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Recently, reinforcement learning (RL) algorithms have been applied to a wide range of control problems
in accelerator commissioning. In order to achieve efficient and fast control, these algorithms need to be
highly efficient, so as to minimize the online training time. In this paper, we incorporated the beam position
monitor trend into the observation space of the twin delayed deep deterministic policy gradient (TD3)
algorithm and trained two different structure agents, one based on physical prior knowledge and the other
using the original TD3 network architecture. Both of the agents exhibit strong robustness in the simulated
environment. The effectiveness of the agent based on physical prior knowledge has been validated in a real
accelerator. Results show that the agent can overcome the difference between simulated and real accelerator
environments. Once the training is completed in the simulated environment, the agent can be directly
applied to the real accelerator without any online training process. The RL agent is deployed to the medium
energy beam transport section of China Accelerator Facility for Superheavy Elements. Fast and automatic
orbit correction is being tested with up to ten degrees of freedom. The experimental results show that the
agents can correct the orbit to within 1 mm. Moreover, due to the strong robustness of the agent, when a
trained agent is applied to different lattices of different particles, the orbit correction can still be completed.
Since there are no online data collection and training processes, all online corrections are done within 30 s.
This paper shows that, as long as the robustness of the RL algorithm is sufficient, the offline learning agents
can be directly applied to online correction, which will greatly improve the efficiency of orbit correction.
Such an approach to RL may find promising applications in other areas of accelerator commissioning.
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I. INTRODUCTION

In the particle accelerator, the particles usually deviate
from the ideal orbit due to errors of the dipole field and
alignment errors of the magnets, resulting in orbital dis-
tortion, which leads to degradation of machine performance
and even failure. Orbit correction is the most basic step of
accelerator beam adjustment and is also one of the most
widely studied procedures in accelerator operation. At
present, the commonly used orbit correction methods are
based on MICADO [1] and singular value decomposition
(SVD) [2,3]. The core of these methods is the response
matrix, where the corresponding corrector strength is

calculated through the response matrix and the beam
position monitor (BPM) data. Although these methods have
the advantage of being conceptually very simple, they have
several important limitations as the number of parameters to
control increases [4], such as the necessary and time-
consuming remeasurements of the responsematrix, retuning
of the controller parameters, and increased control impre-
cisions due to inaccurate measurements of the response,
etc. For SVD, in our experience, as long as the beam or
lattice is changed, its response matrix needs to be remeas-
ured, which generally takes 4–5 min with the same degrees
of freedom. A time-efficient and universally applicable orbit
correctionmethod can significantly reduce the time required
for beam-line adjustments after each beam replacement.
Recently, investigation of reinforcement learning (RL)

for certain accelerator control problems has become
increasingly important. Many laboratories have studied
RL algorithms already for various control problems, such
as orbit correction, beam stability, longitudinal phase space
manipulation, etc. [5–8]. The idea of using machine
learning for more efficient orbit correction first emerged
in the 1990s [9], but early attempts were limited to the
development of computer performance and machine
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learning itself. Therefore, many relevant achievements have
not appeared until the past decade. For example, Meier,
Leblanc, and Tan reported that the actor-critic network can
correct the beam trajectory of the storage ring with fewer
variables [10]. Ruichun et al. realized the online correc-
tion of electron orbits in the high-performance electron
storage ring of Shanghai Synchrotron Radiation
Facility by using the neural network trained by BPM
historical data [11]. Similar work was also reported by the
Beijing Electron Positron Collider [12]. Kain et al.
reported that a sample-efficient RL algorithm normalized
advantage function was successfully trained at the CERN
AWAKE electron line and the H− accelerator LINAC4
[13]. Because of the efficient convergence algorithm, the
online time of orbit correction can be shortened to 20 min
at the fastest.
For most of the above work, the RL agents were first

tested in the simulation environments. Because of the
difference between simulated and real accelerators, online
training is still needed when applying the agents to a real
accelerator. In order to realize real-time orbit correction,
it is necessary to improve the learning efficiency of the
algorithm as much as possible, so as to minimize the
online training time of the agent. In this paper, we propose
a new scheme that the RL agents can be used directly
without further online training processes. The basic
architecture of the agents is TD3 [14], which is based
on the deep deterministic policy gradient [15] algorithm
and is especially suitable for solving continuous control
problems. In this paper, several improvements are
employed to enable the TD3 algorithm to be used for
fast orbit correction: The BPM trend is incorporated into
the algorithm which enables the agent to learn an invariant
relationship of the process of orbit correction. And the
reward function is designed to encourage the agent to
make decisions toward smaller BPM readings by observ-
ing the trends of it. The method enables agents to
understand BPM trends rather than simply learning the
relationship between BPM readings and correctors.
Therefore, the agents themselves are embedded with
sufficient robustness to overcome the difference between
the simulated and the real environments. To verify the
effectiveness of the improvements, we used two TD3-
based agents with different network structures: One agent
used a physical prior-knowledge-based network, while the
other agent used the original TD3 network structure.
The agents were first trained in the simulated environ-

ment built by software TraceWin [16]. Then we deployed
the agents directly on the medium energy beam transport
(MEBT) section of China Accelerator Facility for
Superheavy Elements (CAFe II) [17,18]. The experimen-
tal results show that the agents can correct the orbit in the
MEBT section to within 1 mm. And all corrections are
done within 30 s. Moreover, due to the reconstruction of
the observation for the agent, when applied to different

lattices of different particles, the agents are still valid.
Compared with previous studies, our RL agents can skip
the online training processes and data collection, which
shows wide potential for improving the beam commis-
sioning efficiency of accelerators.
The paper is organized as follows. In Sec. II, a brief

introduction of RL and the orbit correction scheme, as well
as the simulation and experimental environments, is
described. The two agents and the introduction of reward
function are given with necessary details. The result and
discussion are presented in Sec. III. The agent was first
trained and tested on the virtual accelerator. Then the
experimental results on CAFe II are given. A conclusion is
made in Sec. IV.

II. METHOD

Figure 1 is the overview of our procedure for the orbit
correction task. The agent is first trained in a simulated
environment; then, we applied the agent on the MEBT
section of CAFe II without any further online training
procedure. The main challenge of our scheme is to over-
come the difference between the simulation and the real
environment. We designed the agents according to the
experience of accelerator commissioning engineers; they
first observe the trend of BPMs and then determine the
corrector magnet strength by the trend. The experience
inspired us to design agents to complete this task in a
similar way. Thus, we combined the BPM’s current reading
and its historical change as the input of the actor network in
the TD3 algorithm rather than just the BPM readings.
Meanwhile, the reward function also guides the agent to
correct the trajectory in the right direction. Here, two
different TD3-based network structures of actor are used
to verify the effectiveness of incorporating the trend of
BPM change in the observation space.

A. Reinforcement learning

Orbit correction for accelerators is a typical optimization
problem. Its goal is to make BPM readings close to 0 by
adjusting the strength of the correctors. Reinforcement
learning is well suited to this problem. The paradigm of RL
is shown in the left part in Fig. 1, which is mainly
composed of an agent, environment, state of environment
(observation for agent), action, and reward. The agent
decides an action by observing the current state of the
environment. After the agent executes the action, the
environment will move to a new state, and the environment
will give a reward (positive or negative reward) for the new
state. This process can be described as a Markov decision
process, which means that the state of time tþ 1 is
determined only by the state of time t. A training process
of RL can be defined as that an agent seeks an optimal
strategy by interacting with the environment to maximize
the expected cumulative reward.
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There are two main types of RL methods: value-based
and policy-based methods. A value-based method learns a
policy by maximizing the Q-value function, denoted
Qπðs; aÞ, which represents the long-term benefits of taking
action a under state s by following policy π. It can be
expressed as

Qπðs; aÞ ¼ Eπ

�XT
k¼0

γkrtþkþ1jst ¼ s; at ¼ a

�
; ð1Þ

where E is the expectation value operator, T is the
remaining steps from state s ¼ st till the end of the episode,
and γ is the discount factor which indicates how much
importance we want to give to future rewards. r is the
reward, feedback from the environment when the agent
performs action a in state s. A policy-based method learns
an agent by seeking the optimal policy directly without the
Q-value function. The actor-critic framework combines the
value-based and policy-based into a more efficient method.
The actor observes the state of environment and outputs the
best action. The critic evaluates the action by calculating
the Q-value function. With the training process of the
policy network and value function network, the critic
guides the actor to find the optimal policy by temporal
difference error gradually, which is also one of the core
ideas of TD3. An explore noise is added to the actions of

the agent for exploring the environment adequately. In
TD3, the actor is fixed for a certain number of steps while
updating the two critics with each step. This improves the
stability of the policy network in training process, and the
number of fixed steps is defined as update frequency in
this paper.

B. Environment

A virtual beam line is constructed by TraceWin according
to the MEBT section of CAFe II. The structure of the
MEBT section is shown in Fig. 2. The MEBT is a 2.6975-m
long section consisting of six quadruple magnets (Q1–Q6)
and two bunchers. Six groups of corrector magnets are set
in the middle of quadruple magnets, while five groups of
BPMs are installed.
The front five groups of corrector magnets are employed

to correct the orbit of the beam in the x and y directions,
while four groups of BPMs are used to probe the positions
of the orbit. Thus, the input dimension of the actor is 8, and
the output is 10. In order to simulate the offset of the beam,
we added random errors for each element in TraceWin.
With an error range of �0.5 mm, the maximum deviation
of the BPM readings can reach up to 9 mm. We develop a
PYTHON wrapper to combine TraceWin and an environment
to communicate with the agent based on OpenAI gym
framework [19]. At the beginning of each episode, the
currents of each corrector magnet are transmitted to TraceWin

FIG. 1. Overview of the orbit correction method. The agent interacts with a simulation environment which is built by TraceWin. The
agent determines the values of the corrector magnets according to the variation of the BPM readings. The goal of the agent is to
maximize the expectation of reward in each episode. Once the model is trained on the simulated environment, it can be evaluated on
CAFe II without any online data.
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and dynamic simulations are performed. After simulations,
each BPM reading is transmitted back to the agent. The
agent should learn a policy to correct the orbit of the MEBT
section by automatically selecting the current of all
corrector magnets. The target of the agent is to make the
rms of BPM readings less than 0.5 mm. The max time step
of the orbit correction task is set to 30 as one episode in our
experiments, which means that the agent should complete
the mission in 30 time steps.
The CAFe II accelerator control system offers a PYTHON

package (PYEPICS) to communicate with the hardware
system. After training, we also built an environment on
CAFe II, in which the corrector strength as well as the BPM
readings are from the real accelerator instead of TraceWin.

C. Improvement of the agents based on TD3

The typical actor of TD3 is a neural network with an
architecture as sketched in Fig. 3. The input of the network

is BPM readings (B), followed by two full-connect hidden
layers with 256 nodes. The output of the network is the
strength of the correctors (M). However, this kind of input
does not contain the trend of BPM reading evolution, of
which is crucial in the orbit correction procedure.
In the actual accelerator, the installation positions of the

BPM, the magnetic field of the correctors, and the beam
state are different from those in the ideal simulation
environment. If the BPM readings are directly taken as
the observation in the TD3 network, the network trained in
the simulated environment will not reflect the corrector-
BPM mapping relationship in the real accelerator. In
contrast, although there are differences between real and
virtual accelerator environments, the main trend of correc-
tor-BPMmapping is similar. Therefore, if the trend of BPM
is taken as the observation of a TD3 network, agents trained
in a simulated environment can also describe the corrector-
BPM mapping relationship in a real accelerator to a certain
extent, thus bridging the difference between virtual and real
accelerator environments and enhancing the robustness of
agents.
Thus, we propose a smart strategy in this paper: After

changing the current of the corrector magnets (ΔM), a
combination of both the BPM readings (B) and their
changes (ΔB), rather than just the BPM readings alone,
will be used as the observation value for the next step. We
define the BPM reading at time t ¼ i as Bi and Bxj

i as the
reading of the jth x-direction BPM at time t ¼ i. All eight
BPM readings are defined as follows:

Bi ¼ ½Bx2
i;By2

i;Bx3
i;By3

i;Bx4
i;By4

i;Bx5
i;By5

i�: ð2Þ

The currents of the corrector magnets Mi at time t ¼ i are
defined as follows:FIG. 3. Typical network structure of a TD3 actor.

FIG. 2. The structure of the MEBT section of CAFe II. Q1–Q6 are the quadruple magnets, and M1–M5 are the correctors. Since the
position of BPM1 is at the entrance of the MEBT section and the correctors cannot affect its reading, only BPM2–5 are used.

CHEN, JIA, QI, WANG, and HE PHYS. REV. ACCEL. BEAMS 26, 044601 (2023)

044601-4



Mi ¼ ½Mx1
i;My1

i;Mx2
i;My2

i;Mx3
i;My3

i;Mx4
i;

My4
i;Mx5

i;My5
i�; ð3Þ

Mi ¼ Mi−1 þ ΔMi; ð4Þ

where ΔMi is the variation between time t ¼ i − 1 and
t ¼ i of the magnets.
To validate the effectiveness of incorporating the trend of

BPM in the observation space, two actors with different
network structure are designed to be tested. The first one is
designed according to the experience of accelerator com-
missioning engineers. For simplicity, we call it the physical
prior-knowledge-based network. To separately observe the
variation trend of each BPM, we reconstructed the obser-
vation OBmodified as follows:

OBmodified ¼ ½ΔBi−1;ΔBi; Bi�T; ð5Þ

ΔBi ¼ Bi − Bi−1; ð6Þ

ΔBi−1 ¼ Bi−1 − Bi−2; ð7Þ

where ΔBi is the variation of BPM readings between t ¼ i
and t ¼ i − 1. Since the BPMs in the x and y direction in
the MEBT section are decoupled, we separated the
OBmodified in two parts, which is shown in the blue part
in Fig. 4. Because of the properties of the observation, the
agent needs to observe the state of BPMs column by
column, 3 × 1 convolutional kernel is very suitable for

observing the trend of each BPM in our case. Therefore,
we added a convolutional layer between the input layer and
the first hidden layer of TD3’s actor network structure.
Figure 4 illustrates the structure of the convolution layer.
The second one used the original structure of the TD3 actor
which is shown in Fig. 3, and the input of this actor
OBoriginal is defined as follows:

OBoriginal ¼ ½ΔBi−1;ΔBi; Bi�; ð8Þ

and the output is the variation of the correctors ΔMi.

D. Reward function

The total reward rtotal of a single time step is defined as
follows:

rtotal ¼ rdistance þ rtrend þ rvalue; ð9Þ

where rdistance is the distance reward, rtrend is the trend
reward, and rvalue is the value reward. The distance reward
is defined as the Euclidean distance between the BPM
readings and zero. Its formula is as follows:

rdistance ¼ −
1

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼0

½ðBxjÞ2 þ ðByjÞ2�
vuut ; ð10Þ

whereN is the total group of BPMs, in our caseN ¼ 4. The
second component of the reward is referred to as the trend

FIG. 4. The convolutional layer between the input layer and the first hidden layer. With four 3 × 1 convolution kernels for both x and y
directions, the output of each direction is a 16-dimensional vector; then join the two vectors directly as the input of the next
hidden layer.
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reward. The absolute difference of BPM readings at t ¼ i
and t ¼ i − 1 is calculated first, which is defined as
ΔBabs ¼ jBij − jBi−1j. Then, we iterated through each
element Δb in the vector ΔBabs, and the reward for each
element rtrend single is defined as follows:

rtrend single ¼
�
1=N; Δb < 0;

−3=2N; Δb ≥ 0:
ð11Þ

The total trend reward rtrend is the sum of all the rtrend single

of each element. The value reward rvalue has been designed
to make the BPM reading smaller during the tuning
process. To calculate rvalue, each element b of the vector
Bi should be iterated, the reward rvalue single for each
element is defined as follows:

rvalue single ¼
�−jbj × 2; jbj > 1;

ð1 − jbjÞ × 2; jbj ≤ 1;
ð12Þ

and the rvalue is the sum of all rvalue single.
To minimize the number of steps required for the agent to

complete the correction, the remaining steps in each episode
are also used as part of the reward. When the agent corrects
all of the BPM readings below 1 mm within 30 time steps,
the agent will receive five points as the reward.

E. Hyperparameters

We tested the two types of agents in a simulated
environment. One is based on the original network of
TD3. The network is composed of four layers, including an
input layer and two hidden layers with 256 nodes each and
an output layer with ten nodes. The physical prior-knowl-
edge-based one adds the special convolutional layer
between the input layer and the first hidden layer. The
learning rate was set to 3 × 10−4 for both actor and critic
neural networks during the training process, and the batch
size was set to 512. The explore noise of the agent was set
as 0.2, and policy update frequency was set to 15, both of
which are crucial for the TD3 agent. The range of ΔM was
limited to −0.5 to 0.5. For theQ-value function in TD3, the
discount factor of gamma was set to 0.98.

III. RESULT AND DISCUSSION

A. Simulation

At the beginning of each episode, we set the initial
current values as M0 and M1 for the correctors:

M0 ¼ ½0; 0; 0; 0; 0; 0; 0; 0; 0; 0�; ð13Þ

M1 ¼ ½0.3; 0.3; 0.3; 0.3; 0.3; 0.3; 0.3; 0.3; 0.3; 0.3�: ð14Þ

All of the missions start from this initialized status for the
agent. The two agents are first trained in the simulated

environment with the lattice of 40Ca13þ, whose parameters
are shown in Table I and the result is shown in Fig. 5.
According to the results shown in Fig. 5, the trained model
at 15 000 time steps was chosen to evaluate on the
simulated environment. The results are shown in Fig. 6.
Figure 6(a) shows the results of applying the agents

trained by 40Ca13þ to the orbit correction of 40Ca13þ.
Figure 6(a)(1) shows how many steps the agents spent
to correct the orbit rms of 40Ca13þ to less than 0.5 mm in
each of the 20 experiments. Figure 6(a)(2) presents a
comparison between the initial orbit rms and the corrected
orbit rms for the two agents. Figures 6(a)(3) and 6(a)(4) are
one random sample in the 20 sets of experiments which
show the orbit before and after correction in the x and y
directions, respectively. The results indicate that the agent
based on physical prior knowledge can correct the rms of
the orbit to below 0.5 mm within 18 time steps, while the
agent based on the original TD3 network structure can
achieve this in six time steps.
In order to verify the robustness of the model, we added a

�30% random error to the strength of all quadrupole
magnets, which is a large-scale error for the lattice. The
results are shown in Fig. 6(b). Both of the agents correct the
orbit to better than the 0.5 mm rms target within nine time
steps. The result shows that our agents are not sensitive to

FIG. 5. The smoothed reward curves during the training
process.

TABLE I. Quadruple magnetic strength of 40Ca13þ, 55Mn18þ,
and a proton in the MEBT section. The values are the magnetic
field gradient of quadruple magnets, which will be setting to both
TraceWin environment and CAFe II.

Particles
Q1

(T=m)
Q2

(T=m)
Q3

(T=m)
Q4

(T=m)
Q5

(T=m)
Q6

(T=m)
40Ca13þ 15.80 −19.35 14.95 −11.95 14.55 −9.41
55Mn18þ 13.50 −18.32 14.80 −11.28 13.46 −8.22
Proton 4.33 −5.72 4.81 −3.99 4.62 −2.53
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the error of the quadruple magnet strength; they also
can correct the orbit effectively in this situation. The
incorporation of the BPM trend mentioned in Sec. II can
effectively improve the robustness of the agents, which
enables the agent to complete the orbit correction task when
there is a large quadruple magnet error in the lattice. This is
extremely crucial for the agents to switch from a simulated
environment to a real accelerator environment directly.
Because of the strong expansibility of the algorithm,

these agents can not only solve the difference between a
real and a virtual accelerator, but also can be used to correct
the orbit of different lattices. Moreover, for particles with
different specific ratios, the only difference in their trans-
mission in the MEBT section is that they have different
responses to the magnetic field, which is similar to the case
of particles transmitting in different lattices. Therefore,
these agents have potential to be applied to lattices of
different particles. We attempted to use the agent trained

with 40Ca13þ to correct the orbit of 55Mn18þ and a proton.
Parts of lattice parameters are shown in Table I. These
findings in Figs. 6(c) and 6(d) are consistent with the
concept that the agent is not sensitive to the type of particle.
Both of the agents correct the orbit of 55Mn18þ better than
0.5 mm rms within 16 time steps and a proton within 21
time steps.

B. Online correction on CAFe II

The physical prior-knowledge-based agents trained in
simulated environments are applied on CAFe II without
any further operation. Three experiments are performed:
(i) agent trained in a simulated 40Ca13þ lattice to the real
40Ca13þ lattice, (ii) agent trained in a simulated 55Mn18þ

lattice to the real 40Ca13þ lattice, and (iii) agent trained in a
simulated Mn lattice to the real proton lattice. The
parameters of different lattices are shown in Table I and

FIG. 6. 20 sets of experiments were performed for the two agents, using the same rms value as the initial setting for each experiment in
every set. In this chart, CNN represents the agent based on physical prior knowledge, and DNN represents the agent with the original
network structure of TD3. (a) Use the agents trained with 40Ca13þ to correct the orbit of itself. (b) Use the agents trained with 40Ca13þ to
correct the orbit of itself with additional �30% random error in the origin lattice. (c) Use the agents trained with 40Ca13þ to correct the
orbit of 55Mn18þ. (d) Use the agents trained with 40Ca13þ to correct the orbit of the proton.
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the correction results in Figs. 7(a)–7(c), respectively. The
fifth BPM in CAFe II broke down during the experiments,
so we set its parameters to zero in all cases and three BPMs
are used as the observation actually. Figure 7(a) shows the
result of using the agent trained with 40Ca13þ in a
simulation environment and applied to 40Ca13þ on CAFe
II. The agent corrected the orbit of 40Ca13þ better than 1 mm
within six time steps and 13 s, and the final rms is 0.72. The
agent trained with 55Mn18þ corrected the orbit of 40Ca13þ
better than 1 mm within five time steps and 11 s,
and the final rms is 0.64, which is illustrated in Fig. 7(b).
Figure 7(c) presents the result of using the agent trained
with 55Mn18þ and applied to a proton on CAFe II. The
agent corrected the orbit of the proton better than 1 mm
within 14 time steps and 30 s, and the final rms is 0.6,
which is in good agreement with the results of the
simulation experiment. The model we trained in a simu-
lation environment can complete the task of orbit correction
on a real accelerator without any retraining. And the agent
is not sensitive to the error of quadruple magnets. The agent
was deployed on an industrial personal computer for CAFe
II control without a GPU, and all orbit correct tasks have
been completed within 30 s in the real accelerator, which
enables the agent to be used in a fast orbit correction task.
The experiments on CAFe II have proved that the agent we
trained on a simulation environment can apply to the real
accelerator without any further data collection or retraining.

Our agent is efficient enough for CAFe II; even the lattices
of simulation and real accelerators are quite different.

IV. CONCLUSION

For fast orbit correction, the main challenge is how to
overcome the gap between real and simulated environ-
ments, so that the agents trained in the simulations can be
directly applied to real accelerators. This paper proposed a
novel approach to enhance the reinforcement learning
method for achieving rapid orbit correction by incorporat-
ing the BPM trend. TD3 algorithm is adopted as the basic
architecture of the agents, while several improvements are
made to realize robustness. These improvements enable
the agent to understand the evolution trend of the BPM in
the orbit correction process rather than simply learning the
relationship between BPM readings and magnetic strength
of correctors. Once the training is completed, the agents
will adjust the beam trajectory based on the BPM evolution.
Thus, the agents are not highly dependent on lattice
parameters or particle types. The effectiveness of both
the physical prior-knowledge-based agent and the original
TD3 agent was verified in the simulated environment, and
the results indicate that they both have strong robustness.
We applied the physical prior-knowledge-based agent to

the MEBT section of CAFe II, and the results indicate that
the agent can correct the orbit of 40Ca13þ to better than
1 mm within 15 s. Considering the powerful generalization

FIG. 7. The results of the agent on different beam lines. (a) Trained with 40Ca13þ in a simulation environment and applied to 40Ca13þ on
CAFe II. (b) Trained with 55Mn18þ in a simulation environment and applied to 40Ca13þ on CAFe II. (c) Trained with 55Mn18þ in a
simulation environment and applied to a proton on CAFe II. The gray dotted line represents that the BPM reading is equal to 1 or
−1 mm.
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ability of the agent, we applied the agents to different lattices
of different particles on CAFe II. The agent is first trained on
a 55Mn18þ lattice in a simulated environment, and then it is
used to correct the 40Ca13þ and proton lattices on CAFe II.
Both of the orbits can be corrected to within 1 mm, and the
time consumed is 11 and 30 s, respectively. The results are
consistent with the concept that our agent is not sensitive to
the lattice. These RL agents will have wide potential for
improving the beam commissioning efficiency of acceler-
ators. The approach we proposed to RL may find promising
applications in other areas of accelerator operation.
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