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3D theory of microscopic instabilities driven by space-charge forces
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Microscopic, or short-wavelength, instabilities are known for a drastic reduction of the beam quality and
strong amplification of the noise in a beam. Space charge and coherent synchrotron radiation are known to
be the leading causes of such instabilities. In this paper, we present a rigorous 3D theory of such instabilities
driven by the space-charge forces. We define the condition when our theory is applicable to an arbitrary
accelerator system with 3D coupling. Finally, we derive a linear integral equation describing such
instability and identify conditions when it can be reduced to an ordinary second-order differential equation.
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I. INTRODUCTION

High-quality lepton and hadron beams play important
role in various applications of accelerators ranging from
colliders to x-ray free-electron lasers (FELs) [1-14]. These
beams undergo through processes of generation, acceler-
ation, transport, and compression, during which instabil-
ities could cause significant degradation of the beam’s
quality. On the other hand, some of these instabilities can
be tamed and used for the generation of coherent radiation
[15-19] or hadron-beam cooling [20-23].

There are several 1D theories of microbunching insta-
bilities [24-32], but none of them fully account for the
coupling between instabilities in transverse and longi-
tudinal degrees of freedom. In this paper, we attempt to
develop a general 3D theory of microscopic instabilities
driven by space-charge (SC) forces. There are com-
pelling theoretical and experimental reasons why coupling
between various degrees of motion should be included in
the analysis of SC-driven instabilities. In fact, we observed
a variety of coupled SC-driven instabilities in our super-
conducting accelerator and its beamlines [33]. Two mea-
sured beam profiles illustrating such coupling in SC-driven
instabilities are shown in Fig. 1: Figure 1(a) is an example
of strong coupling between radial and axial modes, while
Fig. 1(b) exemplifies coupling between longitudinal and
transverse (vertical) modes. Both instabilities occur in
low-energy high-charge (1.25 MeV kinetic energy,
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1.5 nC) electron bunches propagating along a straight line
and compressed to a peak current of 50 A. In this beam, the
space-charge forces dominate other forces exciting micro-
scopic instabilities. Both instabilities shown in Fig. 1 are
excited intentionally by modifying transverse focusing in
the beamline. Figure 1(a) shows the transverse beam profile
at a monitor located 3 m downstream of the SRF (super-
conducting radiofrequency) gun and shows how the ninth-
order axial mode is coupled with the second-order radial
mode. Figure 1(b) shows how a THz-scale longitudinal
instability generates a density modulation in the vertical
direction.

In this paper, we are considering an accelerator with the
most general beam transport, described by a symplectic
6 x 6 transport map, which takes into account all macro-
scopic effects including SC forces. By linearizing the
transport maps (in a vicinity of a chosen phase-space
trajectory), we reduce the self-consistent Vlasov equation
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FIG. 1. Samples of measured electron beam distributions in the
CeC (coherent electron cooling) accelerator [33] illustrate some
aspects of 3D coupling in SC-driven instabilities: (a) Coupling
between radial and axial modes in SC-driven instability;
(b) Featherlike coupling between vertical and longitudinal de-
grees of freedom in SC-driven instability.
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to a linear integral equation describing the evolution of 3D
Fourier harmonics of the beam density distribution.

For the derivations presented in this paper, we pursue the
classical plasma physics methods that are specifically
modified for the modern accelerator lingo:

(i) We consider an accelerator without any limitations on
its components, acceleration, deceleration, compression,
focusing, coupling, or its 3D beam trajectory.

(i1) We use the length along the reference trajectory, s, as
an independent variable. Particle motion is described as an
evolution of a full set of six canonical variables driven by
the Hamiltonian, which includes macroscopic SC forces.

(iii) We assume that the effects of microscopic instability
can be treated as a perturbation.

(iv) We consider that the beam transport map is evaluated
as a function of s for the unperturbed Hamiltonian includ-
ing all macroscopic effects, and it is known from beam
dynamics simulations.

(v) We use Canonical transformation to the initial
condition to remove macroscopic components and arrive
at the linearized Vlasov equation.

(vi) We identify a range when and where our microscopic
approach is applicable and derive an equation for pertur-
bation Hamiltonian.

(vii) We use local linearization of the transport map with
a symplectic 6 X 6 matrix in Alex Dragt’s notation [34].
The use of this notation allows us to clearly identify the

roles of the 3 x 3 matrix blocks in the evolution of the beam
and the perturbation parameters.

(viii) We apply Fourier transform and arrive at the
explicit form of a linear integral equation describing the
evolution of the microscopic perturbations.

(ix) Finally, we identify the conditions when the linear
integral equation can be reduced to an ordinary second-
order differential equation for the electron beam density
perturbation.

It was very tempting to expand our approach in order to
include coherent synchrotron radiation (CSR) effects. But
such inclusion requires nonlocal interactions, the consid-
eration of which is outside of the scope of this paper. The
CSR inclusion would, at least, double the length of this
paper and make it convoluted.

To keep the main portion of the text compact, we
appended the detailed discussions and derivations in five
Appendixes.

II. THEORY

Let us consider a charged particle beam with a reference
particle moving along a curved trajectory 7, (s). Its motion
can be described using a standard Frenet-Serret coordinate
system with three orthogonal unit vectors (&, é,, ;) and
the length along the reference trajectory s = [ |d7,|
(azimuth) serving as an independent variable [34-36]:

. dr, . 7y . . .
63(*9) :g; €1<S) :_|7//|; 62(S) = [el(s) X€3(S)};

& = —K,(s) - &1(s);
7

=T,(s) +q1-e1(s) + g2 - &(s),

2 .
where [/ = d—{, = %..., K,(s) = 1 is the curvature

of the trajectory, and «,(s) is its torsion (see Fig. 2).

Any vector A can be expanded at azimuth s using this
coordinate system as’

A:Al'é1+A2'é2+A3‘é3; Al:él;‘

Further in this paper, we will use the traditional nota-
tions, where c¢ is the speed of light, e, m, and v are the

-

particle’s charge, mass, and velocity, respectively, f = V/c;

y=>1- Ez)_% are the relativistic factors, p = ymv and

'"We intentionally do not use contravariant A = Al - ¢, + A2 -
&, + A3 - 2, and covariant indices A=A, -1 + A, -2+ A; - &3,
commonly used in curvilinear coordinate systems, to avoid
confusion between squares (cubes) of the value and the second
(third) contravariant component of a vector. We are also avoiding
the use of zeroth components of four-vectors, such as A,, x,, to
avoid confusion either with the initial condition or values at the
reference orbit. This important distinction is not needed and will
not be used in the rest of the paper.

& = Ko(s)-23(s) —xo(s) - 22(s); & =x,(s) - 21(s);

(1)

|

E = ymc? are the mechanical momentum and energy of a
particle, and ¢, A are scalar and vector potentials of
electromagnetic (EM) field. We will also use subscript
“0” to indicate values obtained by the variables at the
reference trajectory ¥ = 7,(s) for the reference particle with
momentum p,(s) = m-y,(s) - V,(s) and energy E,(s) =
7,(s) - mc? reaching azimuth s at time

K, 63
el

FIG. 2. Accelerator coordinate system including curvature
K,(s) and torsion x,(s).
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In classical Hamiltonian mechanics, the time plays the role of an independent variable and components of particles

position, 7, and canonical momenta, 13, are known as canonical pairs, (g;, P;). The full set of Canonical pairs and system
Hamiltonian fully describe particle’s evolution [37,38]

- - 2 - -
HEE+eqo:\/m2c4+<P—fA> c* + eg; P=p+iA;
c c

dq; OoH dp;  oH 3)
dt  opP;’ dt  oq;
Using s as an independent variable retains two canonical pairs, (q,,P;),(¢2,P>), and generates a new third canonical

pair: ( — ct, H/c). The arrival time of a particle, ¢z, and H become s-dependent variables with the accelerator Hamiltonian
of [34-36]:

(H — ep)? e \?2 e \? e
hlz—(1+]{0-q1)\/02—m2c2— PI_EAI - Pz—EAz —E(1+KO'Q1)A3+K0(Q1'Pz—QQ'Pl)-

(4)
Canonical transformation with the generation function [37]

H— E0<S) - eqp(?,,(s), t)

O®=¢q-Pi+q Pr+gqs-

reduces the third canonical pair to (g3, P3):

= () =1 Py= B Eel8)y 00 =0lo(5).0), 5

C C
:0,P3

= 0, and it reduces the Hamiltonian (4) to

o)1)

c

lo

with zero values for reference particle, g;|,

c d
h(g.P) = hy —'P3+q3-<Eo<s>+e

6
Vo (5) ds (6)
For compactness, we define a set of notations for coordinates, ¢, and corresponding Canonical momenta, P, as well as a
phase-space vector & as

9" =lq.q2.q5),  PT=[P.PP3), & =[q".PT], (7)

where index 7 indicates the transposition of matrices, including transferring a column into a row and vice versa. We will call
sets [q1, g2, q3] and [Py, P,, P3] phase-space coordinates and momenta, correspondingly. Using the definition from Eq. (7),
one can write the 3D equations of motion in a compact symplectic form [341%

dé; oh _d¢ S oh

=5, - ———=S-—;
ds " 07 ds 0&

0 1 0 0
SE[SU]:[ 3”]; Ls= |0 1 0]; S=-Ig (8)
_I3><3 0 O 1

where i, j = (1,2,3), 0 is a 3 x 3 zero matrix (see Appendix A for further discussion). The number of components can be
proportionally reduced for the 2D and 1D cases.
The motion of particles is determined by the initial conditions®

q(s=0), P

P(s =0), §E§(SZO),

q

*Further, in the paper, we will use Einstein’s convention of summation by repeated indices, e.g., a;-b; = ;a; - b;; a; - by

Cng = D2 ki byt Cupe

"We will continue using underscore f for initial values at s = 0: f = f(.....s = 0).
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with solved equations of motion

q=4q(q.P,s), P=P(q.P,s),

representing the Canonical transformation from (g, P) to
(g, P) [37]. The inverse transformation

q=4q(q.P.s), P=P(q.P.s), &=¢&Es), (10)

not only exists but also is a Canonical transformation from
(¢, P) to (g, P). The transformation (10) results in zero

Hamiltonian for the set of canonical variables (g, P)"
h(gq,P,s) =0,

which is a traditional way of solving evolution for the
background distribution function upon which instability
can develop. This method is called “the variation of initial
values” in analytical mechanics [39] or “the method of
trajectories” in plasma physics [40]. By assuming that the
solutions for the self-consistent trajectories in Egs. (8)—(10)
are known, it allows us to remove the dynamic terms and
reduce the Vlasov equations to the ones comprising of the
perturbation terms only. Hence, we assume that the solution
for an unperturbed distribution function f, 1s known and
satisfies the self-consistent Vlasov equatlon [41]:

of (. 5) 0fo(&.5) 0h,(S.s)
oy TS 0¢, 0&,
=f,(&s=0)= f,(&s)=f [E&s)]. (11

=0;

[,

Let’s now consider an infinitesimally small perturbation of
the distribution function, f,

f(Es)=fo(&s)+F(Es);  |FE<If.(E ),

(12)

e.g., |f(&5)] = 0(e)|f,(& s)]; e < 1, and the correspond-
ing weak perturbation in the Hamiltonian:

h(& s) = 0(e). (13)

By applying the Canonical transformation (10), we reduce
the Hamiltonian (13) to the perturbation term

h(E.s) = h,(Es) + h(E, 5);

“This transformation can leave, h(q,P,s) = f(s), which can
be easily removed by a Canonical fransformation F = q.Pi—
[ @)

>Self- con51stent distribution function, which we use as the
known background, would include all macroscopic collective
effects such as SC and wakefields induced by the bunch. The self-
consistent Hamiltonian would have functional dependence on the

initial beam distribution ]_‘0(5), e.g., h=nh,gq,P, s,]_‘o(f)]. This
fact does not change the validity and applicability of the Vlasov
equation (11).

h(E.s) = h(E.s) = h(E(E.5). 5). (14)

With the Vlasov equations for the corresponding variation
of the initial distribution function f:

[Es)=[ &)+ [(Es): [&s)=FEEs).s)
of of, oh of ok
a+sl~k-a§i-a—§k+ " oE 08 (15)

Next standard step is the linearization of the Vlasov
equation by recognizing that the third term in second line
in Eq. (15) is on the order of O(&?):

of of = oh of o
f+ ik J, ik'—z‘—_zo(gz)—)o;
os g, afk 05, 95,
3} 0 oh 0 oh
of of, oh of, ok . (16)
ds  dq, oP; ()P 6q

It is known that a generic 3D evolution of a finite-size
charged beam is analytically intractable. Rare exceptions,
such as nonphysical but self-consistent Kapchinsky-
Vladimirsky (KV) distribution [42], only attest to the case.
Several further assumptions are needed to analytically
derive a solvable equation.6

One typical simplification used in the theory of beam
instabilities is an assumption of homogenous background
density. While this approach is not applicable to all
collective effects in a beam with finite sizes, it has a
limited applicability for analyzing the evolution of pertur-
bations with periods significantly smaller than the typical
scales of the beam’s uniformity.

It is intuitively understandable that the scales of the beam
uniformity a;

Jo
X —

a;

’WO a7

9q;

define the scale of the perturbations when the homogenous
background density can be used as a good approxi-
mation. Appendix B has detailed studies of these require-
ments. It can be summarized as follows: the k vector, k7 =
[ki, ko, k3] of Fourier component with the exponential

factor ¢’*'4 = ¢4 must satisfy the following conditions’:

Typically, the combination of Vlasov and Maxwell equations
is ot directly solvable because it contains partial derlvatlves

Where it is convenient, we will use objects such as X =

3 ex; for xT = [x;,x5,x3], with product defined as
X-y= ZL, xy;i=xT-y=yT.x. It is important to note
that these vectors are not real 3D vectors. We will also use
compact notation for convolution of objects and matrices:

A-y= Z?:l éiZ?’:lAij Y X-A-y= Z?:l Z_?:lAij‘xi i

054402-4
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ayp - \/(ﬁoyo)z ’ (k12 + k22) + k32 > ﬂOYO;

as - \/(ﬁ()y())z ’ (k12 + kzz) + k32 > 1. (18)

Since we are considering a generic accelerator, which
can include beam’s focusing and bending of its trajectory,
acceleration, compression, or decompression, we shall also
assume that changes in the beam and the accelerator
parameters at the scale of the density modulation are
negligible:

— >
Vgl < k] - |g]. (19)

where ¢ is any generic parameter of the accelerator,
including but not limited to the beam’s energy, velocity,
sizes, the accelerator EM fields, the curvature, and the
torsion of the reference beam trajectory.

Nonlinearity of the transfer map &=M:X could
cause distortions resulting in coupling between the
Fourier harmonics of the density perturbation. Hence,
we are considering linearization of the self-consistent
symplectic map & = M(s):& with small deviations A&(s)
nearby a selected phase-space trajectory &,(s) = M(s) :gogz

§ = éa + Ag’
oc P!
M (s) == =-M(s):5)]
2o ok

&(s) = &,(s) + Ad(s) = M(s):¢,
+ M, (5) A&+ O(|AgP),
with linear map (matrix) implicitly depending on the

starting point of the phase-space trajectory, & . Rewriting
this map expansion as

o) = e ) * [e o) [a2]

+ 0(|Ag 2 |aP?),

¥Linearization of the transfer map—in a relevant phase-space
volume 2—is critical for analytical studies beyond generally
unsolvable linear Vlasov equation (16). As indicated on this
page, we identify a phase-space volume €(s) = M(s):Q
around a selected phase-space trajectory &,(s) = M(s):¢ ,
determined by the initial condition § = &(s = 0), where the
transfer map can be linearized to allow further analytical
investigation of the microscopic 3D instabilities. Unless some-
one is very lucky to encounter a completely linear system, the
study of an SC instability with wave vector k involves an
evaluation of a self-consistent transfer map, identification of
points of interest in the phase ¢ , and a phase-space volumes
Q(&,. k), where linear expansion of the map (20) satisfies
conditions (19).

we can define an area of the phase space, (), where
nonlinear distortion and coupling between the Fourier
harmonics can be neglected

8q =M, (s):(§, + A8 —M,(s):{ —A-Ag—B-AP;

k-57|<1;  {Aq.AP}€Q. (20)

The transfer map should be evaluated self-consistently,
including macroscopic collective effects. Further, in the
paper, we will drop A in front of £ and will use 6 x 6
symplectic transport matrix [34-36]

E=M(s)-& E=M"'(s)-& M(0) = Igygs
MZ.SM=M-S-M"'=S = detM = 1;
M~!'=-S-MT".§, (21)
in the vicinity €2 of the initial condition £ . It is convenient

to identify four 3 x 3 block matrices in the transport and
inverse matrices:

o g (gm0 ]

A B D’ —B7

M = ;. M1l=—-S.-M'.S= :
CD —CT AT

(22)

providing explicit connections between the local and initial
coordinates and momenta:

g=A-q+B-P;, P=C-q+D-P;
Q:DT'q—BT‘P; P=-Cl.qg+AT.P. (23)

It is worth noticing that in this notation [34], three degrees
of motion are decoupled when all four 3 x 3 matrices, A,
B, C, and D are diagonal (see Appendix A for more
details).

Matrix A plays a special role in this instability since its
determinant represents the degree of the three-dimensional
bunch compression:

p(qrs) = e / dP?- f(g, P)
_detA/dE-f(A‘(q—B-B),B)- (24)

where we used one of Eq. (23) to connect local beam
densities (at azimuth s) with their initial values at s = 0:

054402-5
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1
P=—Cl-g+AT-P=P=(AN"-(P+C1q) = dP|mcons = gop AP gmconss
g=A-g+B-P=const=¢g=A"(g—B-P);
fla.(AT) "' (P+C"-q)] = f(A" (¢ — B P).P). (25)

One of the important consequences of using the
assumption of a homogeneous background density,
described by the background distribution function of
f,(P), results in the requirement of det A > 0. Because
of the assumption of a homogeneous background
density, the beam is effectively infinite, and its density
would become infinitely large, e.g., unphysical, when
det A = 0. While it is already indicated by det A in the
denominator in Eq. (24) for the particle density
P(q.5) = gax JoX dP? - f (P), this is most evident in a
1D case

m m
M:|: 11 12:|;

mypy My

M- ——S- M-S — [ ma; —m12]

—Mmy myy

where my; plays a role of the det A and the change in the
line density can be easily expressed as

plq.s) = /J_’U - (=my1q + my, P) - dP
n
=— [ f (P)-dP = 26
my _0(> myy (26)

—0o0

We discuss the consequences and solutions for handling
cases of det A — 0 in Sec. V of this paper.

As shown in Appendixes C and D, density perturbation
will generate additional potentials of the EM field resulting
in the following perturbation of the accelerator Hamiltonian
[see Eq. (D5)]:

4rre? / p%-e”‘q dk’
¢ Yo 'ﬁo kJ_+k3

dP oh  4rme? ik - pe - e did
5<—> == i / — e*z ) (27)
ds daq c %2 .ﬁOZ K+ k32

=
I

where k-G=#k" -q= 3 kiogn Ak =TT, dk;;
ki = k3 4 k3. Here, and further in the text, we use &(...)
as a change of the value of the expression inside the

brackets caused by the forces induced by the beam

density perturbation, which we consider to be infinitesi-
mally small.

We can easily connect p; at a location s with the Fourier
harmonic of f and Z Considering the conservation of the
phase-space volume dq” - dP? = detM - dg’ - dP* = dg’ -
dP3 and conservation of the phase-space density

[ 5)=FEE ), ), we get
Pr Ef)(s,l?> = oy / / Flq.P.s)-e % dg* - aP?
q.P.s) & dq3 dp?

//fq,Ps —ik(A-g+ E>dq3dP3

<~ <> -
where we used ¢ = A - g + B - P as an object equivalent to
g=A-q+B-Pin Eq. (23).
It is a natural place to discuss the evolution of wave

(28)

numbers. As can be seen from Eq. (28), k-vector of the
density modulation at azimuth s is connected to that at
s =0:

. 9
or in vector form :

K(s)=Kk-A (s); K(s)-G=FK-(G+A'B-P).

It means that the matrix A, the spatial components of the
transport matrix, also defines the evolution of the k vector

with an initial value of k = k(s = 0):

K (s) = [ki(s), ka(s), ka(s)];
k=ATk(s) & k(s) = (AT)'k.  (30)

9 . . .
For compactness, in places where it cannot cause confusion,
we omit the explicit indication of s dependence, for example

using A~! - B instead of A(s)~!- B(s).
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We can assume, without a loss of generality, that the initial background distribution is an arbitrary integrable function of the
10
momenta

=g f(P): /J_g(g) AP =1 =T (31)

- - ec

where j, is the initial beam current density. It is important to note that in contrast with the velocity-dependent spatial density
of the beam, n; = j,/ev,, the n, = f, - n; has a well-defined finite value.

%) = Mles) 0, we can rewrite Vlasov equation (16) as

Using relations in Eq. (25) and taking into account that &( 5
J

follows:

=AT.P-CT.q; dP; = Aji-dP; —Cj; - dq;;

of oP; _(dP; of oP, _[dq; 0 oh
i(). _laij _no‘io. —léﬁ _ ]_[() A
ds oP; 0gq; ds

v |

7

s__no'aﬂ,» aP]

_nO.aBi' Jl.aiqj’

7]

and introducing the perturbation Hamiltonian (27) to arrive at the self-consistent Vlasov equations:

of of,
a_; =n,- aél : A/l(s) : F/(q’ S);
oh  4ne? [ ik;-pp- €. did
Fa - e [ o L o
aq/ ¢ 702 : ﬂo 2 kJ_ + k32
Applying Fourier transform ]_C]—(»(B, s) = (271[>3 o f (g, P,s)- eii@ . dge’ to this equation, we get
oy n, of
SE 0 o A (s)- | dgB e %9 F, ) 33
= i o A [ gL E 0. (33)
The latter must be evaluated at E = const using the established relations between the k vectors (30):
1 - 4re? ik p- - di 1 e
FI‘{' _ - . / eflk-g . F(q’ s) ) dq3 _ e . / l pk — . 3 / elk~q€71k-g . dq3;
- (27[) | P=const ¢ }’02 'ﬂoz . kL + k32 (27[> -
1 ig,—ikd 73 (B (FA-B)d 73 _ JikBPS(T. N _ T eRATVBE oy
. kde™29 . dg = WA dg? = e*PES(k-A—k) = —+—6(k—k-A ),
(27)} /6 ¢ T =2y /e g = " b =—goqa Sk—k-A)
resulting in
OF(P.5)  dan,e? ps.K(s) S mr ( %) (34)
ds ¢y (8)2 Bo(8)?  ki(s): + ks(s)?  detAs) = oP;)

where we took into account that k;(s)A;(s) = k;.

10Requirements for the local uniformity of the beam density (18) and (20), local phase-space distribution function must have a form of
f(P + V- g). Initial linear correlations between P and ¢ can be incorporated into the transport matrix (22):

M(s = 0) = R, ‘I’}

054402-7
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This equation can be easily integrated:

7 ~ drin,e? of o FATNOB() P pr(&)dC
i P, — f. P’O . <0 ’ 35
J_Cg(f s) J_fk(f )+ c <— OP; > [ detA({) %(C)Zﬁo(C)z/a(C) + ksz(C) (35)

where ZE(B’ 0) = f;(o)(P, s = 0) is a Fourier harmonic of the initial perturbation. Rewriting (28) as

Fr(P,s) - e EACTBO Egp?, (36)

turns Eq. (35) into a directly solvable integral equation:

- dri -2 - d >k<s>~i‘i<s>1-E P
Pls. K(5)] = pgls) + 22 M / 5 kLo ap
- 7/0

2R Q) +h2Q) OB

/N)(,]}'(S) _ /e—u?(s)-ﬁ(s)-ﬁ Zl}'(P O) dP3 (37)

While this equation can already be used for evaluation of the instability, it can be further simplified by eliminating
convolution 3

L ki aP Integrating by parts

fo _ Pi=c a¢
St = S [ £, e, (39)
and f (P; = +o0) = 0, we get
3 -
k ek UQ)-U(s)] P _ [u(s) — u(Q)] ek UO-UG)IE,
u(g) =k-B() ZB,, ik =S AQ)TBO); ki (39)

ij

Combining Egs. (37) and (38) brings us to the final form of the integral equation for the 3D SC instability:

plov(s)) = [ BEROIKEHuls) = Q)] Lals.0) - dE + 7,06

KO = gt oy Hafond) = [[ROR IR gy
w@) = k) -BE)-k=kQ) -UQ) -k v(s) = 1,(5) - fo(s)? - ki (s)? + ks(s)%, (40)

which can be solved numerically for any accelerator. Here we defined U= A~! - B.
It is important to note that in the kernel of the integral equation (40), there is only one term, the Landau damping, L,
which depends on both, the value and direction of the k vector. The u/v is defined by the geometry (e.g., the direction of the

initial k vector) and the components of the accelerator transport matrix in a form of matrix U = A~! - B and s-dependent
denominator:
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<>

u(s) —u(d) _ 5-[U) - U(s)- 8
o(¢) 7o(8) - Bo(s)? - 91(s)? + 83(s)
S K(s) 3_3 k
© |k o) k|

We show in Eq. (A3) of Appendix A that A - BT = B - AT,
which also means that U=A""-B is a symmetric
matrix.

The most nontrivial construction is actually v({), which
is the result of the asymmetry between the longitudinal and
transverse degrees of freedom introduced by the Lorentz
transformation:

G=A"T-| 0 122 0|-(A). (@)
0 0 1
Furthermore, the convolution u(s) = k- 6((_,’ )-k has

important nontrivial properties that it is a nonnegative
monotonic function of s with positive derivative [see
Eq. (All) in Appendix A]:

u(s) > 0; u'(s) > 0. (42)
Generally speaking, for a beam with an arbitrary
momentum spread, Eq. (40) cannot be either evaluated
analytically or reduced in complexity. But the physical
nature of various terms can be identified by considering
specific cases. For example, the integral over the momenta,
known as Landau damping, can be easily evaluated for
Gaussian distribution:
|

w(-2s) @

generating exponential term

3 lé’ is 2
:pr< ©) - n()]>;
i(0) = k() - B(Q) (44)

corresponding to the decay of the modulation during the
interval (&, s).

To conclude this section, we would like to summarize
that Eq. (40) is the most general equation that descri-
bes the evolution of the high-frequency modulation in
beams driven by space-charge effects. It can describe all
space-charge-driven instabilities from one-dimensional to
three-dimensional. For example, it is easy to show that
longitudinal microwave instability can be also described by
this equation under a number of simplified assumptions.
Specifically, the conventional theory of longitudinal micro-
wave instability assumes that transverse and longitudinal
motion are decoupled, and the energy modulation accu-
mulated from SC forces is transferred into the density by
Rs¢ of the system, which in convention used in this paper
equal to M3¢ (or Bs;).

Furthermore, coupling between transverse and longi-
tudinal modulations, which occur in any bending magnetic
system, is completely neglected in the conventional theory of
longitudinal microwave instability. With uncoupled trans-
verse and longitudinal degrees of freedom, Eq. (40) for
longitudinal microbunching instability in compressing or
decompressing electron bunch will take the following form:

pls k(s)) = =2

(©)A2(¢)

4z n,- ez] PEKE) (A33<<:>
A11 A33(S>

Bus) - Bsz<c>) La(5:0) - 4 + Poy(s);

(S é’) / (k(£)-B33(£)—k(s)-B33(s Pf ( ) P; D E( ) /eik( s)-B3s(s)-P f (P ()) dP

where we considered that the wavelength of the modulation evolves with the longitudinal compression parameter As;:
k(s) = k/As3. Using the definitions and the set of parameters traditional for the description in the conventional theory of

longitudinal microwave instability:

Ry =A; R33 = Agy; Rss = As3; Rs¢ = B33; re —6—2;
mc

P=6-E,/c; E, =y,mc*; f () :Lexp(—(f).

- ' ’ = V276, 2
one can get, for a noncompressing beam (Rss = 1) and k = const, a simple equation

N
. . D 2,
) == | Rn(?)%i.%(() [Rsols) = Reg(€)] - e 34 dg + ifs),
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Representing the traditional 1D model for microbunching
instability.

Since our theory includes an arbitrary local, linear
coupling, Eq. (40) is a universal equation for the descrip-
tion of instabilities driven by the SC.

III. REDUCTION TO AN ORDINARY
DIFFERENTIAL EQUATION

In this section, we review some specific cases when we
can reduce the linear integral equation (40) to a second-
order ordinary differential equation (ODE).

Let’s consider cases when the Landau damping term
allows the separation of variables s and ¢'":

Li(s.0) = AQ)-A71(s): Als) = e (43)

"2 and the integral equation (40) becomes

N

) = - [ a0) k@) [u<s> - u«:)] AL+ 3,(5)

a

(40)

for a scaled density modulation g(s) = e?©) . j[s, I;(s)] A
combination of the first and the second derivatives of
Eq. (46) transfers it into a second-order ODE:

g —d-§+K-u-g=q,—a -7,
/

qo(s) = e - pr(s); a=In—;

4

up = u'(0),  (47)

where we used the fact that ' > 0. This equation can be
also reduced to an inhomogeneous Hill’s equation

R(s) = K(s)-u'(s) = =+ 557

G =g = to ) . p(s, ks

q q () p(s. ks);

o(s) = ™ - [g(s) — dy(s) - (s)]. (48)

It is known [43] that the solution of a homogeneous Hill’s
equation is represented by a symplectic matrix:

Unfonunately, as can be seen from Eq. (44), such separation
is 1mp0531ble for Gaussian momenta distribution.

It is easy to show that the separation Ly(s,&) = A;($)Ay(s),
with A,(s) # 0 is also a sufficient condition. But we did not find
cases, when such generalization is needed.

o) 2 (ol == 2]
R’:[_i?(s) H-R; detR =1, (49)

which also defines general solutions of the inhomogeneous
equation:

r11(s) - g(0) + ria(s) - §'(0)
+ /5[711(5) r12(8) = ri(s) - (8] - 6(€) - dL.
0
(50)

Hence, the solution of the homogenous Hill’s equation
§" 4+ K(s) - § = 0 can be used for the investigation of this
1nstab111ty when the separation (45) is possible.

A cold beam, which is very popular in the studies of
instabilities, has momenta distribution,

[o(P)=6(Py)-6(Pa) - 6(P3)

that definitely satisfies this requirement with ¢ = 1. A
more general and more interesting case is a beam with
k — 1, also known as Lorentzian, momentum distribution in
all three directions:

1 3 o;
FolP) = PP = 10 6D
i=1 Oi i

allowing to integrate over the momenta:
LyCs) = / QTP p (Y. dp?
— e =37 loillni(s) -l (52)

If condition |17;(s)| > |7;(¢)

;s > ( is satisfied for all three

components i =1, 2, 3, we can use |n;(s) —n;({)| =
[7:(s)| — |n:({)| and the separated variables

Ly(s.¢) = e#©) . e~ Z o mi(Q)l: (53)
resulting in a second-order ODE (50) for g;(s) = pls, K(s)]-
expl¢(s)], and in Hill’s equation (48) for §(s) = p[s. k(s)]-

7( - explo(s)).
This is a good place to discuss the driving term, ¢(s), on
the right-hand side (rhs) of the Hill’s equation
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s(s)=e2-(q0—q,-);
u(5) = M) pr(s) = eH) / eI Fo(P) - dP.
(54)

Generally speaking, for an arbitrary initial perturbation
Z(g, P), both §” and g/, are not equal to zero and Hill’s
equation remains inhomogeneous. One case iS an excep-
tion: when the initial perturbation is a product of the density

perturbation and a k — 1 momenta distribution:

qo(s) =Py = /éo(g)e_’z'@dg3 = const, (55)

all derivatives of g, are equal to zero, and the Hill’s
equation becomes homogenous:

J(P.Q)=p (q9) fa(P)—>§" +K(s)-4=0. (56)

While the conditions |1;(s)| > |#;({)]; s > ¢ are fre-
quently satisfied, they also can be violated in the case of
an arbitrary coupling. In fact, it is possible to construct a

R
matrix U such that one component of the vector 7 = k- U
turns from a nonzero value at { to zero at s > . Emittance
exchange lattices can serve as an example [44]. If even one
|

of |n;(s)| > n;({) conditions is violated, the separation
becomes impossible and the use of the ODE is invalid.
Nevertheless, the linear integral equation (40) is always
solvable [43,45].

IV. SPECIAL CASES

We show in Appendix A [see Eq. (A14)], that in the case
of an uncoupled motion, the matrix U is diagonal with
monotonically growing diagonal terms:

U(s) = [6] - mi(s); pi(0) = 0;
Hi(s) > pi(§) YV E<s

where [§;;] is a unit matrix. It means that

Ini(s)| = [kio| - i (s) (57)

are also monotonic functions satisfying conditions |r;(s)| >
[n:({)]; s >¢. Hence, we proved that in an arbitrary
accelerator with decoupled motion, one can use a sec-
ond-order ODE (47) or Hill’s equation (48) for the beam
with « — 1 momentum (energy) distributions. This also
includes linear accelerators using solenoids—the equations
of motion can be easily decoupled by using torsion
K,(s) = —;]ffc, see Eq. (1) and Ref. [46].

For the beam with a constant density and constant energy
propagating in a drift space, all matrices and all compo-
nents in the equations can be easily evaluated:

| s 0 0
A=D=1I, C=0; Uis)=B(s) =——— |0 s 0 ;
Yo 'ﬁo smc 2 2
0 0 S/(]/() : ﬂ() )
k = const; U=-—5—>—— S3 (r,2 - Bo2 - K+ ks?);
Yo 'ﬂu smce
dr-n. - e2
UK = # = const; u =0 (58)
Yo ‘ﬂ() -mc
For cold plasma oscillations, it results in lz-independent equation:
dZ[;E 4z - n, - e?
k2 -p-=0; K=— 59
ds2+l’pk T3 83  me (59)

which, after applying the inverse Fourier transformation, becomes a carbon copy of the known plasma oscillations equation
but in the laboratory frame:

a’p(q)

ds* P(@) = o @)ers—om;

+k?)ﬁ(q):0’ wplzc'ﬂ()'kp' (60)

For beams with ¥ — 1 momentum distribution (51) propagating in a drift space with a constant density and constant energy,
k dependence occurs via the Landau damping term and q%’ in the driving term:
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q// —+ k%(s) . q = ~/0/, q = e¢<s) ,51-(», qo = €¢(S) . ﬁg,
N

- m ) (01 ' |k1| + 02 ’ |k2| + (y()ﬂ())_2 : 63 : |k3|),

. s _ .
PEZ/CXP<lm'(k1'61'£1+02'k2'£2+(70ﬁo) 2'63'k3'£3)> f7(P) - dP>. (61)

One important consequence of Eq. (61) is that for a beam propagating in a straight section, the Landau damping
decrement for the transverse modulation is boosted by a factor y,2f,%, which is typically > 1. In other words, for
|k 5| - 012  |k3| - 03, the Landau damping term is significantly larger than for k; , # 0. This is one of the reasons why the
longitudinal instability plays a special role and is of a special interest for accelerators with y,> > 1.

Let’s consider 1D longitudinal instability in a beam propagating along a straight trajectory, e.g., when the longitudinal
and transverse motion is decoupled:

- AL(S) 0 ) ) = BL(S) 0 . —>s —é ] s —é ) ko
A(s)—[ ) a(s)], B()—[ ) b(s)] R = k(o) = &3 20 (62)

The evolution of this instability can be described either by an integral equation

”.n -82 N .
Pls. k(s)] = — o / P k()] - Ky (&) - [uls) — u(Q)] - dC / e o) ENE L f (P) - dP + Dy(s);
_Adnon, - qf) I N P .
HO=""6wa0 "9 40 pule) = [ ) o

or for k — 1 longitudinal momentum distribution by the differential equation:
q"—&(s) -G +ky(s) - q=q5—&(s) - 4o

4 n,-r. d
k2 _ X o c : -
P(s) (]/oﬂo)3 aH . detAJ_ g(s) dS

]‘o'bH (s)o3

where k,(s) is s-dependent plasma “frequency” (in s domain), k/a/(s) is scaled wavenumber of the perturbation, and &(s)
represents an additional term, which, depending on its sign, either damps or amplifies modulation. The corresponding Hill’s
equation has the same driving term but slightly different s-dependent “frequency’:

"

v k/2 A 3/2 ~ /! - U . n” _ 12 é:/z 6”
q + p'q_aH'(yoﬁ0> ’ QU_Q()7 > kp_kp_7+?' (65)

For a beam with constant energy and no compression (a; = 1), Egs. (64) and (65) become identical. They describe the
instability driven by transverse focusing:

a =1 Y, - P, = const;
s _ .
b= G e~ 4 ) T =
4 Ny Te ks %0

pi(s) = q(s)e ool 1ot )

() = G AL
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V. DISCUSSIONS

To our knowledge, the analytical solution for the
evolution of the finite-size beams that are strongly affected
by the SC forces has never been found before. In this paper,
we presented the most general theoretical description of 3D
microscopic (short wavelength) instabilities driven by the
SC forces. Our approach of solving this problem is based
on the local linearization of the nonlinear transfer map,
which includes the macroscopic SC forces. This approach
allows arriving at a linear Vlasov equation for the micro-
scopic perturbations at a scale much smaller than the other
important scales of the problem (beam sizes, changes in the
beam trajectory, scales of nonlinearity in the transfer map,
etc.—see Eqgs. (18)—(20).

As was suggested in the previous section, matrix A plays
a special role in the evolution of the microscopic perturba-
tion in beams with strong SC. First and foremost, approxi-
mation of the homogenous background results in the beam
density, n(s), to be inversely proportional to the determi-
nant of the matrix A: n(s) = n, det A~!. It is also easy to
show that this is no longer a problem for a beam with finite
sizes and finite emittances where the beam density remains
finite when det A = 0."° It means, that in the final expres-
sion for instability, we can use the calculated finite local
density n(s):

2

il = [ S%-ﬁ[c, il

fus) = Q)] L(s.0) - dC + . (). (6)

The second complication related to detA — O arises
with k vector transformation (29):

k() = k" AT(0),

which involves an inversion of the matrix A. In contrast
with the beam density, which remains finite for a finite
beam size, the module of k vector is generally not
limited: |k| — oo.

det A—0

“For a Gaussian distribution, m;; = 0 simply means a rotation
by 90° in the phase space and the momentum spread determines
the density:

/ exp(—L 22} -
_ x| —=— — =) =
=0  2n6,0p P 20’2 203, 2r6,0p

(mpg —mpP)?  (—myq 4 my P)>?
P~ 20'2Q a 203

s

¥ 1
plg.s) = /J_‘od_ =
e \/2”(’”1120%; +myy*op)

Pz
x exp| — .
p( 2(my %0l + m1226%)>

This challenge can be resolved by noticing that the
kernel in the integral remains finite:

[k(s)]

N det A({)?
k()P

detA(s)

KO _
KO

+ detA(Q).

u(s) — M(C)‘
v(¢)

For any finite momenta spreads and |B| # 0, the Landau
damping term vanishes when [k| — oo:

20

L, = / JROBOKIBOIP . ¢ (p)

. dP3 :> O?
K(0)-B(0)|+|K(s)-B(s)|~c0

which resolves the issues in the evaluation of the critical
compression points for an arbitrary initial perturbation in
density momenta. With the known—to be exact, properly
evaluated in the specific portion of the phase space—
transport matrices, one can numerically solve equations (40)
or (67)—see example in Appendix E.

An additional complication of using the method pre-
sented in this paper can arise when simultaneous compli-
ance with conditions (18) and (20) is impossible. In other
words, an accelerator lattice with strong filamentation of
phase space caused by nonlinearity may not allow to define
a phase-space area where linearization of the map (20) and
conditions for homogenous background density (18) are
compatible. For example, a multimillion turn map with
strong amplitude-dependent tune shifts could epitomize
such case. Still, any coupling and nonlinearities in the
transfer map that can be linearized on a microscopic scale
are included in our theory.

It is desirable to include CSR in the evolution of the
microscopic density evolution, especially for the high
energy accelerators with strong bends. Unfortunately,
CSR perturbations are not local, and the application of
the procedure used in this paper could be erroneous.

VI. CONCLUSIONS

In this paper, we derived a linear integral equation
uniquely describing the evolution of the 3D microscopic
density modulation driven by SC forces, including insta-
bilities. Our theory includes the coupling between the
density modulation in various degrees of freedom, for
example, occurring in a bend, in an SQ quadrupole, or
in a transverse deflecting cavity. It also includes effects of
compression in all three directions, rotation, energy chirp,
and acceleration (deceleration) of the beams as well as
Landau damping. Most likely it will be the most useful for
investigating beam stability in low-energy linear acceler-
ators with SC-dominated beams.

We also derived the conditions when the linear integral
equation can be reduced to an ordinary second-order
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differential equation and demonstrated applications of our
method for a set of special cases.
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APPENDIX A: SYSTEM HAMILTONIAN
AND EQUATIONS OF MOTION

Traditionally in the accelerator physics literature, the
phase-space vector consists of Canonical pairs of coordi-
nates and momenta [...(q;, P')...] = [...(Xpi_1, X2;)...]. In
this paper, following Dragt [34], we use an equivalent, but
the different structure of the phase-space vector, which
clearly separates coordinates and momenta and simplifies
the form of the matrix of a symplectic generator, S;

dg; _ oH
T _ — [T pT. T _ ) T _ L) ds Top aé o oH di . oH
é _[51’52"'v§2n]_[q ’P ]’ q _[QI""Qn]’ P _[PI’"'7P11]’ %:—g—H <:>dS_S 0§©ds_sikd§k’
s qi
1 0
S =[Syl = 0 L], I, = (A1)
- ik] — —Inxn 0 > nxn —
0 1

The use of these notations is especially convenient for linear maps in the form of 2n x 2n symplectic transport matrices:

‘](Sl)];

)] = M(s]s2) - £(s1) = M(s1]s2) - {P(sl)

M!'=-S-M".S;

. [ DT BT

e

P(sy) = Cq(s;) +D- P(s);
P(s;) = —CTq(sy) + AT - P(s,);

q(s2) = Aq(s;) + B - P(s;);

q(s1) =D"q(sy) — B - P(s); (A2)
providing explicit connection between the coordinates and the momenta with their initial values and vice versa. It also
provides important properties of the block matrices which can be very useful for the evaluation of complex expressions.
Specifically, symplecticity of the transport matrix requires that four n x n matrices A - BT, D- C”, AT . C, D' - B will be
symmetric

(A-BT=A-B"; (D-C")'=D-C", (AT-C)'=AT-C, (D"-B) =D"-B (A3)

[

and that equivalent to the unity of determinants for individual 2 x 2
matrices in notations (A2):
A-DI-B-CT=1; AT.-D-C"-B=1 (A4)
A Bj
. . M; = ; det M; = 1. (A6)
In the case of uncoupled motion, all four matrices A, B, C,; Dy

C, D become diagonal automatically satisfying conditions

(A3) and turning (A4) into simpler conditions for diagonal Matrix A—!-B plays a critical role in the instability

components of the block matrices:

Aii'Dii_Bii‘Cii:]; izl,..,n (AS)

integral equation (40). Its properties can be studied
for a Hamiltonian system describing a generic linear
system:
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1 1 2n 1 n n n
H:2§T.H(s)-ffzzhik'f'i5k52<th_ik'61i‘61k+th_ik'Pi'Pk+th_ik'ﬂh'Pk>
= ] = Q=1

H, H]

} ; H” = H. (A7)
H, H,

H—[h,»k]—[

Using equations of motion, the derivative of the matrix M becomes

M/ELZ—M:S-H-M; A'=H,-A+H,-C; B =H, -B+H,D. (A8)
A

Taking into account that (A~') = —A~!1. A’- A~!, we get
(A" -BY =A'-B'—A A A .B=A".H, (D-C-A"B), (A9)
and using symplecticity conditions (A4) A~'B = BT(A”)~! and DA — CB” = I, one can show that it can be turned into

D-C-A"'-B=(DA”—C BT)(A™)" = (A-1)T;
(A1 B) =A~-H,- (A1), (A10)

It is possible to show for an arbitrary accelerator [34-36] that H, is a diagonal matrix with positive diagonal terms:

Co[rooo
H, = 01 0 All
" voPome ) (AID)
0 0 (roho)”

This allows us to prove that for an arbitrary accelerator with an invertible matrix A, the convolution u(s) in Eq. (40) is a non-
negative monotonically growing function with u/(s) > 0.

u(Q) = k(Q) - B() E=K(©)-UQ) k

W (s)=k"-(A""-B) - k=Kk'(s)-H,(s) k(s) = ZH""(S) ki (s) > 0.

u(s) = /0 ' (ii:H,,(s) - kf(s)> dE >0, (A12)

In other words, we proved that the convolution of any constant vector with matrix A~'-B is a non-negative

monotonically growing function.
In the case of uncoupled motion, all 3 x 3 matrices are diagonal and

d [¢4] (S) 0 0 | (11172 0 0
a(A71 N B) = O a2(s) = 7/ ] ﬂ me O 022_2 0 B
0 0 as) 0 (asz-vo-B,)7"

wio) = [l aczo0 ATB= [(ATBYE=| 0 ) 0 | o (AD3)
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i.e., diagonal terms of matrix A~'B are monotonically
growing positive functions:

(A14)

Vs > 523 Hi(s1) > pi(s2).

APPENDIX B: CONDITIONS FOR
APPLICABILITY OF THE SHORT PERIOD
(MICROSCOPIC) PERTURBATIONS

These conditions are also known as assumptions of
homogeneous infinite plasma. Fourier or Laplace trans-
formations are frequently used to solve the linearized
Vlasov equation. The main problem arising from the use
of an inhomogeneous distribution (or finite size of the
beam) is that it results in coupling between the Fourier
harmonics of the perturbation and those of the background,
e.g., applying a Fourier transformation to Eq. (11)

. (0f Of oh Of oh
/dQS-e’k'Q(—]—ch J—:"-—:——j:r-—:)
s 8g oP 0P ag

of: .
:a—t"+z/dk-3{]_‘0
' *_a%ﬁ)}
<(k k) oP ) )

does not result in the separation of the Fourier harmonics.
In this sense, this equation is as complicated as the original
Vlasov equation. The conditions for the separation of the
Fourier harmonics are easiest to derive in the comoving
frame of reference. In this Appendix, we will use indices
“cm” and “lab” to distinguish between the comoving and
laboratory frames, correspondingly.

In the vicinity of azimuth s,, the particle’s trajectory in
the laboratory frame can be described using the Cartesian
coordinate system with three fixed orthogonal unit vectors
2123(8,) (see Sec. II):

=l
N
=~
X
Q
~UT
=1
N—

71ab = 70(So> + é1(50> "X+ éZ(S()) Y+ é3(‘90) " 2.

Let’s consider an instantaneous comoving frame that
propagates in the vicinity of azimuth s, with velocity

Vo = V(,(S(,) : 93(5‘0),

along the local z axis. The next step is to establish relations
between the parameters in the laboratory and the comoving
frame. It is known that Lorentz transformation does not
affect transverse coordinates x, y, but boosts longitudinal

. e v.2\—
coordinates by the relativistic factor y, = (1 — %) 12,

Zcm:}/OZ:}?cm:)%'x‘i‘j"y‘i‘)/o%‘Z;

and also transforms the 4-vectors k = (w/c, 75) as [37]:

Wey = 0;

Dlab = Yo - (a)cm + v, kz) =0, kzv (Bl)

with known relation between exponents in Fourier
transforms:

2o (T2 (7 4 kaas
elk'rcm — e’{k'rlab_vo'kz'[t_tu(su)]} — el(k.rlab+/i,7(s”))

providing us with an important connection with the k vector
defined in Eq. (18) of the main text:

ki=k =k: k =k =k
k3 :ﬁo'kz :70'ﬁ0'kz;
a=a; a=a; a3=a/f,. (B2)

Let’s consider a beam with typical scales of inhomoge-
neity, a, ,, ., which are not necessarily of the same order of
magnitude:

i,
ox

fo

a;

X

fo. lafo

X —,
Ay dy

fo. lafo

X —
a 0z

y

defined in the laboratory frame. Mathematically, we can
define inhomogeneity parameters in the phase-space sec-
tion 2 as

S0 D Xe.

ax,y,zf 0 (X )

axwy‘z = min (

As indicated above, transverse scales will remain the same
in the comoving frame, but the longitudinal scale will be
boosted by a factor y,,.

For simplicity, we will consider that the particle motion
in the comoving frame is nonrelativistic, and we can
neglect the effects of the magnetic field, e.g., assume

Ecm = 0. In this case, Maxwell’s equations are reduced
to two equations for the electric field:

divE =4z-p;  curlE =0. (B3)

Further in this Appendix, we will use the comoving
frame and will drop the index “cm.” The natural condition
for neglecting the beam’s edges, transitions, and reflection
effects is that there must be a significant number of
oscillations in each direction at the typical scales of the

inhomogeneity, e.g.,
Ky acy, =key-a,,>2n, vk, -a, =k, -a,>2x.

(B4)
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But as we find out in this Appendix, not all of these
“natural” conditions are necessary. For example, it is
intuitively understandable that for a one-dimensional per-
turbation with k, # 0, k. , = 0, two requirements in (B4),
K., -a., > 2z are not necessary. As we will also show,
the condition (B4) in ith direction is not necessary
if |k,| < [K|.

Second, and much more convoluted, condition is that
the Fourier harmonic of the induced electric field (and
therefore of the perturbation in the Hamiltonian) are
linear functions of the harmonic of the charge density

perturbation,
pp=e- / d7 - e~k 7 (BS)

- / 7o (1) - dF.

(B7)

For a nonuniform density, the electric field will deviate
from the intuitive extensions of (B7) by some SE:

-

> k
)

e*7 4 SE. (B8)

We can neglect SE when compared with the main rhs term
in (B7) when [k| - |6E| < 47 - |p;|. We get the following
using (B3):

k- Vpg(7)

L ) o o divE = 4r - pp(Fe 7 4 4. = e*7 4 divoE
where f,, is a perturbation of the distribution function in k
the comoving frame. In an infinite charged plasma, a —dr-p(T) e 7.
periodic density perturbation results in a periodic electric o Pk :
field aligned with the k-vector: curlE — 47 [k X :fk( 7)] 7 4 curlsE = 0:
E=Eg-e*;  E.=E; +E
e TR N B G
curlE:OakxEE: _’EELZO_’EE”:TEE; k
K| kxV -
o ( X /)k( )) k7 7 o
- i oz o curldE = —dg———="——e"" ~ |k| - |6E| (B9)
divE =4r-p; - e —>zk-EE:z|k|‘EE:4ﬂ P k
(B6) -
While the error estimation resulting from divE = 47 - pi
resulting in improves on the intuitive requirement (B4):
05E, 06E, OSE ik ? 9 P 9 ol oe
X Y4 Z:_4ﬂ.€_> Kk, - ﬂ+k ﬁ+k 9P ﬁNM;
ox dy 0z K2 0x dy dy ox; a;
- (0E, OSE, OOE AL L L
—ie®T. * Y )|~ (|k, - OE k,-0E k, 0E|) ~4r =X (X4 X4 T2
- Kk k, k.
diveE| lal+1g |+ 17|
| ~— 2 —x1 B10
divE k> (B10)
the error estimations resulting from curlE = 0
- kxVp(7) . 4r .
curl6E = —4 ( I;Zpk(r)) ek = I;_;T ek’
. dpz AN dpx AN Ipi Pz
X x| ky - ——k, - — Nk, ——k,-— |k ——k,-
{x(yaz Z6y>+y<zax R e N M e
05E, O0E, 4m .- L Pz opz 06E, O00E, 4m - L WPy . dpk
_— = = . e — — . , J— = ==-¢ — — K,
dy 0z7 i Y0z ° ooy 0z7 ox 2 oox 07
00E, O05E, 4 = opx; opr
v 0L A i (g, Dk _y Pk (B11)
0x dy K oy ox
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is much more important because it links all three dimensions:

95E,| | 06E, Ax k| |k
ay + 9z | y z| + | z y| k2 |pK| v-a. + ay

85Ex 55Ez 471- |kx| |kz|

P2l | D%l Lk, 6B, + [k, - OE, | ~ o |pg] - (k4 B2l

oz || ox k - : K’ o (V'az+ a,

OSE,| | 0E, Ar k| Ik,

— ~ Ky - BE | + Ky - O, | ~ =5 - |pg| - (= 422 ). 12
ay + ox | y x| + | X }| k2 |p1<| < a, + a, ( )

This allows us to estimate errors for each component of the electric field:

I K > 1 1 k 1 k
|E|g4n-@; |5EX|N|E|.<q I L L z>;
k| K a K a, ]y |K]-a, K
. 1 |k 1 1 K
|5E},|~|E|.<q ef ot 1] z|>;
|- a, [kl k[-a, 7-|k|-a, Ky |
> 1 k 1 k 1
|5EZI~IEI-<ﬁ s - | y|+ﬁ>; (B13)
k|-a, [k| K| -a, k| y-|K|-a,
and
B 1 k 1 S 1 1|k,
|5Ey|N|E|' (ﬁi-lky:—i- = ); |5Ey|~|E|. <ﬁ—+ — ':k)D;
y'|k|'az z |k|'ay |k|-ay |k|.ax N
o 1 1 |k B} 1 | Ik
|5EZ|~|E|.< - _ .‘ z|>; |5Ez|~|E|'< _ +— | z|);
},|k|aZ ‘k| ay |ky| 7/|l(|aZ |k|ax |kx|
> 1 kx 1 = 1 1 kx
|5Ex|~lEl'<~-' - ); |6Ex|N|E|'<» SR |>. (B14)
y-|k|-a, K| K| a, K a, k| a, [k

Now, let’s introduce the following definitions:

—_
—_

|E| Ay ’ Y ‘E “dy 7“2 *ay
And (BIS)
r — |kx‘ r J— ‘kx‘ . r J— Ik,‘" .
k] ¥z k| ¥z k]
and rewrite (B13) and (B14) as
- &y E - 15
|5Ex| ~ |E| : (gx +r_\ +_Z)’ |5Ey| ~ |E| : (gx : rxy + gy +r_z)’
xy Xz vz
|5Ez| ~ ’E| : (sx *Txg +€y * Ty + 82);
> > €
OB~ Bl (e et ei 1o~ [El- (&4 2
xy
- €, - €,
OE| ~|E|- (e, +—=);  [OE[~|E|- | &, +—);
Tyz Txz
|5Ex| ~ |E| ’ (gzrxz =+ gx); |5Ex| ~ |E‘ : (8x + eyrxy)‘ (Bl6)

And finally, the combination of all estimations results in the following:
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- . £ £
|0, | ~ |E| 'm1n<8x+_y+_z’8x+gz'rxz»8x+8y'rxy) Sete ted

Xy p3d

- € €
. Z X .
|6E,| ~ |E|nun(sx-rxy+ey+r—,ey +e, - ryz,r—+ey) <e te tegs

vz xy
S € €
|6E.| ~ |E| mln(ex Tyt Ey Ty 8Z,r—y+ ez,r—x—f— €Z> <ete e (B17)
vz Xz

where we took into account that min(r, 7~!') <1, ¥V r > 0.  These conditions are most important in the case of the
It means that longitudinal density modulation

—

K|-a, > 1; |E|-ay > 1; Yo |K|-a,>1;

arn -\ (Bo10)* (k2 + ka?) + k32> B, -7,
V

> 1
Kb =2 k3 ky >>max( ! ,—), (B20)

Ayy Qg

which means that transverse beam size can play an
as - \/ (Bo 7o) (ki* + k%) + k3® > 1. (BI8)  important role in determining the applicability of this
important approximation.

Figure 3 provides intuitive illustrations of applicability
and violations of conditions (B19).

These findings have the following foundation: (1) In the

comoving frame of the beam, where we are evaluating the

-, P2 - — electric field, the length of the bunch is increased by a

aey A k" +—5>1; a, \/r*k Lz =+ kz2 > 1. factor of y, while the value of the longitudinal component

Y of k vector, k_, is reduced by a factor of y. In contrast,

(B19) transverse components remain unchanged. (2) In a plane

are sufficient conditions in the comoving frame for Eq. (B7)
to be a valid approximation for the electric field.

Lorentz transformation (B2) changes these conditions to
the lab frame as follows:

12 (b)

A
v

ra,

E

al 2 I (©)

<

¥ *E‘ va,

FIG. 3. Geometrical explanation of proportionality between the components of electric field, E, and wave vector, K. Blue color

represents a periodic density modulation in the direction of K-vector. (b) and (c) illustrate electric field structures (red arrows) in two
cases: (b) when the condition (B19), |ay 5 - k3| > 7, is satisfied and electric field has a plane-wave structure, and (c) when the condition
(B19) is violated a;, ~ A = %y, and the electric field is no longer parallel to vector k.
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geometry of a periodic density modulation, the strength of
the electric field components is directly proportional to the
value of the corresponding components of the k vector in
the comoving frame—see illustration in Fig. 3. This is a
direct result of solving the electrostatic equation

- - - - - 4r-
leE:4ﬂ'pE'COS(k-r):>E:k. |1_{|2

-

k.. sin(k - 7).

Dt

(3) It means that if a component of the k vector is zero, it is
also true for the electric field component. For example, with

the longitudinal modulation with K . =0, the conditions
(B19) are reduced to
|az - k3| > 1 a1 - ks| > Boyos

where the first condition is quite natural—and intuitive—
requiring that there will be multiple oscillations in the
longitudinal direction for the Fourier components to stay
uncoupled. The second condition is less obvious: it comes
from the requirement that the Fourier components of the
electric field repeat the structure of the Fourier components
of density modulation, as can be seen in Figs. 3(a) and 3(b).
When this condition is violated, simple proportionality
relations between the density modulation and the electric
field brakes and it results in the coupling of the Fourier
harmonics. Such coupling turns the problem under con-
sideration into an unsolvable problem.

While we illustrated the importance of both conditions in
Eq. (B19) for longitudinal modulation, the same consid-
erations are valid for transverse directions.

APPENDIX C: EXPRESSION FOR CHARGE
AND CURRENT DENSITY MODULATION
IN LABORATORY FRAME

Solving Maxwell’s equations requires the knowledge of
the charge and current densities as functions of coordinates
and time:

divB=0;  divE =4x-p;
B 1 0B 5! ai:+4n -
curll = ——- —; curlB=—+—+—-j;
c ot c Ot c J

p(?,t):e'/f(7,7,t)‘dv3;

J(F1) = e~/\7-f(7,\7, 1) - dv°, (C1)
where f(7,V, 1) is the particle distribution function in the
(F,V) configuration space. Using s as an independent

variable makes the connection between p, ; and the
phase-space distribution function f(g,P,s) nontrivial,
where (g, P) is the conjugate Canonical set of coordinates
and momenta. This Appendix is dedicated to establishing

such a connection and finding the corresponding 4-poten-
tial of the EM field.

Let’s introduce an instantaneous Cartesian coordinate
system with the z axis along the reference trajectory at
s =5, [see Eq. (1) in the main text]:

o . o dr,(s
F=e(s,);  Y=es,);  z=es(s,) = dg) ’
deé R de R
T;IK(S) e’;—K(S) €] TSZZK(S) €r;

F=F,(s,) % x+9-y+2-2=7,(s)+21q, + 2:(5)qa;
qr=21(s) [X- x4y +7o(s5) = Fo(5)]:

Gy =2(s) [X- x4+ y+7,(s,) —To(s)];

g3 = c(t,(s) —1). (€2)
With the following ratios in the vicinity of 7, (s):
dx = dqy + qok(s,)ds; dy = dq; — q,k(s,)ds;

ds

dz — [1 K ds: dq; = ———~ — cdt, C3
=L+ aK(s,)lds,  dgy =g —edt. (C3)

where we used Eq. (1) for the reference trajectory. At a
fixed s:

ds=0-dz=0;

dqg, = dx; dqg, = dy; dq; = —cdt. (C4)

Number of particles confined in an infinitesimal volume
dg® at a fixed s = s, is defined as

dn = |dg’| - /f(q,P,so)-dP3 =c-dx-dy-dt

- / Fq.P.s,) - dP? (C5)

which is identical to the number of particles passing
through an elementary area dx -dy located at s = s, in
time interval dr:

7.0 = [5G0 a0 dn = da-

dad = zdxdy,dn = dx - dy - dt/ v, - f(7.V, 1) - dV?,
(Co)

resulting in

/ (g, P, s)-dP> :% / v. fFE0) -, (CT)

Using paraxial approximation v, = v, + v; |6v| < v,,,
and neglecting v in the integral (C7), we can express p, j
using the phase-space distribution function as
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p(7.0) = ’)ﬂ("(’jf L JED=zocoplgs) plgs)=e- / J(q.P.s) - dP>. (C8)

Applying Fourier transformation'*

gr = glky kp Ky ) = / oG.s) e d

to (C8), we obtain expressions for p, fat fixed s:

Bo
1 1 ; 73, - 6‘2’C ~ i -3
p_(27z)3'ﬁ /fk ekd . di’, Jj= 2a) fr-e™-dk (C9)

Let’s calculate Fourier harmonic of the density

S; eika—kron . g3 . gy, (C10)
s

: rn e [T
k,0) = / Cemi®Twn) g g = / dic - [ Lk

Using ¢; = x, ¢, =y, and combining terms in the exponent:
k-G—K-THot=(k—k) -x+(k—k)-y+(@—ks)-1+ks-c-t,(s) =k, -z (C11)

makes expression integrable:

1 , A _
—<2 E / / el ki) x pitha=ky )y p=ilo—cks)t . gy . dy . dt = §(ky — k) - 6(ky — Ky) - 8(w — cks);
T

_ -
//5(k1 —K,) - 8(ky — K,) - 8(0 — cks) - F(ky. ky. k3. ) - i = —-f(kx,ky,g,s>;
C C
. e [flk.k,25s)
Ko =°. / T By c5) oy (5)kea) . gy c12
o) = ) )

At this point, we can use our assumption that the scale of the variation of the accelerator parameters (such as trajectory
curvature, f3,, etc.) is much larger than that of the modulation. In addition, we assume that the evolution of the density

modulation as a function of s is also much slower than the fast oscillating term e*®*(*)_ This assumption will allow us to
move f and /3, outside of the integral and also to expand the arrival time of the reference particle with respect to the azimuth
5, where we locate the origin of the z axis:

Z

t,(s) =1,(5) + —, C13
()= 16)+ (€13)
and arrive at the final relation between the Fourier components in two systems of coordinates:
- r-e - , -
p(k7 a)) = re . f(kx’kv’ﬂo . kz? E) ' 5(k0 _:Bo . kz)el‘ﬂo‘kz.c.t()(s); ko = 9;
’ c
jkw)=z2-cp, plk.o), (C14)

where we used o </]§—0 - EZ> =p, 6k, —p, - Ez) and singularity of Dirac’s -function:

“In this Appendix, we use interchangeably both the compact, g;, and detailed, g(ky, ky, k3, s), notation for the Fourier components
defined in the accelerator coordinates.
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g(x) - 6(x —y) = g(y) - 8(x —y).

To find 4-potential induced by such perturbation, we can use the Lorenz gauge - % ;+ divA = 0 providing for the separation
of equations for each component of 4-potential [37]":

P’ e A -
Foop Ao =

which can be Fourier transformed to:

- 2, 7 5 _
(p(E,(z)) . pilEF—ar) _ A - p(k a)) (o) _ 8r° - e .f(k,w ky. Bk, 5) 8k, — B, - kz)ei(k-7+w-(to(f)—f))-

K — k2 c K> —p,2 k.2 ’
- I _
Ak, w) :z-(p(k,a))-k—zz-ﬂo'fp(k,w) (C15)
Z
In the inverse Fourier transform
= 1 o i(K-F—art) 3
(p(r’ t) = (2 )4 : ¢(k1 a)) ° el e da) dk
7
o function makes integral over w straightforward:
1 . — -, . -
— [ el . g k,g ¥ 9,—,50 'k, ) do = <. g(k, B, k. )elok1);
2r C C 2n
©(5) = ¢ (1,(5) —1) (C16)
with the remaining integral of
fk,k) Pok..5) o o di? - - -
X o r ﬁo'kz'f(s)] . —; A S ) = . . ’l’ . C17
o) =dme [Fieed Sapt AGD=Z8, (0 1)
Taking into account expansion (C13), the exponent in (C17) can be expressed using the accelerator coordinates:
E'7+ﬁo'kz'7(§) :]_éq’ k1,2:kx,y; k3 :ﬁo'kz; (CIS)

and using ratio 3, - dk® = dk*, we get an expression connecting the 4-potential and density perturbation in the accelerator
coordinates:

9(G.5)=q@(F.t)=4n-e-p, '702'/ ; k A(G.s) =7 B, 9(d.s). (C19)

7/02 : 02 : ]_éi + k32 (2”)3 ,

APPENDIX D: PERTURBED HAMILTONIAN

As derived in Appendix C, density perturbation results in an additional 4-potential
Sp' = {6p.5A};  SA=2%-B,-5¢. (D1)

which we will consider to be infinitesimally small: 5 ~ O(¢), € < 1. The goal of this Appendix is to define an additional
term of the reduced accelerator Hamiltonian (6) resulting from the density perturbation:

"The Lorentz gauge can be used for time-dependent component of the EM field, which is of interest in this paper.
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2

E,+c-Ps—e-¢p, —e-6p) e 2 e 2
h*:—(1+K'Q1)'\/< 2 - e ®) _mzcz_(Pl_EAl) —(P2—2A2>

—g(l+K'611)'(Az+ﬂo'5€0)+’<'ﬂh‘Pz—K'Ch'Pl—L'P3+43‘£<Eo(s)+€'w> (D2)

v, (5) ds c

where we used the explicit expression for A; component of the vector potential (7). Perturbation of the Hamiltonian is
coming only from the first two terms in rhs of (D2).

E —e-5p)° - e
6h* = —(1+K-q)- (\/ﬁ_mz'cz—lhz—l%‘?;'ﬁo'5(P>;

c
E? 2. 2 =2 (E —e-8p)° 2. 2 =2 E e 2
pe=\|z—m =P s —mt =Pt po=——— = Sp + 0(8p)*;
c c c-p, ¢
Vo V. _¢p; —
E =H — eyp; Po=—; p.=—=-" 1=p,2=7,%
c c E
st = (1+K-q)-Soop(S-Ye) oL sl (P s kg (D3)
- q1 c @ v, c - ﬂg . }/02 ¢ @ Yo ﬂz qi1)-

First, in paraxial approximation term, |Kq,| < 1 can be dropped. It is also easy to show that the second term in the curly
brackets is infinitesimally small in the case of paraxial motion resulting in nonrelativistic motion in the comoving frame:

+—<x 1.

BBt B 1B Bt B 2 2y

B-

2 B2 2 2
. — . 1)
yoz . <ﬁ0 1) Yo ﬁJ_ Y =70 Nﬁcml. 4 (D4)

Specifically, ¢ - y,, - ﬁ | is the transverse velocity in the comoving frame and 577 is the relative energy deviation in the beam.
Both of these values are assumed to be infinitesimally small. As a result, the perturbation of the Hamiltonian is reduced to:

~ 73
SIS N SO
ﬁo'yo ¢ c y(,z'ﬂ02'kl+k22 (2’”)

Py = /6‘”‘"} -flaq.p.s)-dp? - dg. (D5)

oh*

APPENDIX E: NUMERICAL SOLUTION FOR LINEAR INTEGRAL EQUATION

While it is known that the linear integral equations are relatively easy to solve, for completeness, we describe a simple, by
design, step-by-step process for our specific case. More sophisticated methods can be found in Refs. [43,45].
Let’s split our accelerator into small segments As. We start from s =0 and evaluate p; (0), assuming a known

infinitesimal perturbation of initial beam density f, (g, P):

po=pi(0) = [ BT odg?-ap* Flap) = [ 57 -dg’ T (a.). (E1)
Next, we will use the transport matrices at s; = As to evaluate all other evolving components: step i = 1

Ag=Dy=1; By =Cy=0; A = A(As); B, = B(As); C, = C(As); D, = D(As);
k= k(As)=k-A"'(As);  k,=k

) 1 o _
i (89) = g [ €T dq P F DT g =BT p =G g AV p)
01 =7, (85) B, (As)2 KL(AS) + hs(As)% w =Ky Bk u,=u(0)=0. (E2)
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For a known background initial momentum distribution,
one can calculate the Landau damping term

-

m =k

"By dp=0; L= /ei(ﬁl_ﬁ”)'l3 [, (P)-dP?
(E3)
and calculate density modulation in step 1:

- 4z - n, - e?
= T " T — CAS -
¢ detAy - v, 10(ur = up) - As - p,

+ ;. (As). (E4)

0

Let’s assume that we completed step i =n — 1 and are
going to the next step s, = nAs:

A, =A(n-As);
C,=C(n-As);

N 1 o
Pi, (sn —detAl/e”‘(As>q-dq3-dp3
f,Mm" - q-B,"-p.-C,"-qg+A,"p);
Un:}/()(n AS) ﬂo(n AS) knJ_ +kn32;

(ES)

and calculate all relevant Landau damping terms for
propagation from s; to s,;

_'n g ]_()n . Bn, Lni g /ei(ﬁn_ﬁi)'ﬁ (E6)

-fo(P) -dP?

evaluating the density perturbation as a sum

- 4r-n,-e2-As AL, - ;) - pi
nD. =D ’k” = — !
Pn = P50 k) Z; detA »

+p]_éo(sn)' (E7)

This process is iterative with all the information about
density evaluation prepared in previous steps. What is
shown here is a process with the first order of precision, but
it can be improved using higher order procedures.
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