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Standard deep learning methods, such as Ensemble Models, Bayesian Neural Networks, and Quantile
Regression Models provide estimates of prediction uncertainties for data-driven deep learning models.
However, they can be limited in their applications due to their heavy memory, inference cost, and ability to
properly capture out-of-distribution uncertainties. Additionally, some of these models require post-training
calibration that limits their ability to be used for continuous learning applications. In this paper, we present
a new approach to provide prediction with calibrated uncertainties that includes out-of-distribution
contributions and compare it to standard methods on the Fermi National Accelerator Laboratory (FNAL)

Booster accelerator complex.
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I. INTRODUCTION

Particle accelerators are complex multisystem machines
that include a large number of variables with nonlinear
dynamics. To date, accelerator control systems are manually
optimized by experts who are guided by physical principles
whenever possible. Developing high-dimensional, physics-
based models that account for multiple time scales is
extremely challenging. Although, there are accelerator beam
models with impressive and improving precision [1], build-
ing fully comprehensive Monte Carlo-based models of an
entire facility is challenging, if not intractable. Data-driven
methods, such as deep neural networks (DNNGs), are well
suited to capture the dynamics of these nonlinear complex
systems. These surrogate models can then be used to develop
new Al-based control systems provided they can inform the
optimization algorithm on how reliable the predictions are.
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The recent development of DNNs [2—4] has proven itself
useful for complex control problems [5-8]. The use of
machine learning for particle accelerator applications
has grown in recent years to include, but is not limited
to, diagnostics [9-16], anomaly detection/forecasting/
classification [17-21], and controls [22-26]. Although
these studies have shown some impressive results, the
majority do not include any uncertainty quantification (UQ)
to complement their predictions. Unfortunately, the use of
DNNs for online safety-critical applications remains lim-
ited due to issues such as model explainability, in-domain
and out-of-domain prediction and uncertainties, and uncer-
tainty calibrations.

In recent years, there has been an increasing amount of
effort in estimating uncertainties in DNNs. A prediction’s
uncertainty can be separated into the model’s intrinsic
uncertainty (model uncertainty) and the uncertainty caused
by the data (data uncertainty). The model uncertainty
is typically reducible, within limits, by improving the
model architecture and hyperparameters, however, the data
uncertainty is irreducible. Additionally, uncertainty esti-
mation originating from out-of-distribution (ODD) samples
is critical for a number of applications, such as using DNNs
as a proxy to model a dynamical system used for system
control and/or optimization. A deep learning method that
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provides predictive uncertainty is not sufficient for safe
decision making; a deep learning method with properly
calibrated uncertainty is required.

Recent studies that include data-driven, machine learning
(ML)-based surrogate models have started to include UQ
in their models, such as developing a UQ-based surrogate
model of cyclotron-based model [27], modeling the FNAL
booster accelerator complex for a reinforcement learning
application [23], and on uncertainty aware anomalies pre-
diction [17]. Additionally, a recently published study com-
pared the use of Bayesian neural networks (BNNs) and
ensemble methods for particle accelerator applications [28].
In this paper, we compare three different methods to estimate
data-related uncertainties for DNN models as it applies to
modeling the FNAL booster accelerator complex. In Sec. II,
we briefly describe the Fermilab booster accelerator complex
and the data used for training the DNN models in the context
of a control optimization problem. In Sec. III, we introduce
three methods that estimate uncertainty quantification for
DNNs. In Sec. 1V, we present the performance of each
method for in-distribution and out-of-distribution scenarios.
Finally, we conclude with a summary of our results in Sec. V.

II. FERMILAB BOOSTER ACCELERATOR
AND COMPLEX

At 15 Hz, the Fermilab Booster rapid-cycling synchrotron
accelerates each injected batch of 400 MeV protons to
8 GeV and resets to receive the next injection. See Ref. [22]
for a detailed discussion. A central component of the booster
cycle is the gradient magnet power supply (GMPS), which
provides the synchronously rising and falling electrical
current to this circular synchrotron’s main bending magnets,
tracking the energy (and therefore the proton beam’s
magnetic stiffness) upward to extraction before returning
to the injection state.

The throughput efficiency of the synchrotron is sensitive
to unwanted perturbations of the GMPS current, causing
the beam’s trajectory to deviate from the desired path and
scrape on apertures. Such perturbations are understood to
be induced by the power supplies of other nearby synchro-
trons on their own cycles in the accelerator complex,
temperature variations, 60-Hz power line frequency
meanders, and other accelerator complex nuances. A
proportional-integral-derivative (PID [29,30]) regulator
circuit attempts to compensate for these perturbations
with cycle-by-cycle adjustments to the minimum of the
sinusoidal control signal. Figure 1 shows a schematic
overview of the GMPS control environment. See Fig. 2
for a sample distribution of measured errors for the
minimum value of the sinusoidally varying magnet current.

Machine learning techniques promise a new avenue for
developing more sophisticated control agents with better
overall regulation performance, allowing a predictive,
anticipatory approach not encompassed by the reactive
PID regulation paradigm. As the authors in Ref. [22] point
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FIG. 1. Schematic view of the GMPS control environment. The
human operator specifies a target program via the Accelerator
Control Network that is transmitted to the GMPS control board.
The FPGA-based control logic utilizes these settings together with
readings from a reference magnet to prescribe a driving signal to
the GMPS. The effect of this prescribed signal on the bending
magnets is measured by an in-series reference magnet, with
sampled readings transmitted back to the GMPS control board.
Reference measurements and prescribed signals may be logged
and transmitted over the network for later analysis. From Ref. [22].

out, any ML-based GMPS regulator that replaces this PID
circuit is required to deliver stable, fast inference times;
the data intake, forward inference, and generation of the
resulting control signal must always be complete in less
than 66 ms.

Reinforcement learning (RL) was selected as the
approach to train a ML-based agent to act as the GMPS
regulator. RL learns an action policy by training a model
using data describing a system’s states, actions, and the
resulting outcomes. This technique is a natural choice
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FIG. 2. Distribution of fractional measured error in the GMPS

current at the minimum value of the magnet current (prefix B:

indicates booster, I current, MIN miniumum, and ER error), with
the non-ML PID regulator discussed in the text. From Ref. [22].
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because, once a competent agent is in operation, its real-
world performance can be used to provide updated model
parameters, tracking the slowly changing dynamics of the
accelerator complex. At the outset of RL training, the
control agent would be expected to make egregious
mistakes and to learn from them. Thus a surrogate model
is needed, one which captures the dynamics of the booster
GMPS regulator’s control environment, where the agent
can learn from mistakes without risk to personnel, equip-
ment, or the science program they support around the clock.

Surrogate model training and testing data were taken with
the PID regulation circuit in operation. Additionally, a small
amount of data were taken with the regulation circuit off or
with changes to its coefficients. This choice maximized the
available volume of training and testing data, sampling the
changing response dynamics of the GMPS regulation while
minimizing the impact on accelerator operations. The PID
regulator circuit’s residual error is typically only 0.1% of the
injection current minimum. Without regulation, the fitted
minimum of the magnetic field may vary from the set point
by as much as a few percent.

Five-time series were used to produce the surrogate
model, and we use their names as they are logged by the
accelerator control system. (In the accelerator control
system’s data-logging nomenclature, device parameters
with the B: prefix are related to the booster, whereas
device parameters beginning with I : are related to the main
injector. “MDAT” denotes the accelerator (“machine”) data
communication broadcast.) B: VIMIN is the compensating
recommendation for the minimum value of the offset-
sinusoidal GMPS current, issued by the GMPS regulator
in order to reduce the magnitude of B : IMINER, which is a
measure of the residual error. B : LINFRQ is the measured
offset from the expected 60-Hz line frequency powering the
GMPS, in mHz. T:IB and I:MDAT40 provide measure-
ments of the Main Injector bending dipole current at
different points in the circuit and through different com-
munication channels. Among all candidate device time
series analyzed, main injector’s power supplies were shown
in [22] to have the highest Granger [31] causality with
respect to B: IMINER, the minimization control objective
of this application, whose typical value distribution is shown
in Fig. 2.

Table I briefly summarizes the parameters of interest
used in surrogate modeling.

Data were collected nominally at 15 Hz, and due to clock
drift among the front-ends taking those samples, the data as
logged were then time aligned to a periodic reference
signal. Period 0 (June 3, 2019, to July 11, 2019) ended with
the annual Summer Shutdown and Maintenance. Period 1
(December 3, 2019, to April 13, 2020) ended when the
accelerator operations were suspended in response to the
COVID-19 pandemic. More detail on the collection and
preparation of the data can be found in the Data Descriptor
article [32].

TABLE I. Description of dataset parameters chosen by experts
and later validated with a causality study. Here, “MI” means main
injector, “MDAT” means accelerator (machine) data communi-
cation, and device parameters that begin with B are related to
the booster, whereas device parameters that begin with I are
related to the main injector (reused with permission from the
authors of [22]).

Parameter Details (Units)

B:IMINER Setting-error discrepancy at injection (A)
B:LINFRQ 60-Hz line frequency deviation (mHz)
B:VIMIN Compensated minimum GMPS current (A)
I:1IB MI lower bend current (A)

I:MDAT40 MDAT measured MI current (A)

III. MACHINE LEARNING METHODS

There has been a lot of research in uncertainty quanti-
fication for deep learning models which includes, but is not
limited to, BNN [33], deep quantile regression (DQR) [34],
and deep Gaussian process approximation (DGPA) models
[35-38]. In this paper, we do not consider ensemble
methods because these methods require the training of
multiple models and multiple inferences to provide an
uncertainty estimation, making it computationally expen-
sive, slow, and memory intensive. For this paper, we
implemented models for BNN, DQR, and DGPA to better
understand their performance for in-distribution and out-of-
distribution uncertainty estimation and report the results
in the next section. Our specific effort to develop a new
DGPA model is most closely related to the recent paper on
spectral-normalized neural Gaussian process models [37]
for classification. In the following subsections, we discuss
the working mechanism of these methods.

A. Bayesian neural network (BNN) model

Monte Carlo (MC) dropout [33] is a commonly used
approach to estimate the prediction uncertainty for deep
neural network models. The MC-dropout approach has been
shown [33] to overcome the computational challenges of
estimating uncertainty using Bayesian models. The review
by Abdar et al. [39] provides comprehensive details on
estimating uncertainty in deep learning. The initial applica-
tion of MC dropout was to overcome overfitting associated
with deep neural networks (DNN) while training.

The MC-dropout approach relies on introducing a
tunable uncertainty into a network training process by
adding a dropout layer that randomly removes nodes to the
following layer with a set probability (p) at each forward
pass in the training process. While training the DNN with
dropout, the units in a layer are randomly dropped and are
typically used to avoid overfitting, it can also be used
during inference to estimate the uncertainties. In order to
combing the aleatoric and epistemic uncertainty into the
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BNN model, we implemented the loss function in [40] as
shown in Eq. (1)

1 = 1 P12 1 2
ﬁdropout:NZWHyi_yiH +§10g0-(xi)' (1)

i=1

With this loss function, we can account for both sources of
uncertainties and provide a calibrated model. Here y? and
y; are the prediction and measured values, and o is the
model’s predicted noise which is determined during train-
ing by optimizing the dropout level to minimize Eq. (1).

B. Deep quantile regression (DQR) model

DQR is a method used to estimate the conditional
quantiles of a response variable distribution that is more
robust against outliers in the response measurements [34].
We define the conditional quantile function for a nonlinear
relationship in Eq. (2).

0,(tlx,) = Ge(x, w). (2)

Here G,(x,,w) is a nonlinear function that is approxi-
mated by a DNN, x is the input feature vector at time f,
and tth is the conditional quantile. We develop the DNN
model to simultaneously learn predictions based on a set of
defined quantiles. For each defined quantile, the prediction
y¥, and outcome y;, the regression loss for a zth quantile is
given in Eq. (3):

L(y}.yi) = max[e(y; —y7). (= 1)(y; = ¥))].  (3)

As such, DQR provides a comprehensive statistical
model that captures nonlinear relationships by providing
conditional quantiles along with the median, in contrast to
traditional regression methods. In this paper, we imple-
mented a deep learning model with convolutional layers,
similar to the model architecture used for the other methods
discussed in this paper, however, the output layers mapping
to a dedicated quantile value.

C. Deep Gaussian process approximate (DGPA) model

Gaussian process (GP) models use a kernel function to
transform the input data into some higher dimensional
representation. The function utilizes the point-to-point
distance between samples in the new representation to
produce predictions. With this property, it is intrinsically
distance aware and can detect OOD samples based on the
distance from training distribution. Unfortunately, tradi-
tional Gaussian process models (GPs) [41] do not scale
well with large datasets because the calculation grows as
O(N), where N is the number of samples. As such, using
GP on high dimensional data usually requires dimension
reduction, feature extraction, or some other form of
approximation. In contrast, DNNs can be very expressive

and readily applied to problems with large datasets and
high dimensional feature space. Unfortunately, determin-
istic DNNs can make predictions on samples that are
outside their training dataset which are not guaranteed to
be accurate [42] and are unable to identify these predictions
as being OOD. As such, we incorporated the desired
qualities of the GP into the DNN by adding a fixed size
lower rank approximation of the GP with an RBF kernel,
K = ®®7, at the final layer using random Fourier features
(RFF) as defined in [43]. Although this provides an
uncertainty estimation that is distance aware, it iS not
distance preserving because there is no guarantee that
distance between the input data is preserved at the hidden
layer where the GP approximation is applied. In order to
make the DNN distance preserving, we used the bi-
Lipschitz constraint as part of the training loss function,
as shown in Eq. (4).

Ly x||x) = x| < ||hy, = Ay || < Ly X [x) = x| (4)

Here x is the input feature vector and /4, is the last hidden
layer output. To summarize, we implemented the same
model architecture used for the other methods in this paper,
however, we introduced a GP RBF kernel approximation
with 256 RFF and modified the loss function to ensure the
distance between input and hidden layers is preserved using
soft bi-Lipschitz constraint using L1 = 0.75 and L, = 1.25.

IV. RESULTS

Traditional deep learning models are deterministic and
provide a prediction for each input with no measure of
confidence associated with the prediction. Providing meth-
ods with reliable predictive uncertainty for ML models
is critical for real-world applications. As discussed in the
previous section, there are number of methods being
proposed in the literature to make the DL models uncertainty
aware. In this section, we compare the performance of the
methods presented in Sec. III for in-distribution and out-of-
distribution samples as it applies to the prediction for the
FNAL booster accelerator complex. The input samples are
independent and identically distributed (IID) as training data
(in-distribution), if the underlying system/data produces
noisy labels, a DL. model will learn to produce the mean.
We expect the uncertainty values for such predictions to
reliably represent the variance in the underlying data labels.
The input samples that are dissimilar to the training samples,
called OOD samples, are the most difficult for a DL model to
provide the prediction accurately; most of the time, the
model will produce inaccurate predictions leading to unre-
liable results. A prediction without the associated calibrated,
distance-aware uncertainty quantification results in a system
without contextual information required to select a safe
response for a prediction. We require the uncertainty values
for OOD predictions to be high indicating low confidence in
the prediction.
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To compare the results, we trained all the models with
similar architecture and datasets. The models consist of
three convolutional blocks where each block contained a
one-dimensional convolutional layer with 32 filters of size
3 followed by a batch normalization, a max pooling layer,
and a dropout layer with a probability of 0.1. The output of
the third convolutional block is then flattened to process
through a dense layer containing 256 nodes leading to the
output layer. The differences between the three models are
in how they quantify uncertainty. The DGPA model has a
Gaussian approximation layer as the output layer, BNN has
a vanilla dense layer as the output layer but the dropouts are
kept on during inference, and DQR has multiple dense
layers to produce output for different quantiles.

For this study, the raw data were processed using
MinMax scaling and restructured so that 15 previous
timesteps of the input variables were fed into the models
to predict the next timestep forward in the output variables.
We divided the data into orthogonal samples, 80% for
training and 20% for testing. The samples were further
filtered by explicitly excluding contributions when the
main injector lower bound current (I:IB) had a value
that exceeded 0.995. This filter was used to create a in
distribution only training samples that would prevent the
models to see the cyclic high amplitude in the predicted
variable (B : VIMIN). The relationship between the filtered
variable (I:IB) and the predicted variable (B:VIMIN) is
shown in Fig. 3.

A. In-distribution results

For in-distribution input samples, deep learning models
are expected to have accurate predictions with an uncertainty
estimation that is consistent with the training data. To
compare the predictive performance along with the uncer-
tainty quantification for these models we use a set of
standard metrics including R-square, root mean square error

Normalized Amplitude

— LIB
B:VIMIN

0 50 100 150 200 250 300
Time Indices

FIG. 3. Comparison between the main injector lower bend
current and the compensated minimum GMPS current.

TABLE 1II. In-distribution prediction performance for BNN,
DQR, and DGPA models.

Model R? RMSE MACE RMSCE
BNN 0.835 0.032 0.020 0.022
DQR 0.864 0.029 0.015 0.017
DGPA 0.853 0.030 0.014 0.016

(RMSE) between the ground truth labels and the predictions,
mean absolute calibration error (MACE), and root mean
square calibration error (RMSCE) from the uncertainty
toolkit [44]. Table II shows the values of these metrics for
each of the three models before performing any calibration.

All three models have very similar predictive perfor-
mance in terms of R? and RMSE and their uncertainty
estimations as shown in Fig. 4 and Table II.

B. Out-of-distribution results

The majority of ML applications assume that the test
samples for a model are IID and similar to the training
data. Unfortunately, in practice, this assumption does not
always hold. When test data draw from an out-of-training
distribution sample, the trained model is not guaranteed to
produce accurate predictions [42]. Providing an uncertainty
estimation consistent with the distance between in-
distribution and out-of-distribution data is desirable. We
expect the model to produce high uncertainty for inaccurate
predictions and lower uncertainty when the predictions are
accurate. We expect this relationship between uncertainty

Average Calibration

1.04

----- Ideal

—— DGPA Miscalibration Area: 0.01
0.8 —— BNN Miscalibration Area: 0.02

—— DQR Miscalibration Area: 0.07

Observed Proportion in Interval

0.0+

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Proportion in Interval

FIG. 4. Comparison of miscalibration between DGPA, BNN,
and DQR for in-distribution data. The shaded area represents
the amount of miscalibration in the uncertainty estimation with
respect to the true labels.
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FIG. 5. Side-by-side comparison of the predictive performance
as well as uncertainty quantification results for in-distribution and
out-of-distribution samples for DGPA, BNN, and DQR, respec-
tively. The middle region with the high frequency component on
the time series represents OOD samples while the initial and tail-
end regions represent in-distribution data samples.

and error even for the OOD samples. To evaluate the ability
of each model’s technique to estimate the OOD uncertainty,
we created two scenarios detailed below.

1. Scenario 1

For the first scenario, we trained the models with the in-
distribution samples and evaluated their performance using
the full test sample. The top three plots in Fig. 5 show
each model’s predictions and uncertainties using data that
include the OOD samples. As can be seen, the predictions
from all three models degrades in the OOD region, which is
expected. The respective uncertainty values are expected to
correlate to the deviation from the ground truth labels. We
used the same metrics from the in-distribution study to
quantify how close each model is to the ground truth and
present the results in Table III. These results show how close
the models are to the ground truth and are not used as a
calibration study. The R*> and RMSE is similar for all three
models, however, the uncertainty estimation varies. As
shown in Fig. 6, all models underestimate the uncertainty,
however, both the uncertainty predictions from the BNN and
DQR are significantly lower than those from the DGPA.

The DPGA has approximately 3x smaller MACE and
RMSCE than the DQR and BNN which indicated that the

TABLE III. Out-of-distribution prediction performance for
BNN, DQR, and DGPA models.

Model R? RMSE MACE RMSCE
BNN 0.694 0.104 0.252 0.281
DQR 0.836 0.076 0.275 0.309
DGPA 0.784 0.088 0.091 0.100

Average Calibration

1.0
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—— DGPA Miscalibration Area: 0.09
—— BNN Miscalibration Area: 0.25

—— DQR Miscalibration Area: 0.28

0.8
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0.4

0.2

Observed Proportion in Interval

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Proportion in Interval

FIG. 6. Comparison of miscalibration between DGPA, BNN,
and DQR for OOD data. The shaded area represents the amount
of miscalibration in the uncertainty estimation with respect to the
true labels.

overall uncertainty estimation of the predictions are closer
to the ground truth.

2. Scenario 2

Figure 7 shows the second scenario where we mono-
tonically increase one of the key input variables VIMIN
until the data samples enter into a region of feature space
that is out-of-training distribution. VIMIN is chosen
because it is one of the key variables affecting our target.

1.4{ —— VIMIN Data
—e— IMINER Labels M
12) IMINER Predictions: DGPA
1.0] T IMINER Predictions: BNN
""" IMINER Predictions: DQR
0.8
0.6
<
= 0.4
=
e 0.2
E
S 00
S 0.200
S e Prediction Uncertainty: DGPA
g 0175y Prediction Uncertainty: BNN
5 o1so{ Prediction Uncertainty: DQR
zZ
0.125
0.100
0.075
0.050
0.025
0.000
400 410 420 430 440 450 460 470 480 490
Time Indices
FIG. 7. Comparison of the predictive performance with un-

certainty quantification between DGPA, BNN, and DQR, re-
spectively for a manually induced OOD. We manually increased
the VIMIN input variable at time index 450 to induce the
OOD scenario.
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These data samples are then fed into the models for
inference and uncertainty quantification. Since these data
samples are not within the training distribution they are
seen as OOD by the models. Similar to the above-discussed
OOD results, the uncertainty values from the BNN and
DQR are underestimated as compared to DGPA when the
data samples go into OOD region. From Figs. 5 and 6 as
well as the Fig. 7, it is clear that for OOD samples, DGPA
produces more accurate uncertainty estimates as compared
to BNN and DQR, both of which underestimate the
uncertainty values.

V. SUMMARY AND CONCLUSIONS

In this paper, we compared three different DNN tech-
niques that estimate the prediction uncertainty. We present
the DGPA technique as a new approach to estimating
prediction uncertainties; DGPA is self-calibrated and
includes an awareness of out-of-distribution uncertainty.
The results show that all models provide similar perfor-
mance for the predictions for in-distribution, however, the
DGPA provides uncertainty estimations that are closer to
the ground truth for the out-of-distribution Scenario 1.
Although we cannot quantify the explicit expected uncer-
tainty for Scenario 2, we can see that the uncertainty
estimation from the DPGA is larger than the other two
methods where the DQR provides a very small uncertainty
estimation. In conclusion, the results from this study on the
FNAL booster accelerator complex data suggest that the
DGPA model provides the best single inference calibrated
data-driven ML-based model for in- and out-of-distribution
uncertainty estimation for all scenarios. This was achieved
by using a fixed size GP RBF kernel approximation and
applying the bi-Lipschitz constraint in the loss function.
Additional research should be conducted to better under-
stand the trade-off from kernel approximation size and how
this can be applied to real-time systems where the hardware
could be a constraint.
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