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Modern electron storage rings produce bright x rays via spontaneous synchrotron emission, which is
useful for a variety of scientific applications. The x-ray free-electron laser oscillator (XFELO) has the
potential to amplify this output, both in terms of peak power and photon coherence. However, even current
fourth generation storage rings (4GSRs) lack the requisite electron beam brightness to drive the XFELO
due to its electron energy spread. The transverse gradient undulator (TGU) can overcome this issue, thus
providing a practical means to couple the 4GSR to the XFELO. In this study, we first examine the
theoretical basis of the TGU interaction by deriving the 3D TGU gain formula in the low gain
approximation. Then, we perform an optimization study of the gain formula in order to determine
optimal beam and machine parameters. Finally, we construct a hypothetical storage ring TGU-XFELO
based on near-optimal parameters and report on its projected performance using multistage numerical
simulation. We also discuss potential implementation challenges associated with the ring-FEL coupling.
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I. INTRODUCTION

Synchrotron emission from high-energy electrons can
provide intense radiation over a wide spectral range that
extends to hard x rays. Modern third-generation electron
storage rings (3GSRs) utilize this spontaneous emission to
produce bright x rays that are used to measure and probe a
host of materials, systems, and processes. Going one step
further, recent advances in self-amplified spontaneous
emission (SASE) free-electron lasers (FELs) offer yet more
orders of magnitude improvement in peak brightness and
optical coherence [1].
However, unlike conventional lasers, SASE FELs do not

offer full temporal coherence. One method to remedy this
would be to use an oscillator, in which the photon beam is
trapped within a high-efficiency optical cavity. This FEL
oscillator setup has been used to great success in the
infrared (IR) through ultraviolet (UV) wavelengths [2,3].
The electron driver has typically been a linear accelerator
(linac) for IR and a synchrotron for UV.
In principle, the FEL oscillator setup is extensible to the

x-ray regime (wavelength ≲3 Å) by employing Bragg
reflectors as cavity mirrors [4,5]. However, the electron

beam brightness in current 3GSRs is not sufficient to
produce the necessary FEL gain—the natural emittance εx;0
is typically 1 or 2 orders of magnitude too large, while
energy spread σγ exceeds the ideal by a factor of 10.
Recent advances in storage ring technology have man-

aged to narrow this gap. The nascent fourth-generation
storage ring (4GSR) uses multibend achromats to drasti-
cally reduce transverse natural emittance to ∼10−11 m rad,
thus fulfilling the requirement that εx;0 ≲ λ=4π for wave-
lengths in the hard x-ray range [6,7]. However, electron
energy spread remains too large—typically having a value
of σγ=γ ∼ 0.1% at equilibrium.
One method to circumvent the energy spread limitation

is to use a transverse gradient undulator (TGU) [8–10]. In
contrast to a planar undulator, the magnetic pole faces of
the TGU are slightly canted along one transverse axis
(Fig. 1). To first order, the undulator field strength becomes
a transversely linear function. If the electron beam energy is
appropriately correlated along the same axis, one can
achieve significant FEL gain even with large energy
spreads. The TGU concept was recently revisited for
high-gain FELs driven by large energy spread beams
produced by laser-plasma accelerators [11] and for high-
gain FELs in an electron synchrotron [12].
In this paper, wewill examine the application of the TGU

to a low-gain x-ray oscillator driven by an electron
synchrotron (Fig. 2). We begin by discussing low-gain
TGU theory, culminating in the derivation of the 3D gain
formula in Sec. II. Next, in Sec. III, we perform parameter
optimization on the 3D gain formula in order to determine
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beam and machine parameters for maximum gain. Finally,
in Sec. IV, we report on the projected performance of a
hypothetical storage ring TGU-XFELO based on multi-
stage numerical simulation. We will also examine the
relevant storage ring FEL dynamics and discuss practical
implementation concerns.
While this study focuses exclusively on storage rings as

the electron driver, we should note that linac-driven FELs
are also a hugely successful and rapidly advancing subfield
of FEL technology. In contrast to the storage ring, the
linac is able to achieve much higher electron beam
brightness, which, in conjunction with the advent of
superconducting radiofrequency cavity technology, allows
it to become a serious contender in driving the low-gain
x-ray oscillator [13]. However, one major drawback of the
linac design is its low user capacity—in a storage ring, the

XFELO would potentially exist alongside many other
insertion devices and user stations. Ultimately, we view
these two approaches to light source design as comple-
mentary, rather than competitive.

II. LOW GAIN TGU THEORY

For a planar undulator, the FEL resonance condition
stipulates that

λ1 ¼ λu
1þ K2=2

2γ2
; ð1Þ

where λ1 is the resonant radiation wavelength, λu is the
undulator period, K ≡ eB=ðmckuÞ is the undulator
deflection parameter, and γ is the electron Lorentz factor.
Additionally, B is the peak undulator magnetic field,
ku ≡ 2π=λu is the undulator wave number, and e, m, c
are the electron charge magnitude, mass, and speed of light,
respectively.
To achieve FEL amplification, the spread in λ1 has to be

narrower than the FEL gain bandwidth, which in the low
gain oscillator is determined by 1=Nu, where Nu is the
number of undulator periods. The spread in λ1 is in turn set
by the electron energy spread σγ via Eq. (1). Hence, for a
fixed K and λu, we require σγ=γ ≪ 1=Nu. For large
undulators, this limit is typically ∼ 10−3.
The energy spread requirement can be significantly

relaxed if we are able to vary K in the numerator so as
to cancel the spread in γ in the denominator. The transverse
gradient undulator (TGU) accomplishes this using a two-
step method. First, by slightly canting the pole faces along
the y axis (Fig. 1), the on-axis field strength becomes an
approximately linear function of y:

KðyÞ ≈ K0ð1þ αyÞ; ð2Þ

where α is the TGU gradient parameter. Second, we
introduce a correlation between the electrons’ energy
and their transverse position via dispersion, such that

FIG. 2. Schematic of the TGU-XFELO driven by an electron synchrotron. The three constituent components are the electron
synchrotron (green), the TGU mechanism (blue), and the optical cavity (orange). The TGU mechanism consists of the undulator itself,
as well as dispersive sections denoted by D and D−1 above.

FIG. 1. Cross section of a transverse gradient undulator (TGU)
aligned vertically. The direction of electron motion is in z. The
magnetic field gradient grows stronger along the positive y axis
due to the canted undulator poles (exaggerated for visibility). If
the electron bunch (center oval) is dispersed appropriately so that
higher energy electrons (red; top half) experience higher field
strength while lower energy electrons (blue; bottom half) expe-
rience less, then FEL gain can be greatly improved even for large
electron energy spreads.
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yj ¼ Dηj þ yβj; ð3Þ

where yj is the position of the jth electron, D is the
dispersion parameter, ηj ≡ ðγj − γ0Þ=γ0 is the relative
deviation from the nominal electron energy γ0, and yβj
is the original betatron trajectory of the electron. For each
electron j, we would like Eq. (1) to be individually
satisfied:

λ1 ¼ λu
1þ K2

0ð1þ αyjÞ2=2
2γ20ð1þ ηjÞ2

: ð4Þ

Inserting Eq. (3) into the above yields

λ1 ≈ λu
1þ K2

0=2
2γ20

�
1þ

K2
0αðDηj þ yβjÞ
1þ K2

0=2
− 2ηj

�
; ð5Þ

for ηj ≪ 1 and αyj ≪ 1. We can eliminate ηj and effec-
tively remove the influence of energy spread by choosing

αD ¼ 2þ K2
0

K2
0

; ð6Þ

and assuming yβj ≪ Dηj. The latter assumption implies
that for the overall electron ensemble, the correlated
electron beam size in y should be dominated by dispersion,
i.e., hyβ2ji≡ σ2y ≪ D2σ2η. We quantify this by introducing
the dimensionless TGU parameter

Γ≡Dση
σy

: ð7Þ

The previous argument is then equivalent to Γ ≫ 1. For
Γ ∼ 1 or less, the TGU benefit is greatly diminished. We
will see that Γ plays a pivotal role in TGU gain.
Previous studies by Kroll et al. have found that the TGU

also excites transverse betatron oscillations [14]. This
effect, however, is only dominant when the electron bunch
undergoes many cycles of betatron oscillation within the
length of the TGU, which does not hold true in the x-ray
regime [7]. In fact, in the latter case, the TGU focusing
strength is α=ku times weaker than natural undulator
focusing, which itself is considered small. (Typical values
of α=ku ∼ 0.1 in our case.) Hence going forward, we will
assume the TGU-induced transverse motion to be negli-
gible. This is especially important for a key assumption of
the gain convolution formula, to be discussed next.

A. Derivation of 3D gain formula

The derivation of the full 3D TGU gain formula follows
closely the steps of deriving the gain formula for a regular
planar undulator, presented in [7,15], with two key
differences. First, we make the substitution

y → y −Dη ð8Þ

in the particle position coordinate to account for the
added TGU dispersion. Second, in accordance with Eq. (5),
the TGU magnetic gradient modifies the FEL resonance
condition:

ku
k1

≈
1þ K2

0=2
2γ20

�
1þ K2

0αy
1þ K2

0=2
− 2η

�
; ð9Þ

where ku; k1 are the wave numbers of the undulator and the
fundamental radiation harmonic, respectively. This change
is carried forward into the evolution equation of the FEL
ponderomotive phase θ:

dθ
dz

¼ 2kuη − kuTαy −
k1
2
ð p⃗2 þ k2βx⃗

2Þ; ð10Þ

where Tα ≡ K2
0α=ð1þ K2

0=2Þ, ðx⃗; p⃗Þ are the particle posi-
tion and momentum coordinates, respectively, and kβ
represents any external focusing experienced by the elec-
tron. The first and third terms are identical to that of a
planar undulator. Since we are ignoring TGU-induced
transverse focusing effects, we leave the third term
unchanged, as well as the evolution equations for x⃗ and
p⃗. For our purposes, the TGU magnetic gradient is only
important for longitudinal FEL dynamics.
With all of that in mind, the TGU gain formula can be

obtained by retracing the derivation in [7,15]. We outline
here the general steps, with more details presented in the
Appendix. To begin, we define the brightness of a radiation
field R using its Wigner transform [16]:

BRðy⃗; ϕ⃗Þ ¼
Z

dξ⃗R�ðϕ⃗þ ξ⃗=2ÞRðϕ⃗ − ξ⃗=2Þe−iky⃗·ϕ⃗; ð11Þ

where ðy⃗; ϕ⃗Þ are the spatial and angular coordinates of the
radiation field. The brightness function BR can be thought
of as analogous to the electron phase space distribution
function Fðη; x⃗; p⃗Þ. Then FEL gain can be obtained via the
convolution of the radiation and particle distributions.
More concretely,

G ¼ G0

8πNuL2
uλ

2
1

Z
dηdx⃗dy⃗dϕ⃗dp⃗BEðy⃗; ϕ⃗Þ

× BUðη; x⃗ − y⃗; ϕ⃗ − p⃗Þ ∂

∂η
Fðη; x⃗; p⃗Þ: ð12Þ

Here BE is the seed radiation brightness, BU is the
brightness of the spontaneous radiation, F is the phase
space distribution of the initial electron beam, and Lu is the
undulator length.
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The prefactor G0 is defined as

G0 ¼ ð4πÞ2γ0
I
IA

K2
0½JJ�2

ð1þ K2
0=2Þ2

N3
uλ

2
1; ð13Þ

where I is the electron peak current, IA ¼ 4πϵ0mc3=e ≈
17 kA is the Alfvén current with ϵ0 being the vacuum
permittivity, and the Bessel function factor ½JJ� ¼ J0½K2

0=
ð4þ 2K2

0Þ� − J1½K2
0=ð4þ 2K2

0Þ�. Note that Eq. (12) is
derived under the assumption that the electrons undergo
no transverse focusing in the undulator, i.e., kβ → 0. This
includes natural undulator focusing, external focusing
quadrupoles, and TGU-induced focusing.
First, the spontaneous undulator brightness BU can be

obtained from the Wigner transform of the undulator
radiation field U. The latter is given by

Uðη; x⃗ðzÞ; ϕ⃗ − p⃗; zÞ

¼
Z

Lu=2

−Lu=2
dz exp½−ikϕ⃗ · x⃗ðzÞ − ikzðϕ⃗ − p⃗Þ2=2

þ ikuzð2νη − Tαx⃗ðzÞ − ΔνÞ�; ð14Þ
where ν≡ λ1=λ, Δν≡ ν − 1, and

x⃗ðzÞ ¼ x⃗ − p⃗ðLu=2 − zÞ ð15Þ
represents the electron trajectory under the no-focusing
assumption. Note that on right-hand side ðx⃗; p⃗Þ represent
the transverse coordinates of the electron at the midpoint of
the TGU, i.e., z ¼ Lu=2. We choose to evaluate the gain
integral at themidpoint because it is the location of thewaists
of the electron and x-ray beams. Also notice in Eq. (14), the
inclusion of the Tα term which accounts for the TGU’s
impact on the longitudinal dynamics. Everything else
remains unchanged from the planar undulator case.
At the undulator midpoint, the brightness of the

Gaussian seed x-ray pulse can be easily expressed as

BEðy;ϕyÞ ¼
1

2πσryσϕy
exp

�
−

y2

2σ2ry
−

ϕ2
y

2σ2ϕy

�
; ð16Þ

where σry; σϕy are the root-mean-square (rms) x-ray beam
size and divergence measured at z ¼ Lu=2. (We drop the
vector notation and focus only on the TGU y axis since the
two transverse axes are decoupled.) Similarly, we approxi-
mate the initial electron distribution as Gaussian:

Fðη; y; pyÞ ¼
1

ð2πÞ3=2σyσησpy
× exp

�
−
ðy −DηÞ2

2σ2y
−

η2

2σ2η
−

p2

2σ2py

�
: ð17Þ

Here ση is the relative energy spread, and σy; σpy are the
electron beam size and divergence, respectively. Notice the
dispersion modification in the exponent.

Inserting Eqs. (16), (17), and the Wigner transform of
Eq. (14) into the gain convolution formula (12) allows us to
obtain an analytical formula forG. The calculation involves
several steps of Gaussian integration, with more details in
the Appendix. The final result is

G¼G0

4π

Z
1=2

−1=2
dzds

iðz− sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
DxDy

p exp

�
−2iδðz− sÞ−2σ̃2ηðz− sÞ2

1þΓ2

−
�

Γ
1þΓ2

σ̃η
β̃y

�
2 ðz2− s2Þ2

2

dy
Dy

�
: ð18Þ

The gain formula is expressed in terms of the following
dimensionless parameters

δ ¼ πNuðω − ω1Þ=ω1; ð19Þ

σ̃η ¼ 2πNuση; ð20Þ

β̃y ¼ βy=Lu; ð21Þ

where ω ¼ 2πc=λ is the radiation angular frequency, and βy
is the betatron function in y. The parameter δ represents
frequency detuning from the nominal resonant frequency
ω1 ≡ 2πc=λ1. We also introduced the diffraction factors

Dx;y ¼ Σ2
x;y þ szL2

uΣ2
ϕx;y

− iLuðz − sÞ
�
1

4k1
þ k1Σ2

ϕx;yΣ2
x;y

�
; ð22Þ

dy ¼ Σ2
y þ szL2

uσ
2
ϕy − iLuðz − sÞ

�
1

4k1
þ k1σ2ϕyΣ2

y

�
; ð23Þ

with

Σ2
y ¼ σ2y þ σ2ry þD2σ2η; ð24Þ

Σ2
x ¼ σ2x þ σ2rx; ð25Þ

Σ2
ϕx;y ¼ σ2px;y þ σ2ϕx;y: ð26Þ

Here, σx;y; σpx;py are the electron beam sizes and diver-
gences in x, y, respectively, while σrx;ry; σϕx;ϕy are the
analogous quantities for the seed x-ray beam.

B. Discussion of 3D gain formula

In the limit Γ → 0, the gain formula (18) reduces
correctly to its counterpart for a traditional planar undu-
lator. As in the planar undulator case, the factor DxDy

represents the dilution of gain due to 3D diffraction effects.
In the exponential, the first term −2iδðz − sÞ represents the
effect of frequency detuning and similarly remains
unchanged from its non-TGU counterpart.
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The impact of the TGU is most evident in the second
term −2σ̃2ηðz − sÞ2=ð1þ Γ2Þ. Without the TGU (Γ ¼ 0),
this term results in the exponential suppression of gain
due to energy spread. The TGU parameter Γ acts in the
denominator to mitigate this effect. The third and final term
in the exponential in Eq. (18) limits gain when a large
electron divergence outweighs the required y-γ correlation
for ideal TGU cancelation. This means that gain does not
increase monotonically with Γ, but rather, reaches a
maximum and then falls off.
Although not appearing directly in the gain formula, the

electron transverse emittances εx;y play an important role
due to their influence on σx;y and σpx;py and thus the
diffraction dilution factors Dx;y. In particular, having a
small emittance εy along the TGU axis can potentially
greatly increase gain. Herein lies the advantage of driving
the TGU with a storage ring—due to the unique nature of
radiation damping in a ring, the equilibrium natural
emittance εx;0 ≡ εx þ εy is a conserved quantity, with the
vertical emittance εy being typically orders of magnitude
smaller than its horizontal counterpart. Moreover, by using
coupling lattice elements such as skew quadrupoles, we can
fine-tune this emittance ratio kc ≡ εy=εx. We will see in the
following section that by choosing kc ≪ 1, we can poten-
tially increase the gain by an order of magnitude. Even
modest values of kc, such as 1=6 used for PETRA-IV [6],
present significant gain improvement (up to 2×).

III. TGU GAIN OPTIMIZATION

For a given set of machine parameters, one may be
interested in the optimal beam parameters that result in the
highest TGU gain. In this sense, the TGU gain integral can
be regarded as an optimization problem. We will consider

nine degrees of freedom: electron betatron functions (2),
x-ray Rayleigh ranges (2), electron transverse emittances
(2), energy spread (1), frequency detuning (1), and TGU
parameter (1). The rest of the machine parameters used in
this study are given in Table I. These values are inspired by
a typical 4GSR such as PETRA-IV [6,10].

A. Optimization methodology

We tested a number of different optimization algorithms
on this problem, including gradient descent, simulated
annealing, and simple hill climber. We found that the
objective function, i.e., the gain integral, had in all cases
a clear global optimum and a simple convex shape.
Provided reasonable starting parameters, all algorithms
were able to converge relatively quickly (on the order of
minutes) and reliably. The simple hill climber was chosen
for its algorithmic simplicity.

B. Optimization results

The first parameter of interest is the TGU parameter Γ.
Figure 3 shows TGU gain as a function of Γ, with the
optimum value at Γopt ¼ 13.3 and max gain Gth ¼ 0.42
from numerical integration and Gsim ¼ 0.48 from GENESIS

simulation. The systematic overshoot from GENESIS sim-
ulation is a result of the magnitude of gain G ∼Oð1Þ
exceeding the low-gain assumption used to derive Eq. (18).
In such cases, nonlinear interaction terms further boost its
value in such a way that the gain increase ∝ G2

th for G < 1.
Nevertheless, the primary quantity of interest Γopt remains
consistent between simulation and theory.
We can convert Γopt into the more practical values of

dispersion D and magnetic gradient α using Eqs. (6) and

TABLE I. Machine parameters used for optimization study.
Storage ring parameters are derived from PETRA-IV [6,10].

Name Symbol Value

Storage ring
Electron energy Ebeam 5.96 GeV
Relativistic gamma γr 1.167 × 104

Beam current (peak) Ipk 31.89 A
Relative energy spread ση 0.1%
Natural emittance εx;0 19 pm rad
Emittance ratio kc 0.167

Output radiation
Resonant energy ℏω1 14.412 keV
Radiation emittance εr 6.85 pm rad

Undulator
Undulator period λu 1.5 cm
Number of periods Nu 2000
Undulator parameter K0 1.06

FIG. 3. Gain G vs TGU parameter Γ depicting results from
numerical integration (black, dashed) and time-independent
GENESIS simulation (red, solid). Error bars indicate 2 standard
deviations of the shot-to-shot variation. Simulation results con-
sistently overperform when compared to theory, likely due to the
magnitude of gain G ∼Oð1Þ surpassing the low-gain assumption
of the analytical formula. Nevertheless, both models are con-
sistent in the location of the gain optimum at Γ ¼ 13.3.
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(7). Figure 4 shows the optimization plots of these two
parameters, with Dopt ¼ 6.2 cm and αopt ¼ 0.045 mm−1.
The maxima are rather broad, affording flexibility to
account for experimental limitations and/or imperfections.
For example, if we nominally define an “acceptable” gain
value as falling within 10% of the maximum, the allowable
ranges of D vary between 5 and 7.5 cm and α between
0.035 and 0.055 mm−1.
Note that although the optimal gradient αopt ¼

0.045 mm−1 may be considered large, it still lies within
the realm where the linear theory from Sec. II is appro-
priate. From the discussion around Eq. (5), we require that
αyj ≪ 1 for each individual electron, which in the ensem-
ble sense translates to ασy ≪ 1, where σy is the rms
electron beam size in y. This is amply satisfied in our case.
Next, we explore the effect of transverse emittances on

TGU gain (Fig. 5). In a storage ring, the natural emittance
εx;0 is determined by the magnetic lattice and radiation
damping, with the individual emittances εx, εy being set by
tuning kc. Unsurprisingly, we observe that TGU gain
always increases as εx;0 is reduced, with the lower bound
ultimately set by storage ring constraints. More impor-
tantly, however, the benefit of minimizing εy far outweighs
that of reducing εx. For instance, an increase of 1 pm rad in
εy can have the same impact on TGU gain as an increase of
5–10 pm rad in εx. Thus, for a fixed εx;0, we should aim to
minimize kc to maximally reap the benefits of the TGU.
Figure 6 shows the gain optimization plots with respect

to the electron betatron function and x-ray Rayleigh length
in the x and y dimensions, respectively. In the x axis, the
optimal value lies along the βx ¼ ZRx line. This agrees with
planar FEL theory, which predicts that gain is maximized

when the radiation mode size matches that of the electron
beam [7]. On the other hand, the TGU gain contour is
highly asymmetric in the y dimension due to TGU
dispersion. (To clarify, βy reflects the nominal betatron
function before the introduction of dispersion).
During storage ring operation, the beta functions βx;y can

be constrained by lattice stability requirements. Using once
again the 10% gain drop-off threshold, we observe that βy
and βx accept values up to 10 and 23 m, respectively. These
ranges encompass the nominal figures for PETRA-IV
insertion devices, with a generous margin for additional
tuning if necessary.
The Rayleigh ranges ZRx; ZRy are similarly constrained

in reality, both by practical optical cavity design as well as
user requirements. Fortunately, there is also a great deal of
tunability in these parameters. In the x dimension, the
optimal ZRx is always equal to βx, but a deviation of up to
�10 m still lays within the “acceptable” range. In the y
dimension, the allowance for suboptimality is even larger,
laying anywhere between 12 and 50 m. Finally, one special
note should be made for the round-beam case (ZRx ¼ ZRy),
which may be desirable under certain circumstances. With
this constraint imposed, we observed approximately a 10%
dropoff from the optimal gain, making it feasible as an
actual use case.
In summary, Table II lists some possible operation points

for a TGU-enabled XFELO based on PETRA-IV param-
eters. Aside from the optimal TGU case, we include a weak
dispersion scenario (when dispersion needs to be con-
trolled) and a round-beam case (when the x-ray beam needs

FIG. 4. Gain G versus electron beam dispersion D (red,
solid) and TGU magnetic gradient α (blue, dashed) derived
from numerical integration of the 3D gain formula. These
parameters are derived from the TGU parameter Γ by Eqs. (6)
and (7). Optimal gain is attained at Dopt ¼ 6.2 cm and αopt ¼
0.045 mm−1 for the chosen machine parameters.

FIG. 5. Contour plot of gain as a function of transverse
emittances εx, εy. White dashed lines represent levels of constant
natural emittance εx;0 ≡ εx þ εy. For fixed εx;0, reducing the
emittance ratio kc ≡ εy=εx (hence reducing εy) results in signifi-
cant gain improvement. Hence it would be advantageous for the
TGU to minimize kc for given εx;0.
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to have a symmetric profile). In all cases, we find more than
sufficient gain to drive a low-gain oscillator.

IV. IMPLEMENTATION OF A TGU-ENABLED
STORAGE RING XFELO

While the previous section examined the TGU-enabled
FEL in isolation, we would like now to focus on its
implementation in a storage ring XFELO. Figure 2 shows
our proposed layout for the TGU-enabled storage ring
XFELO. The design is made of three main components:
(a) the storage ring, (b) the TGU, and (c) the x-ray cavity.
The goal of this section is to demonstrate the performance
of TGU-enabled SRXFELO using multistage numerical
simulation, as well as discuss some implementation chal-
lenges regarding ring-FEL coupling.
As before, we will base the machine parameters used in

this study on proposed numbers for PETRA-IV [6,10].
While the PETRA-IV project does not include plans for a
low-gain XFELO, we hope to demonstrate its feasibility for
similar fourth-generation facilities. Where appropriate, we
have modified certain parameters to be more favorable to
the XFELO. For instance, we reduced the emittance

coupling factor and increased the peak electron current
in order to boost TGU gain. A full summary of the machine
parameters is provided in Tables I and III.
The TGU parameters are informed by our optimization

results in the previous section. Some modifications have
been made, most notably to the x-ray Rayleigh ranges to
accommodate the x-ray cavity. The cavity is laid out in
the bow-tie configuration, derived from [17]. We chose
the stable mode to be a symmetric Gaussian mode with
ZR ¼ 8.2 m measured from the midpoint of the TGU. This
ensures that the cavity would have realistic dimensions, and
the requisite focal lengths of the lenses are feasible using
off-the-shelf beryllium compound refractive lenses
(CRLs) [18].

A. Simulation methodology

A custom simulation framework was written for this
study (Fig. 7). The simulation pipeline can be broken down
into four parts, namely (i) overall run management,
(ii) TGU-FEL simulation, (iii) storage ring propagation,
and (iv) x-ray cavity propagation.
Run management is handled by a wrapper program. The

user specifies the overall run parameters via a parameter

TABLE II. Optimized TGU parameter sets. From left to right, the columns are gain from numerical integration Gth and simulation
Gsim, TGU parameter Γ, electron beta functions βy, βx, x-ray Rayleigh ranges ZRy; ZRx, detuning δ, dispersion D, and TGU magnetic
gradient α.

Parameter set Gth Gsim Γ βy (m) βx (m) ZRy [m] ZRx [m] δ D [cm] α [mm−1]

Unconstrained TGU optimum 0.42 0.48 13.3 4.5 8.2 47.5 8.2 2.722 6.2 0.045
Low dispersion 0.29 0.34 5 8.4 6.0 14.8 6.0 4.495 3.2 0.085
Round beam (constraint ZRx ¼ ZRy) 0.36 0.45 12 14.1 6.197 14.1 14.1 2.715 6.5 0.042

FIG. 6. Contour plot of gain vs electron and photon beam parameters in x (right) and y (left). In the x direction, peak gain is located
along the βx ¼ ZRx line (black, dashed) as predicted by traditional FEL theory. In the y direction, the contours are much more
asymmetric due to the dispersion introduced by the TGU. In both directions, there are generous margins for potentially tuning these
beam parameters while still maintaining respectable gain.
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input file. The run manager interprets the input file and
initializes the run accordingly, including generating the
specified electron bunch and photon beam files (latter
optional). During each run loop, the run manager ensures
consistency with the input parameter files of ELEGANT/

GENESIS, followed by calling the respective program at the
appropriate step. Between loops, the manager performs the
requisite minor beam/bunch manipulations, such as TGU
dispersion and bunch regeneration (more discussed later).
The run manager also collects and reports on beam/bunch
statistics. At the end of the run, the manager is responsible
for termination and cleanup.
The TGU-FEL simulation is handled by modified

GENESIS (version 2 in FORTRAN), capable of both sin-
gle-slice and 3D time-dependent run modes. The requisite
TGU modification is made in the faw2 method located in
the source file magfield.f. The faw2 method is
responsible for calculating the squared off-axis value
of the undulator parameter a2u ≡ K2=2 [19]. We modify
as follows:
faw2 = awz(i)*awz(i)*(1.d0

+ 2.d0*atgu*xt+ atgu*atgu*xt*xt
+ xkx*xt*xt + xky*yt*yt)

The middle line of the code is our addition. We introduce
the variable atgu≡ α=ku representing the linear gradient
of the TGU as per Eq. (2). (The additional factor of 1=ku

comes from coordinate normalization in GENESIS.) Note
that the TGU gradient is applied in the x direction because
of the built-in assumption in GENESIS that the undulator
is aligned horizontally. To compensate, we will need to
rotate the electron and x-ray distributions using the run
manager before and after each GENESIS run. At the same
time, we will also introduce the requisite dispersion in the
electron bunch.
Storage ring propagation is handled by ELEGANT. Due to

the discrete slice representation of the electron bunch in
GENESIS, the particle file is not easily made compatible with
ELEGANT. Instead, we track the first- and second-order
moments of the bunch after each GENESIS run and rely on
ELEGANT’s built-in generator bunched_beam to regen-
erate the bunch accordingly [20]. The electrons are then
propagated using a one-turn lattice file with periodic
transport (ILMATRIX element), synchrotron radiation
damping (SREFFECTS), and rf acceleration (RFCA).
After that, the bunch moments are recorded and a
GENESIS bunch is generated by the run manager
accordingly.
X-ray cavity propagation is handled by an in-house

Fourier-based code, named PYOPT. The code accounts for
basic effects such as focusing and diffraction, as well as full

TABLE III. Additional beam parameters used for the simu-
lation study. Unless otherwise stated, all other machine param-
eters are same as those provided in Table I.

Name Symbol Value

Electron
Storage ring circumference Lring 2333.87 m
Emittance damping time (y) τy 22 ms
Equilibrium emittance (y) εy;0 2.714 pm rad
Bunch charge (lasing) Qb 4 nC
Bunch charge (nonlasing) 1 nC
Number of lasing bunches 16
Betatron function at

TGU midpoint (x) βx 8.2 m
Betatron function at

TGU midpoint (y) βy 4.5 m

Cavity
Total length Lcavity 145.87 m
Round trip time Tcavity 486.56 ns
Focal length f 20.70 m
Out-coupling at crystal 1 15%
Rayleigh length at

TGU midpoint (x) ZRx 8.2 m
Rayleigh length at

TGU midpoint (y) ZRy 8.2 m

TGU
Dispersion D 5.05 cm
Magnetic gradient α 0.055 mm−1

FIG. 7. Flowchart of simulation pipeline used in the study. Blue
lines indicate the electron simulation pathway, while orange lines
indicate the x-ray pathway. The dashed line indicates an optional
step. The run manager serves as a wrapper program that provides
functions for initialization, beam generation/manipulation, re-
porting, and cleanup, among other things. The main FEL
simulation is handled by modified GENESIS version 2 (see main
text for details of modification), while ELEGANT handles the
storage ring propagation. Broken lines between GENESIS and
ELEGANT indicate that the electron file is not preserved between
iterations (see text for discussion). X-ray cavity simulation is
handled by an in-house Fourier-based code named PYOPT. The
x-ray file is preserved throughout.
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frequency-angle bandwidth filtering of the diamond Bragg
reflectors, along with (optional) phase errors and mirror
misalignments. The cavity code uses an identical repre-
sentation of the x-ray field file as GENESIS so that the field
can be tracked throughout the entire run.
One final note about the run loop control: the x-ray

cavity length is typically a fraction of the storage ring
circumference. In our study, this ratio is 1=16, i.e., the
photon pulse traverses the cavity 16 times for each orbit of
the electron bunch. Alternatively, the photon pulse interacts
with 16 consecutive electron bunches evenly spaced around
the ring. The latter scheme is chosen for this study. At any
given time, the run manager keeps track of the beam
moments of all 16 bunches separately and selects the
appropriate bunch prior to each GENESIS run.

B. Simulation results

We report on the simulation results using the framework
discussed previously and the parameters of Table III.
Figure 8 shows the power evolution of one XFELO pulse.
Peak intracavity power of 15 MW was achieved at turn 95
after initial onset. With 15% thin-mirror out-coupling, this
corresponds to 2.25 MW of usable power. At peak power,
the photon bandwidth has a full-width half-maximum
(FWHM) of approximately 2 meV (relative bandwidth
of 1.4 × 10−7).
Contrary to previous studies [21], we observed multiple

peaks within the overall photon bandwidth, rather than a
single one. We attribute this difference to the length of the
electron bunch (or simulation window in the case of
constant bunch current). In previous studies, a relatively
short bunch with σt ≲ 2 ps was used. This is, however, not
feasible under current circumstances, where IBS and
Touschek lifetime considerations limit realistic values of

root-mean-square (rms) bunch length to 20–50 ps for the
desired peak currents.
In order to conserve simulation time and memory, we

chose a 20-ps simulation window with a constant current
profile. On average, we observed ∼ 4 peaks within the
FWHM bandwidth. For longer electron bunch lengths, we
predict that more peaks would arise within the same overall
bandwidth, with the width of each peak set by the Fourier
limit. In order to verify this, we ran a number of additional
numerical experiments of low-gain oscillators, both with
and without the TGU. We found empirically that the total
FWHM bandwidth in saturation has a lower bound between
5 and 10 times smaller than the crystal bandwidth σω. For
electron bunch lengths shorter than ∼ 5=σω, the output has
one single spectral peak as a result of the Fourier limit. On
the other hand, longer bunches can result inmultiple spectral
modes within the overall bandwidth of σω=5. Currently, we
do not have a rigorous theory to indicate if this limit is
fundamental or to what extent it may be changed; we plan to
do further studies of this phenomenon in the future.
In the bow-tie cavity, we observed a maximum TGU gain

of approximately GTGU ¼ 0.3, after accounting for cavity
losses and intentional out-coupling. This includes losses at
all four Bragg crystals. Additional losses at other optical
components, such as CRLs, as well as losses due to
misalignments and crystal phase front errors were not
taken into account in this study. However, the net round
trip gain of 0.3 provides a healthy margin for these
additional losses.
Figure 9 shows the beam profile at peak power, with rms

beam sizes of σx ¼ 14 μm and σy ¼ 12 μm. While the

FIG. 8. Plot of XFELO pulse power vs turn number from
numerical simulation. Maximum power of 15 MW is achieved at
turn 95. The inset shows the frequency spectrum at peak power.
The spectrum has a full-width half-maximum (FWHM) of 2 meV
corresponding to a relative bandwidth of 1.4 × 10−7.

FIG. 9. X-ray beam spot at peak power. The root-mean-square
(rms) beam sizes are σx ¼ 14 μm and σy ¼ 12 μm. The slight
asymmetry, despite the symmetric cavity, is due to the Bragg
crystal filtering acting only in the horizontal plane.
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nominal beam is intended to be round (σx ¼ σy), the slight
asymmetry is attributed to the angular filtering of the
Bragg crystal, which only takes place in the horizontal
plane of the cavity. The narrow angular bandwidth imposed
by the crystals results in a corresponding increase in the
beam size in x.

C. Ring-FEL coupling and other
implementation challenges

The x-ray cavity and storage ring constitute a coupled
oscillator system. The physics of the storage ring FEL has
been previously studied in the UV/IR regimes [22–24].
Although the energies involved here are greater, much of
the theory, especially relating to the ring-FEL interaction,
remains relevant in the x-ray regime. For the sake of the
following discussion, we provide here a short summary of
the most salient points adapted from [22,24].
In a storage ring FEL, there exists a tension between the

electrons circulating in the ring and the photons circulating
in the cavity. Namely, as photon intensity increases, the
electron bunch suffers increasing degradation of its energy
spread. This in turn leads to the reduction of FEL gain, and
eventually, the saturation and decline of laser power. The
addition of the TGU modifies this interaction in one
important aspect—electron beam degradation takes place
in the TGU-axis transverse space (y in our case), rather than
longitudinally. This is because of the dispersive sections
before and after the undulator, which effectively translates
the energy spread growth generated by the FEL into excess
emittance in the ring.
Hence, the macrotemporal dynamics of the TGU-

enabled storage ring FEL can be described by the following
linearized equations:

dU
dt

¼ U
g − L
θ

þUs; ð27Þ

dðεyÞ
dt

¼ −
2

τy
ðεy − εy;0Þ þ ΔU; ð28Þ

g ¼ g0 exp½−kðεy − εy;0Þ�½1þ FðtÞ�: ð29Þ

Here, U is the FEL intensity, g, L, θ are the gain, loss,
and transit time for each turn, respectively, Us is the
intensity of the spontaneous emission, εy;0 is the equilib-
rium y emittance, τy is the characteristic emittance damping
time, ΔU is the increase in emittance due to laser intensity,
g0 is the maximum gain at equilibrium emittance, and FðtÞ
represents an optional external gain modulation imposed on
the system.
Figure 10 depicts the evolution of these three parameters

over a single FEL pulse. At first, the photon intensity is
dominated by spontaneous emission, which quickly gets
overtaken by FEL amplification as the equilibrium emit-
tance εy;0 enables the maximum theoretical TGU gain g0.

The exponential rise in photon intensity results in increas-
ing degradation of εy, which causes g to suffer. Finally, at
saturation, g falls below single turn loss L (such that
g − L ≤ 0), which marks the start of the exponential decay
of the photon pulse. This whole process takes place over
hundreds of oscillator turns (typically ∼ 10−4 s).
On the much longer timescale, the electron bunch damps

in εy as it circulates within the storage ring (typical values
of τy ∼ 10−2 s). This damping process is well understood in
the realm of storage ring physics [25,26]. In short, the
electrons undergo spontaneous radiation emission as they
traverse the bending sections (and radiation insertion
devices) of the circular ring. Each photon emission leads
to a slight loss in momentum δp⃗ approximately parallel to
the instantaneous momentum vector p⃗ of the electron. In
general, this is not parallel to the nominal orbit trajectory, as
each electron undergoes stable betatron oscillation around
the nominal axis.
Every turn, the electron passes through rf cavities which

“top up” the lost energy due to spontaneous emission. The
momentum gain from the rf cavities is parallel to the
nominal axis. This means that, on balance, the electron
would lose some of its transverse momentum p⃗⊥ every turn.
On the ensemble level, this translates to the gradual
shrinking of the transverse emittances of an electron bunch.
This damping does not continue indefinitely, however.

Due to its quantum nature, each packet of spontaneous
emission will excite random betatron oscillations in the
electron. These random oscillations, when propagated
through the magnetic lattice of the storage ring, are
responsible for the equilibrium emittances of the stored
bunch. This effect is essentially constrained to the bending
plane so that quantum excitation sets the emittance along
the x axis. On the other hand, the emittance in y is typically

FIG. 10. Plot depicts the degradation of electron emittance εy
due to FEL gain within a single oscillator pulse. Initially, the low
emittance εy (red) enables a large positive gain (blue), which in
turn exponentially amplifies the x-ray power (dashed gray;
vertical scale not shown). The increasing x-ray power degrades
εy due to the TGU-FEL interaction. Near saturation, emittance εy
has increased so much that gain falls below zero, leading to the
exponential decay of the x-ray pulse.
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able to reach much smaller values (by up to several orders
of magnitude), with its equilibrium value ultimately being
decided by (intentional or not) coupling between the two
transverse axes.
Thus, the ring-FEL system behaves like a coupled

oscillator with two drastically different timescales. On one
hand, the laser is characterized by its rise time τ0 ∼ 10−6 s.
On the other hand, emittance damping is set by τy ∼ 10−2 s.
UsingEqs. (27)–(29), we can determine the natural period of
the system to be

TR ¼ 2π

ffiffiffiffiffiffiffiffi
τ0τy
2

r
: ð30Þ

The system is extremely sensitive to initial conditions,
displaying chaotic and noisy behavior close to this natural
resonance [3,23]. A more stable alternative can be achieved
by modulating the gain periodically in the FEL so as to
effectively “turn on” and then “turn off” the XFELO. Thus,
the laser can operate in a pulsed fashion with greater
stability. The duty cycle of the modulation is given by
(a) “off” state for several τy damping times (tens to hundreds
of milliseconds), then (b) “on” state for several τ0 laser rise
times (tens of microseconds) until saturation. The laser
switches itself off due to emittance degradation at saturation.
Gain modulation can be achieved by essentially dis-

rupting the temporal and/or spatial overlap between the
electron bunch and the photon pulse, thus suppressing the
FEL interaction. For our proposed parameters, a temporal
displacement of ∼ 20–50 fs between consecutive bunches
is sufficient to “switch off” the XFELO. This can be done
by detuning the storage ring rf system to the order of tens of
Hz. This method has been experimentally tested, albeit on a
smaller scale, at the Duke storage ring FEL [3]. Other
potential gain modulation methods include transversely
displacing the electron trajectory in the undulator (e.g.,
with a kicker) or manipulating the x-ray cavity length/
geometry, although performing the latter at the required
millisecond timescale without compromising cavity stabil-
ity remains an open area of research.
One additional note must be made about the ring-FEL

coupling strategy. Since the storage ring circumference is
typically many times the length of the x-ray cavity, it is
necessary to have multiple electron bunches spaced around
the ring with temporal separation matching the cavity
round-trip time. In the numerical study, we had a ring-
cavity circumference ratio of 16, meaning that we had 16 of
these “XFELO bunches.” This is a fraction of the hundreds,
if not thousands, of simultaneously circulating bunches
present in a modern storage ring.
As discussed previously, the XFELO lasing process leads

to significant emittance degradation due to the elevated laser
intensity. We would like to isolate this detrimental effect to
only the XFELO bunches while leaving the non-XFELO
bunches relatively unperturbed. The problemof selecting for
the XFELO bunches is nontrivial [9].

One commonly proposed technique is to situate the
XFELO on a bypass with fast transverse kickers, which
periodically kick the XFELO bunches into the oscillator.
This is not feasible when the closely spaced electron
bunches are only separated by gaps on the order of single
to tens of nanoseconds. Even if the rise/fall time of the
kicker fits within the bunch separation, its repetition rate is
not fast enough to support the oscillator [27].
Our current proposal is to utilize bunch charge stacking

(Fig. 11). Under this scheme, the XFELO bunches, spaced at
the appropriate periodic interval, are intentionally injected
withmultiple times the nominal bunch charge,while adjacent
rf buckets are left empty to compensate for the beam loading
effect. This technique has precedence in the APS-U, where it
is employed to mitigate ion instabilities [28].
Since TGU gain is linearly proportional to peak current

in the low gain approximation, the XFELO bunches will
experience proportionally more gain than the non-XFELO
ones. Then, it suffices to set the single turn loss within the
cavity (for instance, using out-coupling methods) to be
higher than the gain experienced by non-XFELO bunches,
but lower than that of the XFELO bunches. Thus, only the
latter will experience exponential growth and the sub-
sequent emittance degradation due to the intense laser field
near saturation. The non-XFELO bunches will only
undergo spontaneous undulator radiation, which will not
cause a substantial emittance increase.
In our numerical study, we chose the non-XFELO

bunches to have a total charge of Qb ¼ 1 nC, with a
corresponding peak current of Ipk ¼ 10A, whereas the
stacked XFELO bunches have Qb ¼ 4 nC and Ipk ¼ 32A,
after accounting for bunch lengthening due to intrabeam
scattering (IBS) and ring impedance. Single turn loss is set to
approximately 0.15 via thin mirror out-coupling.

V. CONCLUSION

In this study, we have explored the feasibility of a low-
gain, TGU-enabled XFELO driven by a modern fourth-
generation electron synchrotron. We derived the TGU gain

FIG. 11. Proposed bunch train structure for ring-FEL coupling.
Each vertical line represents one bunch, with its height propor-
tional to peak current Ipk and thus TGU gain by Eq. (13). Tall red
bunches are the designated “XFELO bunches” with Ipk exceed-
ing the lasing threshold set by single-turn cavity loss. The
temporal gap between XFELO bunches Tbunch is equal to the
x-ray round-trip time Tcavity. The non-XFELO bunches (black)
lay below the lasing threshold and only experience spontaneous
undulator radiation. Thus, they are able to avoid substantial
emittance degradation from the XFELO lasing process.
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formula in the low gain limit and then performed gain
optimization of several key beam parameters. Finally, we
selected a near-optimal parameter set to study under
multistage simulation, in order to obtain projected perfor-
mance figures.
The results demonstrate that the TGU-XFELO, under

pulsed-mode operation, can be a feasible inclusion for
future storage rings. Moreover, the parameter set chosen
for this study is just one of many possible configurations.
The mathematical and numerical framework developed for
this study provides a useful toolkit for modeling future
TGU-XFELO design under a wide range of practical
circumstances.
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APPENDIX: DERIVATION OF 3D TGU GAIN
FORMULA

We start from Eq. (12).
For future convenience, we perform a change of vari-

ables ϕ⃗ − p⃗ → ϕ⃗ and x⃗ − y⃗ → x⃗. We also use integration by
parts to switch the derivative, thus obtaining

G ¼ −
G0

8πNuL2
uλ

2
1

Z
dηdx⃗dy⃗dϕ⃗dp⃗BEðy⃗; ϕ⃗þ p⃗Þ

×
∂

∂η
BUðη; x⃗; ϕ⃗; p⃗; y⃗ÞFðη; x⃗þ y⃗; p⃗Þ: ðA1Þ

Since the two transverse dimensions are decoupled, we
drop the vector notation and focus on the TGU dimension
y. (The x case can be easily obtained later by setting
Γ → 0). At this point, note that x and y will refer to spatial
integration variables instead of the usual transverse dimen-
sions. The Gaussian x-ray seed is given by

BEðy;ϕþ pÞ ¼ 1

2πσrσϕ
exp

�
−

y2

2σ2r
−
ðϕþ pÞ2

2σ2ϕ

�
: ðA2Þ

Here, σr and σϕ refer to the rms x-ray beam size and
divergence in y, respectively. The electron distribution is
given by

Fðη; xþ y; pÞ ¼ 1

ð2πÞ3=2σyσησp
× exp

�
−
ðxþ y −DηÞ2

2σ2y
−

η2

2σ2η
−

p2

2σ2p

�
:

ðA3Þ

Here, σy and σp refer to the rms electron beam size and
divergence in y, respectively, and ση refers to the normal-
ized energy spread where η≡ ðγ − γ0Þ=γ0. As discussed in
the main text, the spontaneous undulator brightness can be
obtained from the Wigner transform of Eq. (14):

BUðη; x;ϕ; p; yÞ ¼
Z

L=2

−L=2
dzds exp

�
ikuΔνðz − sÞ − 2ikuηðz − sÞ þ ikuTα

�
ðxþ yÞðz − sÞ þ p

2
ðz2 − s2Þ

��

×
Z

dξ exp

�
−ikxξþ ik

2
ððϕþ ξ=2Þ2z − ðϕ − ξ=2Þ2sÞ

�
; ðA4Þ

whereΔν≡ ðω − ω1Þ=ω1 is the frequency detuning from the fundamental harmonic. We evaluate the Wigner integral to get

BUðη; x;ϕ; p; yÞ ¼
Z

L=2

−L=2
dzds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πi

kðz − sÞ

s
exp

�
ikuΔνðz − sÞ − 2ikuηðz − sÞ

þ ikuTα

�
ðxþ yÞðz − sÞ þ p

2
ðz2 − s2Þ

�
−

2ik
z − s

x2 −
2iksz
z − s

ϕ2 þ 2ikðzþ sÞ
z − s

xϕ

�
: ðA5Þ

Note that

∂BU

∂η
¼ −2ikuðz − sÞBU: ðA6Þ
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We then substitute Eqs. (A2) through (A6) into the gain
convolution formula and perform Gaussian integration in
each variable. Generically, the Gaussian integral takes the
form Z

dx expð−Ax2 þ BxÞ ¼
ffiffiffiffi
π

A

r
exp

�
B2

4A

�
: ðA7Þ

In each case, we will use coefficients A and B with the
appropriate subscripts (e.g. Ax, Bx for the dx integral) to
denote the result. For brevity, we will define the following
parameters:

Σ2
y ¼ σ2y þ σ2r þD2σ2η; ðA8Þ

Σ2
yr ¼ σ2y þ σ2r ; ðA9Þ

Σ2
yη ¼ σ2y þD2σ2η; ðA10Þ

Σ2
ϕ ¼ σ2p þ σ2ϕ: ðA11Þ

We will also use short-hand notation for the following
recurring terms:

½� � � σ2ϕ� ¼ ðz − sÞ þ 4ikszσ2ϕ; ðA12Þ

½� � �Σ2
ϕ� ¼ ðz − sÞ þ 4ikszΣ2

ϕ; ðA13Þ

½BD� ¼ ðz − sÞ½1þ 4k2Σ2
yrΣ2

ϕ� þ 4ik½Σ2
yr þ szΣ2

ϕ�; ðA14Þ

½BD�y ¼ ðz − sÞ½1þ 4k2Σ2
yΣ2

ϕ� þ 4ik½Σ2
y þ szΣ2

ϕ�; ðA15Þ

½BD�σr ¼ ðz − sÞ½1þ 4k2σ2rΣ2
ϕ� þ 4ik½σ2r þ szΣ2

ϕ�; ðA16Þ

½BD�σϕ ¼ ðz − sÞ½1þ 4k2Σ2
yσ

2
ϕ� þ 4ik½Σ2

y þ szσ2ϕ�: ðA17Þ

We will perform a total of five Gaussian integrals, followed
by consolidating and simplifying the prefactor and the
terms in the exponential. The steps are listed in order below.

1. The dϕ integral

The integral takes the formZ
dϕ exp

�
−ϕ2

�
1

2σ2ϕ
þ 2iksz

z − s

�

þ ϕ

�
−

p
σ2ϕ

þ 2ikðzþ sÞx
z − s

��
; ðA18Þ

whence we can consolidate the terms

Aϕ ¼ 1

2σ2ϕ
þ 2iksz

z − s
¼ ½� � � σ2ϕ�

2ðz − sÞσ2ϕ
; ðA19Þ

Bϕ ¼ 2ikðzþ sÞxσ2ϕ − pðz − sÞ
σ2ϕðz − sÞ ; ðA20Þ

B2
ϕ

4Aϕ
¼ p2

z − s
2σ2ϕ½� � � σ2ϕ�

− px
2ikðzþ sÞ
½� � � σ2ϕ�

− x2
2k2ðzþ sÞ2σ2ϕ
ðz − sÞ½� � � σ2ϕ�

: ðA21Þ

From the form of Eq. (A7), we note that Aϕ will feature in
the prefactor of the final result, whereas the B2

ϕ=4Aϕ term
will carry into subsequent integrations. This is repeated for
the subsequent integration steps.

2. The dy integral

We haveZ
dy exp

�
−y2

�
1

2σ2r
þ 1

2σ2y

�

þ y

�
−
x −Dη

σ2y
þ ikuTαðz − sÞ

��
; ðA22Þ

whence

Ay ¼
σ2y þ σ2r
2σ2yσ

2
r

¼ Σ2
yr

2σ2yσ
2
r
; ðA23Þ

By ¼
ikuTαðz − sÞσ2y − xþDη

σ2y
; ðA24Þ

B2
y

4Ay
¼ x2

σ2r
2σ2yΣ2

yr
−xη

Dσ2r
σ2yΣ2

yr
þη2

D2σ2r
2σ2yΣ2

yr
−x

ikuTαðz− sÞσ2r
Σ2
yr

þη
iDkuTαðz− sÞσ2r

Σ2
yr

−
½kuTαðz− sÞσrσy�2

2Σ2
yr

: ðA25Þ

3. The dp integral

Including terms from the dϕ integral, we getZ
dp exp

�
−p2

�
1

2σ2ϕ
þ 1

2σ2p
−

z − s
2σ2ϕ½� � � σ2ϕ�

�

þ p

�
ikuTαðz2 − s2Þ

2
−
2ikðzþ sÞx
½� � � σ2ϕ�

��
; ðA26Þ

whence

Ap ¼ ðz − sÞ þ 4ikszΣ2
ϕ

2σ2p½� � � σ2ϕ�
¼ ½� � �Σ2

ϕ�
2σ2p½� � � σ2ϕ�

; ðA27Þ
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Bp ¼ ikuTαðz2 − s2Þ½� � � σ2ϕ� − 4ikðzþ sÞx
2½� � � σ2ϕ�

; ðA28Þ

B2
p

4Ap
¼ −x2

2k2ðzþ sÞσ2p
½� � �Σ2

ϕ�½� � � σ2ϕ�
þ x

kkuTαðzþ sÞðz2 − s2Þσ2p
½� � �Σ2

ϕ�
−
½kuTασpðz2 − s2Þ�2½� � � σ2ϕ�

8½� � �Σ2
ϕ�

: ðA29Þ

4. The dx integral

The previous three integrations all contribute terms to this integral:

Z
dx exp

�
−x2

�
1

2σ2y
þ 2ik
z − s

þ 2k2ðzþ sÞ2σ2ϕ
ðz − sÞ½� � � σ2ϕ�

−
σ2r

2σ2yΣ2
yr
þ 2k2ðzþ sÞ2σ2p
½� � �Σ2

ϕ�½� � � σ2ϕ�
�

þ x

�
Dη

σ2y
þ ikuTαðz − sÞ − Dησ2r

σ2yΣ2
yr
−
ikuTαðz − sÞσ2r

Σ2
yr

þ kkuTαðzþ sÞðz2 − s2Þσ2p
½� � �Σ2

ϕ�
��

; ðA30Þ

whence

Ax ¼
ðz − sÞ½1þ 4k2Σ2

yrΣ2
ϕ� þ 4ik½Σ2

yr þ szΣ2
ϕ�

2Σ2
yr½� � �Σ2

ϕ�
¼ ½BD�

2Σ2
yr½� � �Σ2

ϕ�
; ðA31Þ

Bx ¼
ðikuTαðz − sÞσ2y þDηÞ½� � �Σ2

ϕ� þ kkuTαðzþ sÞðz2 − s2Þσ2pΣ2
yr

Σ2
yr½� � �Σ2

ϕ�
; ðA32Þ

B2
x

4Ax
¼ η2

D2½� � �Σ2
ϕ�

2Σ2
yr½BD� þ η

iDkuTαðz − sÞσ2y½� � �Σ2
ϕ� þDkkuTαðz − sÞðzþ sÞ2σ2pΣ2

yr

Σ2
yr½BD�

þ k2uT2
αðz − sÞ2 k

2ðzþ sÞ4σ4pΣ4
yr þ 2ik½� � �Σ2

ϕ�ðzþ sÞ2σ2pσ2yΣ2
yr − ½� � �Σ2

ϕ�σ4y
2Σ2

yr½BD�½� � �Σ2
ϕ�

: ðA33Þ

5. The dη integral

We have

Z
dη exp

�
−η2

�
D2

2σ2y
þ 1

2σ2η
−

D2σ2r
2σ2yΣ2

yr
−
D2½� � �Σ2

ϕ�
2Σ2

yr½BD�
�

þ η

�
−2ikuðz − sÞ þ iDkuTαðz − sÞσ2r

Σ2
yr

þ iDkuTαðz − sÞ σ
2
y½� � �Σ2

ϕ� − ikðzþ sÞ2σ2pΣ2
yr

Σ2
yr½BD�

��
; ðA34Þ

whence

Aη ¼
½BD�y

2σ2η½BD� ; ðA35Þ

Bη ¼ −
2ikuðz − sÞ½BD� − iDkuTαðz − sÞf½BD�σr − ikðzþ sÞ2σ2pg

½BD� ; ðA36Þ

B2
η

4Aη
¼ −

2½BD�k2uðz − sÞ2σ2η
½BD�y

þ 2Dk2uTαðz − sÞ2σ2ηf½BD�σr − ikðzþ sÞ2σ2pg
½BD�y

−
ðkuTαðz − sÞDσηÞ2f½BD�σr − ikðzþ sÞ2σ2pg

2½BD�y½BD� :

ðA37Þ

YUANSHEN LI, RYAN LINDBERG, and KWANG-JE KIM PHYS. REV. ACCEL. BEAMS 26, 030702 (2023)

030702-14



6. Consolidating the prefactor

The prefactor coming out of all the Gaussian integrals is

π5=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ApAϕAyAxAη

p ¼ ð2πÞ5=2σϕσpσyσrσηðz − sÞ
½BD�y

: ðA38Þ

Combining this with the gain convolution integral prefactor gives the final prefactor, after also accounting for the non-TGU
x dimension.

7. Simplifying the exponential

Consolidating all the surviving terms in the exponential results in the following exponent:

ikuΔνðz − sÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
a

− k2uT2
αðz − sÞ2

�
σ2r1σ

2
x1

2Σ2
yr|fflffl{zfflffl}

b

þ σ2p1
ðzþ sÞ2½� � � σ2ϕ1

�
8½� � �Σϕ1

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

−
½kðzþ sÞ2σ2p1

Σ2
yr þ iσ2x1 ½� � �Σ2

ϕ1
��2

2Σ2
yr½BD�½� � �Σ2

ϕ1
�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d

þ
D2σ2η½½BD�σr1 − ikðzþ sÞ2σ2p1

�2
2½BD�y½BD�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

e

�
−
2½BD�k2uðz − sÞ2σ2η

½BD�y|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f

þ
2Dk2uTαðz − sÞ2σ2η½½BD�σr1 − ikðzþ sÞ2σ2p1

�
½BD�y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

g

; ðA39Þ

where we labeled each term with lowercase letters for easy reference. Expand term d to get

d ¼ −
k2ðzþ sÞ4σ4pΣ2

yr

2½BD�½� � �Σ2
ϕ�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

h

−
ikðzþ sÞ2σ2pσ2y

½BD�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
i

þ ½� � �Σ2
ϕ�σ4y

2Σ2
yr½BD�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
j

: ðA40Þ

Expand term e to get

e ¼ D2σ2η½BD�2σr
2½BD�y½BD�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

k

−
ikD2σ2ηðzþ sÞ2σ2p½BD�σr

½BD�y½BD�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
l

−
k2D2σ2ηðzþ sÞ4σ4p

2½BD�y½BD�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

: ðA41Þ

Combine the terms c, h, and m to get

cþ hþm ¼
σ2pðzþ sÞ2½BD�σϕ

8½BD�y
: ðA42Þ

Next, combine the following terms:

iþ l ¼ −
ikðzþ sÞ2σ2pΣ2

yη

½BD�y
; bþ jþ k ¼ ½BD�σrΣ2

yη

2½BD�y
: ðA43Þ

Consolidate all the terms so far to obtain

− ikuΔνðz − sÞ − k2uT2
αðz − sÞ2

�Σ2
yη½BD�σr
2½BD�y|fflfflfflfflfflffl{zfflfflfflfflfflffl}

p

þ
σ2pðzþ sÞ2½BD�σϕ

8½BD�y|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
q

−
ikðzþ sÞ2σ2pΣ2

yη

½BD�y|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
r

�

−
2½BD�k2uðz − sÞ2σ2η

½BD�y|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s

þ 2Dk2uTαðz − sÞ2½BD�σrσ2η
½BD�y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

t

−
2iDkk2uTαðz2 − s2Þ2σ2ησ2p

½BD�y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u

: ðA44Þ
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Combine the terms q, r, and u together, and terms p, s, and t together. This results in

− ikuΔνðz−sÞ−k2uðz− sÞ2
2

�
4σ2η½BD�− ½BD�σrðT2

αΣ2
yη−4TαDσ2ηÞ

½BD�y

�
−
k2uσ2pðz2− s2Þ2Tα

8

�Tα½BD�σϕ þ8ikðTαΣ2
yη−2Dσ2ηÞ

½BD�y

�
:

ðA45Þ

Now impose the dispersion-gradient relationship:

αD ¼ 2þ K2
0

K2
0

D2σ2η
Σ2
yη

; ⇒ Tα ¼
2Dσ2η
Σ2
yη

: ðA46Þ

Plugging that in, we obtain

− ikuΔνðz − sÞ − 2k2uðz − sÞ2σ2yσ2η
Σ2
yη

−
k2uσ2pðz2 − s2Þ2D2σ4η

2Σ4
yη

½BD�σϕ
½BD�y

: ðA47Þ

At this point, we substitute the definitions [Eqs. (19)–(26)]
to arrive at the 3D gain formula [Eq. (18)].
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