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The accurate calculation of the beam coupling impedance for particle accelerators is necessary to
carefully assess the machine stability against impedance-driven collective effects. A first order evaluation
of the beam coupling impedance is often done by means of analytical formulas and/or 2D numerical codes.
The infinite length approximation is often used to simplify the calculation of the beam coupling impedance
of accelerator elements. This is expected to be a reasonable assumption for devices whose length is greater
than the transverse dimension but may be a less accurate approximation for segmented devices. In this
work, we present the application of the mode matching method to the calculation of the transverse dipolar
impedance of a cylindrical cavity loaded with a toroidal insert. By choosing different insert electromagnetic
properties (permittivity, permeability, and conductivity) and dimensions, the model can represent a beam
pipe, a thin insert, a lossy cavity, or a collimator for which the effect of the finite length is investigated. The
method is successfully benchmarked against available analytical formulas, field-matching codes, and 3D
commercial solvers. The proposed model allows for performing wide parametric scans and reaching
accurate results, therefore becoming an essential tool for the impedance evaluation of accelerator devices.
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I. INTRODUCTION

The impedance evaluation of finite length devices, in
particular simple cavities, has been mainly approached by
means of the field matching technique [1-6], i.e., imposing
the electric and magnetic fields continuity at the boun-
daries between the finite length device and the incoming
and outgoing beam pipes or by means of numerical
methods [7-11]. In our previous work [12], we rigorously
studied the longitudinal beam coupling impedance of a
cavity loaded with a generic linear, isotropic, stationary,
dispersive, homogenous, toroidal material, by means of the
mode matching method [13,14], which is based on the
modal expansion of the cavity fields whose coefficients can
be directly related to the external fields at the interfaces.
The present study focuses on the evaluation of the trans-
verse dipolar impedance, complementing the work of [12]
to develop a new tool for the impedance evaluation of
accelerator devices.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOL

2469-9888 /23 /26(4)/042001(18)

042001-1

This paper is divided into three parts: in Sec. II, we recall
the theoretical background of the mode matching method; in
Sec. III, we derive the electromagnetic fields scattered in the
structure; in Sec. IV, we show the applications and bench-
marks for significant cases in accelerators. We compare our
model with the classical thick wall formula for resistive wall
impedance and with a commercial particle wakefield sim-
ulator. The impedance dependency on the device length will
be also studied in order to assess the validity of the usual
“infinite length” approximation and to characterize the
presence of trapped modes. Since the used approach is
non-ultrarelativistic, we also study the impedance behavior
as a function of the relativistic particle beam velocity.

II. THEORETICAL BACKGROUND

In this section, we show the expressions of the electro-
magnetic field decomposition in a closed volume. The
derived equations are the basis for the mode matching
method.

Given a volume V, enclosed in an ideal surface S =
Sg U Sy, with Sg perfect electric, and Sy perfect magnetic
boundary surfaces, the scattered electromagnetic fields E
and H may be decomposed by means of the Helmholtz
theorem in summation of irrotational and solenoidal
modes which constitute a complete set of orthonormal
functions [13,14]. We can write

Published by the American Physical Society
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TABLE I. Eigenvector equations.
Eigenvector InV On S =SUSy
e, V xe,=k,h, noxe —0 on Sy
onSy
fn=Vao V2, + 2@, =0 ®, =0; onSg
oD, /on = onSy
h, Vxh,=k,e, “h,=0; onSg
no X h,=0; onSy
g, = V¥, V¥, +12¥, =0 0¥,/on=0; onSg
¥, =0; onSy

E=Y Ve, +Y Ff. (1)

where &, and h,, are solenoidal and f, and g, irrotational
orthonormal eigenvectors.

Table I summarizes the eigenvectors together with their
corresponding differential equations and boundary condi-
tions. In this formulation, 7 is the unit vector normal to S
pointing internally to the volume, while k,, u,, and v,
represent the eigenvalues corresponding to the eigenvectors.

Since the eigenvectors are determined by the geometry of
the structure under study, the problem reduces to finding
the coefficients V,, F,, 1,, and G,. For the reader’s
convenience, we report the expression of the expansion
coefficients already derived in [12] with Z, = 1/Y,, the
characteristic impedance and k = w/c, the propagation
constant in vacuum, with @ = 2zf, the angular frequency.

1 .-

S
—k,,/ (éanI)-ﬁOdS), (3)
N
1 R
Vv, R JkZ, | (e; x H) - iydS
n S,
+k, / (Ex ht) - iy dS), (4)
Sk
Yo [ . .
G,=Jj7 (E x gy) - fipdS, (5)
Sk
Lo [ 5 2 4
B, =22 [(f T s (©)
Sg

It is important to note that both sets of solenoidal and
irrotational modes contribute to the EM field expansion. In

particular, while for the longitudinal case [12] the solenoi-
dal modes were sufficient, this will not be the case for the
calculation of the transverse impedance.

III. DERIVATION OF THE
ELECTROMAGNETIC FIELDS

The structure we study is a cavity of radius d connected
with abeam pipe of radius b and filled with a toroidal insert of
thickness t = d — b, as shown in Fig. 1. The choice of this
geometry allows different accelerator devices (e.g. lossy
inserts, flanges, resistive beam pipes, collimators, ferrite
loaded cavities, etc.) to be modeled in an approximate way,
for which either analytical formulas are available in a limited
range of validity or complex finite element simulations
should be envisaged. We choose a cylindrical reference
system (7., by, 2o). The subdomains I and II represent the
cylindrical left and right beam pipes where reflected fields
propagate, III is the toroidal insert where radial waves can
propagate, and IV is the cavity volume where resonances can
be excited. Subdomains I, II, and IV are a vacuum (permit-
tivity &, and permeability y), while 11l is filled with a linear,
isotropic, stationary, dispersive, homogeneous material
with complex relative permittivity e, (w) = €}(0) + je} (@),
conductivity o, and complex relative permeability
Hy(@) = p(w) + juj(w). The surface S, divides the sub-
domain I from IV, §,, II from 1V, S3, and III from IV. The
background is PEC (perfect electric conductor).

A. Source currents

To compute the transverse dipolar impedance, we con-
sider, as source current, a charged particle Q displaced at
r = rg traveling at velocity v = fic along Z,, with f the
relativistic factor. In cylindrical coordinates, this can be
written as

(45) 5(v

To(r. ¢, z:1) = Quo(r —rs) ——=6(v1 =2),  (7)

where 6 is the Dirac delta function and the above formula is
equivalent, in frequency domain, to

PEC

FIG. 1. Structure under study: loaded cavity connected with
two beam pipes.
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= Q68(r—rg) 5(4) e o/, (8)

rs

Jb(r,¢,Z;W)

Since we work in azimuthal symmetry, we can expand
the current in Fourier series

<r¢z>—5r—rs>2%

—jwz/ v, (9)
The term m = 1 is a cos(¢p) modulated ring with radius
rg which will be used to calculate the dipolar impedance.

B. Source fields

In I, I, and 1V, the source term is present. The solution in
these subdomains can be written as the superposition of
source fields and scattered fields, i.e.,

E(tot) — F(source) | E(scattered)7 (10)
(o) — fy(source) + [ (scattered) (11)

Since there is only one solution to the EM problem for a
given beam excitation, we can choose as source fields, the
ones excited by a particle beam traveling in an infinitely
long perfectly conducting cylindrical beam pipe of radius
b. In this way, the tangential source field continuity on S;
and S, is automatically ensured, simplifying the matching
operations. This approach would not be possible if the
entrance beam pipe apertures would have a different shape.
In that case, one could consider as source fields the ones
produced by a beam traveling in vacuum. It is, by the way,
also possible to formulate the mode matching problem
considering directly the source current J,(r, ¢, z) in place
of the source fields [14]. It is understood that the scattered
fields must satisfy the source-free Maxwell equations in all
the subdomains.

The source fields corresponding to the dipolar current
excitation are summarized below [15]

=2 o0 TR, (12
b= 28 a0 )
R s R e (14)
H= L8 a0 e )
o= =28 o) TR 1

H,=0. (17)

where

(18)

with 7,(u) and K, (u) representing the modified Bessel
function of order v, respectively, of first and second
kind, a, = bw/v, y the relativistic factor, u = ra,/(by),
x=ay/y, and s = rgw/(yv).

C. Scattered fields

The scattered fields for subdomains I-IV are given in
Tables II-IV in Appendix A together with their relevant
parameters.

For symmetry reasons, both TE and TM modes should
be considered. In general, the modes propagating into the
beam pipes depend on the radial mode number p and
azimuthal mode number v, the modes in the insert depend
on the longitudinal mode number s and v, the modes in the
cavity depend on p, v, and s. We consider only the scattered
modes with azimuthal mode number v = 1. This is not a
restriction, because, due to the azimuthal symmetry of the
structure, modes with v # 1 do not couple with the source
field and cannot be excited. From another point of view,
they do not contribute to the field matching by having null
projection integrals. Therefore, we suppress the v index
dependence from the field expansion.

The electric fields in the pipes and the insert (subdo-
mains [-III) are expanded as

ZCTMEITM +ZCTEE1TE . (19)

E(][) _ ZDEMEE)",TM) + ZDEEEEJ".TE)’ (20)
p p

111 ZATME (111, T™M) +ZATEE [IITE)’ (21)

and analogously for the magnetic fields. In the cavity, we
have

T (1v,T™M) (IV.TE -V
EM) =3 ViVey) ZVEE SRS W
pPs

ps

(22)

ZITMh (IV,T™) +ZITEh (IV,TE) +ZGPS ps '

ps

(23)
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D. Magnetic matching

We now proceed to the matching procedure in order to
find the 12 vector unknowns CpM, DM, ASM, T7M, VM,
CE, D, AE, DK, Vg‘;:, Gps, F,s by means of 12
functlonal equations: six equations can be obtained by
matching the magnetic field at the surfaces Sy, S, and S3,
four equations are provided by Egs. (3) and (4) for
solenoidal modes and the remaining two are provided by
Egs. (5) and (6) for the irrotational modes. Each functional
equation is transformed into an infinite set of linear
equations. We can immediately notice that Eq. (6) implies
F,s = 0 since the irrotational electric modes J_‘p ¢ are null
on the subdomain IV boundaries. This condition does not
hold for the irrotational magnetic modes.

1. Matching on S;

Between regions III and IV, we impose the continuity of
longitudinal and azimuthal magnetic field components. In
the longitudinal direction, we have

1
Hg )|r b= g )|r:h‘ (24)

Only the TE solenoidal and H irrotational fields have a non-
null longitudinal magnetic component. Substituting the
longitudinal components from Tables III and IV, and
projecting over sin(a,z/b), we get

2 ©
ATE — _ \/;as Gpshy
S ~
bWTEs(afs) =1 ﬂ% =18,
2 ) ITE 2
+ = S (25)
bWTEs(afs) p=1 /}%7 — lﬁps
In the azimuthal direction, we have
ey + HY |y = HYM L, (26)

The azimuthal components are non-null for both TE and
TM fields. Substituting the field expressions from
Tables II-1V and projecting over cos(a,z/b), we get

NENEES et SRSV R

m\ ebi B2—1p,, i 215,
0 . 5 _jLa

—\/5 L1 ITM+Ja;2,((—1) e~ —1)

7 esbp:] ps 271'197/(0(%—05%)]1(%)

_ \/EasWles(afs) A;FE _ £]afwa"§49 (dfs) A;FM (27)
2 g, € ALY

2. Matching on S,

Between subdomains I and IV, we can impose the
continuity of the transverse magnetic field components
separately for TE and TM modes

H§IV)|Z:0 _ HEI)

z=0" (28)

For TM modes, projecting over vtng} X Zg, We get

]b\/_ a,
Z\/—ITM _ ~ CTM (29)
o%p

For TE modes, projecting over VtHg), we get

iﬂ 10+ Zﬂz\/_G _Jb\;;ﬁpcﬂz (30)
ps ps

3. Matching on S,

Analogously, between subdomains II and IV, we have,
for TM modes

- _ jbVLa,
—1)* ,IT —
> (-1 ver =

s=0 op

and for TE modes

(e \/§ y (e
I LD M S

s=0 s=0 ps
_JbVLp
-5 » pE, (32)

DM, 31)

E. Electric matching

According to the assumed expansion in the subdomain
IV, the tangential component of the electric field on the
boundary § = S; U S, U S3 = Sg is null by definition and
the expansion given by Eqgs. (22) and (23) does not
converge uniformly on the boundaries. This difficulty is
circumvented by resorting to Egs. (3) and (4). We get the
following relation between modal coefficients I,; and V

iba -
= _ S /E x BV hgds, (33
ps Zo(ag_a%?s) S( ) o ( )
JZ,y
VoV = - % | EN (34)
iba S
[E—_ J7% / Ex BTN Caods. (35
Ps Zo(a%_ %);) S( X P ) ny ( )
jZUﬁ S
R (36)
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The surface integral has to be split for S;, S,, and S3, and
after some algebra leads to

™ — Jjba, jba,, \/e:sCTM
P Za(a%_a%)s) (l%, L P

jba R — .
+ £ (_1) \/ZDEM + 2EWTMS(Qfs)A;FM> ’

o
(37)
and
ITE — Jjba, (jbaoas \/7CTE
ps ZO((Z%— %;s) Yoﬁ ﬁps
_ J 6;0“5 \/:(_l)yDgE
YOﬂpﬂpx L
_jv2ﬂafﬂf;(5so_1) s (@ )ATE
Yf ﬁ%_lﬁps&fs
ﬁas €s(a2_ 2S)W S(& S)
_ VEa/Es(ar = Py )W (35 A;fM). (38)

\/ﬁ%} - lﬂps&]%s

The G, coefficients of the irrotational modes H can be
derived from Eq. (5) which, in this context, may be
rewritten as

jbY N,
ps — OK(EXgps)'nOdS- (39)

a,

G

Solving the integral, we have

7ij0
a,

(- VI

G

ps

O+ 1 afs + @ )W (@y)

\/ —1hps “?‘s
_ jﬁafﬂpas\/e_sWTEs(“fs)
Y/ — 1B, 0y,
Jjba,

. €s ]b(_ ) \/7 >
cle L2 %0 [ZSCTE ). (4
YOﬂpﬂps\/7 P YOﬁpﬁps ( 0)

Up to this point, we collected nine independent relations
given by Egs. (25), (27), (29), (30)—(32), (37), (38), and
(40) in nine variables, CpM, DM, AM, TV, CJF, DF,
ASE IS, Gp. The VI coeff1c1ents are linearly related to

the Ip¥! Wlth Eq. (34) and similarly for the V5 ones.

™
As

ATE

F. Sum manipulation

In order to simplify the numerical implementation of the
equations, some series can be closed. In the following, we
will use the results summarized in Appendix B.

Inserting Eq. (37) in Eq. (29) and summing over the s
index with Eqgs. (B1) and (B2), we get

La, La
CpM | cot +Jj ) +DpMesc =%
b b
/2 VEWrms (@)
— ] Z a IMaS f ATM (41)
ps
In a similar way, inserting Eq. (37) in Eq. (31), we get
La La
CpMcese ) DM { cot A J
b b
2 )* /€W (@ g
— i/ ”apz Ll (“f A (@)

(Z — (Z
Solving the system in the two variables C;M and DpM
and passing to a matrix representation, we have

C1T>1;/[1 = Nlpyp-Mlpys - Aglfl’ (43)
D’lgl;/ll == NIPXP . MIPXS . IISXS . Ag{\(/[l’ (44)

with matrix elements reported in Egs. (C1)-(C3) of

Appendix C.

Another system can be obtained by inserting Eqs. (38)
and (40), respectively, in Egs. (30) and (32). Summing over
the s index with Egs. (B3)—(B6), we get

CP><1 =N2p,p-M2pys - AEEI

+ N2pp - M3pys - AZM, (45)

D};El =N2pyp - M2p,5 - Ugyus - A§E1
+N2pup - M3ps - Igs - AghY, (46)
with matrix elements reported in Egs. (C4)—(C6).
Inserting Egs. (37), (38), and (40) in Eq. (27) and
summing over the index p making use of Egs. (B13)—
(B17), we get
BS><1 + FleS : Aggl + l:25><S ’ Ag\}l
— (Tlgus - Glgup + T2gx5 - G24p) - Cpy
+ Hgys - (Tlgus - Glgep + T2g55 - G254p) - DEEy
+ T3gxs - G3s¢p - Cpiy
+ Hgys - T35y - G35xp - Dy = 0, (47)

and the matrix elements are reported in Egs. (C7)—-(C15).
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Inserting Egs. (38) and (40) in Eq. (25) making use of
Egs. (B14) and (B17)-(B19), we get

Fig.s - ALE, + Fég - ATV
- (T4S><S . G4S><P - T5S><S . GSSXP) : C;El

+ Mgy - (Thsys - Gdsyp — TS5 - GSgp) - Dpyy =0,
(48)
where the matrix elements are reported in Egs.

(C16)—(C21).

Recapitulating the matching equations, we have six
vector equations in six independent vector variables, the
problem is formally solved and the coefficients CJ¥,, DJM,
CIE,. DEE,, AIM, and AE, can be now found with a

numerical inversion of the truncated matrices.

G. Impedance calculation

The transverse dipolar impedance can be calculated
dividing the calculation for the three subdomains I, I,
and IV. From now on, we consider a small source
displacement, i.e., r¢ — 0, so that we can simplify the
source matrix Bg,; of Eq. (47) with I,(s)/r¢ = 1/2. In
subdomain I, we have

0

Z((i{z,(w) j / dz eJaz/b Z CTM ITM —ﬂ M))

p=1

—o0

0

+J [ asereit S CREEL™ = e,
p=1

—00

Substituting the field components from Tables II and III and
integrating, we get

(a, + pa,)

]bC
d“’ Z \/EoﬂJO( ) (@, 4 ay)
- _]ngE(ﬁﬁp =+ ao) )
p=N27Y o\ B = 1o(B,) (B, + )
(49)

+

Analogously, we can do this for subdomain II obtaining

€ b ﬁao _ap)

—jbDM
dlp Z \/Zﬂap.]() (a,)(ap — @)

. i jbDIEC T (a, — BB,)
p=1 \/ﬂyaﬂ2 \/ﬂ2 - 1J0<ﬂp)(ab ﬁp)

(50)

Truncating at p,,,x = P radial modes, we have

(1 C C

Za =7 O+ 2L (5)
1 D b

Zc(lip) =70 Dy +Z17% - Dy, (52)

with matrix elements reported in Egs.
Appendix D.

In cavity subdomain IV, the fields are given by Eqgs. (22)
and (23). We consider separately the contribution of TM,
TE, and irrotational modes to the impedance. Starting from
the TM contribution, we have

(D1)—(D4) of

(1v.
Zdlp ™ (w)

L
Z]/dzef““/b Se(IVTM — 7N 1VTM))
0

pPs

To solve this expression, we can write the coefficients VTM
as function of ITS resorting to Eq. (34) and substitute the
I;Y by means of Eq. (37) in order to recollect the known
coefﬁ01ents CM, DM, and A{M. Substituting the field

expressions from Table IV and summing over p and s
indices with the help of Egs. (B20), (B7), and (BS), we get

Z(I Vim)

_ 7V, Crv ™ IVim.Drm T™M
dp = Zixp Cpaq +2 “Dpyy

1xP

IVm.Atm ™
+ leS AS><1’

where we truncated the matrices at py,,, = P and s, = S.
The matrix elements are reported in Egs. (D5)—(D6).
In a similar way, we can derive the TE contribution

I (IV1E)

d1p ((1)

)
© L
=" J [ dzeime /b (VEE T — pz, TERSVTE).
Ps 0

The V5 coefficients can be expressed in function of Ij%
resorting to Eq. (36) and we can substitute the Ip% by
means of Eq. (38) and the known coefficients Cp=, DpF,
AM and ATE. We get

Z(IVTE>

_ 7AVE.Cmx 1V1p.D1p TE
dip Z1><P CP><1 + leP DP><1

1V1E.Atm ™ 1V1g.A1g TE
+ ZIXS ASX] + ZIXS ASX]

It is interesting to notice the presence of the term A™
which couples in the impedance the effect of both TE and
TM modes. Substituting the field expressions and summing
over the p and s index using Eqgs. (B21), (B22), (B9), and
(B10), we get Egs. (D8)—-(D11).
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The last impedance term is the one coming from the
irrotational modes. Since we found Fj¢ = 0, we calculate
only the contribution from the modes H, i.e., involving the

G coefficients. We have

L
o0
(v
Zig" @) = Y7 [ 4z =p2,Gyuy, )
ps
0

Inserting Eq. (40), we can write G, as a function of the
known coefficients C3E, D;F, A™, and AJ® and obtain

Z(’ Vi)

_ 7Vy.Crg TE 1V y.Drg TE
dip — leP : CP><1 + Zl><P : l)P><1

VA VA
+ZU AR+ 2 AT
Substituting the field expressions and summing over the p
and s index using Eqgs. (B21), (B11), and (B12), we get
Egs. (D12)—(D15).
The impedance can therefore be written as

(a))+ZU)( )_|_Z(1VTM)( )

1
Zdip(a)) = Z() dip dip

dip

v v
+ Ziy™ (@) + 2" (). (53)
As we anticipated in Sec. II, and contrary to the longi-
tudinal impedance case studied in [12], Eq. (53) also shows
a contribution from the irrotational modes.

IV. APPLICATIONS

In this section, we show a series of studies related to the
impedance dependence on the conductivity o of the material
inregion III, on the length L of the device, and on the velocity
v of the particle beam. The model dimensions are, unless
differently specified, b = 5 cm, t = 25 cm,and L = 20 cm
according to Fig. 1. The material filling region III has the
properties €; = €y — jo./w, pg = Ho-

First, we will show the convergence of the method as a
function of the number of simulated cavity modes (IVA),
then resonant frequencies (IV B), and the low frequency
impedance in an empty cavity (IV C). We will then consider
the case of a conductive insert (IV D) with a detailed analysis
of related trapped modes (IV E). We conclude by showing the
impedance dependence on beam velocity (IV F).

A. Convergence

Depending on the case under study, the convergence
of the mode matching depends on the number of longi-
tudinal S modes and radial P modes used in the matrix
computation. We defined S and P as the maximum number
of longitudinal and radial cavity modes, with s and p
the longitudinal and radial mode indices. Once S and P
are fixed, the modal index is p € (1,...,P) and s €
(0,...,5—1) for TM modes and s € (1,...,S) for TE
modes. This is also the convention in the MATLAB [16] code

3

dip

Re(Z,. ) [Q/m]

fIHz] x 10°

FIG. 2. Convergence of mode matching as a function of the
number of longitudinal modes S. Mode matching parameters:
b=5cm,t=25cm, L =20cm, 6, = 10°S/m, g = 1.

we implemented. Given the geometry (in terms of beam
pipe radius b, cavity thickness ¢, and insert length L), we
can estimate the maximum number of modes P and S
needed in order to reach the maximum frequency f,.x we
are interested in.

Figure 2 shows the impedance calculation for the case of
a resistive insert with 6. = 10° S/m. Different choices of S
are shown (S = 5, 10, 15, 25) for the same number of radial
modes (P = 5). In the case of S = 25, we reach conver-
gence in the frequency span from O to 10 GHz, the region of
typical interest in accelerator physics applications. If
instead, we consider the case S = 5, P = 5, the maximum
frequency f.« that could be simulated is 3.8 GHz. The
number of radial modes P is less relevant since the current
flows mainly on the insert surface and therefore radial
resonances are not expected.

For low conductivity, resonant modes start to appear and
the role of P modes becomes evident. Figure 3 shows the
case for a very narrow empty cavity (6, = 107! S/m). In
this case, S = 1 is sufficient to cover the frequency range of
interest while, due to the thickness, we have to consider
P =20 in order to obtain a reasonable convergence. The
frequency is normalized over the first beam pipe propa-
gating mode (TE,;), known as cutoff frequency, defined as

TE c
. 54
0 ﬁl,l b ( )

where | ~ 1.8411 is the eigenvalue corresponding to the
TE;, propagating mode. We let the reader notice, that
convergence is reached regardless the ratio of S/P. This is
sometimes required in other studies involving a truncation
of a doubly infinite set of equations [17].

B. Empty cavity: Mode excitation

The TM and TE modes in an empty cavity are given by
(see, for example [13])
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FIG. 3. Convergence of mode matching as a function of the
number of radial modes P. Frequency is normalized over the first

beam pipe propagating mode (TE,;). Mode matching parameters:
b=5cm,t=45cm, L =2 mm, 6, = 1071 S/m, g = 1.

™ _ ¢ 2 2
1.[7,3_% aLp+as,
withs € (0,1,...) and pe(1,2,...), (55)
TE _ € 2 2
Lps — % L.p + ay,

withs € (1,2,...) and pe(1,2,...), (56)

where we restricted ourselves to the dipole modes. In order
to compare the mode frequency from theory and mode
matching implementation, we choose a small beam pipe
radius with respect to the cavity thickness (b = 1 cm and
t =25 cm): in this way, we can push the beam pipe cutoff
frequency fIF well above the first cavity resonant mode
avoiding the resonant frequency shift due to the coupling
with the beam pipes. The conductivity o, moreover, has
been set to 6, = 10~ S/m in order to be able to appreciate
the resonant shape in the real part of the impedance (a null
conductivity would give rise to Dirac functions at resonant
frequencies). Figure 4 shows the real part of the transverse
dipolar impedance. Arrows are placed at the frequencies
calculated with Egs. (55) and (56). A good agreement for
the resonant frequency location is observed between these
predictions and the mode matching modes. We note that,
even if the beam represents a TM-like excitation (there is no
magnetic field component in the z direction), the TE modes
are anyway excited. The slow impedance growth toward
low frequencies is due to the fact that we had to choose a
small, but nonzero, conductivity ¢, in order to make the
modes visible: this does not in any way affect the mode
location whose frequency implies wey > o..

1 T T T T ur
., 05r ]
£
=
cl
N
S .- !
&~ o+ -
[TE111 MI11 [TE}31 TMI13
120 | rgni M3
Mi10)
[FEIR1 [T™Mij12
121 ITE1p2 .
_0'5 1 1 1 L 1
0 0.05 0.1 TE 0.15 0.2
S

co

FIG. 4. TM and TE modes excited in the dipolar impedance.
Frequency is normalized over the first beam pipe propagating
mode (TE;;). Mode matching parameters: b = 1 cm, ¢ = 25 cm,
L=20cm, 6. =10"7 S/m, f=1, P =10, S = 10.

C. Empty cavity: Low frequency impedance

The impedance of an empty cavity at low frequency
represents a classical problem already analyzed by other
authors. In particular, here, we compare the mode matching
transverse impedance with formulas given in [18] for the
low frequency regime. The impedance at low frequency is

ZoL S? — 1
Zlo_wfreq — _; “0- .

dip T S
valid for L < 72 2 [19] and f < frqy,,, with S = (b+1)/b.
Figure 5 shows the convergence to the theoretical value for
small cavity length. With L < 0.001, the condition L <

2% is fulfilled within 6% and mode matching and theory

(57)

4

x 10
41 : : 1=0.0001
|
5l 1=0.001
g L=0.01
S 2f
N—c
it ' |
—— Mode Matching L=0.1
— Theory
0 ! ‘ ‘ ‘
0 2 4 6 8 10
[Hz]
/ x 10’
FIG. 5. Comparison of mode matching with the classical low

frequency impedance in an empty cavity [18]. Mode matching
parameters: b=35cm, t=10cm, L€ (107, ...,0.1) m,
6, =102 S/m, g = 1.
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are closer. We observe that, outside of the range of
applicability of the analytical formula, the low frequency
impedance does not scale linearly with the insert length.

D. Conductive insert: Benchmark on length,
thickness, and conductivity

We introduce two frequency parameters f,. and f;,. The
parameter f. is the frequency limit at which a metal with a
given conductivity o, can be treated as a good conductor
(o, > wey) and is defined as

O

fe (58)

B 2mey
The parameter fy;, is the frequency at which the skin depth
Sekin = 2/ (wpo,) equals the insert thickness r. It is

important to notice that we can define fg;, only in the
hypothesis of good conductor, i.e., 6, > wey or f < f.

1. Casef <f.,andt <b, L >b

For long devices and thin conducting layers, the resistive
wall theory can be applied in both low frequency regime
(LF, valid for f < fgn) and intermediate frequency regime
(IF, valid for f > fin) [18,20]. The classical resistive wall
formulas in these regimes are

JZot
Zélg = ﬂ'b3 L’ (59)
L
zir _pe 1% (60)

o JI[Gcaskinb3

Figure 6 shows the comparison between mode matching
and the classical theory of resistive wall impedance: the
agreement is good within a wide range of frequencies in
both LF and IF regimes.

2. Casef <f,and t > b

In case the thickness becomes comparable or larger than
the beam pipe radius (e.g., in collimators), the LF resistive
wall formula does not hold anymore since it assumes
t < b. In order to cover this range of frequencies, we can
compare our model with tw2D [21], a 2D code based on
field matching to study the impedance of multilayer beam
pipes of flat and circular cross sections. It is important to
note that iw2D does not implement PEC layers. In order to
simulate our boundary condition, we therefore chose an
ideally highly conductive material with 6, = 10'° S/m and
infinite thickness.

Figure 7 shows the impedance normalized over the
cavity length. The normalization is performed as TW2D is
developed within the infinite length approximation. When
L < b, the transverse LF impedance in the mode matching
model becomes higher by up to a factor 2 with respect to
w2D [see Fig. 7 (bottom)]. This effect becomes apparent

10°

— Mode Matching
— Theory IF
107 | 6=10°S/m

6=10"S/m

0=101S/m o=1Q

10
10’1 ! ! !
10° 10" 10° 10° 10"
f[Hz]
10 L 0=10%S/m 0=10"S/m

dip

Im(Z.. ) [Q/m]
=

10

—— Mode Matching
— Theory IF
— Theory LF

10° 10" 10° 10 10

fHz]

FIG. 6. Comparison between mode matching and the
classical theory of resistive wall of [18,20] real and imaginary
part of the transverse impedance. Mode matching parameters:
b=5cm, t=>500pm, L=20cm, o, € (10 ...,10° S/m,
p=1 P=10,S=20.

only for short inserts at very low frequencies (10-100 Hz)
and it is related to the increased insert capacitance.

3.Casef >f,and L > b, t>b

To complete our treatment, we consider the case of
elongated structures with low conductivity, i.e., o. €
(1073,...,10) S/m for which cavity resonances start to
play a role and analytical formulas are not available. The
low conductivity could represent effective dielectric losses
characterized by the material loss tangent tan § for which
Oceq = WEHE, tan & (e.g., ceramic chambers). To prove
the validity of our method also in this case, we can
benchmark it with the Wakefield solver of a commercial
particle simulation tool, CST Studio Suite® by Dassault
Systemes [22]. ST is a time domain code in which a
truncated Gaussian particle distribution p(s) can be tracked
along the device under test. The bunch length settles the
maximum simulated frequency.

Figure 8 shows the mode matching benchmark with csT
for 6, = 1072 S/m and with a bunch length 6, =2 cm
where a good agreement has been achieved.
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FIG.7. Imaginary part of the dipolar impedance from the mode

matching and tw2D model normalized by the cavity length (top)
and ratio in the LF regime (bottom). Mode matching parameters:
b=5cm, t=25cm, 6, =10°S/m, =1, P =10, S = 10.

E. Trapped modes

An interesting effect, relevant for short inserts with low
conductivity, is the presence of trapped modes below the
beam pipe cutoff frequencies, which could be of interest in
the frame of beam stability studies. In the longitudinal
plane, this effect was studied close to the TM; cutoff and it
was characterized by a transmission line model with
lumped parameters. While the same effect appears also
on the dipolar impedance, close to the TE cutoff frequen-
cies, a similar model is not easily applicable. Figure 9, on
the top, shows the dipolar impedance perturbed by a
trapped mode slightly below cutoff. We may note that at
exactly the cutoff frequency, i.e., f/fIF = 1, the imped-
ance appears unperturbed, as shown in the bottom plot.

The trapped mode frequency shift relative to the TE;
cutoff frequency has been evaluated for small discontinu-
ities by different authors [23,24]. Here, we compare the
perturbation theory developed in [24] to the trapped mode
frequency shift calculated with the mode matching and CST
simulations. Figure 10 shows the comparison between the
three different methods as a function of the ratio #/b of the
cavity. While there is agreement between the perturbative

6000 " . . . .
Re(Z dip) Mode Matching
5000 ___Im(Z dip) Mode Matching+
—_Re(Z,. )CST
4000} dip
— - _Im(Zdip) CST
E 3000}
G
N%“ 2000
1000
i [V RN |
0 / [N MUTARENG R
—-1000 L L L L L L L L L
0 02 04 06 08 1 12 14 16 18 2
Ay
FIG. 8. Comparison of mode matching and cST. Mode

matching parameters: b =5cm, t=25cm, L =20cm,
6,=102S/m, p=1, P=15 S=15. CST parameters:
6, =2cm, Lyge =20 m, Ny, = 3.8 x 10°.

800

—Real
600F = -Imag

4001

[€/m]

200

dip

Z..

-200r

—400 :
0.2 0.4 0.6 0.8 1 1.2

1l fTE

co

800
—Real
- -Imag

600 L 1

—200

0.999 0.9995 1

FIG. 9. Perturbation of the dipolar impedance by a trapped
mode close to the TE;; cutoff frequency (top) and enlarged view
around cutoff (bottom). Mode matching parameters: b = 10 cm,
t=10cm, L =1/82TF, 6 =102 S/m, p=1, P =5, S = 25.
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FIG. 10. Relative trapped mode frequency shift in the dipolar
impedance with respect to TE;; cutoff frequency for different
relative thicknesses 7/b. Comparison among mode matching, CST
simulations and theory of [24]. Mode matching parameters:
b=10cm, L =1/8A, 6 =102S/m,f=1,P=35,5 =25.

method and the mode matching for very small cavity
thicknesses, a deviation from the perturbative theory starts
to appear when 7/b > 107*. csT simulations have been
performed from #/b > 2 x 10~ due to practical meshing
limits. This study further confirms the mode matching
flexibility and reliability as a tool to evaluate the dipolar
impedance over a wide range of parameters.

F. Impedance dependence on relativistic §

We now benchmark the mode matching method for
impedance calculation in the case of non-ultrarelativistic
beam velocities, i.e., # < 1. This problem is of interest to
machines working in the first stages of beam acceleration.
For example, in the CERN Low Energy Ion Ring (LEIR),
the Pb54+ beam is first injected at 4.2 MeV /nucleon and
accelerated to 72.2 MeV /nucleon, which corresponds to a
swing in relativistic # from 0.09 to 0.37. At low p, effects
like space charge (SC) become relevant for the beam
dynamics and play a key role in the overall beam stability.

The resistive wall impedance of circular vacuum cham-
bers in the low f regime was already studied in the past in
[25] and [26] and generalized within the tw2D code [21].
These approaches are all valid for infinitely long beam
pipes, i.e., where edge effects and/or cavity resonances are
not expected to appear.

Since the source fields for the impedance calculations are
the fields produced by a beam traveling in a perfectly
conducting beam pipe, the impedance calculated with the
mode matching does not take into account the direct and
indirect space charge (DSC and ISC). The DSC represents
the direct interaction of the source particle field with the test
particle, the ISC the interaction with the scattered fields of

the perfectly conducting beam pipe. Since in the Tw2D code,
the ISC impedance is embedded in the impedance calcu-
lation, we add the Z'SC term to the impedance calculated
with the mode matching.

The ISC transverse impedance per unit meter in a round
beam pipe of radius b is given by [15]

j[%(S)ZO Kl (x)

Z8C =1 ¢ . 61

W gyt 1 (x) (61
For rg — 0, the expressions simplify to
iw*Z, K,(x)

zisc _ _J®P Lo R ) 62

dip 47Z'C2ﬁ374 Il(x) ( )

For small argument of x, we recover the well-known
formulas showing the 1/y* dependence

iZ, 1
zic = Lo 63
dip 2”/37/2 b2 ( )

Figure 11 shows the comparison between 1w2D code and
the mode matching for a high conductivity material. The
reader can appreciate the very good agreement between the
two codes for varying /3. Also, as described in detail in [12],
both real and imaginary parts exhibit a roll-off behavior at
high frequencies due to the finite beam spectrum for f # 1.

The ultrarelativistic beam approximation, commonly
used in impedance calculations, constitutes, in the case
of the real part of the impedance, the worst-case scenario.
The discrepancy at low frequencies is due to the PEC

1IX10 o oo o o T DT D
= AN
o BT2” AT
10000 F ~~————~- LR A
s=0s V)
_ 8=08 \ \‘\\
NE ______ 7 ______ e ) \\\
é 100
2
|
e 1
[\]U Mode Matching Re(Z dip)
— — Mode Matching Im(Z dip)
0.01 ——IW2D Re(Z,, )
— — 1wW2D Im(Z dip)
0.0001 : : : .
10 10* 10° 108 10
SfIHz]
FIG. 11. Comparison between the mode matching and 1w2D

code for different relativistic #. The thick line is the real part
and the dashed line is the imaginary part of the impedance. The
transverse impedance is normalized over f. Mode matching
parameters: b = 0.05 m, t=0.5mm, L =20cm, ¢ =10°S/m,
$=1(02,04,0.6,0.8,1), P =25, §=25.
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approximation made in the t™w2D code, for which we
considered a layer with high conductivity (6 = 10'* S/m).

V. CONCLUSION

In this work, we presented the application of the mode
matching method for the calculation of the transverse
driving impedance of a cylindrical cavity loaded with a
toroidal insert. While the same method has been applied in
the past for the computation of longitudinal impedances, it
is the first time that it is implemented for the transverse
case. Notably, the inclusion of the full set of solenoidal and
irrotational modes is necessary to correctly compute the
impedance.

Despite the simplicity of the chosen geometry, the model
can serve as a first impedance estimator for various devices
(e.g., lossy inserts, flanges, resistive beam pipes, collima-
tors, ferrite loaded cavities, etc.) allowing flexible and
accurate parametric explorations (see, e.g., the application
performed in [27]). An extensive set of benchmark results
against available analytical formulas, field matching codes,
and commercial solvers has been performed highlighting
the method’s reliability and good performance over a wide
range of parameters.

After having demonstrated the rapid convergence of the
method, we successfully benchmarked the approach for an
empty cavity, a cavity at low frequency and a resistive wall
impedance in both low and intermediate frequency regimes.
For this last case, we investigated the validity of the 2D
infinite length approximation for the computation of
resistive wall impedance showing that this is valid only
for devices whose length is larger than the transverse
direction. We also successfully compared the method
against CST time domain simulations for structures where
analytical formulas are not available. Moreover, the pres-
ence of trapped modes introduced by small beam pipe
deformations has been investigated and compared to
perturbative methods and CST time domain simulations.

TABLE II.

Since the used approach is non-ultrarelativistic, we also
performed a benchmark of the impedance behavior as a
function of the relativistic particle beam velocity.

Based on these results, the method proved to be a
powerful new tool for the evaluation of the impedance
of accelerator devices. The generalization of the method to
arbitrary cavity geometries is currently being addressed by
performing a 3D numerical modal decomposition (e.g.,
with the Eigenmode solver of cST) in place of the analytical
one performed for the geometry addressed in this work.
This would allow a direct computation of the impedance in
frequency domain for structures more general than the ones
treated in this work.
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APPENDIX A: FIELD TABLES

The fields are defined with the following parameters:
() a,: pth zero of the Bessel function J,(x) with v = 1.
(i) B,: pth zero of the Bessel function J;,(x) with v = 1.
(iii) J1: derivative of Bessel J; function with respect to r.
(iv) k,: characteristic constant in vacuum k, = @, /i€,
(v) ky: characteristic constant in the insert material
k = . /U f&‘ e
i) Z,:
Z() = V M()/g()’

(vii) Zy: characteristic impedance in the insert material

Zf = A ///lf/gf

(viii) a,: normalized characteristic constant in vacuum
a, =k,b.

(ix) ay: normalized characteristic constant in the insert
material a; = kgb.

characteristic =~ impedance in vacuum

TM scattered field components (subdomains I-III).

Scattered fields TM Left pipe (I)

Right pipe (II) Insert (II1)

E, jbJ, mTI’) cos(¢)a, # _jbJ] (52) cos(¢)a,, €_w ay cos(¢h) sin(%)W’TMi(raj,ﬁ)
; _ :
e T ™,
L o . A P (z-L)a . afs
E, _ibsin@)a,/\(P) fap ibsin@)a, i (5 L ba sin($) sin(5) Wi ()
radT™ ra3 T™ rLMa;
ra L ra j(z—L)& 20 a
E, cos(@)), () o cos(@), () Lt cos(¢t) cos (5 Wy, ()
7T T™ I
. . ra 2k . - ra, i(z—L)& . zag ra
H, _ibaysin@), () _Iba s (G L jbay sin(g) cos(5) Wan ()
rZ,a5T™M rZ,a5T™M ’ZfﬂfM&zﬂ
. ra, by . ra, j(z—L)& Z afy
H,/, —jba,cos()J| (52 e/~;’/1 —jba, cos(p)J} (5 e—w _Jey cos(¢p) cos(FH) Wiy (m%)
T Z,2T™ Z,a T ZpLMay,
H. 0 0 0
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TABLE IIL

TE scattered field components (subdomains I-III).

Scattered fields TE Left pipe (I)

Right pipe (II)

Insert (III)

E, _ by coslp\ () o
r Yl)ﬁp p
E¢ jba, sin(¢)J) (r/j”) ffi’p
YR TTE 5
E, 0
H, jb I (P sin@)B, T
\/_/)2 TTF
H, jb eos@)B, 1 () 2
BT oE
H, sin(g)J, (B2) 5Py
) —7m €?t
14

jbay cos(@)y () Lip
r Yl)ﬁ% T,EE
_jba, sin(g)) (B il
YR T
0

. ﬂ 7 i(=~L)p
_jb]’ ”)sm( »)B, e_/(~ é)/ip

'[}2 TTE

r-r

. % , L)}
_Jbeos@)p, () L

B3 TIE

sin(g)J, (42) _iG=Llp
—rE o€ 7

__Jjbay cos(¢ ) sin(3% )WTEa

LTth/a

jay sin(g) sm( "‘)WTEb(m[f‘Y)
LIEY patyg

0

a, sin(¢) cos(F) Wi (m%)
LTE ayy

ba, cos(@) cos(2) Wi, (S)
E?hraz

fs

sin(¢p) sin(5* )WTE,( )
ﬁ.\-

: beam pipe normalized propagation constant

5 /2_ 2
a, = \/a; — a.

(xi) a,: longitudinal normalized cavity TM eigenvalue
— gzl

ay = STy
(xii) f,: longitudinal normalized cavity TE eigenvalue

ﬂs = 0.

(xiii) @y,: radial normalized propagation constant in the

insert ap, = /o — a.
(xiv) @, : cavity TM eigenvalues a,, = /a3 + a?.

(xv) B, cavity TE eigenvalues f8,, = /3 + f52.
(XVi) WTMS:

2) rige HOEL) (1) iy,
Wi(r) = B2 () = T B ()

v b

radial TM wave function in the insert

calculated in

r=>b with v = 1.
(xvii) Wiy, derivative of Wry(r) with respect to r
calculated in r = b.

(xviil) Wrgs:
WTEs(r) = Hﬁz)(ri”) -

r=>b withv =1.

()

radial TE wave function in the insert
1(2) ca
HD (

- i
) (')(ﬂ) calculated in

v b

(xix) Wig: derivative of Wrg(r) with respect to r

calculated in r = b.

(xx) V;I}’[ norm of

T [L ps

b 5 GsJ 0 (a p ) a,
(xxi) V;E: norm of

b5\ B~ 100(8,)

(xxii) V5 norm  of

V];;s = %\/E\/Zaszo(ap).

(xxiii) Vi : norm of

Vi, = J%ﬂ,,‘vlfo(mﬁ\/ﬂ% - 1.

(xxiv) 7 }E: transverse norm 7 )¢ =

(xxv) T )M: transverse norm 7 )M =

TABLE IV. Scattered field components (subdomain IV).

Pps
ﬂp '

modes

solenoidal Y

solenoidal modes V% =

electric irrotational modes

magnetic irrotational modes

NE AV
\/50([,]0 a

Jo(ﬁp)'

Scattered fields Solenoidal TM Solenoidal TE Irrotational

E, _ bay cos(@)J; () sin(5) by cos($)dy (L) sin(5) cos(¢)J} (42) sin(352)
ag VTM rﬁPV};“ VE

Ey bay sin(¢)J; (52 sin(3 bp,, sin(g)J](22) sin() sin(p)J (52 sin()

rd VTM - /}z VTF rVE

E, cos(¢h)J1 (52) cos(52) 0 a, cos(¢)J1 (52) cos(35)
VM bVh

H, _ bay, sin(¢)J, (52) cos(5) ba, sin()J} (L) cos(2 sin(¢)! (22) cos(222)
rag VM PVTE Ve

H, _ bay, cos(@)J] () cos(F) bay cos(¢)J, (22) cos (%) cos(¢h)J, (22) cos(22)

VTM ﬂz VTE rvH
H. 0 sin(¢)J, ( )sm( =) __ay sin(g)J, (/”) sin(%5)

p

bV
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— s L La
(xxvi) L™: longitudinal TM norm £™ = /L /e,. Z 2 f o cot (Tp>, (B1)
(xxvii) LIE: longitudinal TE norm LIE = \/L/2. =070 Tps P
In 0rd§r to correctly represent the. reflected waves in the ©_(—1)%, L La,
beam pipes, we chose «, with Re(a,) >0 and Z 57— 5 —=¢sc|l — |, (B2)
r L as—ay, ba b
Im(a,) < 0: in this way, the scattered waves below cutoff s=0 70 Tps P
get attenuated in both subdomains I and II. Analogous ® . L LB
considerations hold for f,. Zﬁ; = Wcoth <bp> (B3)
s=0 Pps P
APPENDIX B: SERIES SUMMATIONS 0 P
Z (=)' = Lcsoh Lb, (B4)
Here we list the sums of series used to simplify the mode — ﬁ% : bp, b )
matching. Sum of series in s: . ‘
J
« o> L [- Lp Lp
- = t( =L - th( —2 )|, B5
Y- el (5) -t (5] 2
> (D' L Lp, LBy
= - h( —2 )|, B6
; P Zba(z) pese(— pyesc 5 (B6)
i (=1)%e, (2 — @) (=1 + (—1)%e7")  L{ia 7" (a? — a2) + ayad [ cse(X22) 4 &7 cot(“2)]} (87)
s=0 (alzq - 0@)(0’% - af}s) babap (ab ao + ap) ,
= ey(@ —ad) (=1 + (=1)¢F)  L{mad[-cot(5e) + £ csc<”f’>] + ity (af — af)}
Z 2 _ 2\ (2 — o2 = 7 5 . (B8)
s=0 (ab as)(aa apx) babap (ah 0!0 + ap)
SR 1) Lliay + ppeschCy)cosh(y) - ¢ ) (B9)
= (g — ) (), + 57) 2b(aj + B3) ’
i< 15a2(=1 + (=1)°¢" ) _ Lp,esch( Y0) 1 iLe" 7 ay + if, coth(“22)] (B10)
= (@G- + ) 2b(aj, + B3) ’
ies(—l +(=1) e!Lbb> _ —La, coth( )+Labe 5 csch( ) +iLp, (B11)
= (o, — ) (B, + 57) by B, + bay ) ’
Z &7 5 —(=1)%) ]Lﬁpe 5 + Laye e coth( 2) — Lay, csch(%) (B12)
(ah -a)(p + p bayf, + babﬂf, '
Sum of series in p.
p=1 a(z) —(l%” zas Jl (&S) ’
> ﬂz :i< Jo(as) — Ir(ay) Jo(@s) + J2(a) > (B14)
p:l ﬁ2 - 1 ( ) a(2) 2[1()(6“) +12(ax>] 2[‘]0(&\) - JZ(a\)] ’
> 1 ‘12(&5)/&5 J2(as)/as
Z 2 2_ 2y 2 \2 ~ 7 ) , (B15)
p=1 (ﬂ (0{0 ps) ap Ul (Ols) as']() (as)] [asIO(as) Il (O!S)]
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APPENDIX C: MATRIX ELEMENTS

N1, = \/g%% (C1)

i = VIS~ (_alg)s_eag; Wi (7.) )

I, = (-1)%, (C3)

Norp = _4\/I_,Yfa0Z0\/ﬂj%,Lfﬁl%~p(cot(%)+ j)’ “

Mo, , = 2Py, — aie, >v;i§£ifsgicfti;’;> (1) ese(f) +). ©s)

- 2j\/26Y (a2 aZ—afﬂ2>V\;?fgijfi><2it)< M) — (=1)" ese(“2e )+J) <6)

B, =0 T . <

Iy, = b\/g, (C8)

042001-15



N. BIANCACKCI et al. PHYS. REV. ACCEL. BEAMS 26, 042001 (2023)

Tzss = \/ga(%a%v (C9)
T
2
T3,, = ]—T%, (C10)
1
Gl,,=————, (C11)
5P 2 1 2
ﬁp - ﬂps
1
G2, = : (C12)
ﬁ%} ﬂ%;_l %x(a%_ ?)S)
a
G3,, = Wzaz), (C13)
p\Yo ps

o \/Zafas [10(as> - IZ(“S)]WZFEs(afs> _ \/ZasWTEs(afs)

Fl” ; \/EYfaozo[IO(as) + IZ(as)]&fs ﬁ&}s , (C14)
p VL [ 1 < V2a3alJ,(ay) _20205(a,) | V2(o(ay) = () (af6, — i (5, 1))
v 2 |a,Z, 5[S<a§-—a§)(5(510(6~15)—11(&S)) \/‘c"_s&s‘h(&s) (a}_ag)(IO(as)"i_IZ(as))
+4\/a{a;(ll (as) _asIO(as))[(arz) +6‘552')‘,1 (&x) - a(%aSJO(as ] +a%(a% —0‘%)11 (ax)(‘]l (&s) _&S‘IO (&s))}) W (5{ )
i (o - af) (o = a3) (T (a,) + 1o (a,)) (Jo (@) = /(@) e
20 L~
+—WWTW (afs):|' (C15)
T4ss = bas %\/%Ta (C16)
2baza

T5,, = ViV (C17)

1
G4, =—F———, (C18)

\/ ﬂ?) - lﬂ%)s

1

G5, = , (C19)
VB = 1655 = )
7af(5s - 1)&?[10(555) +J; NS)] ' (& &

B = ¥ Zug ) — ()] ) V) 0
F4” _ jas(arz? - aJZ‘)UO(&s) + JZ(&S)] WTMs(&fs)- (C21)

aazo&%s [JO(&S) - JZ(&SH

042001-16



TRANSVERSE IMPEDANCE STUDIES OF 2D ... PHYS. REV. ACCEL. BEAMS 26, 042001 (2023)

APPENDIX D: MATRIX ELEMENTS—IMPEDANCE
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