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Accurate measurements of the x-ray pulse duration produced by x-ray free-electron lasers (XFELs)
typically rely on longitudinal electron beam phase space diagnostics, e.g., an x-band transverse deflecting
cavity (XTCAV). An alternative group of methods is based on measurements of radiation statistics and
spectral correlations. In this paper, we present a statistical analysis of FEL radiation which extends the
previous technique by Lutman et al. [Phys. Rev. ST Accel. Beams 15, 030705 (2012)], including
the electron beam energy chirp in the FEL gain model. In doing so, we show that with measurements of the
average spectrum and the spectral intensity correlations, one can reconstruct the x-ray pulse length, e-beam
chirp, and corresponding spectrometer resolution. We validate our approach with 1D and 3D simulations
before moving to an experimental demonstration in which our method finds results similar to those
obtained from XTCAV measurements.
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I. INTRODUCTION

X-ray free-electron lasers (XFELs) produce x-ray pulses
with a brightness exceeding synchrotron sources by many
orders of magnitude [1–5]. The XFEL was revolutionary in
particular because of its ability to provide ultrashort, high
power x-ray pulses with durations ranging from hundreds
of femtoseconds (fs) down to several hundred attoseconds
(as). The unique capability of the XFEL to produce short
pulses sets it distinctly apart from the storage ring-based
light sources.
Measuring the duration of these short pulses is difficult,

and many methods have been proposed and demonstrated
to do so. Perhaps the most direct method is to measure the
electron beam longitudinal phase space using an x-band
transverse deflecting cavity (XTCAV), which maps the
time and energy coordinates of the electrons onto their
transverse positions [6,7]. By evaluating time-dependent
energy loss in the bunch after lasing, one can in principle
reconstruct the pulse profile, with a resolution of several fs.
This is now a common approach at the XFEL facilities
that have invested in an XTCAV system. However, some
facilities, e.g., European XFEL, do not have an XTCAV
system in operation [8]. Furthermore, this method has

limited use when the e-beam loss profile does not coincide
with the FEL pulse profile, for example, when one
bunch lases twice and the XTCAVonly measures the final
phase space.
Other methods have been proposed which make use

of the statistics of FEL radiation to infer information about
the pulse duration. A cross-correlation technique proposed
in [9] and demonstrated in [10], for example, used a chicane
in the middle of the FEL undulator to enable the generation
and delay of a second x-ray pulse for cross-correlation with
the first, which enabled the evaluation of single pulse
duration and dual-pulse separation. This method has some
disadvantages, such as the fact that by its nature, it can only
measure the pulse duration at the location of the chicane.
The cross-correlation method has been recently extended to
the case of chirped e-beams in [11]. A related method uses
an x-ray split-and-delay line to correlate a given pulse
with itself [12,13]. Yet another method measured highly
resolved single-shot FEL spectra to determine the spectral
width of self-amplified spontaneous emission (SASE)
spikes [14]. They estimated the pulse duration by com-
paring these spike widths to simulations. Their method
relied on an assumption of the energy chirp of the elec-
trons driving the FEL process, which they estimated by
other means.
A different statistical method was proposed in [15]

which resembles similar methods in synchrotron radiation
environments [16–19], which inferred the pulse duration
from measurements of spectral intensity fluctuations. This
method takes advantage of precise theoretical models of the
statistics of FEL radiation. Any spectral reconstruction
method has the distinct advantage that the only hardware
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requirement is an x-ray spectrometer, which is commonly
found at XFEL facilities. No additional installation is
needed in the electron beamline, unlike the XTCAV and
autocorrelation approaches. It was also shown that the
spectral intensity correlation approach could predict the
pulse length at saturation with a postsaturation taper, which
is useful for practical application since most day-to-day
FEL operations are in this regime [15]. We would also point
out a related method [20] that used multishot spectral
measurements to spectrally resolve the time profile of the
radiation with an algorithm the authors call ROSA.
Typically, the spectral intensity correlation methods do

not account for any energy chirp in the electron beam. The
ROSA algorithm is an exception, but while it can recon-
struct the temporal profile of the radiation at individual
photon energies, it cannot easily provide the full, frequency
integrated, temporal profile. By chirp, we mean that the
central energy of a given slice varies along the bunch. In the
simplest case, this takes a linear form such that the energy
of a given electron is tied to its position in the bunch by
γðtÞ ¼ γ0 þ ht where γ0 is the central energy of the bunch
in units of the electron rest mass, h is the chirp parameter in
units of rest energy per unit time, though we will often
report it equivalently in MeV of energy per micron along
the bunch length, and t is the time of arrival of an electron
relative to the bunch center. The FEL resonant condition
determines the relationship between emitted x-ray fre-
quency and electron energy in the form

ωrðtÞ ¼
2γðtÞ2kuc
1þ K2=2

; ð1Þ

where ku is the undulator wavenumber and K is the
undulator strength parameter. A chirp, therefore, broadens
the spectral width of the pulse, leading simple frequency
correlation methods to underestimate the pulse duration.
Several XFEL operating modes have been proposed

which intentionally make use of a chirped beam. These
include, for example, short pulse generation by sending a
highly chirped pulse through a monochromator [21] or
through chirp-taper schemes [22]. Also of interest would be
to implement chirped pulse amplification at an x-ray free-
electron laser [23,24], which would enable TW level peak
powers. Many fresh slice methods also take advantage
of a chirped beam to ensure only a small slice of the beam
lases [25]. For all of these methods, and any others which
would rely on a chirped beam, it is essential to understand
the value of the chirp.
In this article, we formally extend the spectral correlation

approach to linearly chirped electron beams by using the
1D FEL Green’s function with a linear chirp. We find that
we can reconstruct not only the pulse duration but also the
value of the electron beam chirp and the resolution of
the spectrometer measurement. We benchmark our method
using 1D and 3D FEL simulations and show that it retains

its accuracy into early saturation. We then compare the
method against experimental XTCAV measurements, find-
ing similar results.
We stress that our model is not parameter free: it requires a

model guess of the shape of the temporal profile of the x-ray
pulse as well as an estimate of the bandwidth of the SASE
FEL process. We discuss the limitations of these free
parameters in the text, finding that for the cases of most
interest, these quantities are known with enough precision at
experimental facilities. Furthermore, any method attempting
to extract average parameters of the FEL will be sensitive to
machine jitter. Extracting the average energy chirp and pulse
length makes sense only if electron bunch energy and length
jitter is accounted for. This can be done by filtering on other
beamline diagnostics, as we show in Sec. IV.

II. THEORETICAL APPROACH

The premise of the approach is to calculate the spectral
intensity correlation function G2ðω; δωÞ, defined below,
within some appropriate theoretical model, which can then
be used to fit measured spectra to extract the relevant
parameters. We largely follow the approach laid out in [15]
calculating the intensity correlation function G2ðω; δωÞ
with appropriate modifications for the chirp. For clarity, we
list key variables and their meaning in Table I in the order
they appear in this section.
The measurement is a convolution of the true intensity

spectrum with a spectrometer instrument function which
we assume to be Gaussian:

S̃ðωÞ≡
Z

dω0

2π
e
−ðω−ω0Þ2

2σ2m jẼðω0Þj2; ð2Þ

TABLE I. Key variables used throughout the paper.

Variable Meaning

EðtÞ Time-domain SASE electric field
ẼðωÞ Frequency domain SASE field
S̃ðωÞ Measured spectral intensity
σm rms spectrometer energy resolution
G2ðω; δωÞ Measured spectral intensity correlation function
h e-beam energy chirp
u e-beam chirp in terms of resonant energy shift
γ0 Average e-beam Lorentz factor
ω0 Resonant photon frequency
gðtÞ Time-independent FEL Green’s function
ρ FEL Pierce parameter
σω Bandwidth of unchirped SASE
htdðtjÞ Time-dependent part of FEL Green’s function
χðtÞ Average x-ray temporal profile ∝ hEðtÞ2i
g̃ðωÞ Fourier transform of gðtÞ
σt rms duration of the x-ray pulse
W̃ðωÞ Weighting function for G2ðω; δωÞ
G2ðδωÞ Average of G2ðω; δωÞ weighted by W̃ðωÞ
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where σm is the spectrometer resolution and ẼðωÞ is the
SASE electric field in the frequency domain. We define the
measured spectral intensity correlation as

G2ðω; δωÞ≡ hS̃ðω − δω
2
ÞS̃ðωþ δω

2
Þi

hS̃ðω − δω
2
ÞihS̃ðωþ δω

2
Þi − 1 ð3Þ

where h:i indicates an ensemble average over many
statistically independent shots of the FEL. The time-
domain electric field EðtÞ produced by a SASE free-
electron laser driven by a linearly chirped, infinitely long
electron beam was studied by Krinsky and Huang in [26].
We have re-derived their result in Appendix A to explicitly
account for a finite electron bunch. We write the result in
the following form for easy comparison with [15]:

EðtÞ ¼
XNe

j¼1

eiωjðzc−ðt−tjÞÞgðt − tjÞhtdðtjÞ; ð4Þ

whereωj ¼ ω0 þ utj is the frequency of light emitted by the
jth electronwhich is the central frequencyω0 offset by a term
proportional to the chirp u, gðtÞ is the time-independent FEL
Green’s function, and htdðtÞ is a time-dependent factor
attached to the Green’s function. The latter two will be
explained in more detail below. We note that the chirp
u ¼ _ωr, where a dot indicates a time derivative, is related to
the electron beam chirp h ¼ _γ by the resonance condition
[Eq. (1)]: u ¼ 2ωrh=γ0. The time-independent Green’s
function for the FEL interaction is [26]

gðtÞ ∝ exp
�
−b

�
t −

z
vg

�
2

−
iu
2

�
t −

z
v0

��
t −

z
c

��
ð5Þ

where b ¼ 3
4
ð1þ iffiffi

3
p Þσ2ω and σ2ω ¼ 3

ffiffi
3

p
ρ

kuz
ω2
0 is the square

of the inherent bandwidth of SASE. Furthermore, vg ¼
ω0=ðkr þ 2

3
kuÞ andv0 ¼ ω0=ðkr þ kuÞwith kr ¼ 2π=λr, the

radiation wavenumber, ku ¼ 2π=λu, the undulator wave-
number, and ω0, the central resonant FEL frequency.
The Green’s function gðtÞ is called time-independent

because its contribution to the field depends only on the
relative time t − tj. The function htdðtjÞ is a stand-in for any
time-dependent effects in the gain process which are slow
compared to the FEL coherence length, such as variations
in the e-beam current profile and gain reduction due to the
chirp. Although its particular dependence on these various
effects can in principle be derived analytically, as we did for
chirp and current effects in Appendix A, we show in
Appendix B that it can more generally be related to the
average temporal x-ray intensity profile of the FEL
χðtÞ ¼ hjEðtÞj2i. With these definitions, the frequency
domain field is defined by the Fourier transform

ẼðωÞ≡
Z

eiωt EðtÞdt¼
X
j

eið
ωj
c zþωtjÞg̃ðω−ωjÞhtdðtjÞ ð6Þ

where g̃ðωÞ≡ R
eiωtgðtÞdt. The explicit calculation of the

various terms relevant to G2 is relegated to Appendixes B
and C. Unlike the chirpless case, it is difficult to write a
succinct general expression for G2 for an arbitrary pulse
profile. For a Gaussian x-ray intensity profile, χðtÞ ¼
e−t

2=2σ2t , we find G2 in the form

G2ðω; δωÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2σ2σ2t
p exp

�
−

δω2σ2t ξ
2
0

1þ 2σ2σ2t

�
ð7Þ

where to make an explicit connection to [15], we define

σ ¼
ffiffiffi
2

p
σmσωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2m þ ð1þ δ2uÞσ2ω
p ξ0 ¼

σ2ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2u

p
σ2m þ ð1þ δ2uÞσ2ω

ð8Þ

where δ2u ¼ ũþ ũ2ð1þ 3σ2t σ
2
ωÞ with ũ≡ u=

ffiffiffi
3

p
σ2ω. If

the bunch is long enough that uσt
σω

is of order 1, then
δu ≃ uσt=σω. We note that taking δu ¼ uσt=σω in this way
is equivalent to neglecting the modification to the time-
independent Green’s function from the chirp in Eq. (5).
In addition, taking the limit u → 0 reduces Eq. (7) to
Lutman’s original expression [15]. We note that in the
theory, G2 no longer depends on the central frequency ω,
only on the frequency shift δω. Finally, we also note that
the average measured spectral intensity can be written as

hS̃ðωÞi ∝ exp

�
−

ðω − ω0Þ2
2½σ2m þ σ2ωð1þ δ2uÞ�

�
ð9Þ

For an arbitrary pulse profile χðtÞ, these functions can be
calculated numerically in accordance with the equations of
Appendix C.
We will now outline the procedure by which knowledge

of an analytic form for the G2 function and the average
spectrum hS̃ðωÞi can be used to reconstruct the pulse
length, chirp, and spectrometer resolution given a set of
spectral measurements. We will refer specifically to
Eqs. (7) and (9), but the same logic can be applied to
any numerically derived forms for G2 and hS̃i for an
arbitrary pulse profile χðtÞ. For a given set of spectra,
Eq. (3) can be used to calculate the spectral intensity
correlation, and hS̃ðωÞi is simply the average of the
measurement data. One can then fit Eqs. (7) and (9) to
these experimental functions, respectively, and from there
can extract the amplitude and width of G2 as well as the
width of the spectrum. Solving for the unknown variables
yields σm, u, and σt as functions of the SASE bandwidth
σω. In practice, we will often report h in place of u.
The SASE bandwidth σω can be calculated as before as

σ2ω ¼ 3
ffiffi
3

p
ρ

kuz
ω2
0 in the 1D limit or using an appropriate model

of the SASE bandwidth in the 3D regime. This can be done
by a number of methods, such as gain length measure-
ments, FEL simulations, estimation by the Ming Xie fitting
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formulas [27], or by solving the FEL dispersion relations as
a function of frequency detuning [28]. The SASE band-
width formula given above only applies during exponential
gain: at saturation, the bandwidth saturates at the approxi-
mate value ρω0. To apply the method to the saturation
regime, the accuracy of the model can be maintained if

σωðzÞ is calculated as σωðzÞ ¼ max ð
ffiffiffiffiffiffiffiffi
3
ffiffi
3

p
ρ

kuz

q
ω0; ρω0Þ. We

will take this convention into the results of this paper.
This approach requires one caveat, which is that

although in the theory, the calculated form of G2ðω; δωÞ
does not actually depend on ω, our model only accurately
predicts statistics near the center of the FEL resonance
where the spectrum is dominated by the high-gain FEL
process. The edges of the spectrum contain non-negligible
contributions from other processes and thus G2 can be
different. Thus, in practice, the measuredG2ðω; δωÞ should
be averaged over ω with a suitable weight function that
selects for frequencies around which we collect appropriate
statistics. Such a function was proposed by Lutman in [15],

W̃ðωÞ ¼
R
dbhS̃ðω − b

2
ÞihS̃ðωþ b

2
ÞiR

dbdωhS̃ðω − b
2
ÞihS̃ðωþ b

2
Þi ð10Þ

The particular form of this function ensures that we are only
gathering statistics from portions of the spectrum with large
signal. Thus, the measure of G2 used in practice should
actually be

G2ðδωÞ ¼
Z

dωW̃ðωÞG2ðω; δωÞ: ð11Þ

Note that because of the normalization of W̃, this does not
change our theoretical results.
Figure 1 illustrates the approach we have outlined

using the sample set of 100 simulated spectra depicted

in Fig. 1(a). With these spectra, we are able to calculate
G2ðω; δωÞ as well as the weight function W̃ðωÞ using
Eqs. (3) and (10), respectively. Averaging G2ðω; δωÞ
weighted by W̃ðωÞ as in Eq. (11) yields G2ðδωÞ shown
in Fig. 1(d), and averaging the original spectra yields the
average spectrum hS̃ðωÞi in Fig. 1(c). These are both fit to
Gaussian, which enables us to calculate σt, h, and σm all as
functions of the SASE bandwidth using Eqs. (7) and (9).
These curves are shown as black lines in Fig. 1(e)–(g). The
green dot in those plots shows the values at the predicted
value of the SASE bandwidth for that simulation, showing
excellent agreement with the blue horizontal lines which
indicate the true values of each parameter. Several features
of these plots are indicative of more general features of our
model, for example, that the reconstructed spectrometer
resolution is independent of the SASE bandwidth, and that
when the spectral bandwidth is much broader than the
SASE bandwidth, the reconstructions of h and σt are quite
insensitive to the SASE bandwidth.
As demonstrated in [29] and later in this article, the

sensitivity to the SASE bandwidth is highest when
uσt < σω, in which case the chirp is unimportant for the
properties of the x-ray pulse and thus should not impact
user experiments. When the chirp is important, i.e., when
uσt > σω, the measurement is quite insensitive to the SASE
bandwidth. A more fundamental uncertainty in our model
is that the calculated values of G2 and the average spectrum
do not depend strongly on the sign of the chirp u, so in
general, our method cannot extract the sign of the chirp,
only the absolute value. The sign of the chirp can be
determined in practice by scanning some machine param-
eter that talks to chirp such as accelerating phase.
Another uncertainty in our approach is the need to

provide a guess of the x-ray pulse shape, χðtÞ, which
was also required of the zero chirp approach of [15]. Of
course, one can always use the Gaussian model to get

FIG. 1. The steps of the reconstruction method are outlined. (a) shows a set of simulated spectra. These are used to calculateG2ðω; δωÞ
[Eq. (3)] and the weight function [Eq. (10)] WðωÞ (b). The titles of (a) and (b) act as labels for their color bars. Averaging G2ðω; δωÞ
weighted by WðωÞ yields G2ðδωÞ [Eq. (11)] (d) and an average of the spectra yields hS̃ðωÞi (c). Fitting Gaussian functions to each of
them allows us to extract widths and amplitudes that can be used to solve for σt (e), h (f), and σm (g) as functions of σω [Eqs. (7) and (9)].
The black lines indicate these reconstructed values. The blue horizontal lines indicate the true values of each parameter, whereas the
green dot indicates the predicted value at the guessed SASE bandwidth.

RIVER R. ROBLES et al. PHYS. REV. ACCEL. BEAMS 26, 030701 (2023)

030701-4



approximate results which may be sufficient for many
purposes. A more precise answer comes from Appendix C,
where we showed in Eq. (C4) that, for a large chirp, the
spectrum starts to resemble the x-ray pulse temporal
profile. Thus, for example, a flattopped measured spectrum
implies a flattopped x-ray pulse while a Gaussian measured
spectrum implies a Gaussian pulse. For weaker chirps, the
message is not as clear, as the spectrum, in that case, is
generally a convolution of the Gaussian SASE spectrum
with the pulse profile, and for zero chirp, one cannot infer
the pulse profile from the spectrum. For our cases of
interest, where we anticipate there being a chirp, the
measured spectrum provides insight into the appropriate
choice of x-ray pulse shape χðtÞ.

III. FEL SIMULATIONS

We now proceed to demonstrate the validity of our model
with a series of simulations. First, we use a 1D FEL code to
benchmark our approach in a regime matching the theory in
order to understand the model’s capabilities and limitations.
Afterward, we move on to the 3D code GENESIS [30], which
will allow us to test the model in the presence of more
realistic 3D effects which are not explicitly captured by the
1D Green’s function.
To mimic an experimental measurement with nonideal

spectrometer effects, we numerically convolve the simu-
lated spectra with a Gaussian instrument function as in
Eq. (2). When this is done in the data to follow, we will
report the imposed resolution σm explicitly.
Finally, in what follows all of our reconstructions of the

pulse length and chirp will be plotted with error bars to
indicate the sensitivity of the method to the calculated
SASE bandwidth. Specifically, the central dot will indicate
the value at the theoretical SASE bandwidth, and the error
bars will indicate the values at �0.5 eV from that theo-
retical value. We choose 0.5 eV because few eV SASE
bandwidths are typical across a large photon energy range,
and even this > 10% uncertainty will be seen to have a
small impact on our reconstructions.

A. 1D FEL simulations

For the 1D simulation studies, we have generated two
sets of data: one with a fixed bunch length and variable
chirp and another with a fixed chirp and variable bunch
length. For each data point (i.e., each set of chirp and bunch
length), we performed 1000 statistically independent sim-
ulations. The parameters shared by all of the 1D simu-
lations are reported in Table II, with the caveat that the
quoted rms bunch length and chirp values are for the fixed
length and fixed chirp datasets, respectively.
In our first demonstration of the model, we fixed the

electron bunch rms length at 2 μm and scanned the
imposed chirp. For this initial study, we neglected any
spectrometer resolution (σm ¼ 0). The results of this study

are shown in Figure 2, with Figure 2(a) showing the x-ray
pulse length and Figure 2(b) showing the e-beam chirp. The
data points are as found from the simulation (blue), from
the no chirp G2 formula of [15] (green), and from the
current revised method (orange). Figure 2(a) clearly dem-
onstrates the need to account for e-beam chirp in the
spectral reconstruction method. As the chirp increases, the
bunch length predicted by the original method steadily
drops, whereas the current method is accurate across the
entire range of simulated chirps.
This effect can be understood by taking the large chirp

limit of equation (7), which for σm ¼ 0 is G2ðω; δωÞ≃
exp½−δω2σ2ω=u2�. In the original formalism of [15], the
measuredG2 is interpreted as exp½−δω2σ2t �, thus in the limit
of large chirps, the original method inadvertently sets
σt ¼ σω=juj. This explains the steadily decreasing predic-
tion from the original method in Figure 2(a) as the chirp u is
increased. In the same vein, Figure 2 serves to clarify the
regime in which our model is the most accurate with respect
to chirp prediction: the chirp can only be predicted with a
high level of accuracy if it has a quantifiable impact on the
spectra. If uσt ≪ σω, then the uncertainty in the SASE

TABLE II. 1D FEL simulation parameters.

Parameter Unit Value

Beam energy GeV 12.1
Beam energy spread MeV 0.726
Normalized emittance μm rad 0.6
Peak current kA 3
β function m 25
Undulator period cm 3
Undulator K 3.5
Radiation wavelength nm 0.19061
Bunch shape Gaussian
rms bunch length μm 2
Chirp MeV=μm 7.5
Undulator length m 30

FIG. 2. Results for a scan of the e-beam chirp in 1D simu-
lations. The left and right show the x-ray pulse length and e-beam
chirp, respectively, as obtained from the simulation (blue),
from our reconstruction model (orange), and from the model
of [15] (green).
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bandwidth prevents one from measuring that small chirp
with high accuracy.
In Fig. 3, we report the results of the reconstruction for a

fixed 7.5-MeV=μm chirp and bunch length variable
between 0.2 and 10 μm. We have again neglected spec-
trometer resolution for now. Figure 3(a) shows the x-ray
pulse length as a function of the electron bunch length with
the same color scheme as Fig. 2. As discussed above, in the
limit of large chirp, the pulse length dependence drops out
of G2ðδωÞ, which leads to the zero chirp prediction of [15]
to asymptotically approach σω=juj. In the short pulse
regime where the impact of the chirp on the spectrum is
weak, similarly, our reconstruction converges on both
the simulated values and the zero chirp reconstruction.
We also note that our model reconstructs the shortening
of the x-ray pulse relative to the e-beam length which
derives from the time-dependence of the gain length in the
varying Gaussian current profile. These same arguments
explain the chirp reconstruction shown in Fig. 3(b). For
uσt < σω, the impact on the spectrum is weak and thus our
spectral reconstruction is not very accurate. For longer
pulses, on the other hand, the pulse is extracted with high
accuracy.
Let’s now turn our attention to the effect of finite

spectrometer resolution. There is a limit to how high the
resolution can be before the reconstruction breaks down.
Naively, one expects this when the spectrometer can no
longer resolve individual SASE spikes. The spectral width
of a SASE spike is described by the spectral coherence
defined as [26]

σcoh ¼
Z

dω1

���� hẼðω − ω1=2ÞẼ�ðωþ ω1=2Þi
hjẼðωÞj2i

����2 ð12Þ

This is easily computed with our theoretical model, and for
a Gaussian pulse in the limit σtσω ≫ 1 and to the lowest
order in the chirp, we find

σcoh ¼
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

σ2t
þ u2

σ2ω

s
ð13Þ

Taking the case study of Fig. 3 at the 2-μm bunch length
working point, we find that at z ¼ 30 m, for example,
σcoh ¼ 0.65 eV. The terms from the pulse length and
the chirp contribute 0.13 and 0.47 eV, respectively, in
quadrature.
We study the interplay of the spectrometer resolu-

tion with the reconstruction procedure in Fig. 4, which
presents a variety of results related to 2-μm pulse length,
7.5-MeV=μm chirp simulations with varying spectrometer
resolutions. Figure 4(a) reports the output power of the FEL
as a function of distance into the undulator in order to
denote different locations in z according to their relation to
the stages of the FEL gain process. In particular, lines are
drawn at z ¼ 20 m, z ¼ 40 m, and z ¼ 50 m denoting
early exponential gain, late exponential gain, and early
saturation. The color of these lines corresponds with the
colors of the dots in the subsequent plots.
The calculated spectral coherence at these three points is

0.54, 0.75, and 0.77 eV, respectively. We expect that our
approach will retain its accuracy up to around these
thresholds. Indeed, this is born out in Figs. 4(b)–4(d),
which show the pulse length, chirp, and spectrometer
resolution as predicted by our model as we scan the
imposed spectrometer resolution to higher values. The
solid lines in each plot indicate the true value for the given
color, with black lines indicating true values that do not

FIG. 3. Results for a scan of the e-beam length in 1D
simulations. The left and right show the x-ray pulse length
and e-beam chirp, respectively, as obtained from the simulation
(blue), from our reconstruction model (orange), and from the
model of [15] (green).

FIG. 4. Results from 1D simulations scanning the spectrometer
resolution for a fixed 7.5-MeV=μm e-beam chirp. (a) shows the
average radiation power along the undulator marking z ¼ 20 m
(blue), z ¼ 40 m (orange), and z ¼ 50 m (green). (b), (c), and
(d) show the reconstructed pulse length, e-beam chirp, and
spectrometer resolution as a function of imposed spectrometer
resolution at those three locations.
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depend on z. The blue data points in each plot start to
diverge from the true values around σm ¼ 0.75 eV, while
the orange points deviate around σm ¼ 1 eV. Up to those
points, each of the reconstructions is highly accurate when
the SASE bandwidth is known with �0.5 eV precision.
The saturation data points follow similar behavior to the
late exponential gain regime points, which is consistent
with the fact that the spectral coherence at z ¼ 40 m is very
nearly the saturated value.
The effect of these degrees of resolution on the measured

spectra can be better understood with the help of Fig. 5, in
which we plot a typical single shot spectrum at z ¼ 40 m
in a �5 eV window for 0-, 0.5-, and 1-eV measurement
resolution. Already, 0.5-eV resolution limits our ability to
resolve weaker spikes by eye, and with 1-eV resolution,
only the approximate locations of the strong peaks can be
guessed. Nevertheless, our model was able to extract pulse
length, chirp, and resolution even at σm ¼ 0.5 eV and only
begins to break down at 1 eV in late exponential gain and
early saturation. Finally, we note that the required relative
spectral resolution is typically achievable in soft x-ray
(SXR) or hard x-ray (HXR) spectrometers [15,31,32].

B. 3D FEL simulations

With the model’s validity now established in the 1D
regime, we move to 3D simulations using the code GENESIS

1.3 v4 [30,33]. The parameters relevant to the 3D simu-
lations are given in Table III. They differ slightly from the
1D simulations but still focus on an LCLS-like hard x-ray
configuration using the LCLS-II undulators. The simula-
tions are performed using the standard LCLS-II magnetic
lattice, and therefore include gaps between undulator
modules, and no undulator tapering.
The 3D aspect of the simulations introduces several

potentially complicating factors, such as transverse coher-
ence effects and the 3D modification of the SASE gain and
bandwidth. Although the FEL is known to produce almost
fully transversely coherent pulses, it is not perfect. Lutman
et al. measured the number of spectral modes in an XFEL
pulse while changing the integrated transverse cross section
of the pulse in the spectrometer [34]. They found that for
moderate cross sections, the mode number is independent

of the cross-section size, but at a certain threshold, it starts
to increase. This threshold effect is indicative of incomplete
transverse coherence. On the other hand, the weak depend-
ence on cross section prior to that threshold indicates that as
long as the transversely coherent fraction of the pulse is
considered, the statistics are fundamentally unchanged
from the 1D FEL. The key change is the modification of
the SASE bandwidth due to 3D gain degrading effects.
Since our model relies on a guess of the SASE bandwidth,
it is particularly important to take this change into account.
In our case, we used zero chirp GENESIS simulation results
to estimate the uncorrelated SASE bandwidth. We found
that it corresponded to the 1D formula given we used
ρeff ¼ 4.49 × 10−4. For reference, the true 1D Pierce
parameter is ρ ¼ 7.34 × 10−4.
To emulate an experimental measurement, we propagate

the simulated fields to the far field, using Fresnel propa-
gation to 100 m downstream of the source point which is
roughly in line with the distance from the LCLS undulators
to the LCLS HXR spectrometer [32]. The spectrum is then
“measured” in a �30 μm window, emulating experimental
slits. This particular slit size is chosen to align with the
region of transverse coherence in the beam, as will be
shown in Fig. 6. We have found the difference between the
results obtained from this procedure and from simply
taking the on-axis far field spectrum to be negligible,
which again confirms the observations of [34] that the
SASE statistics are essentially 1D within the transversely
coherent fraction of the beam.
We performed 3D simulations for chirp values of 0, 15,

and 30 MeV=μm. We ran 100 statistically independent
simulations at each chirp and confirmed that this number
was sufficient to converge on the predictions reported
below. The results of the reconstruction model are sum-
marized in Fig. 6. Figure 6(a) plots the radiation power
as a function of the undulator position for the three chirp
values, Fig. 6(b) shows the pulse length reconstruction, and
Fig. 6(c) shows the chirp reconstruction. In the latter two, a
solid line indicates a simulation result and dots indicate
reconstructed results. Also in Fig. 6(a), we show the
average transverse intensity profile (propagated to the far

FIG. 5. A typical single-shot spectrum from 1D simulations at
z ¼ 40 m showing the impact of 0-, 0.5-, and 1.0-eV measure-
ment resolution.

TABLE III. 3D FEL simulation parameters.

Parameter Unit Value

Beam energy GeV 10.023
Beam energy spread MeV 2.03
Normalized emittance μm rad 0.4
Peak current kA 3
β function m 12.12
Undulator period cm 2.6
Undulator K 2.407
Radiation wavelength nm 0.13789
Bunch shape Gaussian
rms bunch length μm 2
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field) Iðx; yÞ ¼ hjEðx; yjÞ2i for the central frequency, as
well as the transverse intensity correlation function
Γðx;yÞ¼R

dx0dy0hIðx0;y0ÞIðxþx0;yþy0Þi for z ¼ 57.5 m.
The blue bounding box in these figures indicates the slitted
region over which the spectrum is averaged. The fact that
the transverse intensity correlation function is well captured
by this box indicates that we are measuring the transversely
coherent fraction of the beam.
Of immediate interest is the fact that for the 3D

simulations, the chirps we have chosen are large enough
to impact the growth of the FEL power. Nevertheless, we
observe excellent agreement between the simulated and
reconstructed values of the pulse length and electron beam
chirp. We are even able to account for the slight pulse
compression effects observed in Fig. 6(b), in which pulse
length drops with an increasing chirp. This phenomenon
can be explained with Eq. (A17), which includes a gain
degradation factor proportional to the square of the chirp
and inversely proportional to the cube root of the e-beam
current profile. On the edges of the electron beam, this gain
degradation term is enhanced, thereby leading to effective
pulse shortening. It is stronger for larger chirps due to the
scaling with the square of the chirp. Even without knowing
these details explicitly, they are implicitly carried by htd
which as we have already discussed is directly related to the
x-ray pulse profile χðtÞ.

IV. EXPERIMENTAL DEMONSTRATION

Finally, we report experimental results demonstrating the
utility of our method in user experiments. The measure-
ments were taken at the LCLS in 2016 as part of an x-ray
absorption spectroscopy experiment with high-bandwidth
XFEL pulses [35]. 12.55-GeVelectrons were used to lase at
7.1 keV. To enlarge the bandwidth of the FEL beyond that
enabled by normal SASE operation, the beam was inten-
tionally overcompressed leading to a large chirp. The LCLS
x-band transverse deflecting cavity (XTCAV) was used to
image the e-beam longitudinal phase space after lasing. The
x-ray spectra were simultaneously measured with the x-ray
pump probe (XPP) instrument. The spectrometer, described
in [35], employed a 10-μm thick (220) Si membrane
analyzer and had an expected resolution of 0.5 eV at
7.1-keV photon energy. To validate our method, we
compared the pulse length and chirp values resulting from
our method and the ones obtained from XTCAV images.
This provides a useful test of our model also because the
experiment went into the saturation regime with a post-
saturation taper. This regime is hard to study analytically
but is extremely relevant for day-to-day FEL operations.
The zero-chirp spectral reconstruction approach of [15] was
found to still work in this case, which provides some
confidence that our approach should work as well.
Several values of the chirp were tested during the

experiment. In Fig. 7, we show two characteristic XTCAV
images from two different overcompression working
points. Both display energy loss near t ¼ 0 indicative of
the region of most dominant FEL lasing. This region
overlaps, in both cases, with a region of predominantly
linear chirp in the electron beam. Figures 7(a) and 7(b)

FIG. 6. Results from 3D simulations for three different values
of the e-beam chirp. (a) shows the average radiation power for 0,
15, and 30 MeV=μm chirp. (b) and (c) show the reconstructed
pulse length and chirp (dots) alongside the true values obtained
from the simulations (lines) in the exponential gain and early
saturation regimes. (a) also shows the average far field transverse
intensity profile as well as the transverse intensity correlation
function Γðx; yÞ at z ¼ 57.5 m. The image axes run between
�100 μm in both directions.

FIG. 7. Representative XTCAV images are shown for 4.7 (a)
and 14.7 (b) MeV=μm chirps. In each case, the beam has
undergone lasing that is evident from the energy loss around
0 fs. Blue lines give estimates of the linear chirp in the lasing
regions.
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correspond to linear chirps of 4.5 and 14.7 MeV=μm,
as shown in the figure with blue eye-guiding linear fits.
We can estimate the approximate duration of the x-ray
pulses by fitting them to the regions of energy loss.
Furthermore, we introduce uncertainties in the measured
values by taking into account the≈2–3 fs time resolution of
the TCAV at this photon energy [6,7]. For the higher chirp
case, the energy loss region is less pronounced, leading to a
higher uncertainty deriving from the fitting procedure. We
find rms durations of 9� 2 fs (6� 3 fs) for the 4.7�
0.2 MeV=μm (14.7� 1.2 MeV=μm) case.
We will now describe how we used the available spectra

and other LCLS diagnostics to apply our reconstruction
method. This starts by selecting appropriate shots with
which to measure statistics. As mentioned in the introduc-
tion, measuring the average pulse length and chirp is
reasonable only if we filter shots to circumvent energy
and bunch length jitter. The LCLS is equipped with a
diagnostic that estimates the peak current of the bunch after
the last bunch compressor by measuring the coherent edge
radiation emitted from the last bend of the compressor, with
a typical accuracy at the 5% level [36,37]. With this, we
were able to filter to a �50 A window around 2 kA
(3.9 kA) for the 4.5 ð14.7Þ MeV=μm chirp cases.
Additionally, the LCLS uses beam position monitors
located in dispersive sections of the accelerator to measure
the beam energy at the end of the linac with 10−4 level
accuracy [37]. With this, we could further filter our shots to
have energies within 1 MeVof 12.55 GeV. This left us with
about 200 shots at each working point after filtering.
With these filters defined, we are able to estimate the

SASE bandwidth. We use Ming Xie’s fitting formula to
estimate the effective Pierce parameter of the FEL [27]. The
photon energy, beam energy, and current have been pre-
viously specified. The undulator period is λu ¼ 3 cm. In
addition to these, we assume standard LCLS hard x-ray
figures of merit for the other necessary parameters: a 0.4-μm
normalized emittance, 10-m β function, and 2-MeV slice
energy spread at 2-kA peak current. Based on these values,
we can estimate an SASE bandwidth σω ≃ ρeffω of 4.1 eV
(5.0 eV) for the 4.7ð14.7Þ-MeV=μm chirp case.
We now have all of the information needed to apply our

method. We show the results of our reconstruction in Fig. 8.
Figures 8(a) and 8(b) show the average spectrum and the
measured G2 with Gaussian fits to each for both cases. As
expected, the larger chirped beam has a broader spectrum
and broader G2 function. In addition to these expected
features, we observed weaker second peaks 20 and 40 eV
away from the main spectral peaks. These could result from
a number of effects, for example, the fact that our phase
spaces are not perfectly linear.
With these fits, we can extract the pulse length and chirp

as a function of SASE bandwidth in Figs. 8(c) and 8(d),
respectively, which we have done using a Gaussian
assumption for the x-ray pulse profile. Based on our prior
discussion, we decided that a Gaussian profile made sense

given the Gaussian shape of the spectra. Table IV reports the
results for the smaller chirp case with the SASE bandwidth
taken to be 4.1� 0.5 eV. The 4.1-eV central value was
discussed above, while the 0.5-eV uncertainty accounts for
possible errors in slice energy spread, which is difficult to
evaluate for short chirped bunches, and peak current. We
observe excellent agreement between the XTCAV measure-
ments and our reconstruction. The extracted resolution,
which in theory does not depend on the SASE bandwidth
and therefore is reported without an error estimate, is similar
to the expected 0.5-eV resolution of the spectrometer.
Table V reports the same results for the larger chirp

working point. Here, we generally observe larger discrep-
ancies between the two measurements, but still, they fall

FIG. 8. The average spectra (a) and spectral intensity correla-
tion functions (b) are plotted for the two chirp configurations
described in the text, including Gaussian fits to each. From these,
we extract pulse length (c) and chirp (d) for the two cases as a
function of the SASE bandwidth.

TABLE IV. Comparison of measurements from the XTCAV
with our reconstruction for the smaller chirp case. The SASE
bandwidth was estimated in the text as 4.1 eV. The uncertainties
in the reconstructed values reflect a�0.5 eV assumed uncertainty
in the SASE bandwidth.

Parameter XTCAV Spectral reconstruction

rms Duration (fs) 9� 2 8.7� 1.0
Chirp (MeV=μm) 4.7� 0.2 4.7� 0.5
Resolution (eV) Not applicable 0.35
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within their errors of each other. The XTCAVmeasurements
in this case are particularly sensitive to the few femtosecond
temporal resolution since the few femtosecond x-ray pulse
duration is near the resolution limit. The spectrometer
resolution measured in this case was 0.48 eV which is again
close to the expected value for this setup.
The discrepancy in the two spectrometer resolution

measurements is not initially expected since the resolutions
should not depend on the FEL working point. We point out
the fact that the XFEL pulses are not exactly Gaussian and
that the e-beam phase space has nonlinearities. However,
both measured resolutions are close to the expected value,
and the agreements with XTCAV measurements in the
other parameters are quite good, proving the utility of the
technique.

V. DISCUSSION

The results of the previous section are promising and
imply that our spectral reconstruction method can be a
valuable tool in the accelerator control room. We would
like to point out the use of the postsaturation taper in the
experiment and what it means for our model’s applicability.
A postsaturation taper has been shown to preserve some
of the coherence properties of the exponential gain
regime which otherwise deteriorate after saturation [38].
Furthermore, the zero-chirp spectral reconstruction method
was empirically shown to apply in the postsaturation taper
regime [15]. This implies that the basic statistics we are
trying to take advantage of still work with a taper. It also
implies that the taper should not interfere with chirp-related
statistics, or else the zero chirp approach would have had
issues. In the future, we will study the effect of tapering on
our method further, both in simulation and in experiments.
With that established, we will now consider future

applications and improvements to the method. The model
presented in Appendix B is initially very general, simply
considering a radiation source that consists of a number of
chirped emitters described by a known time-independent
Green’s function. It is only in Appendix C that we specia-
lize to the case of the FEL. As such, in principle, the same
formalism may be able to describe other radiation sources,
such as radiation emitted by beams in bending magnets.
This follows early work studying incoherent fluctuations in

synchrotron radiation, which similarly showed that such
incoherent fluctuations contained information about the
electron bunch length [16,18]. With an application of our
method to that area, one could in principle extract both
bunch length and chirp at a bunch compressor, where the
chirp is an essential component of the beam phase space.
A natural question would be the extent to which the

model can be applied to nonlinear chirps. This would
require an appropriate Green’s function that can capture the
effect of a nonlinear chirp. Our revision of the FEL Green’s
function derivation in Appendix A is already sufficiently
general to perform that analysis. An in-depth analysis of
spectral correlations in the presence of chirp nonlinearity
will be the subject of a future publication.
We foresee our method as a useful tool to assist in

accelerator control room operations, in particular, when an
XTCAV is unavailable. Often users request specific spec-
trotemporal properties of the pulse, such as broad band-
width for x-ray absorption spectroscopy or ultrashort pulses
for atomic physics. The method presented here provides a
useful spectral diagnostic to understand the properties of
the x-ray pulse and can therefore assist in getting these
operating modes set up efficiently and accurately. With a
nondestructive spectrometer [32], our method can be used
to set up a real-time diagnostic of average pulse length and
chirp for these purposes.

VI. CONCLUSIONS

We have presented an extension of the method of [15]
that allows for proper accounting of linear energy chirp in
the electron beam driving an XFEL. With our revised
model, one can reconstruct the x-ray pulse length, electron
beam chirp, and spectrometer resolution from a multishot
measurement of the XFEL spectrum, as long as the
spectrometer resolution is not much larger than the
SASE spectral coherence. We have numerically shown
our method to be robust to 3D effects as well as early
saturation effects, thus ensuring its applicability in practical
experimental settings. Furthermore, we have provided
experimental results suggesting that the method may also
be applicable with a postsaturation taper, but this subject
requires further study. This approach should be especially
useful for FEL facilities that lack an XTCAV system but
can also be useful as a complementary measurement to the
XTCAV. We hope to perform additional experiments to
further understand the limitations and uses of the approach.
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APPENDIX A: GREEN’S FUNCTION
FOR THE 1D FEL WITH LINEAR CHIRP

We revise the derivation of the 1D FEL Green’s function
similar to the approach by Krinsky and Huang [26]. Wewill
start with the FEL pendulum equations:

dθ
dZ

¼ p
dp
dZ

¼ −
2D2

γ20
ðAeiθ þ A�e−iθÞ; ðA1Þ

where θ ¼ ðk0 þ kuÞz − ω0t is the ponderomotive phase
with ω0 ¼ ck0, the resonant FEL frequency and ku, the
undulator wavenumber. Additionally, p ¼ 2ðγ − γ0Þ=γ0 is
the relative energy detuning of the electron from the
resonance energy γ0. D2 is a coupling factor defined
in [26]. Finally, Z ¼ kuz is the distance into the undulator
measured in the phase of the magnetic field, and the FEL
field is Eðθ; ZÞ ¼ Aðθ; ZÞeiðθ−ZÞ þ c:c: where Aðθ; ZÞ is
the slowly varying envelope of the x-ray field. The
pendulum equations can be combined into a single
Vlasov equation for the distribution function describing
the electron beam phase space ψðθ; p; ZÞ:

∂ψ

∂Z
þ p

∂ψ

∂θ
−
2D2

γ20
ðAeiθ þ A�e−iθÞ ∂ψ

∂p
¼ 0: ðA2Þ

This must be combined with a Maxwell equation for the
field to fully describe the system�

∂

∂Z
þ ∂

∂θ

�
A ¼ D1

γ0
e−iθ

Z
ψðθ; p; ZÞdp; ðA3Þ

where D1 is another coupling factor defined in [26], and
2D1D2 ¼ ð2ρÞ3γ30 with ρ, the FEL Pierce parameter. The
FEL process induces microbunching in the electron beam at
the FEL frequency, which modifies the high-frequency
spectral content of the beam distribution but leaves the
macroscopic properties of the beam unchanged before
saturation. As such, we decompose the distribution func-
tion into ψðθ; p; ZÞ ¼ ψ0ðθ; p; ZÞ þ ψ1ðθ; p; ZÞ. Here, ψ0

represents the macroscopic beam distribution while ψ1

represents any initial and FEL-induced microbunching.
Under the assumption that the former is much larger than
the latter, and further that the two quantities vary on
disparate timescales, the Vlasov equation can be split into
two linearized equations for the two components:

∂ψ0

∂Z
þ p

∂ψ0

∂θ
¼ 0 ðA4Þ

∂ψ1

∂Z
þ p

∂ψ1

∂θ
¼ 2D2

γ20
Aeiθ

∂ψ0

∂p
ðA5Þ

We note that in writing these down, we also neglected the
complex conjugate A�e−iθ, as it has been shown in the
past that this term is relevant only for few-cycle x-ray
pulses [39] while here we are interested in pulses that are
long relative to the FEL coherence length. The equation for
the microbunching is made up of a homogeneous part
which is identical to the equation for ψ0 as well as an
inhomogeneous part. If ψ0ðθ; p; 0Þ ¼ Ψ0ðθ; pÞ, then the
solution to the first equation is just Ψ0ðθ − pZ; pÞ.
Similarly, if ψ1ðθ; p; 0Þ ¼ Ψ1ðθ; pÞ, then the first part of
the solution for ψ1 is Ψ1ðθ − pZ; pÞ. The second part,
which solves the inhomogeneous equation, can be obtained
and yields the microbunching distribution in the form

ψ1ðθ; p; ZÞ ¼ Ψ1ðθ − pZ; pÞ þ 2D2

γ20
eiθ

∂Ψ0

∂p

����
ðθ−pZ;pÞ

Z
Z

0

dZ0Aðθ − pðZ − Z0Þ; Z0Þe−ipðZ−Z0Þ: ðA6Þ

This solution can be further simplified by assuming that bothΨ0 and A are slowly varying functions of the phase θ. As such,
for relatively small chirps, we may neglect the corrections to their phase arguments. If we further note that the initial
distribution function is simply the sum of the initial values of the two parts, ψðθ; p; 0Þ ¼ Ψ0ðθ; pÞ þ Ψ1ðθ; pÞ, then we may
finally write the solution for the full distribution function as

ψðθ; p; ZÞ ¼ ψðθ − pZ; p; 0Þ þ 2D2

γ20
eiθ

∂Ψ0

∂p

Z
Z

0

dZ0Aðθ; Z0Þe−ipðZ−Z0Þ: ðA7Þ

The initial particle distribution is considered in Klimontovich form as an explicit sum over electrons in the beam

ψðθ; p; 0Þ ¼
X
j

δðp − pjÞδðθ − θjÞ; ðA8Þ

where here pj and θj are the initial values of p and θ for the jth electron at the undulator entrance. We can now plug the
distribution function solution equation (A7) into the Maxwell equation (A3), yielding
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�
∂

∂Z
þ ∂

∂θ

�
A ¼ D1

γ0

X
j

e−iθδðθ − θj − pjZÞ þ ið2ρÞ3
Z

Z

0

dZ0Aðθ; Z0ÞðZ − Z0Þ
Z

dpΨ0ðθ; pÞe−ipðZ−Z0Þ; ðA9Þ

where we have integrated the last term by parts with respect to p. Now following Krinsky and Huang, we will replace e−iθ

with e−iθj−ipjZ and subsequently neglect pjZ relative to θ − θj in the delta function, which is equivalent to assuming that
any energy spread is too small to change the current profile through the undulator. We solve Eq. (A9) by introducing the
Laplace transform of the field Âðθ; sÞ ¼ R∞

0 dZAðθ; ZÞe−sZ:

sÂþ ∂Â
∂θ

¼ D1

γ0

X
j

e−iθj

sþ ipj
δðθ − θjÞ þ ið2ρÞ3Â

Z
dp

Ψ0ðθ; pÞ
ðsþ ipÞ2 ; ðA10Þ

where we have assumed that the initial x-ray field is zero so that we can focus on SASE radiation. This is solved by moving
the final term over to the left-hand side and writing the left-hand side as a single derivative with respect to θ, with the result

Âðθ; sÞ ¼ D1

γ0

X
j

e−iθj

sþ ipj
exp

�
−sðθ − θjÞ þ ið2ρÞ3

Z
θ

θj

dθ0
Z

dp
Ψ0ðθ0; pÞ
ðsþ ipÞ2

�
ðA11Þ

and by inverse Laplace transforming, we find the slowly varying envelope of the SASE field

Aðθ; ZÞ ¼ D1

γ0

X
j

Z
ds
2πi

e−iθj

sþ ipj
exp

�
sZ − sðθ − θjÞ þ ið2ρÞ3

Z
θ

θj

dθ0
Z

dp
Ψ0ðθ0; pÞ
ðsþ ipÞ2

�
ðA12Þ

This result is quite general. We will now specialize to the case in question. In particular, we consider a separable distribution
function Ψ0ðθ; pÞ ¼ fðθÞVðpþ μθÞ, where fðθÞ is the current profile of the electron beam and VðpÞ is the uncorrelated
energy distribution which has been chirped by −μθ. If we further simplify to zero uncorrelated energy spread, then
VðpÞ ¼ δðpÞ and we can write the SASE field as

Aðθ; ZÞ ¼ D1

γ0

X
j

Z
ds
2πi

e−iθj

s − iμθj
exp

�
sZ − sðθ − θjÞ þ ið2ρÞ3

Z
θ

θj

dθ0
fðθ0Þ

ðs − iμθ0Þ2
�

ðA13Þ

The final integral can be dealt with if we assume the bunch to be long relative to a coherence length, as in this case, we may
approximate fðθ0Þ by fðθjÞ and pull it out of the integral. This results in

Aðθ; ZÞ ¼ D1

γ0

X
j

Z
ds
2πi

e−iθj

s − iμθj
exp

�
sZ − sðθ − θjÞ þ ið2ρfðθjÞ1=3Þ3

θ − θj
ðs − iμθÞðs − iμθjÞ

�
; ðA14Þ

where we have pulled the fðθjÞ into the cube in order to stress that the FEL with long bunch time-dependent effects acts just
like the time-independent FEL with a time-dependent Pierce parameter ρtdðθjÞ ¼ ρfðθjÞ1=3. The final step to get to the
Green’s function is to shift our Laplace variable from s to s − iμθj, in which case we have finally

Aðθ; ZÞ ¼ D1

γ0

X
j

e−iθje−iμθjðθ−Z−θjÞ
�Z

ds
2πis

exp

�
sZ − sðθ − θjÞ þ i½2ρtdðθjÞ�3

θ − θj
s½s − iμðθ − θjÞ�

��
ðA15Þ

What we have enclosed in parentheses is our full Green’s function including time-dependent effects. It is identical to that
derived by Krinsky and Huang [Eqs. (A12) and (A13) of [26]] except for the time-dependent value of ρ, which was omitted
in Ref. [26] due to an infinitely long electron beam assumption. Of course, this is still not quite in the expected final form.
We will now evaluate the contour integral with a saddle point approximation, whereby we estimate an integral of the formR
dsPðsÞeFðsÞ ≃ Pðs0ÞeFðs0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2π=F00ðs0Þ

p
where F0ðs0Þ ¼ 0 and Fðs0Þ ≫ 1. For our case, the condition F0ðs0Þ ¼ 0 yields

a cubic equation that will have one root with a positive real part. Only this root is of interest to us, since when plugged into
es0Z, it gives rise to an exponential gain of the radiation field. We solve for this root to second order in μ, yielding

s0 ≃
24=3i1=3ðθ − θjÞ1=3ρtdðθjÞ

ðZ − θ þ θjÞ1=3
þ iμ

2
ðθ − θjÞ þ

i5=3ðZ − θ þ θjÞ1=3ðθ − θjÞ5=3
12 × 21=3ρtdðθjÞ

μ2 ðA16Þ
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This is still much more complicated than the terms in the Green’s function reported by Krinsky and Huang. This is
because they apply one more approximation, which is to expand the resulting Green’s function around θ − θj ¼ Z=3
where s00ðθ − θjÞ ≃ 0. Note that this corresponds to expanding around the value of θ given by the SASE group velocity. The
result is

gðθ; θj; ZÞ ∝ exp

�
ρtdðθjÞð

ffiffiffi
3

p
þ iÞZ −

9ρtdðθjÞ
4Z

ð
ffiffiffi
3

p
þ iÞ

�
θ − θj −

Z
3

�
2

þ iμ
2
ðθ − θjÞðZ − θ þ θjÞ

�

× exp

�
þ Z3μ2

288ρtdðθjÞ
ð−

ffiffiffi
3

p
þ iÞ − Zμ2

96ρtdðθjÞ
ð−

ffiffiffi
3

p
þ iÞ

�
θ − θj −

2Z
3

�
2

þOðμ3Þ
�

ðA17Þ

Equation (A17) is a generalized form of Krinsky and
Huangs’ result which accounts for both a finite bunch
length and higher-order chirp effects. We can delineate a
few distinct parts of the Green’s function. First is a purely
time-dependent part we will call htdðθjÞ which contains the
first and fourth terms of Eq. (A17). We call it time-
dependent because it is explicitly a function of the arrival
time of electron j at the undulator, as opposed to the relative
time θ − θj. Notice that this captures not only time-
dependent gain effects of a nonconstant current profile
in the form of ρtdðθjÞ but also gain reduction due to the
chirp which is of order μ2. This gain reduction was
mentioned but not written out in [26]. There is also, of
course, higher-order time-dependent gain reduction, how-
ever, it is all implicitly captured by htd.
The second part of the Green’s function is made up of the

second and third terms in Eq. (A17).Wewill discuss the fifth
term below. The second and third terms are almost only a
function of the relative phase θ − θj. We say almost because
the first and last terms still depends on ρtdðθjÞ. This amounts
to the time dependence of the SASE bandwidth of the pulse.
We propose to replace this with ρ as was done without
explicit mention in [15]. This choice seems to work empiri-
cally or else the original method proposed in [15] would not
have worked. We can justify the choice in two ways: first,
since we know empirically that the statistics of the radiation
are not highly sensitive to thevalue of theSASEbandwidth, it
should not make a large difference to approximate the
bandwidth in this way. Second, most of the radiation will
be emittedwhere the current profile peaks,which is generally
where ρtdðθjÞ varies the slowest. Finally, we note that this is
not a problem for long flattopped beams, for which slippage
is unimportant and ρtd is constant within the beam current.

The third term is purely time independent without
ambiguity, and it accounts for the local chirp of the
coherent SASE spikes [26]. There are similarly higher-
order, largely time-independent terms that we have
neglected such as the fifth, but we have found that the
effect of the linear order term even on relatively large chirps
is weak. In particular, neglecting the third term is equivalent
to approximating δu as uσt=σω in Eqs. (7) and (8). As we
argued then, that is a good approximation for sufficiently
long pulses. Since even the linear order term has a small
effect on reconstructions, these second and higher-order
time-independent terms can almost always be neglected.
Further studies taking them into account could be the
subject of future work.
With this definition of htd as well as the replacement of

ρtd with ρ in the second term of Eq. (A17), we arrive finally
at the form of the Green’s function used in the paper,
Eqs. (4) and (5), once written in terms of time rather than
phase. We did not deal explicitly with the effect of taper in
our analysis, but the same logic applies in showing that its
effects on the gain can be subsumed into htd, as was found
empirically in [15]. We expect this to be true at least for a
postsaturation taper, which is in general small and unrelated
to the beam chirp. More tailored tapers, such as chirp-taper
matching, would require more careful analysis.

APPENDIX B: DERIVATION OF G2 FORMULAS
FOR RADIATION FROM DISCRETE

CHIRPED EMITTERS

With the definitions of G2 and S̃ðωÞ as in Eqs. (2) and
(3), it was shown in [15] that G2 can be written as

G2ðδωÞ ¼
R
dΔdΩe

− Δ2

4σ2m
−Ω2

σ2mhjẼðωþ Ωþ ðΔþ δωÞ=2j2jẼðωþ Ω − ðΔþ δωÞ=2Þj2iR
dΔdΩe

− Δ2

4σ2m
−Ω2

σ2mhjẼðωþ Ωþ ðΔþ δωÞ=2j2ihjẼðωþΩ − ðΔþ δωÞ=2Þj2i
− 1 ðB1Þ

Thus, we see that it will be useful to calculate the spectral field correlation hẼðω − δω=2ÞẼ�ðωþ δω=2Þi as well as the
spectral intensity correlation hjẼðω − δω=2Þj2jẼðωþ δω=2j2i. With the definition of the spectral field from Eq. (6), it
follows that the spectral field correlation function is
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�
Ẽ

�
ω −

δω

2

�
Ẽ�

�
ωþ δω

2

�	
¼

�X
j;k

ei
z
cðωj−ωkÞeiðω−δω

2
Þtje−iðωþδω

2
Þtk g̃

�
ω −

δω

2
− ωj

�
g̃�
�
ωþ δω

2
− ωk

�
htdðtjÞh�tdðtkÞ

	

ðB2Þ

Following Ref. [40] and considering only the incoherent portion of the sum, we restrict our attention to the terms where
j ¼ k, leaving�

Ẽ

�
ω −

δω

2

�
Ẽ�

�
ωþ δω

2

�	
¼

�X
j

e−iδωtj g̃

�
ω −

δω

2
− ωj

�
g̃�
�
ωþ δω

2
− ωj

�
jhtdðtjÞj2

	
ðB3Þ

Let us move on now to the spectral intensity correlation, which is�����Ẽ
�
ω −

δω

2

�����2
����Ẽ
�
ωþ δω

2

�����2
	

¼
� X

k;j;l;m

ei
z
cðωk−ωjþωl−ωmÞeiωðtk−tjþtl−tmÞ−iδω2 ðtk−tj−tlþtmÞ

g̃

�
ω −

δω

2
− ωk

�
g̃�
�
ω −

δω

2
− ωj

�
g̃

�
ωþ δω

2
− ωl

�
g̃�
�
ωþ δω

2
− ωm

�
htdðtkÞh�tdðtjÞhtdðtlÞh�tdðtmÞ

	
ðB4Þ

Now again following [40], we will consider only two sets of terms in these sums: k ¼ j, l ¼ m, k ≠ l; and k ¼ m, l ¼ j,
k ≠ l. This leaves us with�����E

�
ω −

δω

2

�����2
����E
�
ωþ δω

2

�����2
	

¼
�X

k

jhtdðtkÞj2
����g̃
�
ω −

δω

2
− ωk

�����2
	�X

l

jhtdðtlÞj2
����g̃
�
ωþ δω

2
− ωl

�����2
	

þ
�X

k

e−iδωtk jhtdðtkÞj2g̃
�
ω −

δω

2
− ωk

�
g̃�
�
ωþ δω

2
− ωk

�	

×

�X
l
e−iδωtl jhtdðtlÞj2g̃

�
ω −

δω

2
− ωl

�
g̃�
�
ωþ δω

2
− ωl

�	�
ðB5Þ

Note that we can write the results we have found thus far more succinctly by defining

Fðω; δωÞ≡
�X

k

e−iδωtk jhtdðtkÞj2g̃
�
ω −

δω

2
− ωk

�
g̃�
�
ωþ δω

2
− ωk

�	
ðB6Þ

With this function, we can write simply that�
E

�
ω −

δω

2

�
E�

�
ωþ δω

2

�	
¼ Fðω; δωÞ ðB7Þ

�����E
�
ω −

δω

2

�����2
����E
�
ωþ δω

2

�����2
	

¼ F

�
ω −

δω

2
; 0

�
F

�
ωþ δω

2
; 0

�
þ jFðω; δωÞj2 ðB8Þ

Notice then that Fðω; 0Þ is proportional to the spectral intensity at frequency ω. Furthermore, G2 can be written as

G2ðδωÞ ¼
R
dΔdΩe

− Δ2

4σ2m
−Ω2

σ2m jFðωþΩ;Δþ δωÞj2R
dΔdΩe

− Δ2

4σ2m
−Ω2

σ2mFðωþΩþ Δþδω
2

; 0ÞFðωþ Ω − Δþδω
2

; 0Þ
: ðB9Þ

For ease of calculation, we note that we may replace the average of the sum over electrons with an integral over the average
electron current profile fðtÞ as

Fðω; δωÞ ¼
Z

dtjfðtjÞjhtdðtjÞj2e−iδωtj g̃
�
ω −

δω

2
− ωj

�
g̃�
�
ωþ δω

2
− ωj

�
ðB10Þ
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So far we have left htdðtjÞ unspecified, which makes this equation difficult to evaluate. We may connect it to the average
x-ray intensity profile χðtÞ by noting

χðtÞ≡ hjEðtÞj2i ¼
Z

dtjfðtjÞjhtdðtjÞj2jgðt − tjÞj2 ðB11Þ

This is an integral of a product of terms with distinct timescales. The characteristic timescale of gðtÞ is the inverse of the
SASE bandwidth 1=σω, whereas the timescale of fðtÞjhtdðtÞj2 is the electron bunch length. If the driving electron bunch has
features that are long relative to the inverse of the SASE bandwidth, then the gain function gðtÞ acts like a delta function
when convolved with fðtjÞjhtdðtjÞj2. In other words, if σtσω ≫ 1, we may write χðtÞ ∝ fðtÞjhtdðtÞj2. As justification for this
approximation, we note that typical SASE bandwidths for hard x rays are on the order of a few eV, whereas electron
bunches are typically a few to tens of femtoseconds long. The product σtσω is thus of order 10–100 for typical operating
conditions. Another way of putting this is that the pulse is made up of many independent SASE spikes. Then up to a
multiplicative factor which drops out of G2, we can write

Fðω; δωÞ ¼
Z

dtjχðtjÞe−iδωtj g̃
�
ω −

δω

2
− ωj

�
g̃�
�
ωþ δω

2
− ωj

�
: ðB12Þ

Since up to this point, we have made no assumptions as to the particular form of the Green’s function or the electron bunch
except that we are focused on the incoherent part of the spectrum, these formulas can be applied to any radiation process
describable by a Green’s function.

APPENDIX C: EVALUATION OF G2 FORMULAS FOR FREE-ELECTRON LASER RADIATION

For a FEL driven by a chirped electron beam, g̃ðωÞ is the Fourier transform of Eq. (5) and F can be evaluated with
Eq. (B12). This results in the integral form

Fðω; δωÞ ¼
Z

dtχðtÞ exp
�

1

1þ ûþ û2

�
−iδωt

�
1þ û

2

�
−
δω2

8σ2ω
−

u2

2σ2ω

�
t −

z
2δv

−
ω − ω0

u

�
2
��

× exp



−

iδω
24σ2ωð1þ ûþ û2Þ ½6σ

2
ωðûð1þ 2ûÞðz0 þ zcÞ þ 2ð2þ ûÞzgÞ þ 4

ffiffiffi
3

p
ð1þ 2ûÞðω − ω0Þ�

�
ðC1Þ

where we have defined

1

δv
¼ 1

c
þ 1

v0
−

2

vg
ðC2Þ

and û ¼ u=
ffiffiffi
3

p
σ2ω. We note here that for the two cases of interest to us, namely jFðω; δωÞj and Fðω; 0Þ, the second line

vanishes and we are left with just the first. There is not much more that can be done with this integral analytically without
specifying the pulse shape χðtÞ. This expression can be integrated for a Gaussian pulse χðtÞ ¼ e−t

2=2σ2t , for example, and
yields the expressions given in Eqs. (7) and (9). Beyond explicit evaluation for particular pulse profiles, to elucidate the
meaning of the equations, we have derived so far it is interesting to take limit that the pulse contains many SASE spikes, or
σtσω ≫ 1 where σt is a measure of the length of the x-ray pulse. In this limit, the exponential factor varies much more
quickly than the pulse profile, and we may replace χðtÞ in the integrand by χð z

2δv þ ω−ω0

u Þ. In this case, the integral can be
taken explicitly, leaving us with

Fðω; δωÞ ∝ χ

�
z

2δv
þ ω − ω0

u

�
exp

�
−
δω2

2

�
1

4σ2ω
þ σ2ω

u2

�
1þ û

2

1þ ûþ û2

�
2
�
− iδω

�
z

2δv
þ ω − ω0

u

�
1þ û

2

1þ ûþ û2

�
: ðC3Þ

In this limit, then the spectrum of the radiation is given by

Fðω; 0Þ ∝ χ

�
z

2δv
þ ω − ω0

u

�
ðC4Þ

In other words, when the chirp dominates over the SASE
bandwidth, the spectrum is a direct mapping of the
temporal profile of the pulse. Meanwhile, G2 can be
calculated as (neglecting spectrometer resolution)
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G2ðδωÞ ¼ exp

�
−δω2

�
1

4σ2ω
þ σ2ω

u2

�
1þ û

2

1þ ûþ û2

�
2
��

ðC5Þ

and to lowest order in û

G2ðδωÞ ¼ exp

�
−
δω2σ2ω
u2

�
: ðC6Þ

Referring back to [26], σω=u is precisely the length of a
single frequency slice of linearly chirped radiation. In other
words, as the bunch gets longer and longer for a fixed chirp,
the statistics become dominated by the chirp rather than the
SASE process and an estimate of pulse length based solely
on G2 will saturate at the value σω=u, precisely as we see
in Fig. 3.
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