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The contribution of coherent wiggler radiation (CWR) to the microwave instability threshold in wiggler-
dominated storage rings such as damping rings for colliders is discussed in detail. Three different coherent
wiggler radiation impedance models are considered: the free-space steady-state model, the parallel-plates
shielding steady-state model, and the rectangular-chamber shielding model. The field dynamics of CWR
are compared, showing that the broad-band unshielded CWR becomes dominated by resonant structures
when chamber shielding is considered. To suppress the narrow-band impedance in damping wigglers with
chamber shielding, we propose employing a detuned damping wiggler. A new, simple, analytical method of
solving the dispersion relation and detecting the CWR-driven microwave instability threshold is presented.
The theory is compared with the numerical simulations of a Vlasov-Fokker-Planck solver for the Electron
Ion Collider backup storage ring cooler and confirms that the microwave instability threshold gets higher
for negative momentum compaction.
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I. INTRODUCTION

In storage rings, charged particle beams move along
curved orbits inside dipole and wiggler magnets, which
leads to the emission of coherent synchrotron radiation
(CSR). CSR contributes to the beam coupling impedance
and can be a source of the microwave instability. Compared
to the impedance from discontinuities of vacuum chambers,
the CSR impedance is typically more profound at high
frequencies (corresponding to millimeter wave or shorter
wavelengths) so that it often sets the numerical demands for
simulations of the microwave instability. For the conven-
ience of discussion, we use the terms CSR and coherent

wiggler radiation (CWR) to indicate the coherent radiation
from dipoles and wigglers, respectively.
Numerically predicting the instability thresholds due to

CSR and CWR wakefields is a challenging task when
studying collective effects in storage rings. Particle tracking
codes often have difficulties in properly model high-
frequency impedances due to CSR or CWR. As a first
step, an analytical estimate of the instability threshold can
be very helpful, especially during the initial stages when
one is targeting the accelerator machine and beam param-
eters that will be below the instability threshold. In
addition, the obtained instability threshold can be used
as a reference value to help cross-check particle tracking
simulations. Numerical simulations are necessary in any
case since they give a global picture of the beam parameters
below and above the instability threshold.
In recent years, there have been intensive investigations

to calculate the CSR impedance (see, e.g., Refs. [1–6] and
references therein) and compute the CSR-driven micro-
wave instability (examples include Refs. [7–9] and refer-
ences therein) for storage rings. Investigations have also
been made into CWR impedance calculations (see, e.g.,
[6,10,11] and references therein). The CWR-driven
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microwave instability using a steady-state CWR impedance
model in free space was examined byWu et al. in Ref. [12],
which became the main reference in evaluating CWR
effects in wiggler-dominated rings such as damping rings
of colliders [13,14].
Recent developmental work on the backup ring cooler

[15] for the Electron Ion Collider (EIC) [16] at Brookhaven
National Laboratory (BNL) motivated us to revisit how
CWR can affect the microwave instability. This is because
the ring cooler concept employs a significant number of
damping wigglers to reduce the equilibrium emittance. One
of the main concerns in achieving the required beam
parameters is related to collective effects, particularly,
the effect of coherent synchrotron radiation produced by
the damping wigglers (DWs). We believe that contribution
of CWR to the total impedance budget is significant,
especially for ∼16 DWs at low-energy ring.
This paper is organized as follows: In Sec. II, we revisit

the analytic theories developed in Ref. [6] for CWR
impedance and derive a simple formula for the steady-
state CWR impedance with parallel-plates shielding.
Meanwhile, we document the existing analytical models
of the low-frequency steady-state CWR impedance, the
steady-state CWR impedance for parallel-plates shielding,
and the CWR impedance for a damping wiggler with
rectangular vacuum chamber. These analytic approaches
are compared with numerical calculations from the CSRZ

code [5,17] using the EIC backup ring cooler parameters as
an example. In Sec. III, we present an idea of designing
detuned wigglers to suppress the narrow-band CWR
impedance. In Sec. IV, we apply the instability analysis
of Ref. [7] to derive a simple scaling law of CWR
instability. Numerical simulations of microwave instability
with three models of CWR impedance are presented in
Sec. V B. Finally, we summarize our findings in Sec. VI.

II. IMPEDANCE MODELS FOR DAMPING
WIGGLERS WITH A CONSTANT PERIOD

We start from the formulations of Ref. [6] to derive the
analytic models for CWR impedance. The beam orbit inside
a plane wiggler with periodic fields can be described by

xðzÞ ¼ −
θ0
kw

cosðkwzÞ; ð1Þ

where kw ¼ 2π=λw with λw, the wiggler’s period length, and
θ0 ¼ K=γ is the deflection angle defined in terms of the
dimensionless wiggler strength K ≈ 93.4Bwλw (Bw is the
peak wiggler magnetic field in Tesla while λw is in meters)
and the Lorentz factor γ. We will be concerned with
frequencies below the critical photon frequency so we
assume the electrons travel at the speed of light. The
horizontal and longitudinal relative velocities of the beam are

βx ¼ θ0 sinðkwzÞ; ð2Þ

βz ¼ 1 −
1

2
θ20sin

2ðkwzÞ: ð3Þ

The wiggling motion slows down the average velocity in
z direction. Consequently, the arc length s measured along
the beam orbit is approximated by

sðzÞ ≈ z

�
1þ 1

4
θ20

�
−

θ20
8kw

sinð2kwzÞ: ð4Þ

A. Free-space steady-state model

The low-frequency steady-state CWR impedance in free
space can be calculated from Eq. (D7) of Ref. [6] as

ZLðkÞ
L

≈
iZ0θ

2
0k

4π

Z
∞

0

dν
1

ν
sin2

ν

2
e−

1
4
irν; ð5Þ

with r ¼ kθ20=kw. The integral over ν can be done analyti-
cally, with its real part surprisingly independent of r but its
imaginary part dependent on r, yielding

ZLðkÞ
L

≈
1

16
Z0θ

2
0k

�
1 −

2i
π
ln

�
θ20k
4kw

��
: ð6Þ

This is the low-frequency limit of the steady-state CWR
impedance model in free space [6,10], which is valid
provided r ≪ 1, θ0 ≪ 1, and K ≫ 1. The real part of the
CWR impedance indicates the amplitude of the radiation
power spectrum, which is proportional to θ20. The imaginary
part of the CWR impedance contains a space-charge-like
term which is related to the slowdown of the beam in z
direction due towigglingmotion [see Eq. (4)]. This feature is
similar to CSR, which contains overtaking fields, causing
energy gain for the head part of a bunch.

B. Parallel-plates shielding steady-state model

The steady-state CWR impedance with parallel-plate
shielding is formulated using Eq. (D4) of Ref. [6]. But here
we seek a simpler formula that applies in the limit of low
frequencies r ≪ 1. We start from Eq. (D7) of Ref. [6] but
recover the summation over waveguide modes

ZLðkÞ
L

≈
ði − 1ÞZ0θ

2
0

ffiffiffiffiffi
πk

p

2πb
ffiffiffiffiffi
kw

p
X∞
n¼0

Z
∞

0

dν

×
1ffiffiffi
ν

p sin2
ν

2
e−

1
4
irνe

−iνð2nþ1Þ2π2
2kkwb2 ; ð7Þ

where b is the full gap between two parallel plates. The
exponent term containing n results from an expansion of
the square root term of the longitudinal wave number (see
Eq. (24) of Ref. [6]). Here we also recover it tentatively for
later discussions of the field dynamics of CWR
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ZLðkÞ
L

≈
ði − 1ÞZ0θ

2
0

ffiffiffiffiffi
πk

p

2πb
ffiffiffiffiffi
kw

p
X∞
n¼0

Z
∞

0

dν

×
1ffiffiffi
ν

p sin2
ν

2
e−

1
4
irνe−

iν
kw
ðk−

ffiffiffiffiffiffiffiffiffi
k2−k2n

p
Þ; ð8Þ

with kn ¼ ð2nþ1Þπ
b . Replacing ν by ξ ¼ ν=ðkkwb2Þ, we

obtain

ZLðkÞ
L

≈
ði − 1ÞZ0θ

2
0k

2
ffiffiffi
π

p
X∞
n¼0

FnðkÞ; ð9Þ

with

FnðkÞ ¼
Z

∞

0

dξ
1ffiffiffi
ξ

p sin2ðDξÞe−iBξ; ð10Þ

where we define D ¼ kkwb2

2
and B ¼ 1

4
rkkwb2þ

kb2ðk −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2n

p
Þ. The integral over ξ can be done

analytically (For instance, one can use Mathematica with
the condition of 2D > B > 0):

FnðkÞ ¼
1

8B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2 − B2

p
h
−2

ffiffiffi
π

p
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2 − B2

pq

þ i
ffiffiffiffiffiffi
2π

p
Bð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D − B

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dþ B

p Þ
þ ð2 − 2iÞ

ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2B − B3

p i
: ð11Þ

One can see that FnðkÞ has a singularity at

2D ¼ B; ð12Þ

which indicates the resonant condition resulting from syn-
chronicity between the waveguide modes and the beam
motion [6]. The above resonant condition can be rewritten as

k ¼ β̄zðkz þ kwÞ ð13Þ

with β̄z ¼ 1=ð1þ 1
4
θ20Þ, the average longitudinal relative

velocity and kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2n

p
, the longitudinal wave number

in the presence of parallel-plates shielding. This resonant
condition is a special case of a more generic one which was
formulated in Ref. [17] [Eq. (3.116) therein]. Equation (13)
can also be interpreted as the dispersion relation as shown in
Fig. 1. There are several observations deserving clarification
here: (i) The dashed black lines k ¼ �kz indicate the case of
beam motion with β̄z ¼ 1 (i.e., the ultrarelativistic case);
(ii) The solid red lines indicate the dispersion relation of
waveguide modes with their phase velocity vp ≡ ck=kz
larger than c, but group velocity vg ≡ cdk=dkz (i.e., speed
of energy transfer) smaller than c; (iii) The solid blue lines
indicate the harmonics of beam’swigglingmotion. The slope
of the beammode is determined by β̄z < 1. The beammotion

is modulated by wiggler fields by pkw with p indicating the
pth harmonic of wiggling motion. The dominant term for
wiggler radiation is from p ¼ 1.
With chamber shielding, the solutions of Eq. (13) define

the resonant frequencies, which can be found by solving a
quadratic equation of k as follows

kr� ¼ β̄z
1 − β̄2z

�
kw �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄2zk2w − ð1 − β̄2zÞk2n

q �
: ð14Þ

Expanding the square root and only keeping the leading
term, we can find the approximate expressions of the above
equation as

krþ ≈
4kw
θ20

−
k2n
2kw

; ð15Þ

and

kr− ≈
β̄zkw
1þ β̄z

þ k2n
2kw

: ð16Þ

Here krþ and kr− correspond to the þ and − signs inside
the square brackets of Eq. (14), respectively. They represent
the resonant frequencies of CWR at the high- and low-
frequency limits, respectively.
The physical meanings of krþ and kr− can be seen more

clearly when we consider two extreme cases: θ0 → 0
and b → ∞.
For the limit of θ0 → 0 (θ0 ≪ 1 is usually true for

damping wigglers), Eq. (13) can be approximated by

k − kw ≈ kz; ð17Þ

with β̄z ≈ 1. Then, the resonant frequencies have a simple
form of

FIG. 1. Dispersion relation for the waves propagating along a
waveguide sandwiched by a wiggler. The solid blue lines from
top to bottom indicate the beam modes of k ¼ β̄zðkz þ kwÞ,
k ¼ β̄zkz, and k ¼ β̄zðkz − kwÞ.
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kr ¼
1

2
kw þ k2n

2kw
; ð18Þ

which corresponds to Eq. (16) with β̄z ¼ 1. When θ0 → 0,
krþ → ∞ is of no interest.
For the limit of b → ∞ (i.e., without chamber shielding),

there is kn ¼ 0. The resonant frequencies from Eq. (13) are
determined by

kc ¼
4kw
θ20

; ð19Þ

which corresponds to Eq. (15) with kn ¼ 0. Note that kc is
exactly the fundamental radiation frequency of a wiggler.
This frequency is determined by the crossing point of k ¼
β̄zðkz þ kwÞ and k ¼ kz (as shown in Fig. 1) and is usually
very large with θ0 ≪ 1 and kw ≫ 1 m−1.
The previous analysis shows that Eq. (8) contains the

essential field dynamics of CWR and is suitable for
calculating the CWR impedance of damping wigglers.
As an example, the steady-state CWR impedance models
in free space [Eq. (6)] and parallel plates [Eq. (9)] are tested
using the case of the EIC ring cooler with its wiggler
parameters shown in Table I. The results of impedances and
wakefields for a 0.3-mm Gaussian bunch length are
compared in Figs. 2 and 3. The chosen maximum wave
number for the impedance data is kmax ¼ 20 000 m−1,
which is high enough for the 0.3-mm Gaussian bunch’s
wakefield. Also, note that kmax ≪ kc ≈ 6.2 × 105 m−1 for
the case of the EIC backup ring cooler, suggesting that we
are only looking at the low-frequency CWR impedance.
One can see that the narrow spikes in the CWR impedance
due to parallel-plates shielding create the oscillatory long-
range wakefield trailing behind the bunch (narrow-band
impedance). On the other hand, the parallel plates shield the
low-frequency waves, reducing the amplitude of short-
range wakefields.
To check that Eq. (9) with Eq. (11) correctly describes

the CWR impedance with parallel-plates shielding, we try
another example by enlarging the full chamber height from
15 to 60 mm. The results are shown in Figs. 4 and 5. As

expected, the impedance and short-range wakefield
approach the free-space model when the chamber is
opened.

C. Rectangular-chamber shielding model

The DW vacuum chambers usually have a closed cross
section instead of parallel plates, in which case, a rectan-
gular chamber serves as better approximation for the
chamber’s geometry. The relevant theories of CWR imped-
ance have been investigated in Refs. [11,17,18]. The CSRZ

code was originally developed to calculate CSR imped-
ance, but it can also calculate the CWR impedance for a
rectangular chamber in the limit that the wiggle motion is
much smaller than the chamber dimensions [17]. In this
subsection, we compare the theories and CSRZ calculations
to reveal the field dynamics of CWR.

TABLE I. Preliminary damping wiggler parameters for the EIC
backup ring cooler.

Magnetic field, B T 1.9
Length, L m 7.44
Bending radius, ρ m 0.246
Wiggler period, λw mm 48
Number of poles, Np 155
Vertical full chamber height, b mm 15
Horizontal full chamber width, a mm 45
Number of DWs, Nw 16

FIG. 2. Comparison of CWR impedance in free space and
parallel-plates shielding (full chamber height is 15 mm) for the 16
DWs of the backup storage ring cooler. Blue and red lines are real
and imaginary parts of CWR impedance in free space. Green and
magenta lines are real and imaginary parts of CWR impedance in
parallel-plates shielding (Note that the amplitudes of resonance
peaks should go to �∞ according to Eq. (11). Because of off-
resonance sampling, the plot shows finite amplitudes).

FIG. 3. Comparison of CWR wakefield of a 0.3-mm Gaussian
bunch in free space and parallel-plates shielding (full chamber
height is 15 mm) for the 16 DWs of backup storage ring cooler.
Blue and red lines are for free space and parallel-plates shielding,
respectively.
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1. Analytical approach

For the case of the rectangular-chamber shielding model,
Stupakov and Zhou [11] have presented an analytical
approach using the mode expansion method and obtained
the real part of the CWR impedance

ReZkðkÞ ¼ 4Z0θ
2
0FðkÞ; ð20Þ

where

FðkÞ ¼ k2w
abk

X
m;n

1

kz

�
k2k2y

ϰ2ð1þ δ0;mÞ
þ k2x

�
kz
ϰ
−

ϰ

k − kz

�
2
�

×
sin2½πNpðk − kzÞ=kw�
½ðk − kzÞ2 − k2w�2

; ð21Þ

with the horizontal, vertical, and longitudinal wave num-
bers, respectively, defined by kx ¼ πm

a , ky ¼ πn
b , kz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − ϰ2
p

where ϰ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, and δ is the Kronecker

delta. The function FðkÞ can be simplified to

FðkÞ ¼ k2w
abk

X
m;n

sin2½πNpðk − kzÞ=kw�
½ðk − kzÞ2 − k2w�2

×
1

kz

�
k2k2y

ϰ2ð1þ δ0;mÞ
þ k2xk2

ϰ2

�
: ð22Þ

Equation (20) with Eq. (21) was obtained with the beam
orbit defined by

xðzÞ ¼ θ0
kw

½1 − cosðkwzÞ�; ð23Þ

and further assumption of β̄z ¼ 1. The reader may notice
that Eq. (23) is slightly different from Eq. (1) with a
constant offset. This offset impacts the final formula for
FðkÞ but does not change the key physics of the resonant
structure in CWR impedance. The reader is also reminded
that the mode expansion method was first used to calculate
the coherent undulator impedance in Ref. [18]. It was also
recognized that this method has a challenge in obtaining a
converged formulation for the imaginary part of CWR
impedance [17].
Equation (21) approximates the wiggler radiation

impedance using the first harmonic of the beam motion,
where the waveguide modes are in synchronism with
the beam motion so that only the waveguide modes with
even m and odd n can be synchronized with the p ¼ 1
harmonic. Therefore, the summation in Eq. (21) is for
m ¼ 0; 2; 4; 6;…, and n ¼ 1; 3; 5; 7;…. The synchroniza-
tion function in Eq. (21) is essential in defining the feature
of the impedance spectrum. When the number of periods
Np is large, the impedance spectrum is highly peaked at k
satisfying

k − kz ¼ kw: ð24Þ

As detailed in Ref. [17], the general resonance condition is

k − kz ¼ pkw; ð25Þ

with the index p indicating the harmonic number of beam
oscillation when traversing the wiggler. The resonance
frequencies are found at

km;n ¼
p2k2w þ ϰ2

2pkw
: ð26Þ

Usually, the terms with p ¼ 1, which correspond to
Eq. (20), dominate the impedance spectrum.

FIG. 4. Comparison of CWR impedance in free space and
parallel-plates shielding for the 16 DWs of storage ring cooler.
The full chamber height is 60 mm. Blue and red lines are real and
imaginary parts of CWR impedance in free space. Green and
magenta lines are real and imaginary parts of CWR impedance in
parallel-plates shielding (Note that the amplitudes of resonant
peaks should go to �∞ according to Eq. (11). Because of off-
resonance sampling, the plot shows finite amplitudes).

FIG. 5. Comparison of CWR wakefield of a 0.3-mm Gaussian
bunch in free space and parallel-plates shielding for the 16 DWs
of the backup storage ring cooler. The full chamber height is
60 mm. Blue and red lines are for free space and parallel-plates
shielding, respectively.
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2. Numerical calculation using the CSRZ code

The CSRZ code [5,17] solves the parabolic equation with
curvilinear coordinates in the frequency domain

∂E⃗⊥
∂s

¼ i
2k

�
∇2⊥E⃗⊥ −

1

ϵ0
∇⊥ρ0 þ

2k2x
ρðsÞ E⃗⊥

�
; ð27Þ

where E⃗⊥ ¼ ðEx; EyÞ ¼ ðEx; EyÞe−iks is the slow-varying
amplitude of the transverse electric field ðEx; EyÞ (see
Refs. [17,19] for detailed formulations.), k ¼ ω=c is the
wave number, ρðsÞ is the s-dependent bending radius along
the beam orbit, and ρ0 is the charge density. Here we take
the ultrarelativistic limit γ → ∞, and ∇2⊥ indicates the
transverse Laplacian. Within the paraxial approximation,
the slow-varying amplitude of the longitudinal field is
calculated from the transverse field by

Es ¼
i
k
ð∇⊥ · E⃗⊥ − μ0cJsÞ; ð28Þ

where the current density Js ¼ ρ0c.
Here we illustrate how the paraxial approximation

impacts predictions for the CWR problem. Using
Maxwell’s equation in Cartesian coordinates, in the ultra-
relativistic limit, the exact equation for the slow-varying
amplitude of the electric field is [17]

∂E⃗⊥
∂s

¼ i
2k

�
∇2E⃗⊥ −

1

ϵ0
∇⊥ρ0

�
: ð29Þ

Applying the paraxial approximation conditions of

���� ∂
2Eu

∂s2

���� ≪
����k ∂Eu

∂s

���� ≪ jk2Euj; with u ¼ x or y; ð30Þ

the wave equation [Eq. (29)] reduces to

∂E⃗⊥
∂s

¼ i
2k

�
∇2⊥E⃗⊥ −

1

ϵ0
∇⊥ρ0

�
: ð31Þ

Using Ex as an example, applying the mode expansion
method to the full-wave equation [Eq. (29)] yields the
solution

Ex ¼ Ex0 sinðkxxÞ cosðkyyÞe−iðk−kzÞs: ð32Þ

On the other hand, the analogous mode expansion solution
of the paraxial Eq. (31) is

Ex ¼ Ex0 sinðkxxÞ cosðkyyÞe−i
k2xþk2y
2k s: ð33Þ

It is trivial to derive the approximate Eq. (33) from Eq. (32)
if we assume that

k − kz ≈
k2x þ k2y
2k

¼ ϰ2

2k
: ð34Þ

This approximation is equivalent to (30) for the case of
CWR in a rectangular waveguide. In the context of this
paper, we will use it to discuss resonant conditions that
depend on the beam motion’s synchronism with the wave-
guide modes. Equation (34) can be generalized into

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2⊥

q
≈ k −

k2⊥
2k

; ð35Þ

with k⊥ indicating the transverse wave number defined by
transverse boundary conditions from the chamber. This is
the paraxial approximation for fields propagating inside a
waveguide with a general cross section.

3. Comparison of analytical and numerical calculations

The real and imaginary parts of the CWR impedance for
a constant period damping wiggler are plotted in Figs. 6
and 7. Here, we use the nominal parameters of a potential
EIC ring cooler that has Bw ¼ 1.9 T, λw ¼ 0.048 m,
Np ¼ 158, b ¼ 15 mm, and a ¼ 45 mm, where b and a
are the full vertical and horizontal apertures of the

FIG. 6. Real part of the longitudinal impedance for one DW
with the constant period length.

FIG. 7. Imaginary part of the longitudinal impedance for one
DW with the constant period length.
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rectangular vacuum chamber (Table I). The red traces are
the numerically simulated data by the CSRZ code, whereas
the gray trace is the result of the real part of the longitudinal
impedance from Eq. (20). As can be seen, the spikes
predicted by the two methods are shifted relative to each
other by 3.1 GHz. The difference can be explained as
follows: the CSRZ code solves the parabolic equation
instead of the full Maxwell’s equations. For the problem
of wiggler radiation, the paraxial approximation implies
taking the approximation of Eq. (34), in which case, the
resonant frequencies predicted by CSRZ will be

kCSRZm;n ¼ ϰ2

2pkw
: ð36Þ

Comparing Eq. (36) with Eq. (26), one can see that for
p ¼ 1, the peak positions will be shifted by an amount of
kw=2, which corresponds to Δf ≈ 3.1 GHz for the DW
parameters of the ring cooler shown in Fig. 6.
We also can identify and classify the narrow-band high-

Q peaks predicted by both simulations and the analytical
approach. They all correspond to H mode as illustrated in
Fig. 8. The lowest-order mode in a rectangular vacuum
chamber with Hz ≠ 0 and Ez ¼ 0, and m ¼ 0; 2; 4; 6;…,
and n ¼ 1; 3; 5; 7;…, can be classified as H01 mode at
frequency f1 ¼ 11.1 GHz with a ¼ 45 mm and
b ¼ 15 mm. Hence, the next generated modes are H21

mode, H41 mode, and H61 mode at frequencies
f2 ¼ 14.6 GHz, f3 ¼ 25.3 GHz, and f4 ¼ 43.1 GHz,
respectively. The electric and magnetic field patterns of
the first two modes, H01 mode and H21 mode, are shown
in Fig. 8.
Figure 9 compares CWR wake potentials for three CWR

models: free space steady state (blue line), rectangular
chamber simulated by CSRZ (red line), and two parallel

plates (green line). It is seen that the rectangular chamber
shielding introduces more resonant peaks in the impedance
and oscillatory long tail in the wake potential. The
discrepancy in the short-range wake potentials between
CSRZ and the parallel plates model might come from the
paraxial approximation used in CSRZ calculation. This
needs to be further investigated.

III. DAMPING WIGGLERS WITH A VARIED
PERIOD LENGTH

In this section, we discuss one way to suppress the
narrow-band impedance peaks observed and discussed in
the previous section. The main idea is to spread the
resonance frequency of each mode so that a high-Q peak
becomes broader and smaller in magnitude. This general
technique was first developed and applied for HOM
suppression in the multi-cell accelerator structures [20],
where each neighboring cavity differs in dimensions
(radius and length) from the previous one. The spread in
resonance frequencies can be achieved in a DW by, e.g.,
varying the wiggler period length. This technique is more
convenient for a DW than for an accelerating structure since
we need not to concern ourselves with maintaining the
fundamental mode. In the numerical simulations, the DW
period length is varied as λi ¼ λw þ ði − 1ÞΔλ, where
i ¼ 1; 2; 3;…, Np. The number of periods is Np ¼ 141

and the difference between the following periods is
Δλ ¼ 70 μm. These parameters were chosen to keep the
total length close to the length of the DW with a constant
period. The difference in length between the last and the
first period is within ∼20%, and it is changed from λ1 ¼
48 mm to λ141 ¼ 58 mm. The real and imaginary parts of
the longitudinal impedance for a DW with varied (blue
trace) and constant period (red trace) are presented in
Figs. 10 and 11. The narrow-band impedance has been
significantly suppressed due to the spread in resonant
frequencies. However, the detuned DW does not affect
the short-range wakefield, which is shown in Fig. 12, for a
0.3-mm bunch length.

FIG. 8. Electric and magnetic fields pattern of H01 mode and
H21 mode in a rectangular waveguide.

FIG. 9. Comparison of CWR wake potentials for the backup
ring cooler with 0.3 mm Gaussian bunch. Blue line: free space
model; red line: CSRZ model; green line: parallel plates model.
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IV. INSTABILITY ANALYSIS

For high-frequency impedances with kσz ≫ 1, which is
usually the case for CSR and CWR, the microwave
instability (MWI) threshold can be determined by solving
the dispersion relation for a coasting beam [7]

−ifðIbÞ
ZkðkÞ
k

GðAÞ ¼ 1; ð37Þ

with

fðIbÞ ¼
Ib

2πðE=eÞησ2pσz
; ð38Þ

and

GðAÞ ¼
Z

∞

−∞
dp

pe−p
2=2

Aþ p
; ð39Þ

where A ¼ Ω=ðckησpÞ with η ¼ αc − 1
γ2
the slip factor and

αc the momentum compaction. We simply take η ≈ αc in
this paper with very large γ assumed. The beam is unstable
if Im½Ω� > 0 with Im½� indicating the operation of taking
the imaginary part. The dispersion relation Eq. (37) can be
rewritten as

ZkðkÞ
k

¼ i
fðIbÞGðAÞ

; ð40Þ

with the left side representing the impedance normalized
by frequency and the right side containing machine
parameters.
There are alternative ways of solving Eq. (40) with given

ZkðkÞ=k. Here we present a simple method that utilizes the
explicit solution of Eq. (39) [21]. Assume Im½A� ≠ 0, the
explicit form of GðAÞ is

GðAÞ ¼
ffiffiffiffiffiffi
2π

p
þ iπAe−

A2
2

�
sgnfIm½A�g þ ierfi

�
Affiffiffi
2

p
�	

;

ð41Þ

where erfi½z� ¼ −i 2ffiffi
π

p
R
iz
0 e−t

2

dt is the imaginary error func-

tion and sgn½z� indicates the sign function. Note that Eq. (40)
with Eq. (41) is valid for both positive and negative slip
factors. Furthermore, solutions of Eq. (41) satisfy ΩðkÞ ¼
−Ωð−kÞ� [7] as can be seen by taking the complex conjugate
and using ZkðkÞ� ¼ Zkð−kÞ and GðAÞ� ¼ GðA�Þ. Hence,
we need only consider positive k in what follows.
The criteria for detecting the instability is Im½Ω� > 0.

Then solving Eq. (40) with Im½Ω� ¼ 0 defines a boundary
in the complex impedance plane to detect the instability
threshold [22]. With Im½Ω� ¼ 0, A ¼ Ar becomes real with
its sign depending on the sign of η. For the convenience of
calculation, we rewrite ZkðkÞ and GðArÞ in terms of their
real and imaginary parts as follows:

ZkðkÞ
k

¼ ZrðkÞ þ iZiðkÞ; ð42Þ

FIG. 10. Real part of the longitudinal impedance for one DW
with constant and varied period lengths.

FIG. 11. Imaginary part of the longitudinal impedance for one
DW with constant and varied period lengths.

FIG. 12. Comparison of CWR wakefields for the DW with
constant and varied period lengths for a 0.3 mm Gaussian bunch
length.
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GðArÞ ¼ GrðArÞ þ iGiðArÞ: ð43Þ

With real values of k and Ar, we have

GrðArÞ ¼
ffiffiffiffiffiffi
2π

p
− πAre−A

2
r=2erfi½Ar=

ffiffiffi
2

p
�; ð44Þ

GiðArÞ ¼ sgn½η�πAre−A
2
r=2: ð45Þ

Applying the above variables to the dispersion relation
Eq. (40) yields

GiðArÞ
GrðArÞ

¼ ZrðkÞ
ZiðkÞ

; ð46Þ

fthðGrZi þGiZrÞ ¼ 1: ð47Þ

From the above equations, the threshold bunch current can
be determined as

fth ¼
Zr

GiðZ2
r þ Z2

i Þ
¼ Zi

GrðZ2
r þ Z2

i Þ
: ð48Þ

One can see that the threshold bunch current depends on
the sign of the slippage factor and the aspect ratio of the real
and imaginary parts of the impedance. In practical calcu-
lations, given impedance data at specified k, Eq. (46) is
used to evaluate Ar, and then Eq. (48) is used to find the
threshold current. For positive η, the properties of functions
GrðArÞ and GiðArÞ with real Ar are shown in Fig. 13.
In the following, we test our method with two cases:

Free-space steady-state CSR and CWR impedance models.

A. CSR instability threshold

The impedance model for free-space steady-state CSR is

ZkðkÞ ¼
Z0

31=3

� ffiffiffi
3

p

2
þ 1

2
i

�
Γ
�
2

3

�
ðkRÞ1=3; ð49Þ

where ΓðzÞ is the Gamma function. Note that the real and
imaginary parts have the same scaling law over k, resulting
in Zr=Zi ¼

ffiffiffi
3

p
. The threshold bunch current is further

simplified as

fth ¼
3

4GiZr
: ð50Þ

Applying Zr=Zi ¼
ffiffiffi
3

p
to Eq. (46) and solving the equation

numerically, we find two solutions Ar1 ≈ 0.85 and Ar2 ≈
1.82 (see the crossing points of the green lines and dashed
black lines in the right half plane of Fig. 13), which,
respectively, correspond to Gi1 ≈ 1.86 and Gi2 ≈ −1.09.
The positive and negative values of Gi correspond to the
positive and negative slip factors, respectively. Finally, we
can explicitly write down the formula for CSR single-
bunch instability threshold:

IthðλÞ ¼
35=6ð2πÞ5=3
2Γð2

3
ÞGi

ðE=eÞησ2pσz
Z0R1=3λ2=3

; ð51Þ

with λ ¼ 2π=k the CSR wavelength. Note that the signs of
η and Gi should be the same since the single-bunch
instability threshold should be positive. It is also seen that
the threshold current becomes lower at longer CSR wave-
length. The above formula can be compared with the
scaling law of Eq. (12) in Ref. [7]:

IthðλÞ ≈
4π7=6ffiffiffi

2
p ðE=eÞjηjσ2pσz

Z0R1=3λ2=3
; ð52Þ

for positive slip factor. One can see that with Gi ≈ 1.86,
Eqs. (51) and (52) are very close to each other except for a
small difference in the constant scaling factors (10.75 vs
10.61). With a negative slip factor, the CSR instability
threshold is larger than that of the positive slip factor by a
factor of 1.86=1.09 ¼ 1.74. This is also consistent with the
finding of Ref. [7].

B. CWR instability threshold

With the free-space CWR impedance [Eq. (6)], Zr=Zi is
a function of wave number k. It is not trivial to find a k-
independent solution of Ar in Eq. (46), as we did for free-
space steady-state CSR. The dispersion relation [Eq. (40)]
can only be solved numerically. But with some observa-
tions of the CWR impedance, we can still find a simplified
formulation for CWR instability. Note that in the low-
frequency limit, there is k ≪ kc. Therefore, we can fairly

FIG. 13. The functions GrðArÞ (blue line), GiðArÞ (red line),
and GiðArÞ=GrðArÞ (green line) with real Ar and positive η. The
horizontal dashed lines indicate Gi=Gr ¼ � ffiffiffi

3
p

.
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assume lnðkc=kÞ ≫ 1 when kc=k ≫ 1. This suggests that
Zr=Zi → 0 when kc=k ≫ 1. Then, for positive η, from
Eq. (46), we will have GrðArÞ ≈

ffiffiffiffiffiffi
2π

p
and GiðArÞ ≈ 0 with

Ar ≈ 0, resulting in a threshold of

fth ≈
1ffiffiffiffiffiffi
2π

p
Zi

: ð53Þ

Explicitly, it is written as

IthðλÞ ≈
8π

ffiffiffiffiffiffi
2π

p ðE=eÞησ2pσz
LZ0θ

2
0 ln

2kwλ
πθ2

0

; ð54Þ

where λ ¼ 2π=k is the CWR wavelength and L is the total
length of the wigglers. On the other hand, for negative η,
Zr=Zi → 0 suggests a large Ar for the solution of Eq. (46)
(see Fig. 13) and results in a large threshold current
compared to the case of positive η.

C. Impact of chamber shielding

In the previous analyses, the MWI thresholds for free-
space steady-state CSR and CWR are formulated as a
function of radiation wavelength. The formulas are valid for
a condition when σz ≫ λ and suggest that the MWI
threshold decreases as the radiation wavelength increases.
Since the chamber shielding strongly modifies the function
ZkðkÞ for CSR and CWR impedances, one can expect the
scaling laws of the MWI threshold will also change. In this
subsection, we briefly review the impact of chamber
shielding.
For CSR, the parallel plates shield the low-frequency

fields and increase the CSR MWI threshold [8]. Consider
parallel-plates shielding, Eqs. (51) and (52) are only valid
at wavelengths λ < λCSRc with the cutoff wavelength given
by [4]

λCSRc ¼ 2

ffiffiffiffiffi
b3

R

r
: ð55Þ

On the other hand, the closed chamber creates resonance
spectra in the CSR impedance and may decrease the MWI
threshold [9]. This seemingly contradictory conclusion can
be intuitively explained as follows: The upper- and lower-
chamber walls shield the low-frequency radiation fields and
reduce the perturbation to the beam. The side walls of the
chamber reflect the radiation fields and amplify the
perturbation to the beam [5]. This side-walls reflection is
also interpreted as a synchronization of the waveguide
modes with the beam motion.
Similar to CSR, the parallel plates set a cutoff wave-

length on the CWR at

λCWR
c ¼ 4πkw

k2w þ π2=b2
; ð56Þ

which can be found in Eq. (18) by taking kn ¼ π=b for the
lowest mode. When b ≪ λw ¼ 2π=kw, Eq. (56) can be
further simplified as

λCWR
c ≈

8b2

λw
: ð57Þ

Suppose b ≪ λw ≪ R is applicable for damping rings, one
can find that λCWR

c ≫ λCSRc (it suggests R ≫ λ2w=ð16bÞ is
fairly satisfied). It implies that chamber shielding may be
less effective in suppressing CWR than CSR in damping
rings. In other words, to suppress CWR instability by
chamber shielding, we may have to use a very small
chamber height b. However, the resistive wall impedance,
limitation on the dynamic aperture, and the length of the
damping wiggler need to be addressed.
In addition to shielding, chambers synchronize the

waveguide modes and the beam motion, generating nar-
row-band spikes in the CWR impedance. The narrow-band
CWR impedances may decrease the instability threshold.
Here we only give a qualitative discussion of the impact of
chamber shielding on CWR instability. Using the same data
as Fig. 2 for the case of the EIC backup ring cooler, we can
plot Zr=Zi as shown in Fig. 14. We can see that Zr=Zi has
large values on the resonance frequencies. According to
Eq. (48), the CWR narrow-band impedance can reduce the
CWR instability threshold.

V. CWR-DRIVEN MICROWAVE INSTABILITY IN
THE EIC BACKUP RING COOLER

The storage ring cooler concept for the EIC project has
been discussed in Ref. [15]. In this scheme, the emittance
growth of the proton beam due to intrabeam scattering is
counteracted by a cooling section in which the protons are
copropagated with a high-brightness electron beam. To
achieve the electron emittance required for cooling the
proton beam, the electron ring needs significant radiation
damping provided by 16 damping wigglers. Hence, the
contribution of coherent wiggler radiation to the total

FIG. 14. Zr=Zi as a function of k for the DWs of the EIC
backup ring cooler. The red line is for free-space steady-state
CWR. The blue line is for parallel-plates steady-state CWR.
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impedance of the ring can be significant. The challenges
presented by collective effects are further compounded by
the relatively low electron beam energy and high beam
intensity. The main ring cooler parameters for the collective
effects simulations and instability threshold estimation are
presented in Table II.

A. Instability analysis

The CWR instability threshold can be found by numeri-
cally solving the dispersion relation Eq. (40) with free-
space CWR impedance. The results can be compared with
the prediction by Eq. (54). For demonstration, we choose
I ¼ 2.5 mA and scan λ to find AðλÞ satisfying Eq. (40), as
shown in Fig. 15. It can be seen that for wavelengths
λ > 5.7 mm, there is Im½Ω� > 0 and the beam will be
unstable. Varying the bunch current and repeat solving the
dispersion relation, we can determine the threshold bunch
current as a function of CWR wavelength. At Im½A� ¼ 0,
Re½A� < 1 is guaranteed due to the property of free-space
CWR impedance at low-frequency limit. Note that small
Re½A� justifies Eq. (53).
For the case of EIC backup ring cooler, the bunch current

threshold as a function of CWR wavelength is plotted in
Fig. 16. One can see that the approximate formula agrees

well with the direct solution of the dispersion relation.
Equation (54) also indicates how one might increase the
CWR-driven instability threshold: (i) increase the machine
parameter ðE=eÞαcσ2pσz and (ii) reduce the bending
angle θ0.

B. Vlasov-Fokker-Planck simulations

This section presents predictions obtained using Vlasov-
Fokker-Planck simulations for the EIC ring cooler param-
eters presented in Table II and several impedance models of
the damping wiggler. For this purpose, we wrote a Vlasov-
Fokker-Planck code that splits the update into its
conservative (Vlasov) and dissipative (Fokker-Planck)
parts. The former Vlasov step is done using the method
of Cheng and Knorr [23], wherein the distribution is
transported along the particle trajectories and interpolated
using cubic splines. The latter Fokker-Planck update is
performed using the well-known Crank-Nicolson method.
This basic algorithm was brought to accelerators in, e.g.,
[24]. Finally, we apply the collective force by taking a Fast
Fourier transform of the current profile and using the
impedance. The required resolution is obtained by using
typically 512 spatial and momentum points over 5σs and
padding the temporal current profile with zeroes to get
sufficient frequency resolution for Zk.
The impedance models that we consider here include

unshielded CWR, the parallel plate impedance [Eq. (11)],
and that obtained for a rectangular chamber using CSRZ. In
the latter case, the parabolic equation used by CSRZ gives
unphysical results at very low frequencies, particularly, for
ImZjj. Hence, we have reconstructed the low-frequency
impedance by smoothly matching the numerical impedance
obtained from CSRZ to that of the parallel plates model
as k → 0.
It turns out that these results will be easier to understand

if we first consider the case where the cooler has positive
momentum compaction, αc > 0, and Fig. 17 shows how the
energy spread and bunch length depend upon the single

TABLE II. Main ring cooler parameters.

Energy, E0 MeV 149.26
Circumference, C m 426
Momentum compaction, αc −3.21 × 10−3

Revolution period, T0 μs 1.42
Energy loss, U0 keV 5.933
Synchrotron tune, νs 0.0029
Damping time, σx, στ ms 31.7, 15.71
rf voltage, Vrf kV 19
rf frequency, frf MHz 98.5233
Harmonic number, h 140
Energy spread, σδ 6.5 × 10−4

Bunch length, σs mm 48

FIG. 15. Solution of dispersion relation with I ¼ 2.5 mA for
storage ring cooler. Blue and red lines indicate real and imaginary
parts of A.

FIG. 16. Bunch current threshold as a function of CWR
instability wavelength. Blue solid line is by solving Eq. (37).
Red dashed line is by Eq. (54). The black solid line is the cutoff
wavelength.
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bunch current for αc ¼ 3.21 × 10−3. The top plot predicts a
microwave instability threshold for coherent wiggler radi-
ation to be at about 1.1 mA, which is somewhat less than
the theoretical prediction ∼2 mA shown in Fig. 16. The
instability threshold for the rectangular chamber impedance
derived from CSRZ is just below 3 mA, while that predicted
by the parallel plates model is ∼3.8 mA. Hence, the two-
chamber impedance models have instability thresholds that
are within 25% of each other, being a factor of 2.5 to 3.5
times higher than that of the unshielded CWR.
The lower plot of Fig. 17, which shows the bunch length

as a function of single-bunch current, helps explain some of
the observed discrepancies in the microwave instability
thresholds. In particular, the unshielded CWR leads to
significantly more bunch shortening than the chamber
impedance model since the chamber walls shield the
low-frequency components of the impedance. The bunch
shortening from CWR will in turn lead to a larger peak
current for a given I, which in turn results in a lower
microwave instability threshold. Nevertheless, the observed
difference in peak current is only at the 25%–50% level and
therefore does not completely explain the differences in Ithb .

When the momentum compaction is negative, αc < 0,
the theoretical analysis predicted a larger microwave
instability threshold for both the CSR and unshielded
CWR impedance than the case when αc > 0. In addition,
we expect that bunch lengthening may further increase Ithb .
We plot the simulation predictions for the ring cooler with
αc < 0 in Fig. 18. The top plot shows no evidence of the
microwave instability for the unshielded CWR impedance
when I < 7 mA, and in fact, we found no energy spread
growth for currents I < 15 mA. However, the significant
bunch lengthening shown in the bottom would make this
case undesirable for the ring cooler. The prediction for the
rectangular chamber using the CSRZ impedance indicates an
instability threshold that is ≈1.7 times larger than the case
when αc > 0. Interestingly, this is what is predicted by the
CSR theory; while this relation may result from the
similarity of short-range wakefields as was discussed
previously, we do not think there is sufficient evidence
for such a conclusion.
Furthermore, the collective behavior predicted for the

parallel plate impedance mode is significantly different.
Specifically, the microwave threshold current is lower than

FIG. 18. Energy spread and bunch length dependence on the
single-bunch current for three different impedance models and
αc < 0: the unshielded CWR (purple), the parallel plates model
of Fig. 3 (green), and the predictions of CSRZ shown in Fig. 6
(blue). The ring parameters are in Table II.

FIG. 17. Energy spread and bunch length dependence on the
single bunch current for three different impedance models and
αc > 0: the unshielded CWR (purple), the parallel plates model
of Fig. 3 (green), and the predictions of CSRZ shown in Fig. 6
(blue). The ring is described in Table II but has positive
αc ¼ 3.21 × 10−3.
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that when αc > 0, and we observe significant bunch
lengthening when I > Ith. We believe that these differences
are related to the following qualitative difference in the
unstable motion. For all other cases considered, one can
clearly identify a high-frequency signature in the instability.
We show one such example in the top panel of Fig. 19,
wherein we plot the phase space of the unstable beam for
the rectangular CSRZ impedance and αc < 0 at I ¼ 5.6 mA.
Here, one can see how the impedance drives a high-
frequency perturbation that gets carried by the synchrotron
motion. Similar structures can be observed just above the
threshold for all cases when αc > 0. This should be
contrasted with the bottom panel of Fig. 19, which depicts
the phase space of an unstable beam when I ¼ 2.7 mA for
the parallel plate impedance with αc < 0. In this case, there
is no apparent structure, rather the bunch lengthening and
energy spread growth are associated with the development
of a diffuse halo of particles. We presently do not have a
clear explanation for why this qualitative difference arises.

VI. SUMMARY

We studied the microwave instability in storage rings
driven by CWR impedance in the wave number range of

1=σz ≪ k ≪ kc. The field dynamics and the difference
between the three models for CWR impedance were
discussed in detail. For parallel-plates shielding, we devel-
oped a simple formula of CWR impedance which is useful
for cross-checking of the numerical results. There is no full
analytic theory for rectangular-chamber shielding yet.
Therefore, we use the CSRZ code to obtain the impedance
data for analytical and numerical calculations.
We presented a simple method of solving the dispersion

relation [Eq. (40)] to detect the MWI threshold driven by
high-frequency impedances (i.e., impedances at k ≫ 1=σz).
The method was tested using the free-space steady-state
CSR impedance. It successfully reproduces the CSR
instability threshold found in Ref. [7] for both negative
and positive slippage factors. For the free-space steady-
state CWR impedance, the method predicts a simple
scaling law of the MWI threshold for positive slippage
factor and also shows that the MWI threshold can be very
high for negative slippage factor. The analytical approach is
used to explain the numerically simulated results using a
VFP solver.
By considering three different models of CWR imped-

ances and wakefields, free-space steady-state, parallel-
plates shielding steady-state, and rectangular-chamber
shielding model, we summarize that the short-range
wakefield does not change dramatically, while the long-
range wakefield depends strongly on the presence of the
vacuum chamber. For the case of the EIC backup ring
cooler, which has a large enough kw, we found a 3.1-GHz
frequency shift of the beam spectra simulated by the CSRZ

code. The difference is due to the parabolic equation applied
in the CSRZ code while the analytical approach is based on
solving Maxwell’s equations. The resonance modes of the
CWR narrow-band impedance have been identified and
classified.
The numerical Vlasov-Fokker-Planck simulations show

that the instability threshold depends on the CWR imped-
ance and especially on the low-frequency part of the
longitudinal impedance and sign of the momentum com-
paction. The microwave instability threshold for αc < 0
gets higher for CWR impedance to be compared with the
results for αc > 0, while in a case of the geometric
impedance is vice versa. In a case of the EIC backup ring
cooler and machine and DW parameters discussed in this
paper, the estimated longitudinal microwave instability
threshold due to the CWR impedance of 16 DWs is
Ith ¼ 5 mA, which is smaller than 31 mA of Ref. [15]
for slightly higher energy spread. Based on the recent
progress in the optimization of the ring cooler parameters,
the single-bunch current has been reduced up to ∼10 mA.
Further increasing the energy spread by a factor of 2 (up to
1.2 × 10−3) can help to increase the microwave instability
threshold up to ∼20 mA [see Eq. (54)].
However, for a more accurate analysis of the longitudinal

beam dynamics, the total longitudinal impedance budget,

FIG. 19. Unstable phase space for αc < 0 and the rectangular
chamber impedance from CSRZ at 5.6 mA (top) and the parallel
plate impedance at 2.7 mA (bottom). The former shows evidence
of the narrow-band impedance driving the instability, whereas the
latter is characterized by a broadband halo.
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including the impedance of the vacuum system (geometric
and resistive wall) and CSR impedance (dipole magnets),
needs to be calculated (For example, see Ref. [27] for a case
of SuperKEKB LER where the high-frequency CSR plays
a marginal role.). The geometric and resistive-wall imped-
ances cause potential-well distortion and consequently
modify the longitudinal bunch profile as well as the
synchrotron tune spread. This will affect the CWR effects
on the microwave instability, as seen in the VFP simu-
lations in Sec. V B. Since the vacuum system for the EIC
backup ring cooler is not presently known, we can get a
sense of the relative contribution of the vacuum compo-
nents by scaling the NSLS-II total impedance, Z=n ¼
0.4 Ω [25,26]. Scaling the NSLS-II circumference of
792 m and half-aperture of 12.5 mm to the 426-m circum-
ference and a 30-mm Cu beam pipe radius of the cooler
ring, we expect the cooler to have a Z=n ≈ 47 mΩ. This
would imply a microwave instability threshold of ≈30 mA
according to the Keil-Schenell-Boussard criterion [28],
which is well above the observed Ith ∼ 5 mA due to 16
DWs found in this paper. This simple estimate also
suggests that the CWR is the dominant source in deter-
mining the microwave instability threshold at the EIC
backup ring cooler. The CSR impedance from the dipole
magnets contributes to high-frequency impedance, which
plays a role similar to the CWR impedance in determining
the microwave instability threshold. In fact, the micro-
wave instability in storage rings dominated by CSR
impedances at high frequencies (i.e., k ≫ 1=σz) has been
intensively investigated in light sources (for example, see
Refs. [9,21,29–31]).
Another way to get a feel for the contribution strength of

16 DWs is to compare the wakefields. In Fig. 20, we
compare the total longitudinal wakefields simulated for the
electron storage ring (ESR) of the EIC project vs 16 DWs
for the EIC backup ring cooler with a 0.3-mm (1 ps) bunch
length. The character of the two wakes is very different.
The negative inductance of the 16 DWs (magenta line) is
striking while the more resistive wakefield of the ESR (blue
line) is typical of an optimized storage ring. The difference

is particularly striking since the circumference of the ESR
is 9 times the circumference of the cooler ring. Given the
cooler ring energy of 150 MeV and ampere class beams, it
is not surprising beam stability is a concern.
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