusing approximation to achieve harmonic lasing in
transverse gradient undulator based FEL [18,50].

Nevertheless, the mentioned theory works are not fully
equipped to solve harmonically seeded FEL systems. While
one could potentially simulate a harmonically seeded FEL
system using standard FEL codes, such studies will be
assigned to a limited parameter space and be restricted from
generalization. To address the effects of harmonic seed in
FEL dynamics, we adopt a slowly changing pondermotive
phase description [25,26] and collective variables [27] as
well as Klimontovich description of particle beams [29,30].
In this report, we derive equations governing longitudinal
dynamics for a FEL in the presence of harmonic seeding
and a planar undulator neglecting space charge and recoil
effects for on-axis radiation emission. We note that calcu-
lation techniques explored here have been previously applied
and most expressions thoroughly derived and investigated
previously for fundamental radiation seeding [22,24,51].
We tried our best to minimize repetitions of derivations
and keep only the pertinent ones necessary for our study here.
In addition, we assume that both the seed and emitted
radiation are on-axis and odd harmonics of fundamental
radiation to comply with 1D model approximation.

The rest of this article is organized as follows: Section II
applies single particle motion from Appendix A and slowly
changing approximation to obtain pendulum equations
governing longitudinal dynamics for single electrons. In
Sec. III, we apply the collective variables approach to solve
for power gain length using the phase and energy expressions
obtained from Sec. II and the Maxwell equation for emitted
harmonic radiation from Appendix B. Then, we introduce
Klimontovich distribution function for the electron beam
to formulate coupled equations governing longitudinal
FEL dynamics in Sec. I'V; we solve these equations to obtain
expressions for the spectral power density of spontaneous
radiation, power gain for low-gain amplification, and
growth rate in Secs. [IVA-IV C, respectively. We wrap up
this report in Sec. V.

II. FEL PENDULUM EQUATIONS

We proceed to derive the FEL pendulum equations for
electrons. The electron is under the influence of both
undulator and radiation fields with the undulator field as a
primary source of particle motion as covered in Appendix A.
The energy exchange only occurs between electron and
radiation fields. Electrons lose energy via radiation emission
and gain energy from seed radiation. Assuming the radiation
spectrum consists of all harmonics, we can model the
radiation fields as a collection of discrete electromagnetic
waves given by

E(z;1) zfczEgcos(khz—a)ht+¢h), (1)
h

where the waves are polarized in the x direction and
copropagating with the electron beam. Ef is the field
amplitude and ¢, is the phase of a harmonic & with wave
number kj, and frequency wj,. The rate of energy transfer from
the radiation spectrum of Eq. (1) to an electron is given by the
incremental work W = F.v = —eE.v where e is electron
charge and v is its velocity. Substituting the electron velocity
from Eq. (A3a) and field amplitude from Eq. (1), we obtain

W = —eEvy

Kc
= e—cos (k,z2) E E cos(k,z — wut + ), (2)
/4

with y being electron’s relativistic Lorentz factor and K =
0.9343,[cm|By[T] is the undulator deflection parameter.
Since the rate of energy change for an electron is
d(ymc?)/dt, we obtain

d}/ h
9 e ZE cos(k,z) cos(kyz — wut + ¢y)
h
Zymc ZE {cos[(k, + kj,)z — wpt + ¢y)
+ cos[(k, — kp)z + wpt — ¢y} (3)

The argument in the first cosine term (in second line) gives
rise to the particle’s slowly varying pondermotive phase in
the presence of combined radiation and undulator fields,
whereas the second cosine term (in the final line) gives
rise to fast oscillations that tend to average to zero. Each
harmonic 4 has a slowly varying pondermotive phase (6")
associated with it (the superscript added to indicate associ-
ation with harmonic /) and the overall pondermotive phase of
an electron is the result of contribution from all harmonics,
i. e, =)>,0" Since the particle arrival time ¢ is fast
varying component as defined in (A4), we assign the average
particle time 7 to define a slowly varying phase " given by

= (kh + ku)Z - C()h;. (4)

Then, we differentiate on both sides with respect to 7 to get

d dy™ _ _
El//h = d—ZﬂZ = (ky + k)0, — wy;
for w, = ck;, and 7, = [l —#} we rearrange and

expand for y > 1 to get

k
ku+kh_c_h

Z

dy"
dz

1+ K2%/2
:ku+kh_kh|:1+72/:|
2y
2
[kl K22)
. 27
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The resonant condition for a harmonic radiation emission in
planar undulator is given by

k 2hy?
_hziy;’ (6)
K, 1+K%2

where y, is the resonant Lorentz factor associated with
the resonant energy. For an electron starting with resonant
energy, we assume it loses energy via radiation emission in
the harmonic seed. If " = (y —y,)/y, < 1 is the energy
deviation due to radiation emission in the harmonic % seed,
we can rewrite Eq. (5) as

d h
& = k1= h(1+ "))
dz
d
C‘l” ~ k(1= h) + 2hk, "
doh
—~2hk 7
e M (7)
|
dp"  eKE}
dt  4y,ymc

From Jacobi-Anger identity e”*"¢ = » ®

Here we have introduced the reduced phase notation
0" = y" + (h — 1)k,z to track slowly changing dependence
on the particle’s energy offset from the FEL resonance
condition. Equation (7) is one of the equations that describes
pendulumlike behavior of the longitudinal electron motion
in FEL.

Now we derive the second equation relevant to the
pendulum behavior. For radiation emission at harmonic &
and wusing the definition of energy deviation 7 =
(y —v,)/7, and the definition of ponderomotive phase
and average particle time expression of Eq. (A4) which
gives

2

k, K
— hk,z — —h—sin(Zkuz),

k,z — oyt = 6"
nZ — @y ku 87/2

we can rewrite Eq. (3) by expanding cosine in terms of
complex exponential as

2

. . n . k, K
(etkuz 4 e~iku?) <e’9h"”k"”"/’h exp [—ik}’gzsin@kuz)} + c.c.).
14

u

J,(x)e™, we get

eKE} oip) N kn K>\ ; :
—_ bn) J i(1=h=2n)k,z —i(1+h+2n)k,z C.
prpm— § L 8y [e +e |+cc

n=-—oo

h
:ﬁei(ﬁhﬂm) J_ gy ki K +J
4y,yme k, 87%

_ eKE§[JJ], .

o" .
27, yme 0s(6" + ¢y,)

We kept only the terms associated with factors n = (1 —
h)/2 and n = —(1+ h)/2 which give rise to slowly
changing phase. We apply two more approximations to
obtain a simpler expression for Eq. (8). The first approxi-
mation is v, = dz/dt ~ ¢ and the second approximation
that y = y,.(1 + 1) ~ y,. This results in a simplified version
of the energy equation given by

dn" KEMNJJ
A _ R0l dn ol ]hcos(9h+¢h)

dz ny
where €, = wk ,L> is the dimensionless field

yime?
strength. This treatment lets us explore effect of harmonic
h emission in the presence of the same harmonic seed,
however we will explore the effect of emission at a different
harmonic from seed later. Now we can also express the

k, K
()kS

)] +ee

(8)

Bessel function factor of Eq. (8) in a more convenient form
by using the resonance condition [Eq. (6)] and Bessel
function identity J_,(x) = (=1)"J,(x) as

128 + g (©)
= (- 1><h 1/2[ (@ =Juw(@].  (10)

where & = hK?/(4 + 2K?). For odd harmonics, it is easy to

note that alternate / results in sign flip of [JJ], as (—1)'T
does. Figure 1 clearly shows this pattern for harmonic 3 to
23 with undulator deflection parameter (K) ranging from 0
to 5. In other words, 7 = 1,5,9, 11, ... take positive values,
whereas alternate 7 = 3,7, 11, 13, ... retain negative values
as shown in Fig. 1. Moreover, the absolute value of [JJ],
decreases with increasing harmonic number A. For each
harmonic 4, the absolute of [JJ], retains values close to
zero and increases slowly toward a fixed value at a
threshold K beyond which it maintains that value as clearly
observed for 4 = 3 in Fig. 1.

VI =
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FIG. 1. Plot of Bessel function factor [JJ],, for harmonic from 3

to 23 versus undulator deflection parameter K.

In the presence of a constant electric field of a harmonic
h (ie., €, =constant), #" and 5" become conjugate
variables of the constant of motion given by

Hy = bl ()2 = 225 [sin(@" + ¢) = sin(g)). (1)

At the separatices (" = 0 and 6" = +nx), H),

which means

= %Sin ¢h
\/ o" o"
h — iﬂ sign([JJ],) sin ( + ) cos <>
n kuLu\/ﬁ en([JJ],) 3 o 7

= $nlx \/sign([JJ]h) sin <9—2h + ¢h> cos (g) ,

with 7. = v/lenl/ (k,L,V/h). The motion outside the
separatices is unbounded and unidirectional, whereas the
particle exhibits periodic behavior about the stable orbit
inside these separatices which corresponds to the vibra-
tional motion of the pendulum (see Ref. [22] for more
details). The latter region is often referred to as ponder-
motive bucket in which particles are trapped for a constant
field. The maximum height of this bucket is 7/, and is
directly proportional to the square root of the absolute value
of the Bessel function factor and inversely proportional to
square root of the harmonic number /. Figure 2(a) shows
the separatices in the longitudinal phase space of the
electron in odd harmonic potentials for 4 ranging from 1
to 15 where the pondermotive bucket is bounded by the
solid lines. The bucket boundary is drawn for ¢, = 5 for
h=1,5,9, 13 and ¢, = -5 for h =3, 7, 11, 15. The
bucket size shrinks with increasing harmonic number,
indicating less area for trapping electrons and energy
exchange. Figure 2(b) shows the ratio of maximum bucket
height for different harmonic with respect to that of the
fundamental radiation with E = E}, for K ranging from 0
to 5. It is clear that bucket helght decreases with increasing
harmonic number as seen before in Fig. 2(a). For each
harmonic number, the maximum bucket height keeps
on increasing until a threshold value for K is reached,
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FIG. 2. (a) Separatices of harmonic potentials in longitudinal

phase space for ¢, =7 for h=1, 5,9, 13 and ¢, = -7 for
h=3,7, 11, 15. Ratios of (b) maximum bucket height in the
presence of harmonic £ with respect to that with fundamental and
(c) oscillation frequency near stable points in harmonic
potential with respect to that in fundamental potential.

beyond which the bucket height remains fixed. For 4 < 10,
Kines ® 3 as shown in Fig. 2(b).

The oscillatory motion in the pondermotive bucket occurs
at a frequency that is dependent on the energy H,. However,
the motion close to the stable fixed point is similar to that of a
simple harmonic oscillator for small phase (|0"| < 1). In this
case, the oscillation wave number is given by

Qs _V h|€h| (12)

L, ’

also known as the synchrotron wave number. The corre-
sponding synchrotron period of the particle in the ponder-
motive bucket is
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2 2L
T (13)

Q, \/h|€h|

Figure 2(c) shows the ratio of the synchrotron frequency of a
particle in the bucket formed by harmonic £ to that in
the bucket formed by the fundamental radiation with the
same electric field amplitude. The frequency increases with
increasing undulator strength and becomes greater for
potentials formed by harmonic / > 1 compared to frequen-
cies of oscillation in a bucket formed by fundamental
radiation. There exists a threshold undulator strength after
which the frequency of oscillation remains more or less
constant for a given harmonic /. These peculiar behaviors in
Fig. 2 may be formulated in terms of scaling laws, however,
it is beyond the scope of this article.

Following the discussion in sections 3.3.2 and 7.1.1
of Ref. [22], we can roughly estimate the saturated
radiation power in low-gain scenarios in single pass and
oscillator based FELs. For a harmonic %, the maximum
saturated power in a single pass FEL would be given

by Py~ Pyeam/(VEN,,), where N, is the total undulator
periods and Py, is the power of the electron beam. For
cavity based oscillator, the saturated power becomes
ngtc = Pgat/(l - R) szeam/[(l _R)\/ENM]’ Here R is
the net power reflectivity of the optical cavity forming
the oscillator. It is clear that the saturated power of a
harmonic % gets reduced by the square root of the harmonic
number itself when compared to the fundamental. This
means that the saturated power of an FEL operating at
harmonic # is lower than that for fundamental radiation,
which sets the upper limit on maximum achievable radi-
ation power in an operating low-gain FEL.

T

III. COLLECTIVE VARIABLES APPROACH

The FEL pendulum equations (7) and (9) and the
Maxwell equation (B6) for emitted radiation in time
domain together determine the 1D FEL dynamics. To
collect these equations in time domain, we use an alter-
native expression for energy change equation (9) for the
Jjth particle after the radiation emission of harmonic p in the
presence of harmonic % seed given by

dn" .
dizj =Xp (/ dvE, (z)e /" + c.c.> ,

__eKlJ],
2m (,2 2

v—p = Avfor Ay < 1 following Appendix B. Hence, we
obtain the following set of 1D FEL equations

(14)

where y,, = Here we have assumed that v = p with

d€h

d—z = 2hku7’]] s (153)

dn o

% = 1p(E(0:2)e™/" +cc). (15b)
Z

0 0 .
{— + hk, %] E(0;z) = —K,,ne(e_”’efh'/h>Ah (15¢)

0z

eK[JJ]
4'GOyr
—ipoh

(i), =

h

P

In the field equation, we have introduced «, =
and  the bunching expression
N, —ipt

(I/NA/,)Z]':] e lpa//h for NAh :Nﬂl/ZJZ':N/“/Zﬂh.
In other words, only N, electrons with pondermotive
phase \97 — 0| < A9/2 contribute to the coherent radiation
emission at position z [27].

Moreover, we can adopt the dimensionless coordinate
system to get insights into FEL evolution (see Refs. [22,24]
for instance); we introduce %=12k,pz, 7" =#n"/p, and

a(0.z) = 2;:” > E(6;z). Then, Eq. (15) takes the following

form:

d¢9h
dz

= hif}, (16a)

dﬁj’
dz

0 h o0 .
&*%%}w@—‘

= a(6:2)e™%/" + a(6;2)7e P,

(16b)

hK ) oM, . _;
NKpXplte <e—lp0j-’/h>A] (16¢)

4kzp?

The coefficient of bunching expression in the right side
of field equation becomes unity if we define the Pierce
parameter by

 [hnekyx, V3 (heKPn I3 (17)
P=Pe = T2 ~ \B2epimci )

The Pierce parameter is a real positive number and the
subscripts represent emitted harmonic p and seed harmonic
h. Assuming that a(6;%) ~ 1 at saturation, we can heuris-
tically claim that the gain length is on the order of
1/(2k,pp,) while the saturated power of harmonic p scales
as P, ~ pp,Ppeam 10 the presence of a harmonic seed &
(refer to Refs. [22,24] for similar analysis with fundamental
seed). We note that the bunching expression is normalized
to average over electrons present within fundamental
wavelength instead of harmonic wavelength for consis-
tency; this choice becomes obvious in Sec. IV C.

To obtain a simpler understanding of the electron beam
and radiation interaction in a high-gain FEL, we ignore
the radiation slippage (or radiation dependence on ) in
Eq. (16) and introduce the following collective variables:

| —ipt"

by = (e ")y, = (7PN, (18a)
1

Po={ite Py, = (e, (18D)
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Expression (18a) is bunching factor b, associated with
density modulation of electron beam upon seeding with
harmonic &. The collective momentum (or energy modu-
lation) in electron beam P, is given by expression (18b).
Substituting these variables in Eq. (16) with no slippage
approximation and keeping only the lowest order terms in
expansion, we obtain the following set of equations:

da

—=-b 19
d? hs ( a)
db,

=—ipP., 19b
= P (19b)
d
CZC =a. (19¢)

These linear coupled equations can be rearranged to
obtain a third-order differential equation for each collective
variable. For the radiation field amplitude a, it becomes

dPa
d_23 =1pa. (20)
|
o1 V3 ([, by
a(?) ~3 [ao +5 <\/ﬁ770 ~

Here we substituted initial values a(0) = a, for the field
amplitude which gets amplified coherently, b,,(0) = b, for
the bunching, and P.(0) = P, for the energy modulation.
Nonzero bunching and energy modulation result in radi-
ation power growth in the absence of input radiation a(0).
The exponential power gain length is given by

A

u
Lg.hp 475\/§\3/l—7,0hp ’ (22)
where the Pierce parameter is given by expression (17).
Therefore, we have generalized the 1D power gain length
formulas for high-gain FEL for harmonic p emission with
harmonic / seed.

An intuitive idea on the scale of this gain length can be
obtained by comparing how harmonic seed and harmonic
emission fare against fundamental seeding and/or emission.
The gain length ratio for harmonic p generation with
harmonic / seed compared to fundamental seed becomes

L 1
o = (23)
Lyap Vh

In other words, seeding with a higher harmonic number # is
more efficient than fundamental seeding for harmonic p

emission by a factor of v//. Likewise, the gain length ratio

FIG. 3. Plot of gain lengths ratio versus undulator deflection
parameter K for harmonic p > 1 emission with respect to
fundamental emission in the presence of harmonic A.

The complete solution of this equation is derived in
Appendix C. The second root results in a growing mode
solution. For large propagation distance, the growing mode
dominates and drives the laser amplification which can be
approximated from Eq. (C4) as

>+§<e/,77>0+ bO)]eXp {e/ﬁﬁ;"z] (21)

\:yﬁ

[
for harmonic p > 1 emission to fundamental emission in
harmonic & > 1 seed is given by

Lynp _ < 7], >2/3, (24)
L g.hl \/ﬁ [JJ] 4

This expression has also been obtained by McNeil et al.
[34] and Schneidmiller and Yurkov [35] for harmonic
emission in a FEL amplifier with fundamental seed.
Harmonic p > 1 is favored less than fundamental emission
resulting in larger gain lengths for p > 1 as shown in Fig. 3
for K ranging from O to 5. For K > 3, the gain length for
harmonic emission becomes less than twice the gain length
for fundamental emission. For larger p values, the gain
length shortens significantly with increasing K as well,
asymptomatically approaching L, for K — co. We will
cover additional effects of frequency detuning and energy
spread on the growth rate for high-gain FELs in Sec. IV C.

IV. COUPLED MAXWELL-KLIMONTOVICH
EQUATIONS

Various aspects of high-gain FELs such as the SASE
process and nonlinear harmonic generation and low-gain
FELs can be understood by adopting the microscopic
description of electron beam given by Klimontovich
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distribution function [28-30,32]; the discrete distribution
function for describing these electrons in the longitudinal
phase space is

FO12) = g > 010 = 0}(2) ol = (2

Jj=1

(25)

Here dN,/dz = I/ec is the electron line density for beam
current / and N, is the total number of electrons in the
beam. Under the assumption that FEL interaction is a
perturbative process, the Klimontovich distribution func-
tion can be expanded using a coasting beam approximation.
Similar techniques of perturbative expansions are also
applied in plasma physics (see Refs. [52,53] for instance).
In this expansion, the distribution is separated into the
smooth background part and a perturbative part, where the
perturbative part contains the shot noise and bunchinglike
features as follows

F(0.n;2) = F(n;2) + 8F(6,n; 2). (26)
Here the smooth background function represented by F(1; z)
is independent of phase and satisfies [dnF(n;z) = 1.
The continuity equation for the Klimontovich distribution
function dF(0,n;z)/dz = 0 can be broken into two parts
as follows:

d - dno
—F 4+ ——0F
[az Jrdzaz ]
0 de o dn o -
—O0F +——0F+——F| =0. 27
+[0z +dz09 +dzan] 27)

The first bracket in the first line is for the terms that vary
slowly along the bunch and also attributes nonlinear har-
monic contributions, whereas the second bracket in the
second line groups terms with fluctuations from FEL
interaction dominated by harmonics. Since these brackets
indicate processes that occur at different time scales,
each bracket should separately vanish to satisfy continuity
condition [22]. Our interest lies in obtaining an equivalent
expression for the second bracket in frequency space. In
order to do so, we introduce the frequency representation of
the distribution function as

1 .
Fu(n:2) = 5 / doe=I"F(0,n; z)

1 Qe

=2 ¢ e =),
N/H j=1 /

(28)

This implies 5F (6, n;z) =} [ dve™/"F,(n; z). Using the
alternative expression for the energy change equation given
by Eq. (14), we obtain the Fourier transform version of the
second bracket in Eq. (27) to be

OF (n; z) .

on (29)

d
{dz + 2”/ku’7:| Fv (77’ Z) = _hZPEU(Z)

Here we are assuming that the fluctuations are induced by
single harmonic 4 seed and 7 = #"* for harmonic p emission
in that seed. Using the definition of F, from Eq. (28) and
since v~ p for Av <1 (ie., k, =k,), Eq. (B5) for field
evolution of harmonic p when seeded by harmonic %
becomes

[a%+im/ku] E,(z) = —k,n, / dnF,(n;z).  (30)

The evolution of radiation field and electron beam fluctua-
tions in the FEL can be now solved using Egs. (29) and (30).

A complete solution of the coupled Maxwell-
Klimontovich equations (29) and (30) can be obtained
by using Laplace transform [28,54] given by

Sup = /oo dze™?hi S, (2). (31)

0

Here S is a dummy representation for £ and F. This allows
us to obtain solution for S,(z) using the inverse Laplace
transform given by

k )
5,(2) = -2 7{ dpe=rkis, | (32)

p is the FEL scaling parameter introduced in Eq. (17) for
dimensionless equations. After careful calculation steps
and substituting for F,(», 0) from Eq. (28), the electric field
amplitude becomes

du e~2rkz iK,n, N, e~ i0;(0)/h
E0) = P o |BO+ 5>
T H uPN 11 j=1( jp —,bt)
(33)
where the dispersion function D(u) is given by
Av F(n)
D) =u-5ov [ g (4)
2 @4y

The radiation evolution in a FEL is mainly dictated by the
poles of 1/D, which can be obtained from the roots of
D(u) = 0. For p given by Eq. (17) and in the limits of
vanishing energy spread, ie., F(y) = 8(n), D(u) =0
becomes

Av v
p—5-——5=0
20 W

2 A
win=5,) ="

(35)
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For the FEL resonance condition, Av =0 and p’ = p
which has three solutions u = \-‘/ﬁ[l,i‘/—%,#], as
covered in Sec. III and Appendix C, with the second root
representing growing solution from Eq. (33). In the
exponentially growth regime, the radiation power grows
as P o« e®Wrki glong the undulator [22,28], where
I(up) = (p)'/*+/3/2. The gain length in this exponential
growth region is effectively given by Eq. (22). Since we
already covered the behavior of gain length for both
harmonic seeding and harmonic emission in Sec. III, we
carry on to investigate features of spontaneous emission
and low-gain and high-gain scenarios. For spontaneous and
low-gain radiation emission, we can expand the inverse of
the dispersion function in the limits of the vanishing Pierce
parameter, i.e., p — 0 as follows:

— v )
D(ﬂ)_”_A”/2p+(M—Av/2p)2/ n(ﬂ_ﬂ)Z' (36)

4

The first term in the expansion on the right side yields
spontaneous radiation whereas low-gain amplification can
be studied by keeping the last term in the second line.

A. Spontaneous radiation

In the absence of input radiation, the FEL process begins
with spontaneous emission. From Egs. (33) and (36), the
field amplitude of the spontaneous radiation at any location
z along the undulator is given by
iKpI’le N, e~ 0/ h g—ilvk,z
2kuNM = I/]’]j - Al//z

EU(Z) _ 1= e—i2(w1j—Au/2)k,,z}.

(37)

Here we applied Cauchy’s residue theorem to integrate over
u and n; =5;(0) and @; = 6;(0) represent initial scaled
energy shift and phase of the jth particle, respectively.
Assuming that the initial phase distributions are uncorre-
lated [22,28], we can express the power spectral density of
spontaneous radiation at the undulator end as follows:

dP 2 I K[JJ] 2
a7 (3 () (5 )

_ sin 22N, (vn — Av/2)]\ 2
X/d”F(”)< 22N, (vn — Av/2) ) - (38)

where I, = 4megmc? /e ~ 17045A is the Alfven current
and F(5) is the energy distribution of the electron beam.
Besides depending on factors in the first line such as beam
current (I), resonant relativistic Lorentz factor y,, and
undulator strength K and length N, = L, /4,,, the sponta-
neous radiation spectral power density depends on fre-
quency/energy detuning as well as energy distribution of

the electron beam as indicated by the integral in the second
line. For comparative analysis of spontaneous power
density for electron beams having a uniform or Gaussian
energy distribution, we adopt scaled parameters given by

x =2zaN,(vy—Av/2) and y=2mv6,N,.

o, is the rms energy spread in a Gaussian distribution. For

2 K|JJ 2
C,= (ﬁmcz N%f)(jl_i,) (é) (ﬁ) , Eq. (38) reduces to

Z—z ¢, / dxF(x, y) (?)2 (39)

For an electron bunch with uniform and large energy
spread (o, > 1073) typical of laser-driven plasma accel-
erators [55-59], we can effectively approximate F(x,y)~
1/4y, where we assumed the uniform distribution to have
half-width equivalent to a Gaussian distribution’s radius
26,(=2y). In this simple approximation, dP/dw =
C,r/4y, where the subscript p indicates harmonic p.
The increase in energy spread results in a decrease in
spontaneous emission; this follows intuitively as a large
energy spread brings more electrons out of resonance
condition [Eq. (6)] necessary for radiation emission at a
desired wavelength.

For practical constraints in energy spread of linear
accelerators and storage rings (o, < 107%), we evaluate
the integral numerically for Gaussian distribution given by

within the limits of [-3y, 3y]. Figure 4(a) shows the scaled
power density of spontaneous radiation against scaled
variables xq = 22N, (vny — Av/2) and y. The density is
peaked at x = 0, corresponding to 7, =~ 0, for harmonic p
(Av = 0) when y < 0.5. For y > 0.5, the spectral power
density drops significantly while maintaining nonzero
values for |x| < 5. A simple comparison of the spontaneous
spectral power density of harmonic content to fundamental
at a tuned value of xy &~ 0 can be made by the following
estimate:

dP/dal, C, ([}
deh_Q_QM) (40)

as shown in Fig. 4(b). For K > 2.5, the harmonic content
power density scales roughly between 0.01 and 0.1 of
fundamental radiation. The spontaneous emission of har-
monic content is suppressed significantly at K < 2 with
higher harmonic suffering further reduction. At K = 1, the
third harmonic fares quite well to ~0.2, whereas p > 9
attenuates by a factor of 10~ and more. This implies that
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FIG. 4. (a) Density plot of normalized spectral power density (1/C),)dP/dw versus scaled detuning factor xo = 22N, (v — Av/2)
and scaled energy spread y = 22N ,vo,,. (b) Ratio of spectral power density of spontaneous radiation for harmonic p to fundamental at

tuned x, ~ 0. The y axis in (b) is in log;, scale.

using electron beam shot noise does not favor harmonic  revert to a well-known perturbation approach to obtain

spontaneous emission at tuned energy for K < 2. power gain in the low-gain scenario [30]. In this case,
Egs. (29) and (30) can be solved using iterative perturbation
B. Low-gain amplification expansion, after which the electric field amplitude of the

emitted radiation can be expressed in terms of the electric

Although we can use the second term in Eq. (36) to
field at the undulator center as follows:

obtain first-order amplification in the low-gain limit, we
|

Lu Lu LU _,2 k
Ev(Lu) =0 B E, PN Kpne/ dzg(Lu - z)/dne = ”nzFu(”;O)
0

b : 2y oF (n;
+ hypkpne / dzG(L, - z) / dne=i2vkar /Z dse?*ISE (5) (dn’ ) ,

|
where G(z) = e~"A%Z is the homogenous solution. The  would solve iteratively to find the evolving radiation field
first term appears from the input coherent radiation, the  in the undulator. However, an appropriate approximation
second term corresponds to the spontaneous undulator  for E,(s) = G(s —%)E, (%) can be used for weak inter-
radiation, and the third term is the result of FEL interaction action between electron beam and radiation field. In this
between the electron beam and radiation field. Ideally, we  case, the electric field can be conveniently expressed as
J

E,,(L,)zQ(%)Ey(%) < ng< )/ dz/dnU (n:2)F, (:0)
+ ke 9< ) ( >/dn/"dzU m:z / ds U; (n: 5) (”;) /2) (41)

|
Here we introduced 1D undulator field U,(n;z) =  square of field amplitude in the above expression. The
exp [—iAvk, (L7 —z) — i2unk,z] and the transformation of  absolute square of the first term gives input power, whereas
F(’?Q 5) = F(n; L,/2) follows naturally with the field the square of the second term gives spontaneous undulator
transformation. Since the field is complex in nature, the  radiation power. The cross terms involving the second term
gain of the field amplitude is complex. Therefore, it is more  (spontaneous radiation) sum over all particle phases leading
convenient to obtain power gain by computing absolute  to zero. The lowest order power amplification appears from
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the cross terms involving the first and third terms [22].
Hence, 1D FEL power gain is given by

G:POUt_Pin

m
B [ oF
:h)(pr”e/dﬂA dZA dsU;(n;2)U,(n;s) 05;7)'

Further simplification comes from substituting Zz =

L,/2 and 5 = s —L,/2. This changes the limits of z
and s integrals to —L,/2 and L,/2 from O and L,
respectively. Moreover, the product of the undulator field
takes the following form:

Us(n;2)U, (3 s) = Uy (1 2) U, (13 5)
=exp [i(2un — Av)k,(Z = 5)].

For a Gaussian electron beam with rms energy spread of o,
and centered at energy 7, with the distribution function
given by

_ ) e~ (1=1m0)* /20,
F(n) = ——r—
1 vV 271'6,7
and
OF (n n—n
n oy

the gain formula reduces to
l’ll/2 14/2
= hy,k, / / dsZ,( (42)
LLt/2 N/2

where

oF
T9) = [ dn UiV i)

1

= —/d}’](n—r]o)e_(’l—flo)z/%%eiZ(uq—Au/Z)ku(z_s)

- 3
27‘[6,7

= —2ivk,(z — s)e2 02Dk (=) exp{-2[k, v, (z — 5)]*}.

We got rid of bars over z and s for convenience. Finally, the gain formula reduces to

I /2 12
G= zyhkuLz)(prne / / dS Z - S sin [ZXO(Z - S)} _2[2”N“V6”(Z_S)]2, (43)

-1/2 1/2

where xy = 22N, (o — Av/2). We now replace v with p without breaking any assumptions of the low-gain analysis.
Following Colson, we define jcj, = 4phkuL3)(prne = hjc, [26]. Hence, 1D gain formulas for low-gain FEL for

harmonic p upon seeding by harmonic % is given by

; 1/2 1/2
G:JC%/ / ds(z — s) sin [2x0(z — 5)]e

—1/2 1/2

- hGl

G, represents FEL gain for harmonic p upon seeding by
fundamental radiation. The above expression suggests that
the FEL gain at harmonic p increases by a factor 7 when
the seeding laser is switched from fundamental to harmonic
h. This extra factor of contribution comes from the phase
rate equation (7) where the harmonic % increases phase
change by a factor of & compared to that of fundamental.

In addition, the FEL gain depends on the scaled detuning
factor x and energy spread o,. Figure 5 shows density plot
of the normalized gain 2G/jc;, with respect to scaled
detuning factor x as x axis and scaled energy spread y =
2zN ,vo, as y axis. Unlike spontaneous radiation which is
maximized at x, ~ 0 [see Fig. 4(a)], the maximal/minimal
gain for low-gain amplification occurs at optimal detuning

—2[22N, po,(z—s)]*

(44)

|
Xxg~ £1.3 for y <0.5; the optimal detuning value shifts
further away from zero for extremum gain for y > 0.5 as
indicated by the white lines. For y, > 2, the normalized
gain is less than 0.05 (see also Ref. [22])). The energy
spread requirements for harmonic p > 1 emission are more
stringent than that for fundamental emission by a factor
of p. For instance, 6, < 1/4xN, can attain maximal gain at
tuned electron energy whereas for a harmonic emission,
this requirement becomes o, < 1/4zpN,. This strict
requirement may be relaxed a bit by harmonic seeding
as discussed in the previous section. Similarly, the optimal
detuned energy shifts with harmonic number; the optimal
energy shift 7 for a harmonic number p to maintain
extremum FEL gain is given by

060701-10



ONE-DIMENSIONAL THEORY OF HARMONICALLY ...

PHYS. REV. ACCEL. BEAMS 26, 060701 (2023)

2G
5.000 Jc, hp
0.2
4.000
0.1
~ 3.000
S
= 0.0
=
1 2.000
-0.1
1.000
0.500 -0.2
0.0011

-10.0

-5.0-2.5 0.0 25 5.0
27N, (1o — Av/2)

FIG.5. Density plot of normalized gain 2G/ j¢ ,, versus scaled
detuning factor xq = 22N, (vny — Av/2) and scaled energy
spread y = 22N vo,.

f()

1 /Av
P—_ (=4 L) 45
i = (200 (45)
where
1.3 if y<0.5
1002 { g o | - ()
0.08y° +0.434y +1.12 if y > 0.5

Here f(y) is a fit function obtained by curve fitting to a
quadratic function and is represented by the black curve
in Fig. 5.

- Gl () ()]

Compared to Eq. (4.60) in Ref. [22], we obtain additional
factors for first and second orders in Av because Ref. [22]
solves for v = p = 1 and ignores the correction factor of
Av from right-hand side of Eq. (35). The contribution to the
growing radiation mode comes from the imaginary com-
ponent of root in Eq. (47) which depends on harmonic
number p, detuning Av, and Pierce parameter p. To get a
sense of this dependence, we look at the density plot of
normalized growth rate 3 (u)//p as a function of Av and p
for certain harmonics p as shown in Fig. 6. The small offset
of maximized growth rate from Av = 0 coming from the
first order Av/3p is barely noticeable in the case of
fundamental (p = 1) and 5th harmonic (p = 5). Increasing
p indicates more area of maximized growth rate for
lower p ~ 107> and below for larger detuning width Av,
which further gets amplified by a factor of J/p for p > 1.

C. Exponential growth

In general, we obtain all modes (growing, decaying,
oscillating) for emitted radiation of Eq. (33) by setting the
dispersion function to zero, i.e., D(u) =0. Since the
dispersion function or its poles depend on both frequency
detuning (Av # 0) and the nature of electron beam energy
distribution function F'() as indicated by Eq. (34), finding
exact solutions for all modes or simply growing modes can
become a rigorous task; one often relies on approximate
and numerical approaches (see Refs. [22,24,60,61] and
references within) to study desired effects. For instance, we
can obtain relevant analytical expressions for the simplest
case scenario like Eq. (21) for the resonant case for a
particle beam with vanishing energy spread. Now we
continue to study the effects of frequency detuning from
the resonant condition and nonvanishing energy spread on
growth rate separately for convenience.

First, we consider the effects of Av on growth rate in the
case of vanishing energy spread as given by Eq. (35).
Although Eq. (35) has roots with closed-form expressions,
a simpler approach of perturbation expansion of growth
rate upto the second order in Av is enough to consider
frequency detuning effects for Av <« 1 [22]. For this, we
expand p as

= o+ i Av + pp (Av)?,

and solve for u; and u,, where g = W(zﬁ —1)/2is the
root containing growing mode (second root) in Eq. (35).
Since v = p + Av, we obtain

56 -G @
[

The presence of both first order and second order terms of
Av in the imaginary component of the root means that the
power of the growing mode suffers a change in gain length
from resonance condition as well as the shift in central
frequency with changing bandwidth. Particularly,

JpV3
2

Av
3p

P o« eXSwpk,z

— . \2
x eZ/Lgo eXp |:_; (M> :| N
O-(U

where the shifted central frequency is given by

(48)

2

6pp )
4p2 + p4/3:| Nw1<p + 6p p),

a)p/ = W [p—f—

and the rms frequency bandwidth is
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Av x 10*

FIG. 6. Density plot of normalized growth rate J(u)//p versus frequency detuning Ay x 10* as x axis and Pierce parameter p as y

axis. The y axis is in the log,, scale.

3v3pp>/3

3vV3p'3p
ke + p) ! '

(49)

The rms frequency bandwidth reduces to the known result

3v3p/(k,z) of Eq. (4.61) of Ref. [22]
for fundamental radiation, whereas the fundamental fre-

quency gets shifted by éw; = 6pw; for p <« 1. Likewise, the
coherence length of the growing mode becomes

kuz(4p* +p*3) 1 kuz (50)
3v3pp 3 2w, \[3v/3ppl/

The change in gain induced by frequency detuning is on the
order of ~p?, which is negligible for p < 1.

The study of the exact effect of nonvanishing energy
spread in the e-beam on the growth rate by solving Eq. (34)
requires knowing the energy distribution function of the
e-beam. While closed-form solutions are known to exist for
uniform [22,28] and Lorentzian [24,62], other distribution
forms such as waterbag and Gaussian necessitate adopting
variational and numerical approaches [60,61,63]. Since the
energy distribution functions satisfy f dnF(n) = 1, we can
obtain simplified solution for growth rate by using pertur-
bation expansion upto second order in vn/p for v = p and
vn/p < R(pg). Substituting

0y = Gu)/a)l =

o] = ——
2(1)1

= o+ pi(pn/p) + ua(pn/p)?

and bringing the integral | dnF (i) outside in the dispersion
expression of Eq. (34) gives the following solution for the
second mode (containing growth mode):

() (3]
2} (52)]

X I

(51)

Now we can solve for average growth rate by using
(u) = [dnuF(n). For energy distributions given by

1 1 <
F(n)u, = { IR , (52a)
0 otherwise
= w
F()Lor = m (52b)
"
_ 1 7
F(”)Gauss = mexp _2_62 s (520)
n n

for uniform, Lorentzian and Gaussian forms respectively,
we obtain,

2/3 2 .
1-% (p W") for uniform,
P

w2
P

for Lorentzian,  (53)

for Gaussian.

1.0 —— Uniform
Q 0.8 —— Lorentzian
- Gaussian
[ae
IB 0.6
=
2 04
g
(2]
Vo0.2
0.0
1 2 3 4 5
P w, _p*Pw _p*Po,
Ty, = D s Lror. = 2 7 LGauss = D

FIG. 7. Plot of normalized growth rate (221} versus scaled

2 \}'17\/5

energy spread factors xy, = p%¥ 3w,1/p for uniform, xp, =

p**w,/p for Lorentzian, and xgus = p*/*c,/p for Gaussian
energy distribution functions.
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In the above expressions, w, is full(half) width at half
maximum for uniform (Lorentzian) and o, is rms energy
spread for Gaussian distributions. We find the average
growth rate is attenuated faster for harmonic p > 1 com-
pared to fundamental for a given distribution. The attenu-
ation rate is quadratic in energy spread width with a
multiplicative factor of p*3/(3p)?. Figure 7 shows the
normalized growth rate for three different distribution
functions as given by Eq. (53). The growth rate for
Gaussian and Lorentzian distributions follow a similar
trend and attenuates earlier compared to that for uniform
distribution; however, x axis scaling is different for each
distribution. For Gaussian distribution, we obtain an
extrafactor of 1/9 in the correction term when compared
to the textbook power gain length formulas for fundamental
radiation [22].

V. CONCLUSION

To sum up, we have derived governing equations for
longitudinal FEL dynamics for harmonic lasing by har-
monic seeding in the absence of transverse effects. A
simple analysis allowed us to compare the FEL power
of saturation for both harmonic seed and harmonic emis-
sion. We adopted collective variables to gain insight into
power gain length in high-gain FELs for ideal conditions.
Similarly, coupled Maxwell-Klimontovich equations
allowed us to investigate spontaneous radiation and coher-
ent amplification in low-gain and high-gain systems in the
presence of both frequency detuning from resonance
condition and energy spread. The model presented here
allows us to generalize FEL solutions and gain expressions
for harmonic emission in the presence of a harmonic seed in
1D. We hope the results obtained here could find potential
applications in the design and analysis of FEL devices
operating at various ranges of parameters. The extension of
this work in 3D will be presented elsewhere.
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APPENDIX A: SINGLE ELECTRON MOTION

For convenience, we solve for electron motion along the
z axis (at x = 0 and y = 0). For the undulator period 4,, the
magnetic field of a planar undulator along the z axis is

By, = By sin(k,z), (A1)
where k, = 27/, is the undulator wave number, B, is the
peak magnetic field, and the field component is along the
vertical direction. For a relativistic electron with Lorentz
factor y, velocity v, the Lorentz force equation becomes

d .
7 (ymv) = —eE — e[%(v,B, — v.B,)

- j\)(Usz - Usz) + 2(vay - U)'Bx)]ﬂ (A2)
where v = (v,,v,,v,) and v; is the electron’s velocity
along ith direction, m is electron mass, and e is electron
charge. The electric field E contribution comes from the
seed radiation, and by using the Lorentz force equation,
we have effectively ignored the recoil effects of emitted
radiation on electron motion. Since |E| « sin(kz — wt + ¢)
for a radiation with frequency @ and phase ¢, the
effect of this electric field amplitude on electron velocity
is proportional to 7/y << 1 for a relativistic electron
(y>1), where 7= h/2z with h being the Planck’s
constant. Thus, we ignore the electric field contribution
in Eq. (A2) and keep the remaining contribution from the
magnetic field using Eq. (A1). The magnetic field results in
wiggle motion in the x direction as well as a reduction in
the longitudinal velocity. Assuming electron energy loss is
negligible along the undulator (generally true for low-gain
FELs), it is easy to show that

K
v, = ——ccos(kuz), (A3a)
4
v, =/ —vi—;
1 2
Y c
¢
R T, — —5 c0s(2k,z). (A3b)

Here c is the speed of light and we introduced K =
Bo — (0.93432,[cm|By[T] as the undulator deflection

mck,
parameter. The average longitudinal electron velocity is

2 . . . .
%] Likewise, the time ¢ it takes
an electron to arrive at location z can be obtained from v,

as follows:

given by 7, = c[l —

dz . K*
t(z) =10 — =1 ———sin(2k A4
@ =10+ [T =10+ g sin@h,). (A4
where 7(z) = #(0) +2(1 + %) represents average

particle time. We refer the audience to Ref. [22] for more
information.
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APPENDIX B: MAXWELL EQUATION FOR
EMITTED RADIATION

The electric field amplitude of the emitted radiation due
to the motion of an electron beam current in the undulator
can be obtained by solving the Maxwell equation. The
slowly varying envelope approximation to the paraxial
wave equation results in the angular field representation
given by (Eq. (3.59) of Ref. [22])

0 ik |z .
{6—‘1‘54) }Ew(‘ﬁ’Z)
ﬁ“:e vyj/C—

dzeych?

J=1

) lkct

/dxe ikx5(x —x;),
(B1)

where ¢ is the free-space permittivity and 4 is the radiation
wavelength. In one dimension, we can use the approxi-
mation §(x —x;) - A;,! with A,, being the transverse area.
From now on, we will be using shorthand notation ¢p | = ¢
for all vectors since z is an independent variable; in
other words, ¢ = (¢,.¢,). Also, [drxe *P*5(x —x;) —
A [dxe=*x = 225(¢)/ A,,. We complete the 1D limit
by defining the one-dimensional angular electric field
E,(p:2) = E,(2)6(¢p) = E,(2)5(¢p). Upon substituting
the velocity from Eq. (A3a) and integrating over angles,
Eq. (B1) becomes

N
0 - eK cos(k,z) = ekleriz
N 4ﬂ€OCAlr

(B2)
=1

The slowly varying radiation field envelope requires find-
ing slowly varying current which we can do by substituting
t(z) with the average particle time from Eq. (A4). For
simplicity, we will assume that only harmonic 4 is the
dominating field providing the pondermotive potential
in conjunction with the undulator field so that § = ¢".
This means

2

W Sin(zkuZ) - kZ
k, K
k.8 ——5sin(2k,z)
2

k_g2

(wpt(z) — knz) +

—% (0" — hk,z) + in(2k,2)

2

k, K
= —Eé’h + pk,z + Avk,z +——sin(2k,z),

k, 8y* (B3)

where we have substituted v = k/k; = w/w; and Av =
v — p as a factor of deviation from harmonic p, where p is

not necessarily equal to 4. In fact, p # h would allow us
to explore the potential of achieving harmonic lasing
via nonoverlapping harmonic seeding. Now Eq. (B2)
reduces to

J . eK cos(k,z)e’Pk exp[ sm(Zkuz)]
~E - _
0z Wz 4ﬂeocA,r
N, e—nﬂ"/h iAvk,z
X : (B4)

j=1

Again applying the Jacobi-Anger identity and keeping only
the terms that give rise to pondermotive phase, we can write

2

) k, K
cos(lye) e exp 1 s sin(2h )|

:% Z J, (llz é{ >[ei(l+p+2n)kuz_|_e—i(l—p—Zn)kuz]
—_—— u y

1 S k, K? ; k, K?
"2\ s2) T ks
1
2

In order to obtain the last expression, we used v~ p
for Avx 1. and y=y, for n < 1. Since we want to
connect physical field to the spectral field, we define
E,(2) = w e "™k (7). Finally, Eq. (B4) takes the form

ek K[JJ], &

e—iﬁt‘}j?
87[€Oyr“4tr j=1

0
|:0_Z + iAl/ku:| Ev(z) ==

N,
_Kphe Z —ivgh
= e i, (BS)
Nﬁl =1

Kp = 4£y]p N, = AjdN,/dz = A1/ec, and n, =

is the electron volume density. We obtain the time

Here
dN,/dz
‘A/I‘

domain wave equation from Eq. (B5) by applying Fourier
transform, i.e., E(0;z) = [ dve™/"E,(z) as

2k, n, Qe
p"e —zpf)/hé e_eh ,
TP IR Gl

=1

0 0
— —|E(6;7) = —
L)Z+hku ag] (6;2)

(B6)

where N, = N,;;/h = 2,dN,/dz is the number of elec-
trons contained within harmonic wavelength 4,. The
derivative with respect to € is the slippage effect. In one
undulator period, the radiation slips ahead of the emitting
electron by its wavelength. For information on harmonic
emission on fundamental seeding, please refer to Ref. [22].
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APPENDIX C: COMPLETE SOLUTION
OF CUBIC EQUATION

The cubic equation (20) has been solved for fundamental
seeding case [22,24]. Here we solve for the complete
solution for harmonic seed and harmonic emission by
seeking solution of the form a(Z) o e’*; the three roots for
this solution form are /ple~"/2, ¢/*/%, ¢/%/6]. The first root
gives rise to the oscillatory solution, whereas the second
and third roots give rise to growing and damping solutions,
respectively, in addition to the oscillating components. The
complete solution for the field amplitude is given by

3
a(z) = Z cpe,
n=1

where the constants ¢, ¢,, and c3 are determined by the
initial conditions. Writing the initial values as a(0) = ay,
b, (0) = by, and P.(0) = Py, the initial values give

(C1)

C1+C2+03:(10,

ricy + rycy + r3cz = —by,
ricy + ricy + ries = ipP. (C2)
Solving for the coefficients yield
_ Tar3ag + [(ry + r3)by + ipPy]
(ri =r)(ri = r3) ’
_ryr3ag + [(ry + r3)by + ipPy]
Cyr = N
(ry = r1)(ra—13)
bt i
03:’”1’”2004‘[(’”14"”2) 0+1P730]_ (C3)

(r3=r)(r3 = r1)

Using the fact that Y3 7, =0 and >3 L =0 along
with basic properties such as (r; —r,,)(r; —r,) = 3r,r,
for [ # m # n, the complete solution of the cubic equation
takes the following form:
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