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Betatron oscillation is a commonly known phenomenon in laser or beam-driven plasma wakefield
accelerators. In the conventional model, the plasma wake provides a linear focusing force to a relativistic
electron, and the electron oscillates in one transverse direction with the betatron frequency proportional to
1=

ffiffiffi
γ

p
, where γ is the Lorentz factor of the electron. In this work, we extend this model to three-dimensional

by considering the oscillation in two transverse and one longitudinal directions. The long-term equations,
with motion in the betatron time scale averaged out, are obtained and compared with the original equations
by numerical methods. In addition to the longitudinal and transverse damping due to radiation reaction
which has been found before, we show phenomena including the longitudinal phase drift oscillation,
betatron phase shift, and betatron polarization change based on our long-term equations. This work can be
highly valuable for future plasma-based high-energy accelerators and colliders.

DOI: 10.1103/PhysRevAccelBeams.26.031301

I. INTRODUCTION

The new generation of accelerators, using plasma as the
acceleration media, offers a high acceleration gradient in
the order of 10–100 GV=m and strong transverse focusing
fields [1–3]. Depending on the driver type, the plasma
accelerators are named laser wakefield accelerators
(LWFAs), which are driven by laser pulses, and plasma
wakefield accelerators (PWFAs), which are driven by
charged particle beams. When a high-intensity laser pulse
(≳1018 W=cm2) or a high current particle beam (≳1 kA)
propagates in an underdense plasma, the radiation pressure
of the laser or the space charge force of the beam expels all
plasma electrons radially, leaving behind a uniform ion
channel. The expelled electrons are pulled back by the ion
channel and thereby bubble-like plasma wake wave is
created. This highly nonlinear three-dimensional (3D)
regime has been referred to as the blowout regime [4,5].
In this regime, the wake consists of a longitudinal electric
field that is a function of the distance behind the driver, and
transversal electromagnetic fields that are proportional to
the off-axis distance. Consequently, in addition to the
longitudinal acceleration/deceleration, the electrons reside

in the wake also perform transverse oscillation, called
betatron oscillation (BO), under the action of transverse
focusing fields, with the frequency ωβ ¼ ωpκ=

ffiffiffi
γ

p
, where

ωp is the plasma frequency, γ is the relativistic factor of the

electron, and κ is the focusing constant which takes 1=
ffiffiffi
2

p
in general [6,7].
Electrons emit synchrotron radiation when performing

BO [8–11], which affects the electrons in return. Such an
effect is called the radiation reaction (RR) and its classical
expression is the Lorentz-Abraham-Dirac (LAD) equation
or the Landau-Lifshitz equation [12,13]. Because the RR
force is proportional to the classical electron radius
re ≈ 2.81 × 1015 m, it is generally negligible unless under
extreme conditions [14,15] or for sufficiently a long
interaction time [16]. The BO in a plasma accelerator is
another good case for such long interaction time. The
radiation leads to the energy loss of electrons and con-
sequently affects the energy-dependent betatron frequency,
as well as the other beam properties, such as the energy
spread and emittance [17–25].
Although there are many established theories on

the long-term RR damping effect of BO, they assert the
electron moves in only one plane, which is usually the z-x
plane where z is the longitudinal direction and x is one of
the transverse directions, thus only linear polarization has
been considered. Moreover, these models usually neglect
the longitudinal and energy oscillations during one betatron
period. In this paper, we establish a 3D BO model with
RR effect, which generalizes both linear and elliptical
betatron polarization, and also includes the longitudinal and
energy oscillations. Long-term equations (LTEs), without
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resolving the betatron period, are derived and verified by
numerical methods. The LTEs reproduce the previous
results, such as longitudinal and transverse damping due
to RR, as the special cases, and meanwhile reveal new
phenomena such as betatron phase shift and polarization
change.
The rest of this paper is organized as follows: Sec. II

gives the original form of the force and shows the equations
of motion expressed by the transverse motion only.
Section III derives the LTEs by averaging the equations
of motion through one betatron period. Section IV dis-
cusses the different phenomena in the RR dominant regime
and the betatron phase shift dominant regime. Section V
numerically verifies the LTEs by comparing them with the
code PTracker which solves the equations with the original
form of force. Before starting, it is worth noting that some
universal notations and calculation rules used throughout
the derivation are described in Appendix A. And the plasma
normalization units are used throughout the paper, as listed
in Table I, where c is the speed of light in vacuum, ωp is the
plasma frequency, e is the elementary charge, and me is the
electron mass. For example, the time is normalized to ω−1

p ,
means any time-related quantity such as t in this paper
actually means ωpt in the un-normalized form.

II. THE ELECTROMAGNETIC FIELDS
AND THE EQUATIONS OF MOTION

Consider an electron with γ ≫ 1 is trapped in a plasma
wakefield with the longitudinal comoving coordinate
ζ ¼ z − βwt, where the wake moves in the zþ direction
with the phase velocity βw (normalized to c). Neglecting the
interaction between the beam particles, the electromagnetic
fields provided by the wake can be modeled as [7]

Ez ¼ Ez0 þ λζ1; ð1Þ

E⃗⊥ ¼ κ2ð1 − λÞr⃗; ð2Þ

Bθ ¼ −κ2λr; ð3Þ

where Ez0 ¼ Ezjζ¼hζi, λ ¼ dEz=dζjζ¼hζi, and r⃗ ¼ ðx; yÞ is
the transverse offset. The force can be expressed as

fz ¼ −Ez0 − λζ1 þ κ2λðxβx þ yβyÞ þ fradz ; ð4Þ

fx ¼ −κ2ð1 − λþ λβzÞxþ fradx ; ð5Þ

fy ¼ −κ2ð1 − λþ λβzÞyþ frady ; ð6Þ

where βx ¼ _x, βy ¼ _y, βz ¼ _z ¼ βz0 þ _ζ1, βz0 ¼ βwþ
_hζi ¼ hβzi, f⃗rad is the RR force, a dot on the top means

taking the time derivative, and the subscript 1 means the
BO term as described in Appendix A. The formulas of 3D
BO with RR can be written in the form of transverse terms
only in the limit r2 ≪ γ, r2γ ≫ 1, and rγkpre=2α ≪ 1 (see
Appendix B)

_γ ¼ −Ez0βz0 þ
�
λβz0
4

þ κ2λ − κ2
�
ðxβx þ yβyÞ

−
2

3
kpreγ2κ4ðx2 þ y2Þ; ð7Þ

_pz ¼ −Ez0 þ λ

�
1

4
þ κ2

�
ðxβx þ yβyÞ

−
2

3
kpreγ2κ4ðx2 þ y2Þ; ð8Þ

_px ¼ −κ2xþ κ2λ

2
ðhγi−2 þ β2x þ β2yÞx

−
2

3
kpreγ2κ4ðx2 þ y2Þβx; ð9Þ

_py ¼ −κ2yþ κ2λ

2
ðhγi−2 þ β2x þ β2yÞy

−
2

3
kpreγ2κ4ðx2 þ y2Þβy; ð10Þ

where kp ¼ ωp=c, p⃗ ¼ γβ⃗, and

βz0 ¼ 1 −
1

2
ðhγi−2 þ hβ2xi þ hβ2yiÞ ð11Þ

by neglecting high-order terms. One may note the second
term in Eqs. (7)–(10), which comes from the oscillation of
βz and the modulation of γ due to transverse oscillation,
was neglected in previous works. In the following sections,
we show these terms lead to new phenomena.

III. THE LONG-TERM EQUATIONS OF 3D
BETATRON OSCILLATION

In this section, we use the same averaging method as
Ref. [22]. We first introduce two complex variables

TABLE I. The plasma normalization units.

Physical quantities Variables Normalization units

Time t ω−1
p

Frequency ω ωp

Length x, y, z c=ωp

Velocity v (or β) c
Momentum p mec
Angular momentum L mec2=ωp

Electric field E mecωp=e
Magnetic field B meωp=e (in SI)
Force f mecωp
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U ¼ ðx − iκ−1γ
1
2βxÞe−iφ; ð12Þ

V ¼ ðy − iκ−1γ
1
2βyÞe−iφ; ð13Þ

where

φ ¼
Z

ωβdt ¼ κ

Z
γ−

1
2dt ð14Þ

is the (fast) betatron phase. Obviously jU1j ≪ jhUij and
jV1j ≪ jhVij are satisfied, and we apply the rules in
Appendix A often in the following. Because the equations
for x and y directions are symmetric, we may derive for x
direction only, then exchange x and y, U and V for the y

direction. With the help of Eqs. (7) and (9), we may write
the time derivative of Eq. (12) as

_U ¼ −i
1

2
κ−1γ−

1
2Ez0βz0βxe−iφ þ i

1

3
kpreκ3γ

3
2ðx2 þ y2Þβxe−iφ

þ i
1

2
κ−1γ−

1
2

�
λβz0
4

þ κ2ðλ− 1Þ
�
ðxβx þ yβyÞβxe−iφ

− i
1

2
κλγ−

1
2ðhγi−2 þ β2x þ β2yÞxe−iφ: ð15Þ

In the following, we omit hi on U and V for convenience
so that all U and V actually mean hUi and hVi. We perform
average on Eq. (15) to obtain (note only the terms with ei0φ

survive after averaging)

_U ¼ 1

4
Ez0βz0hγi−1U −

1

24
kpreκ4hγiðjUj2U þ 2jVj2U − V2U�Þ þ i

1

64
κλβz0hγi−3

2ðjUj2U þ V2U�Þ

− i
1

16
κ3hγi−3

2½ðjUj2 þ 2λjVj2ÞU − ð2λ − 1ÞV2U�� − i
1

4
κλhγi−5

2U: ð16Þ

By asserting V ¼ 0 and omitting the last three terms in
Eq. (16), which come from the second terms in Eqs. (7)–(10),
we can reproduce Eq. (19) in Ref. [22].
The average of Eq. (7) leads to

h_γi ¼ −Ez0βz0 −
1

3
kpreκ4hγi2ðjUj2 þ jVj2Þ; ð17Þ

with the second term reproducing Eq. (B2) in Ref. [19].
Ez0 is a function of hζi, which obeys

_hζi ¼ 1

2
γ−2w −

1

2
hγi−2 − 1

4
κ2hγi−1ðjUj2 þ jVj2Þ; ð18Þ

where γw ¼ ð1 − β2wÞ−1=2 and we have used Eq. (B2).
The above averaged Eqs. (16)–(18) are already enough

to predict the long-term behavior of BO. However, the

equations for the complex variables are not explicit. To
make them more physically meaningful, we split the
complex variables into their amplitudes and phases

U ¼ jUjeiΦx ; ð19Þ

V ¼ jVjeiΦy ; ð20Þ

ΔΦ ¼ Φy −Φx: ð21Þ

jUj has the meaning of the BO amplitude in the x direction,
and Φx is the (slow) betatron phase shift. For the y
direction, they are similar. Thus ΔΦ is the phase difference
between the two directions. By applying djUj=dt ¼
ð _UU� þU _U�Þ=2jUj and _Φx ¼ ð _UU� − _U�UÞ=2ijUj2,
we get

djUj
dt

¼ 1

4
Ez0βz0hγi−1jUj − 1

24
kpreκ4hγi½jUj3 þ jVj2jUjð2 − cos 2ΔΦÞ�

−
1

16
κ

�
1

4
λβz0 − κ2ð1 − 2λÞ

�
hγi−3

2jVj2jUj sin 2ΔΦ; ð22Þ

_Φx ¼
1

24
kpreκ4hγijVj2 sin 2ΔΦþ 1

64
κλβz0hγi−3

2½jUj2 þ jVj2 cos 2ΔΦ�

−
1

16
κ3hγi−3

2½jUj2 þ 2λjVj2 þ ð1 − 2λÞjVj2 cos 2ΔΦ� − 1

4
κλhγi−5

2; ð23Þ

dΔΦ
dt

¼ −
1

24
kpreκ4hγiðjVj2 þ jUj2Þ sin 2ΔΦþ 1

8
κ

�
1

4
λβz0 − κ2ð1 − 2λÞ

�
hγi−3

2ðjVj2 − jUj2Þsin2ΔΦ: ð24Þ

Note when doing exchange of U and V for the y direction, one also has to change the � sign of ΔΦ.
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To further simplify, we notice Eq. (22) can be rewritten with the help of Eq. (17)

djUj
dt

¼ −
1

4

h_γi
hγi jUj − 1

8
kpreκ4hγi

�
jUj3 þ 4 − cos 2ΔΦ

3
jVj2jUj

�
−

1

16
κ

�
1

4
λβz0 − κ2ð1 − 2λÞ

�
hγi−3

2jVj2jUj sin 2ΔΦ; ð25Þ

which reproduces Eq. (66) in Ref. [24] if V ¼ 0.
Introduce

Sx ¼ κhγi12jUj2; ð26Þ

Sy ¼ κhγi12jVj2; ð27Þ

which have the physical meaning of the areas (divided by
π) of the ellipses encircled by the particle trajectory

in x-px and y-py phase spaces. Then Eqs. (17), (18),
(22)–(24) can be rewritten as

h_γi ¼ −Ez0βz0 −
1

3
kpreκ3 hγi32ðSx þ SyÞ; ð28Þ

_hζi ¼ 1

2
γ−2w −

1

2
hγi−2 − 1

4
κhγi−3

2ðSx þ SyÞ; ð29Þ

_Sx ¼ −
1

4
kpreκ3hγi12

�
S2x þ

4 − cos 2ΔΦ
3

SxSy

�
−
1

8

�
1

4
λβz0 − κ2ð1 − 2λÞ

�
hγi−2SxSy sin 2ΔΦ; ð30Þ

_Φx ¼
1

24
kpreκ3 hγi12 Sy sin 2ΔΦþ 1

64
λβz0hγi−2 ðSx þ Sy cos 2ΔΦÞ

−
1

16
κ2hγi−2½Sx þ 2λSy þ ð1 − 2λÞSy cos 2ΔΦ� − 1

4
κλhγi−5

2; ð31Þ

dΔΦ
dt

¼ −
1

24
kpreκ3hγi12 ðSy þ SxÞ sin 2ΔΦþ 1

8

�
1

4
λβz0 − κ2ð1 − 2λÞ

�
hγi−2 ðSy − SxÞsin2ΔΦ: ð32Þ

It is generally safe to take βz0 ¼ 1 here. But Eq. (11), or
βz0 ¼ 1 − 1

2
½hγi−2 þ 1

2
κhγi−3=2ðSx þ SyÞ�, gives a better

accuracy. The above long-term equations, Eqs. (28)–(32),
show that the BO experiences acceleration (for Ez0 < 0) or
deceleration (for Ez0 > 0), radiation damping, longitudinal
phase drift, and betatron phase shift. These equations may
be used for the long-term behavior of BO without resolving
the betatron period.

IV. DISCUSSION ON TWO REGIMES

From Eqs. (30) to (32) we note two regimes. One is the
RR dominant regime, where kprehγi5=2 ≫ 1, so that the
first terms in Eqs. (30)–(32) dominate. This regime has
been discussed before [22], although only for the linearly
polarized case ΔΦ ¼ 0 or π (so that the ratio between Sx
and Sy is a constant). The other is the betatron phase shift
dominant regime, where kprehγi5=2 ≪ 1, so that the
remaining terms in Eqs. (30)–(32) dominate. These terms
were previously proposed [24], but the betatron phase shift
is first found in the present work.
In the RR dominant regime, an interesting phenomenon

is that an elliptical polarization (in the x − y plane) always
approaches linear polarization, because ΔΦ always

approaches the nearest integer multiple of π according to
Eq. (32), although the approaching speed is gradually
reduced and it takes an infinite long time for a perfect
linear polarization. This phenomenon can also be viewed
by rotating the x axis to the major axis of the ellipse so that
Sx > Sy and ΔΦ ¼ �π=2. Define R ¼ Sy=Sx and perform
time derivative with the help of Eq. (30)

_R ¼ −
1

6
kpreκ3hγi12 RðSx − SyÞ < 0; ð33Þ

which suggests that the ellipse monotonically becomes
thinner.
The betatron phase shift dominant regime requires a

moderate γ, or straightforwardly kpre → 0, which corre-
sponds to very dilute plasma cases, leads to a constant
S≡ Sx þ Sy. It can be proved that the time integral of
Eq. (29) reproduces Eq. (6) in Ref. [23], which is the hζi
drift, in the case that hγi linearly depends on t. In another
case that hζi drifts around the zero point of Ez0, the drift
frequency can be obtained by using Eqs. (28) and (29) and
asserting Ez0 ¼ λhζi
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ωhζi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λβz0ð1þ

3

8
κhγi12 SÞhγi−3

r
: ð34Þ

We also note the angular momentum Lz ¼ γxβy − γyβx
and its changing rate

hLzi ¼ −S
1
2
xS

1
2
y sin ΔΦ; ð35Þ

_hLzi ¼ −
1

3
kpreκ3hγi12ðSx þ SyÞhLzi; ð36Þ

obey the law of conservation of angular momentum if
hLzi ¼ 0 initially, or kpre → 0. Especially for kpre → 0,
the particle trajectory in the x-y plane generally encircles an
ellipse, which has precession leading to the rotation of the
ellipse. By applying the perturbation method to a special
situation that the major axis of the ellipse coincides with the
x axis, the precession frequency can be obtained as

Ω ¼ −
1

8

�
λβz0
4

− κ2ð1 − 2λÞ
�
hγi−2 hLzi: ð37Þ

V. NUMERICAL COMPARISON OF LONG-TERM
EQUATIONS AND THE ORIGINAL ONES

To verify the LTEs, we solve them numerically using the
backward-differentiation formulas in the SciPy integration
package [26]. Meanwhile, the original equations of motion
with the force expressions [Eqs. (4)–(6)] are solved by
Runge-Kutta fourth-order method using the code PTracker
(PT) [27]. We choose four cases with their parameters and
initial values listed in Table II and the comparison results
are plotted in Figs. 1–4. Note that Φx cannot be obtained
directly from PT. Thus, we perform the following treatment
to the PT results

x · cos φ ¼ jUj
2

½cosΦx þ cos ð2φþΦxÞ�; ð38Þ

because x ¼ jUj cos ðφþΦxÞ, where φ is obtained by
numerical integral based on Eq. (14). Then cosΦx can
be obtained by a low-pass filter. A similar treatment is
performed to obtain cos ΔΦ, according to

xy ¼ jUjjVj
2

½cos ΔΦþ cos ð2φþΦx þΦyÞ�: ð39Þ

A case in the betatron phase shift dominant regime is
shown in Fig. 1. We see Sx þ Sy is a constant, although Sx,
Sy, and ΔΦ change gradually. The approximate “phase-
locking” is chosen, i.e., γw ≈ γz0, thus hζi oscillates near the
zero point of Ez with the drift frequency ωhζi according to
Eq. (34). hγi oscillates with the same drift frequency as
shown in Fig. 1(b).
A second case during the transition of the two regimes is

shown in Fig. 2. Sx þ Sy is approximately a constant

TABLE II. The cases for comparing PT and LTEs.

Parameters Initial values

Case Ez λ κ kpre γw jUj jVj Φx Φy hγi hζi
Figure 1 λζ 1

4
1ffiffi
2

p 0 14 1.12 0.87 0 π
6 102 −0.05

Figure 2 −0.001 0 1ffiffi
2

p 10−10 104 1.12 0.87 0 π
6 103 0

Figure 3 λζ 1
2

1ffiffi
2

p 10−10 104 0.2 0.18 0 π
2 103 −0.1

Figure 4 −0.1 0 1ffiffi
2

p 10−10 104 0.2 0.2 π
4

π 106 0

(a)
(b)

)d()c(

FIG. 1. The numerical comparison of the LTEs and the original
equations solved by PTracker in the betatron phase shift dominant
regime. (a) Sx and Sy change with the period π=Ω ¼ 3.89 × 105

according to Eq. (37), but Sx þ Sy is a constant. (b) γ has
oscillation frequencies of 2ωβ ≈ 0.14 due to the BO and ωhζi ≈
3.11 × 10−3 due to the drift oscillation of hζi. (c) The gray curve
shows xy obtained from PT, and the black curve shows its low-
pass filtered result, which is compared with the LTE solution
according to Eq. (39). (d) The gray curve shows x · cos φ
obtained from PT, and the black curve shows its low-pass filtered
result, which is compared with the LTE solution according to
Eq. (38).
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initially, and starts to decrease near the regime transi-
tion γ ¼ ðkpreÞ−2=5.
A third case in the RR dominant regime is shown in

Fig. 3. The initial values are chosen so that the particle
trajectory in the x-y plane is an ellipse with its major axis being on the x axis. As shown in Fig. 3(a), R ¼ Sy=Sx

decreases monotonically, as predicted by Eq. (33).
The last case shown in Fig. 4 is also in the RR dominant

regime, but the particle trajectory in the x-y plane is an
oblique ellipse. As shown in Fig. 4(c), ΔΦ gradually
approaches π, which is in accordance with the discussion
in Sec. IV.
In all these plots, the results from PT and LTEs show

agreement with high accuracy, demonstrating the correct-
ness of LTEs. Because the BO frequency is the highest
frequency in our physical process, the LTEs largely reduce
the numerical complexity and meanwhile keep the long-
term accuracy.

VI. CONCLUSIONS

We have established a three-dimensional betatron
oscillation model including radiation reaction to study the
long-term behavior of an electron in laser- or beam-driven
plasma wakefield. The original equations of motion have
been expressed by the transverse oscillation terms as
Eqs. (7)–(10) and then averaged in one betatron period to
obtain the long-term equations Eqs. (28)–(32). The con-
ditions of our model are r2 ≪ γ, r2γ ≫ 1, and
rγkpre=2α ≪ 1, as discussed in Appendix B. Our model,
on one hand, reproduces previous results such as

(a)

(b)

(d)(c)

FIG. 3. The numerical comparison of the LTEs and the original
equations solved by PTracker in the RR dominant regime. ΔΦ ¼
π=2 and Sx > Sy, thus the major axis of the particle trajectory
ellipse is on the x axis. (a) R ¼ Sy=Sx decreases with time due to
Eq. (33), thus the ellipse is getting thinner. (b) γ increases due to
the acceleration field. (c) and (d) show the same treatments as in
Figs. 1(c) and 1(d).

(b)(a)

(d)(c)

FIG. 4. The numerical comparison of the LTEs and the original
equations solved by PTracker in the RR dominant regime.
Sx ¼ Sy, thus the particle trajectory in the x-y plane is an oblique
ellipse. (a) Sx and Sy decrease at the same rate. (b) γ initially
decreases with time because the longitudinal RR damping is
stronger than the acceleration. Later the RR damping becomes
weaker due to the decrease of Sx and Sy, and γ increases. (c) and
(d) show the same treatments as in Figs. 1(c) and 1(d), but the
oscillation amplitudes are divided so that the changes of ΔΦ and
Φx are clearer. ΔΦ is between π=2 and π, thus ΔΦ gradually
approaches π.

(a)

(b)

(d)(c)

FIG. 2. The numerical comparison of the LTEs and the original
equations solved by PTracker in the transition between the
betatron phase shift dominant and the RR dominant regimes.
(a) Sx þ Sy is initially approximately a constant but decreases
later. (b) γ increases due to the acceleration field and passes the
regime transition at γ ¼ ðkpreÞ−2=5 ¼ 104. (c) and (d) show the
same treatments as in Figs. 1(c) and 1(d).
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longitudinal deceleration and transverse damping, and on
the other hand reveals new phenomena such as longitudinal
phase drift oscillation, betatron phase shift, and betatron
polarization change. Two regimes with distinct behaviors,
determined by kpreγ5=2, are discussed in Sec. IV and are
demonstrated by numerical methods in Sec. V. The numeri-
cal comparisons of the long-term equations and the original
equations of motion show the high accuracy of our model.
Although this model is a single-particle model, it can be a
very fundamental tool to predict the more practical beam
parameters, such as the energy gain, energy spread, and
emittance, for future plasma-based high-energy accelerators
and colliders [28], if certain initial conditions such as the
wakefield parameters and the beam phase space distribution
are given.
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APPENDIX A: NOTATIONS AND RULES

We give some universal notations and rules in this part. If
any variable X, either real or complex, can be expressed as
X ¼ hXi þ X1, where hi means taking the average in the
betatron period time scale, hXi is the slow-varying term and
X1 is the fast-oscillation term with the frequency in the
order of the BO frequency, taking average and derivative
can permute

�
d
dt

X

�
¼ d

dt
hXi: ðA1Þ

We use a dot on the top to express the time derivative if
there is no ambiguity. We have the order-of-magnitude
estimation

_X1 ∼ ωβX1 ∼ γ−
1
2X1: ðA2Þ

If jX1j ≪ jhXij, for any power α, we have

hXαi ¼ hXiα
�
1þO

�
X2
1

hXi2
��

: ðA3Þ

And if another variable Y ¼ hYi þ Y1 also has jY1j ≪ jhYij,

hXYi ¼ hXihYi
�
1þO

�
X1Y1

hXihYi
��

: ðA4Þ

If X is a complex, taking average and modulus can permute

hjXji ¼ jhXij
�
1þO

� jX1j2
jhXij2

��
: ðA5Þ

However, taking modulus and derivative cannot permute.

APPENDIX B: EQUATIONS OF MOTION
EXPRESSED BY TRANSVERSE OSCILLATIONS

In Eqs. (4)–(6), the longitudinal and transverse oscil-
lations are coupled. As shown in the following, the
longitudinal variables ζ1 and βz are dependent variables
that can be expressed by the transverse ones.
We treat f⃗rad as a perturbation and omit it first. On one

hand, we have

γ−2 ¼ 1 − β2z − β2x − β2y

¼ γ−2z0 − 2βz0 _ζ1 − β2x − β2y þOð _ζ12Þ; ðB1Þ

where γz0 ¼ ð1 − β2z0Þ−1=2. By taking the average, we get

γ−2z0 ≈ hγi−2 þ hβ2xi þ hβ2yi: ðB2Þ

Write γ ¼ hγi þ γ1 in the form

γ−2 ¼ hγi−2
�
1 − 2

γ1
hγi þO

�
γ21
hγi2

��
; ðB3Þ

we have

γ1 ≈
�
β2x − hβ2xi

2
þ β2y − hβ2yi

2
þ βz0 _ζ1

�
hγi3: ðB4Þ

On the other hand,

_γ ¼ −Ez0βz0 − λβz0ζ1 − κ2ð1 − λÞ ðxβx þ yβyÞ ðB5Þ

by applying _γ ¼ −β⃗ · E⃗ and Eqs. (1) and (2), or

_γ1 ¼ −λβz0ζ1 − κ2ð1 − λÞ ðxβx þ yβyÞ: ðB6Þ

Note Eq. (A2), Eq. (B4) seems incompatible with Eq. (B6),
unless

_ζ1 ¼ −
β2x − hβ2xi

2
−
β2y − hβ2yi

2
; ðB7Þ

which leads to

ζ1 ¼ −
xβx þ yβy

4
; ðB8Þ

which is a general form of Eq. (18) in Ref. [24]. Then

1 − βz ¼ 1 − βz0 − _ζ1 ¼
1

2
ðhγi−2 þ β2x þ β2yÞ; ðB9Þ
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and the formulas of 3D BO with negligible RR are

_γ ¼ −Ez0βz0 þ
�
λβz0
4

þ κ2λ − κ2
�
ðxβx þ yβyÞ; ðB10Þ

_pz ¼ −Ez0 þ λ

�
1

4
þ κ2

�
ðxβx þ yβyÞ; ðB11Þ

_px ¼ −κ2xþ κ2λ

2
ðhγi−2 þ β2x þ β2yÞx; ðB12Þ

_py ¼ −κ2yþ κ2λ

2
ðhγi−2 þ β2x þ β2yÞy: ðB13Þ

From Eq. (B10), we may write

γ ¼ hγi þ
�
λβz0
4

þ κ2λ − κ2
�
x2 − hx2i þ hy2i − hy2i

2
;

ðB14Þ

indicating the prerequisite of the above derivation, which
has used Eq. (A3), is r2 ≪ hγi.
Now we consider RR as a perturbation. The LAD

equation for the RR four-force is [12]

Frad
μ ¼ 2

3
kpre

�
d2Pμ

dτ2
þ
�
dPν

dτ
dPν

dτ

�
Pμ

�
: ðB15Þ

with the metric ð1;−1;−1;−1Þ, where Pμ is the four-
momentum, and τ is the proper time (dτ ¼ dt=γ). Using
Eqs. (B10)–(B13), we can verify

dPν

dτ
dPν

dτ
¼ γ2ð_γ2 − j _p⃗j2Þ ≈ −γ2ð _px

2 þ _py
2Þ ðB16Þ

as long as r2γ2 ≫ 1. We can also prove that the first term in
Eq. (B15) is negligible compared with the second term as
long as r2γ ≫ 1. Finally, the equations of motion expressed
by the transverse oscillations are obtained as Eqs. (7)–(10).
As it has been discussed in Refs. [24] and [25], this
classical RR model is valid as long as rγkpre=2α ≪ 1,
where α is the fine structure constant.
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