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In linear induction accelerators, high-brightness electron beams are accelerated by voltages applied at
gaps at discrete locations along the accelerator. At high currents, the beam itself induces wakefields in the
accelerating gaps which can then feedback and distort the beam. The coupling of the gap-cavity modes and
the beam can be characterized by frequency-dependent quantities known as the parallel and perpendicular
gap impedances. Assessing the effects of instabilities resulting from these interactions requires accurate
knowledge of these quantities. In this paper, we describe how a 3D finite-difference time-domain particle-
in-cell code can be used to calculate both parallel and perpendicular gap impedances. We also demonstrate
good agreement between full particle-in-cell simulations and results from a beam transport code making
use of gap impedances to model beam centroid deflections. In practice, ferrite materials are often used in
accelerating gaps to dampen cavity modes and reduce the severity of the resulting instabilities. We describe
an implicit recursive convolution algorithm used to model the linear response of dispersive ferrite materials.
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I. INTRODUCTION

Linear induction accelerators (LIAs) have been used
extensively to generate high-current electron beams for a
wide variety of applications [1]. Each such accelerator is
composed of a cylindrical vacuum beam pipe interrupted
periodically by a sequence of accelerating gaps arranged at
discrete locations along the beam pipe. We consider here
the “core” variant of an LIA in which voltages at the gaps in
the beam pipe are generated by inductive electric fields due
to magnetic field swings in the ferromagnetic cores of the
accelerating cell. This is in contrast to “driving circuit”
LIAs, in which magnetic materials are eliminated by using
low-impedance radial transmission lines to drive the cell
[2]. Solenoids for focusing and dipole steering magnets,
located between the gaps, are used to control the beam
envelope and centroid position along the accelerator. The
fundamental accelerating mechanism in a LIA is, of course,
due to the voltages applied to the accelerating gaps which

are distributed along the beam line. A charged particle
beam propagating past a gap gains kinetic energy due to the
gap voltage. To the lowest order, the voltage across the gap
is given by the waveform generated by the pulsed power
driver when applied to the full cell. However, at high
currents, the beam itself induces wakefields in the accel-
erating gaps proportional to the current which alters the
field structure, and hence the total voltage is seen by
the beam.
For example, an on-axis axisymmetric beam induces

axisymmetric (m ¼ 0, where m is the azimuthal mode
number) gap voltage variations which result in energy
spread along the beam pulse, as upstream beam segments
are affected by the wakefields induced by downstream
segments. Even more importantly, an off-axis beam can
generate m ¼ 1 modes in the gap, which result in beam
deflections. The coherent deflections of the beam as it
passes through multiple accelerating gaps are known as
beam-breakup instability (BBU) and can be especially
problematic in electron LIAs [1,3–5]. The m ¼ 0 energy
spread instability is less important as it does not grow
coherently along the beamline but may still have a
deleterious effect on beam quality [6].
The strength of the m ¼ 0 and m ¼ 1 modes of exci-

tation in a given gap can be characterized by parallel and
perpendicular (or transverse) impedances, respectively.
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To assess the expected severity of energy spread and BBU
instabilities, it is important to be able to calculate the
parallel and perpendicular impedances of the accelerating
gaps [6]. For example, from analytic theory [1,4,5,7], the
maximum centroid excursion magnitude, ξðzÞ, after propa-
gation through N ≫ 1 periodic accelerating gaps, asymp-
totes as

ξðzÞ ¼ ξ0½γ0=γðzÞ�1=2 exp½Γ�; ð1Þ

where the growth rate is given by

ΓðzÞ ¼ 1

c
IbNReðZ⊥Þ

�
1

B

�
; ð2Þ

where c is the speed of light, Ib is the beam current, γ is the
Lorentz factor of the beam, Z⊥ is the frequency-dependent
complex transverse impedance of the gap (in units of Ohms
per unit length), and h1=Bi is the average of the inverse of
the focusing magnetic field. This asymptotic scaling has
been verified in experiments on the DARHT–II accelerator
at Los Alamos National Laboratory (LANL) [8], using
measured values of Z⊥ [9].
In principle, it is possible to use a particle-in-cell (PIC)

code to model a full LIA in which the full geometry of both
the gaps and the accelerating cells is included so that the
effects of beam-induced wakefields are included self-con-
sistently. But lengthy runtimes and numerical instabilities
which emerge in large PIC simulationsmake this impractical
for LIAs with many hundreds of accelerating cells.
A common method for modeling of lengthy LIAs is to

make use of a beam transport code such as LAMDA [10,11].
In such a reduced model, the beam is assumed to be a
circular rigid rotor, with the beam pulse decomposed into
independent disks. Each discrete disk is characterized by its
current, energy, radius, and centroid position. Envelope and
centroid equations are solved for each disk as it propagates
through the LIA, and the energy of the disk is incremented
as it crosses an accelerating gap.
In the BBU model implemented in LAMDA, discrete

transverse impulses are received by the centroid of each
disk at a gap location. These impulses, due to beam-
induced wakefields, can also be directly related to Z⊥. In
both the asymptotic estimation of Eq. (2) and in a beam-
transport code such as LAMDA, the effect of BBU for
specific gap and cell designs in an LIA requires knowledge
of frequency-dependent Z⊥.
A theoretical treatment for a simple pillbox geometry

was performed by Briggs et al. [6] in which approximate
expressions for parallel and perpendicular impedances are
obtained. The resulting values of ZkðωÞ and Z⊥ðωÞ are
found to have resonances near the TM0n0 and TM1n0
resonance frequencies of the cavity. The Q values (the
ratio of the center frequency to the width of the peak) for
these resonances depend sensitively on the impedance

boundary condition at the maximum pillbox radius.
From Eq. (2), it is clear that in order to minimize the
effect of BBU, it is desirable to keep Z⊥ðωÞ as small as
possible. One means of accomplishing this is to dampen the
resonances by adding a ferrite material into the accelerating
cell [12].
Since only the simplest structures, such as the pillbox

of Briggs et al. [6], allow for the analytic calculation of
ZkðωÞ and Z⊥ðωÞ, it is generally necessary to calculate
these quantities numerically. One common tool used to
numerically calculate Z⊥ðωÞ is the code AMOS developed
by DeFord, Craig, and McLeod [13]. This is a specialized
finite-difference time-domain (FDTD) code in which
the cell geometry is modeled using a 2D rz grid.
Postprocessing of the FDTD results yields the fre-
quency-dependent impedances. Since Z⊥ is the response
function due to an off-axis beam, the fields will be 3D in
general. Azimuthal variation of the fields is modeled
by decomposing the general 3D fields into azimuthal
modes of a chosen order. The code has also been modified
to model the frequency-dependent (linear, isotropic)
permeability of ferrite materials used to dampen the
response [12].
In this paper, we describe how Zk and Z⊥ can be

calculated for an arbitrary 3D accelerating cell by a 3D
PIC code including the effects of dispersive materials such
as ferrites. For the PIC results presented in this paper, the
CHICAGO [14,15] code is used, although the algorithms and
methods described here could be easily implemented into
any PIC code. CHICAGO is an advanced three-dimensional
fully electromagnetic PIC code designed for executing
multiscale plasma and beam physics simulations. As
mentioned above, the numerical grid in AMOS is in 2D
cylindrical rz coordinates and thus is restricted to axisym-
metric cell geometries. By performing CHICAGO simula-
tions in full 3D, this restriction is lifted.
To calculate Zk and Z⊥, it is sufficient to run CHICAGO

with a rigid particle beam, in which the wakefields
generated in the gaps are not allowed to feed back on
the beam. It is also possible to perform fully self-consistent
PIC simulations in which the beam is allowed to deflect
naturally due to its own wakefields. The resulting centroid
motion can then be compared to the beam-transport/
BBU model.
The organization of the paper is as follows: In Sec. II, we

review the theoretical results of Briggs et al. for a pillbox
geometry and then demonstrate in Sec. III how both parallel
and perpendicular impedances can be calculated by a 3D
PIC simulation. In Sec. IV, we compare a fully self-
consistent Chicago simulation of a short accelerator section
with a single pillbox gap and compare the centroid behavior
with results from LAMDA in which the gap is characterized
by Z⊥ for the gap. Good agreement between the two
approaches is found. In Sec. V we discuss the modeling of
ferrite materials as linear isotropic dispersive materials
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using an implicit version of the recursive convolution
algorithm for FDTD codes [16–18]. In Sec. VI, the
method is verified by comparing the reflection and
transmission coefficients of a TEM wave from a disper-
sive ferrite slab with analytic results. In Sec. VII, ferrite
structures, used to damp cavity resonances, are introduced
into the PIC simulation model. We then compare results
from CHICAGO to published results from the AMOS code
for a test gap geometry used on the ETA-II accelerator in
Sec. VIII. In Sec. IX, we show a comparison of simulation
and measurement results for the prototype accelerator cell
(PAC) fielded at LANL [19]. This test cell has been used
to assess the impedance of a block of gaps proposed for
use in the Scorpius accelerator to be built at the Nevada
test site [20]. Good agreement between simulation and
measurement is found. Some conclusions and suggestions
for future work follow in Sec. X.

II. CALCULATION OF PARALLEL
AND PERPENDICULAR IMPEDANCES

OF AN IDEALIZED ACCELERATING GAP

An idealized pillbox gap geometry for a LIA accelerating
cell, as shown in Fig. 1, was assumed by Briggs et al. [6].
We here briefly review the main results of that work. When
the gap is driven by a sinusoidal beam current, IbðωÞ, along
the radial axis, cavity modes are generated in the pillbox
cylindrical cavity which can then feed back on the beam.

For an on-axis and axisymmetric beam, TM0n0 cavity
modes are generated in the gap which produce an induced
voltage defined as

VðωÞ ¼ −ZkðωÞIbðωÞ; ð3Þ

where Zk, in units of Ohms, is known as the parallel
impedance of the gap. The time-domain induced voltage is
given immediately by the convolution theorem. This
induced voltage can then feed back on the beam producing
energy variations along the beam pulse. An off-axis beam
can generate TM1n0 cavity modes which are the source of
the BBU instability. These modes generate a transverse
deflecting force upon beam particles traveling through
the gap. If the beam is characterized in the time domain
by a current, IbðtÞ, and a beam offset in the x direction
characterized by ξðtÞ, the frequency-domain deflection
impulse can be written as

ΔpxðωÞ ¼ −
i
c
eZ⊥ðωÞFðωÞ; ð4Þ

where Z⊥ðωÞ, in units of Ohms/length, is known as the
transverse impedance of the gap, and FðωÞ is the Fourier
transform of the product IbðtÞξðtÞ. For the simple pillbox
geometry shown in Fig. 1, Briggs et al. find the following
approximate formulas for ZkðωÞ and Z⊥ðωÞ.
The parallel impedance of the pillbox gap is given by

ZkðωÞ ¼ i
4d
bc

PðωÞ; ð5Þ

where

PðωÞ ¼ sin2 ðωd=cÞ
ðωd=cÞ2

1

H0

; ð6Þ

H0 ¼
J00ðωb=cÞ
J0ðωb=cÞ

−
G0ðωb=cÞ
Gðωb=cÞ þ

ω

cbd

X
n

1 − e−2νnd

ν3n
; ð7Þ

Gðωr=cÞ ¼ J0ðωr=cÞ þ C0N0ðωr=cÞ; ð8Þ

C0 ¼
iðZs=ZoÞJ00ðωR=cÞ − J0ðωR=cÞ
N0ðωR=cÞ − iðZs=ZoÞN0

0ðωR=cÞ
; ð9Þ

ν2n ¼ β20n − ðω=cÞ2; ð10Þ

and JmðzÞ and NmðzÞ are the mth order Bessel functions of
the first and second kind, respectively, βmnb ¼ xmn, where
xmn is the nth zero of JmðxÞ, Zs is the surface resistance
used to terminate the gap, and

Zo ¼ 60Ω × ð2dÞ=R ð11Þ

is the radial transmission line impedance at r ¼ R. The
analytic treatment used by Briggs assumes an infinitely

FIG. 1. Idealized geometry of LIA accelerating gap. The radial
coaxial line is terminated at r ¼ R by an impedance of ZS. The
gap and beam pipe are both axisymmetric and bilaterally
symmetric about the dashed vertical line. In the treatment of
Briggs, L → ∞.
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long beam pipe on either side of the gap, i.e., L → ∞.
Moreover, it is valid only for purely imaginary values of νn,
i.e., that is ω ≤ cβ0n for all nonzero positive integral values
of n. Physically, above this frequency, for n ¼ 1, the TM01

mode may propagate in the beam pipe, which has the
lowest m ¼ 0 cutoff frequency.
The transverse or perpendicular impedance of the pillbox

gap is given by

Z⊥ðωÞ ¼ i
2d

πεcb2
P1ðωÞ; ð12Þ

where

P1ðωÞ ¼
sin2 ðωd=cÞ
ðωd=cÞ2

1

H1

; ð13Þ

H1¼
�
ωb
c

��
J01ðωb=cÞ
J1ðωb=cÞ

−
G0

1ðωb=cÞ
G1ðωb=cÞ

�
−
1

d

X
n

1−e−2μnd

μnðρ21nb2−1Þ

þ
�
ω

c

�
2 1

d

X
n

1−e−2εnd

ε3n
; ð14Þ

G1ðωr=cÞ ¼ J1ðωr=cÞ þ C1N1ðωr=cÞ; ð15Þ

C1 ¼
iðZs=ZoÞJ01ðωR=cÞ − J1ðωR=cÞ
N1ðωR=cÞ − iðZs=ZoÞN0

1ðωR=cÞ
; ð16Þ

ε2n ¼ β21n − ðω=cÞ2; ð17Þ

μ2n ¼ ρ21n − ðω=cÞ2; ð18Þ

and ρmnb ¼ x0mn, where x0mn is the mth zero of J0mðxÞ. The
above treatment is valid for ω ≤ cβ1n for all nonzero
positive integral values of n. Physically, above the thresh-
old frequency, for n ¼ 1, the TE11 mode may propagate in
the beam pipe.

III. Zk AND Z⊥ CALCULATIONS WITH
CHICAGO OF IDEALIZED GAP

Parallel and perpendicular impedances are usually cal-
culated by specialized stand-alone codes such as AMOS

[21]. We here verify the use of CHICAGO to calculate these
quantities and compare our time-domain PIC results with
the Briggs results for a simple axisymmetric pillbox
gap. The parallel impedance of the gap can be calculated
in 2D rz cylindrical coordinates. The simulation geometry
is shown in Fig. 1 with exact dimensions given by
b ¼ 7.5 cm, d ¼ 3.5 cm, R ¼ 30 cm. The surface resis-
tivity, Zs, is applied to the boundary at r ¼ R, from z ¼ −d
to d. An arbitrary dimensionless surface impedance ratio,
Zs=Zo, can be chosen, where Zo ¼ 10Ω [Eq. (11)]. In the
treatment of Briggs, the beam pipe is infinitely long. In the

simulation, a finite length of L must be chosen. One-way
wave equations [16] are applied at the boundaries from
r ¼ 0 to b, at z ¼ −L and L, where L ¼ 60 cm. Note that
such boundary conditions guarantee the perfect transmis-
sion of outgoing TEM modes in the pipe at the boundary
planes but may reflect outgoing TE and TM modes. A
particle beam is injected into the simulation space at the
left-hand boundary with a Gaussian pulse shape given by

IbðtÞ ¼ Ioe−ðt−toÞ
2=τ2 ; ð19Þ

with τ ¼ 0.3 ns. We note here that the simulation is driven
with a stiff beam, i.e., composed of very massive particles
(≫ me). This is because we are seeking to characterize
only the properties of the gap when driven by a current,
encapsulated in the response function, Zk. The feedback of
the wakefields generated by the gap on the beam particles is
neglected here by using an effectively infinite particle
inertia. The voltage across the gap at r ¼ b, VðtÞ, can
be tabulated as a function of time during the simulation.
Then, from Eq. (3), the ratio of the (discrete) Fourier
transforms of VðtÞ and −IbðtÞ yields Zk. Note that the time
shift to in Eq. (19) is chosen so that IbðtÞ corresponds to the
current seen at the gap center, z ¼ 0.
The perpendicular impedance can be calculated by a

similar procedure. Following Briggs, the deflection impulse
on a test particle passing through an accelerating gap region
is given by integration of the Lorentz force, where the
integration is performed along the particle trajectory, given
by z ¼ vðt − toÞ where v ≃ c for a relativistic particle. This
yields the expression

Δpx ¼
e
c

Z
∞

−∞
ðEx − cByÞdz: ð20Þ

Briggs calculates this integral for an arbitrary test-particle
transverse position in the beam pipe (r ≤ b). The result is
found to be independent of r and azimuthal angle, θ, with
the resulting impulse (in the frequency domain) given
by Eq. (12).
In a 3D cylindrical PIC simulation, we can calculate the

time-domain impulse response by performing the integra-
tion of Eq. (20) at a radial position of r ¼ b and angle of
θ ¼ π=2. At this angle, Ex ¼ −Eθ and EθðbÞ is zero on the
conductor walls. Likewise, By ¼ Br and BrðbÞ is zero on
the conductor walls. The time-domain impulse can then be
written as

Δpx ¼ −
e
c

Z
d

−d
½Eθðb; π=2; zÞ þ cBrðb; π=2; z�dz; ð21Þ

which is a simple line integral that can be calculated at
arbitrary time intervals in a PIC simulation. If the simu-
lation is run with an injected beam with a known current
pulse and offset, Z⊥ can be calculated from the Fourier
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transform of the impulse, ΔpxðωÞ, and the current-offset
product, IbðtÞξðtÞ, from Eq. (4). Note again that the time-
domain beam current and offset values are evaluated at the
gap center z ¼ 0.
An axisymmetric beam is used to calculate the parallel

impedance, and the pillbox geometry of the simplified gap
model is axisymmetric as well, so the Zk simulation can be
done in 2D-rz coordinates. Of course, in general, a full 3D
simulation is necessary if there is an azimuthal structure in
the beam pipe or gap. In the case of an offset beam, full 3D
is required even if the beam pipe and gap geometry are
axisymmetric. The 2D simulation is performed with uni-
form cells with Δr ¼ Δz ¼ 0.25 cm. The 3D simulations
are also performed in cylindrical coordinates with
Δθ ¼ π=10. We note that it is also possible to calculate
both Zk and Z⊥ from a single 3D simulation, as there is
very little azimuthal variation in the pillbox gap voltage for
a small beam offset. The injected current has a Gaussian
pulse shape, as in Eq. (19), with τ ¼ 0.3 ns. This value of τ
provides significant bandwidth to give good results out to
several GHz. At higher frequencies, the signal-to-noise
ratio degrades in the deconvolution of Eqs. (3) and (4). In
the 3D simulation, the beam is offset by 0.25 cm in the þx
direction. Good results are found for offsets on the order
of a single transverse cell width, Δr. The field solution in
the simulations is performed by an implicit algorithm in
which both electric and magnetic fields are advanced at full
integral time step values. This algorithm is discussed in
more detail in Sec. V C.
The results comparing the CHICAGO simulations with the

Briggs model are shown in Fig. 2 for values of Zs=Zo given
by 1=4 (black traces), 1 (red), and 4 (blue). There is seen to
be good agreement between the simulated (solid lines) and
theoretical (dotted) results for the real parts of Zk and Z⊥
(the imaginary parts are not plotted but the agreement is
comparable to that of the real parts).
We note again that the Briggs treatment for an idealized

pillbox geometry is characterized by the adjustable dimen-
sionless parameter, Zs=Zo, which represents the relative
termination impedance of the cavity. For Zs=Zo ≪ 1, the
outer radius of the cavity is effectively shorted, while, for
Zs=Zo ≫ 1, the outer radius of the cavity is effectively an
open circuit. In these two limiting cases, the fields of the
pure pillbox (i.e., in the absence of the beam pipe) cavity
modes are known in closed form. For Zs=Zo → 0, the radial
dependence of the longitudinal field component (Ez) of the
TMmn0 modes is given by Jmðxmnr=RÞ, and the resonant
frequencies are given by ω ¼ cxmn=R. In the opposite limit,
Zs=Zo → ∞, the radial dependence of Ez is given by
Jmðx0mnr=RÞ, and the resonant frequencies of the cavity
modes are given by ω ¼ cx0mn=R.
In Fig. 2, the results for Zs=Zo ¼ 1=4 are shown as black

traces. In this case, we expect the cavity modes to be similar
to the short-circuit case. For Zk, the peaks are indeed
close to the short-circuit resonance frequencies for TM010

(f ¼ 380 MHz), TM020 (880 MHz), and TM030

(1380 MHz). Higher order modes (n > 3) lie above the
beam pipe TM01 cutoff frequency of 1530 MHz. For Z⊥,
the peaks are near the resonance frequencies for the
short-circuit cavity modes: TM110 (610 MHz), TM120

(1120 MHz), with higher order modes again above the
beam pipe cutoff frequency. For Zs=Zo ¼ 4 (blue traces in
Fig. 2), the cavity modes should be similar to the open
circuit case. For Zk, the peaks are indeed close to the open-
circuit resonance frequencies for TM010 (610 MHz) and
TM020 (1120 MHz), and for Z⊥, the peaks are near the
open-circuit resonance frequencies for TM110 (290 MHz)
and TM120 (850 MHz). All higher order modes again lie
above the appropriate beam pipe cutoff frequency. Finally,
for Zs=Zo ¼ 1 (red traces in Fig. 2), the peaks of the
resonances lie somewhere between the other two cases and
are strongly damped by losses due to surface resistance.
Note that in all cases, the Qs of the peaks are on the order
of maxðZs=Zo; Zo=ZsÞ.
In both plots in Fig. 2, the results are plotted out to a

value above the maximum frequency values, as discussed
above, allowed by the Briggs treatment, 1530 MHz for Zk,

FIG. 2. Zk (top) and Z⊥ (bottom) for idealized pillbox gap with
b ¼ 7.5 cm, d ¼ 3.5 cm, R ¼ 30 cm, with terminating surface
resistances of Zs=Zo ¼ 1=4 (black), 1 (red), and 4 (blue). Results
are shown for the theory of Briggs (dotted lines) and CHICAGO

simulations (solid lines). For the CHICAGO results, L ¼ 60 cm.
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and 1160 MHz for Z⊥, which correspond to the lowest
m ¼ 0 and m ¼ 1 cutoff frequencies of the beam pipe. The
PIC results are also suspect above these cutoff frequencies
as well, due to the use of one-way wave equations at the
longitudinal boundaries, as outgoing propagating TE and
TM modes are not properly handled by such simple
boundary conditions. Below the exact cutoff frequency,
spatial profiles of evanescent modes can also extend to the
simulation boundaries at z ¼ �L, where L ¼ 60 cm in this
case. This can lead to unphysical reflections of TE and TM
pipe modes even below the cutoff.
This effect can be seen explicitly in Fig. 2 in the

CHICAGO results for both ReðZkÞ and ReðZ⊥Þ, where there
is a zero crossing and a local minimum slightly below the
TM01 and TE11 cutoffs, respectively. This can be largely
remedied by extending the longitudinal length of the
simulation. This can be seen in the top plot of Fig. 3 in
which ReðZkÞ is plotted for the case Zs=Zo ¼ 1=4 near the
TM01 cutoff frequency. The Briggs result is shown again as
a (black) dotted line and the CHICAGO results are shown as

solids lines. Results from CHICAGO simulations with L ¼
60 cm (red), 90 cm (blue), and 120 cm (green) are shown in
the plot. The Briggs result never becomes negative and
exhibits only a kink discontinuity at the cutoff frequency.
The CHICAGO results are seen to approach the theoretical
(L → ∞) results as L is increased. The problem of artificial
boundary reflections of both evanescent and propagating
pipe modes could, in principle, be largely circumvented
with a more careful treatment of the longitudinal bounda-
ries. This could be done by utilizing, for example, perfectly
matched absorption layers [22–24], but this is beyond the
scope of the present paper. The effect of varying L at
frequencies well below the cutoff is shown in the bottom
plot of Fig. 3. The peak values of ReðZkÞ at the resonant
frequencies are seen to converge rapidly for L=b > 10. The
results are also found to be well converged with grid
resolution and time step. The remaining slight discrepancy
with the Briggs result can perhaps be partially attributed to
small approximations made in the theory [6] regarding the
treatment of the boundary at r ¼ b.

IV. SELF-CONSISTENT BEAM DEFLECTION
IN PILLBOX GAP

In the previous section, the CHICAGO simulations used to
calculate Z⊥ for a pillbox gap were performed with a rigid
offset beam in which the wakefields induced in the gap
were not allowed to feed back on the beam. In this section,
we relax this constraint and perform a full PIC simulation
in which the offset beam is self-consistently deflected by
the gap. The results of this simulation can then be directly
compared to the BBU model used in the beam transport
code LAMDA [10,11] in which discrete transverse impulses
are applied at gaps that are characterized by a frequency-
dependent Z⊥. This is a standard reduced model by which
BBU effects are modeled for LIA designs [11,19].
In LAMDA a finite beam pulse is characterized by a

current, IbðtÞ, in which t is defined as the time measured
back from the beam head, which is at t ¼ 0, by definition.
In the numerical implementation, the pulse is subdivided
into a sequence of temporal disks of widthΔt, each denoted
by its discrete time. For each disk, envelope and centroid
equations [10] are advanced in z, along the accelerator axis.
Both m ¼ 0 voltage perturbations and m ¼ 1 centroid
deflections at gap locations can be applied to disks by
incorporating ZkðfÞ and Z⊥ðfÞ gap data (see Eqs. (3)
and (4), respectively). In the following, we consider only
gap deflections, as this is the root cause of BBU. But
voltage perturbations can be treated in an analogous
manner. The LAMDA code uses a narrow-gap approximation
so that the full transverse impulse is applied to each disk at
the center of the gap. The impulse of a disk at time t is given
by the inverse Fourier transform of Eq. (4) for a centroid
displacement in the x direction, with an analogous equation
for a y displacement. Making use of the convolution
theorem, we obtain

FIG. 3. Zk plotted as a function of frequency for an idealized
pillbox gap with b ¼ 7.5 cm, d ¼ 3.5 cm, R ¼ 30 cm, and
Zs=Zo ¼ 1=4. Results are shown for the theory of Briggs (dotted
line) and CHICAGO simulations (solid lines) with L ¼ 60 cm
(red), 120 cm (blue), and 240 cm (green). Top: detail in the region
close to TM01 cutoff frequency. Bottom: effect of varying L at a
lower frequency.
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ΔpxðtÞ ¼
Z

∞

−∞
ΔpxðfÞe−i2πftdf

¼ −
ie
c

Z
t

0

Z⊥ðt − t0ÞIbðt0Þξðt0Þdt0;

ΔpyðtÞ ¼
Z

∞

−∞
ΔpyðfÞe−i2πftdf

¼ −
ie
c

Z
t

0

Z⊥ðt − t0ÞIbðt0Þηðt0Þdt0; ð22Þ

where ξðtÞ and ηðtÞ are the time-dependent centroid offsets
in the x and y direction, respectively, and Z⊥ðtÞ and Z⊥ðfÞ
are Fourier transform pairs. In Eq. (22), we have assumed
an axisymmetric gap geometry. If this symmetry is broken,
the gap must be characterized by two separate impedance
functions Z⊥x and Z⊥y in both the frequency and time
domains. This case is considered in greater detail in the
following sections. Note that a real time-domain impulse
requires Re½Z⊥ðfÞ� to be antisymmetric and Im½Z⊥ðfÞ� to
be symmetric. For both the Briggs and CHICAGO results
given in the previous section, this is true only when jfj is
less than the TE11 cutoff frequency. In LAMDA, a discretized
version of the convolution theorem allows the time-domain
impulses at gap locations to be calculated from the
frequency-domain Z⊥ and the Fourier transforms of the
current-displacement products: IbðtÞξðtÞ and IbðyÞηðtÞ.
The envelope and centroid equations are used to advance
the beam disks along the accelerator in z between gap
locations.
We again consider an axisymmetric beam pipe and

gap, as shown in Fig. 1, with b ¼ 7.5 cm, d ¼ 2.5 cm,
R ¼ 27 cm, and Zs=Zo ¼ 4. Both the CHICAGO and LAMDA

simulations are performed with L ¼ 60 cm. In the
CHICAGO simulation, a nondiverging 1-cm radius beam
with a uniform density cross-section is injected at z ¼ −L
as shown in the top of Fig. 4 and allowed to propagate
through the simulation space. The current pulse at the
injection plane, with rise and fall times on the order of 5 ns,
is shown at the bottom of Fig. 4. The peak current is
2.92 kA, and the initial beam potential is 4 MV. There
is a uniform applied magnetic field in the z direction
of 1 kG. The emittance of the beam (∼ 0.2 cm rad) is
adjusted to maintain a matched beam, i.e., constant
beam radius [25], for the length of the simulation. The
CHICAGO simulation is performed in 3D cylindrical coor-
dinates with Δr ¼ Δz ¼ 0.25 cm, 64 azimuthal spokes,
and cΔt ¼ 0.1 cm.
In the LAMDA simulation, the 60-ns pulse is modeled by

800 discrete disks, and the envelope and centroid equations
are advanced by a spatial step size of 0.5 cm. Transverse
centroid impulses are applied at the gap center, and the gap
is modeled by the Briggs result for Z⊥ðfÞ, with a fitted
correction that is matched to the theory at a frequency just
below the beam cutoff. This is required to ensure a purely
real temporal impulse, as discussed above.

The results for the beam centroid displacement are
shown as a function of z at a simulation time of
t ¼ 30 ns in Fig. 5. In this context, t is the actual
CHICAGO simulation time and does not represent a
beam-frame disk time. At this time, the entire simulation
space is filled by the full-current flattop portion of the
beam, with the 5-ns rising beam head having exited the
simulation and the tail has not yet entered. For the CHICAGO

simulation, the beam centroid position is calculated from
the transverse mean values, hxi and hyi, of the particle
positions at fixed values of z along the grid. Good agree-
ment is found between the CHICAGO and LAMDA results. In
the CHICAGO simulation, there is no evidence of emittance
growth or any other “nonideal” effects which are neglected
in LAMDA. The gap center and width are shown in the figure
(by a dashed line and gray rectangular area, respectively).
The effect of the narrow gap approximation in LAMDA is
clearly visible in the data for hxi, where a sharp

FIG. 4. Top: injected beam current density profile for 3D
cylindrical CHICAGO beam deflection simulation. The beam is
injected into the pipe (b ¼ 7.5 cm) at z ¼ −60 cm. An ideal
pillbox gap is centered at z ¼ 0 with d ¼ 2.5 cm, R ¼ 27 cm,
and Zz=Zo ¼ 4. Bottom: injected beam current as a function
of time.
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discontinuity in slope is seen at the gap center. The CHICAGO

result exhibits a more gradual change in the slope of hxi in
the region around the gap due to the effect of the finite gap
width. We note also that by construction, Z⊥ðfÞ includes
only the effect of the perturbed fields in them ¼ 1mode and
is therefore limited to the regime where the displacement
magnitude and beam radius are small compared to b. The
CHICAGO results (modeled by many azimuthal spokes) also
include corrections, presumably small, due to higher-order
modes supported by the grid.
The general good agreement between the two

approaches demonstrates that BBU growth can be
well approximated by a simplified beam transport code
such as LAMDA in which gaps are characterized by the
perpendicular impedance. The LAMDA code has also
previously been shown to give good agreement with
experimental BBU measurements in the DARHT accel-
erators at LANL [11].

V. FERRITE MODELING BY RECURSIVE
CONVOLUTION METHOD OF LINEAR

DISPERSION

Ferrites are used in LIA gaps both to provide an
inductive load to the pulse power cell and to dampen rf
cavity modes which can lead to the beam-breakup (BBU)
instability. To capture the damping effect of ferrites, it is
sufficient to consider the linear response of the material
[12]. To facilitate the modeling of ferrites in the LIA cell
simulations, it was necessary to develop linear dispersion
models for use in CHICAGO. A rudimentary version of
such an algorithm for magnetic dispersion (i.e., frequency-
dependent permeability) was previously included in
Chicago but was limited to explicit EM field solvers.

We have extended the algorithm to allow it to work with
implicit field solvers and to allow for electric dispersion as
well (frequency-dependent permittivity). In this section, we
describe our implementation of a recursive convolution
algorithm for linear dispersion [17,18]. The treatment is
similar to the description given by Taflove [16] for use with
explicit field solvers.

A. Electric dispersion

In a linear homogeneous isotropic dispersive media, the
frequency-domain constitutive relation between electric
displacement and field can be written as

D⃗ðωÞ ¼ εðωÞE⃗ðωÞ; ð23Þ

where

εðωÞ ¼ ε∞ þ χEðωÞ ð24Þ

and χEðωÞ is the Fourier transform of the time-domain
susceptibility, χEðtÞ. For a given material, ε is generally
given as a function of ω. By the convolution theorem, the
time-domain displacement is given by

D⃗ðtÞ ¼ ε∞E⃗ðtÞ þ χEðtÞ � E⃗ðtÞ; ð25Þ

where the “�” operator represents the convolution integral.
The recursive convolution algorithm is obtained by

assuming a time-domain susceptibility of the form

χEðtÞ ¼
XN
i¼1

½Ai sin ðωitÞ þ Bi cos ðωitÞ�e−αitθðtÞ

¼
XN
i¼1

ImðGie−γitÞθðtÞ; ð26Þ

where

Gi ¼ Ai þ iBi; ð27Þ

and

γi ¼ αi − iωi; ð28Þ

and θðtÞ is the Heaviside step function. The value of ε∞ and
the set of coefficients, Ai, Bi, αi, and ωi for i ¼ 1; 2;…N
are chosen by fitting the Fourier transform of χEðtÞ to
available permittivity data, εðωÞ. With this ansatz, the time-
domain constitutive relation can be written as

D⃗ðtÞ ¼ ε∞E⃗ðtÞ þ
XN
i¼1

Imðψ⃗EiðtÞÞ; ð29Þ

where

FIG. 5. Centroid displacement as a function of z at t ¼ 30 cm
for a beam deflected by a pill-box gap. Results from the beam
transport code LAMDA are shown in black and CHICAGO 3D
cylindrical simulation results are shown in red.
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ψ⃗EiðtÞ¼ ðGie−γitÞ � E⃗ðtÞ¼Gi

Z
t

−∞
e−γiðt−t0ÞE⃗ðt0Þdt0: ð30Þ

A (second-order accurate) numerical approximation for the
convolution integral, assuming a uniform time step, Δt, is
given by

ψ⃗n
Ei ≃ GiΔt

�Xn−1
m¼0

e−γiΔtðn−mÞE⃗m þ E⃗n=2

�
; ð31Þ

where the superscript index denotes the time level of the
quantity. Explicitly,

E⃗n ¼ E⃗ðt ¼ nΔtÞ; ð32Þ

etc. We have also assumed that E⃗0 ¼ 0, that is, there are no
initial fields in the dielectric. Defining the discretized
polarization vector,

P⃗n
i ¼ðψ⃗n

Ei−GiΔtE⃗
n=2Þ=Δt¼Gi

Xn−1
m¼0

e−γiΔtðn−mÞE⃗m; ð33Þ

we can easily show that

P⃗0
i ¼ 0⃗; ð34Þ

and

P⃗n
i ¼ e−γiΔt½P⃗n−1

i þGiE⃗
n−1� ð35Þ

for n ≥ 1. The discretized time-domain constitutive relation
can then be rewritten as

D⃗n ¼ ε̃E⃗n þ Δt
XN
i¼1

ImðP̃n
i Þ; ð36Þ

where

ε̃ ¼ ε∞ þ Δt
2

XN
i¼1

Bi: ð37Þ

The recursion relation for the sum of the polarization
vectors can then be used to update the electric displace-
ment, by using only the present and previous time step
electric field value, rather than by calculating the full
numerical convolution including all old electric field
values.

B. Magnetic dispersion

The treatment for magnetic dispersion follows a nearly
identical treatment, with the time domain constitutive
relation given by

B⃗ðtÞ ¼ μ∞H⃗ðtÞ þ χBðtÞ � H⃗ðtÞ; ð38Þ

The magnetic susceptibility is assumed to have the same
form as the electric susceptibility:

χBðtÞ ¼
XN
i¼1

ðAi sin ðωitÞ þ Bi cos ðωitÞÞe−αitθðtÞ; ð39Þ

in which μ∞ and the coefficients in the sum, Ai, Bi, αi, and
ωi, are chosen, in this case, by fitting the permeability data,
μðωÞ. By the same procedure as above, the time-domain
magnetic constitutive relation can be written

B⃗n ¼ μ̃H⃗n þ Δt
XN
i¼1

ImðMn
i Þ; ð40Þ

where

μ̃ ¼ μ∞ þ Δt
2

XN
i¼1

Bi; ð41Þ

with magnetization vectors given by the recursion relation

M⃗n
i ¼ e−γiΔt½M⃗n−1

i þ GiH⃗
n−1�; ð42Þ

where Gi and γi are defined as above for the electric
dispersion case.

C. Implicit field solve with time-domain
constitutive relations

An implicit field solution is obtained by discretizing
Maxwell’s equations,

∂B⃗
∂t

¼ −∇ × E⃗; ð43Þ

∂D⃗
∂t

¼ −∇ × H⃗ − J⃗; ð44Þ

and employing the discretized constitutive relations given
by Eqs. (36) and (40). We then obtain the equations for the
implicit field advance, with both E⃗ and H⃗ at full integral
time levels,

ε̃E⃗nþ1 − ð1þ αÞΔt
2
ð∇ × H⃗Þnþ1

¼ ε̃E⃗n þ ð1 − αÞΔt
2
ð∇ × H⃗Þn

− Δt
X
i

ImðP̃nþ1
i þ P̃n

i Þ − ΔtJ⃗nþ1=2; ð45Þ

μ̃H⃗nþ1þð1þαÞΔt
2
ð∇× E⃗Þnþ1

¼ μ̃H⃗n− ð1−αÞΔt
2
ð∇× E⃗Þn−Δt

X
i

ImðM̃nþ1
i þ M̃n

i Þ:

ð46Þ
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The dimensionless parameter, α, with a value between zero
and unity is known as the time-biasing coefficient [26,27].
The default value of α ¼ 0 results in a time-centered
second–order accurate field solve. But a small nonzero
positive value can be useful at times to damp high–
frequency noise in the simulation. All the CHICAGO

simulations discussed in this paper were performed with
α ∼ 0.1. The recursion relations, Eqs. (35) and (42), are
used to advance P⃗i and M⃗i, respectively.

D. Fitting of permeability data for the recursive
convolution algorithm

In this section, we describe how arbitrary permittivity
and permeability data may be fitted to the form given by
Eq. (26), which allows for the use of recursive convolution
algorithms. Following Taflove [16], we assume that an
arbitrary susceptibility can be written as a weighted linear
sum of simplified response functions in the form of
Eq. (26), with weighting coefficients chosen to fit the
desired data set. We first discuss the two simple suscep-
tibility models and then demonstrate how these models may
be used to fit measured permeability data for the ferrite
material PE11BL [12].

1. Susceptibility models

To use the recursive convolution models described
above, it is necessary to model (electric or magnetic)
susceptibilities as a sum of terms which may be written
in the time-domain as

χðtÞ ¼ ImðGe−γtÞθðtÞ; ð47Þ
where G and γ are complex constants. We consider two
possible (dimensionless) susceptibility models [16]. We
first consider a Debye relaxation model which is defined in
the frequency domain as

χDðωÞ ¼
2

1 − iωτ
; ð48Þ

where τ is a relaxation time. The function is normalized
so that Im½χDðτ−1Þ� ¼ 1 as can be seen in the top plot of
Fig. 6, which shows a plot of a sample Debye relaxation
with τ ¼ 1.6 ns (1=2πτ ¼ 100 MHz) as a function of
f ¼ ω=2π. From the inverse Fourier transform of χDðωÞ,
we find

GD ¼ 2τ−1; ð49Þ

γD ¼ τ−1: ð50Þ

The second model is the Lorentzian response, defined as

χLðωÞ ¼
�
2δ

ωo

�
ω2
o

ω2
o − 2iωδ − ω2

; ð51Þ

where ωo ¼ 2πfo is the (real) angular resonance frequency
and δ is the (real) decay constant with units of inverse
time. The function is normalized so that Im½χLðωoÞ� ¼ 1,
as can be seen in the bottom of Fig. 6 which shows a
sample Lorentzian response with fo ¼ 50 MHz and
δ ¼ 250 MHz. In this case, we find that

GL ¼ 2iδ
ωo

ω2
offiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
o − δ2

p ; ð52Þ

γL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
o − δ2

q
− iδ: ð53Þ

Note that both χD and χL are proper linear response
functions that satisfy Kronig-Kramers relations, ensuring
proper causal behavior. For arbitrary permittivity or

FIG. 6. Response function examples. Top: Debye relaxa-
tion τ ¼ 1.6 ns, Bottom: Lorentzian fo ¼ 50 MHz and
δ ¼ 250 MHz.
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permeability data, the frequency-dependent susceptibilities
may be modeled as a linear combination of Lorentzian and/
or Debye relaxation response functions,

χðωÞ ¼
X
i

CiχiðωÞ; ð54Þ

where χi ¼ χD or χL, and Ci is a dimensionless fitting
constant. This linear fit can be used to model any general
rational function [16]. In practice, one can obtain an
excellent fit to data by including a sufficient number of
terms in the sum.

2. Fitting of permeability data for PE11BL ferrite

As an example, we consider the data and fit presented by
DeFord [12] for the PE11BL ferrite, shown in Fig. 7. The
experimental data shown in the figure are fitted to a sum of
two Lorentzians with the following parameters: C1 ¼ 7.90,
fo1 ¼ 0.67 GHz, and δ1 ¼ 50 GHz for the first Lorentzian,
and C2 ¼ 8.98, fo2 ¼ 0.26 GHz, and δ2 ¼ 50 GHz for
the second. The imaginary parts of the two separate
Lorentzians functions are shown as red dashed lines.
This two-term fit is seen to be in good agreement with
experimental data in the frequency range from 1 MHz to
1 GHz. As mentioned above, the experimental data can be
fitted more closely by including a larger number of
Lorentzians (an example of a more careful fitting is given
in Sec. IX below) but for the present, to illustrate the use of

the ferrite model in the following sections, we retain the
two-term fit used by DeFord.

VI. 1D TEST OF FERRITE MODEL IN CHICAGO

To demonstrate the use of the linear dispersion model
described above, we consider a 1D Cartesian test problem
in which an incident TEM wave of a fixed frequency, ω, is
incident on a slab of width d, characterized by εðωÞ
and μðωÞ. By applying appropriate boundary matching
conditions on the front and rear faces of the slab, the
reflection (R) and transmission (T) coefficients can be
readily obtained,

R ¼
				 2ðz2 − 1Þ sin ðωnd=cÞ
ðz − 1Þ2eiωnd=c − ðzþ 1Þ2e−iωnd=c

				
2

;

T ¼
				 4z

ðz − 1Þ2eiωnd=c − ðzþ 1Þ2e−iωnd=c
				
2

; ð55Þ

where

nðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðωÞεðωÞ

p
; ð56Þ

zðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðωÞ=εðωÞ

p
: ð57Þ

We consider a slab width of d ¼ 1.885 cm composed
of PE11BL ferrite, which is modeled by the two-term
Lorentzian model given above. Only the permeability is
assumed to be dispersive (μ∞ ¼ 1). A constant permittivity
of ε ¼ 13 is assumed. A series of 1D CHICAGO simulations
is performed in which an injected TEM wave of a fixed
frequency is incident upon a ferrite slab and the reflection
and transmission coefficients are calculated. In Fig. 8, the
simulation results are plotted along with the theoretical

FIG. 7. Experimental data and two-term Lorentzian fit for
permeability of PE11BL ferrite. The imaginary parts of the
two separate Lorentzians are shown as red dashed lines. Param-
eters used for the fit are C1 ¼ 7.90, fo1 ¼ 0.67 GHz, and
δ1 ¼ 50 GHz, C2 ¼ 8.98, fo2 ¼ 0.26 GHz, and δ2 ¼ 50 GHz
for the second. Adapted from Ref. [12]

FIG. 8. Reflection (black) and transmission (red) coefficients
for an incident transverse wave striking a ferrite slab at normal
incidence. The ferrite is modeled using a two-term Lorentzian fit
to permeability data for PE11BL. The slab has a width of
1.885 cm. Solid lines show theoretical results using the fitted
frequency-dependent permeability. Dots show the simulation
results.
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results given by Eq. (56). The good agreement for R and T
verifies that the dispersion model has been properly
implemented. We note that the theoretical results shown
in Fig. 8 are calculated using the two-term fit to μðωÞ rather
than the raw data shown in Fig. 7. The decomposition of the
permeability into a linear sum of simple response functions
is required by the recursive convolution algorithm used in
the simulations. But the raw permeability data can be used
in the theory plots shown in Fig. 8. When this is done, there
is very little effect on the behavior of R and T over the
frequency range shown.

VII. PILLBOX SIMULATIONS IN CHICAGO
WITH FERRITES PRESENT

Having demonstrated the capability to perform
perpendicular impedance calculations for a simplified
pillbox geometry, we now show the effect of adding ferrites
into the gap regions. From Eq. (2), it is seen that the BBU
growth rate scales linearly with ReðZ⊥Þ, so in designing an
accelerating gap, it is important to try to reduce that
quantity as much as possible. As mentioned above, one
method of mitigating BBU is to damp cavity modes of the
gap by including lossy ferrites in the gap region. In this
section, we present the results for a modified pillbox gap
containing the PE11BL ferrite in which the frequency-
dependent permeability is modeled by the two-term
Lorentzian fit described above (see Fig. 7), along with a
constant permittivity, ε ¼ 12.
We consider again a pillbox cavity with beam pipe

radius, b¼ 7.5 cm, gap width d ¼ 3.5 cm, and R ¼ 30 cm.
The gap is now terminated by a perfect conductor at
r ¼ R, i.e., Zs=Zo ¼ 0. The numerical grid is given by
Δr ¼ Δz ¼ 0.25 cm, and Δθ ¼ π=10. This test problem
was motivated by calculations and measurements per-
formed by Dighe at LANL [28]. Dighe calculated

perpendicular impedance for a similar test problem using
a 3D frequency-domain code and compared the results with
experiments from a test cell. The geometry of our 3D
cylindrical simulation domain is shown in Fig. 9. The plot
on the left shows the gap structure as a function of r and z at
θ ¼ 0. There is a PE11BL ferrite wedge with an equilateral
triangular cross-section with a width and length of about
1 inch, located at a radius of about 20 cm (shown in red in
the figure). The azimuthal structure of the ferrites is shown
on the right-hand side of Fig. 9 (cross sections at
z ¼ 3 cm). In one case (top), we consider a fully axisym-
metric ferrite ring and also a case in which there are
azimuthal breaks in the ferrite near θ ¼ 0 and π (the
simulation geometry is symmetric about x ¼ 0). Codes
such as AMOS assume an axisymmetric gap geometry and
cannot account for such effects.
The resulting plots of Z⊥ as a function of frequency are

shown in Fig. 10. The black trace shows Z⊥ for the
axisymmetric ferrite case. For the case shown in the bottom
right of Fig. 9, the results depend on whether the beam is
offset in the horizontal (x) or vertical (y) direction, with
results from both cases shown in red and blue traces,
respectively, in Fig. 10. We note that Z⊥ for the vertical
offset with the ferrite arcs is nearly identical to the
axisymmetric ferrite case, while there is considerably less
damping for the horizontal offset in the case with the ferrite
arcs. This can be explained as follows: For a small
horizontal offset, the main components of the TM1n0
modes, Ez and Hϕ, have an azimuthal dependence of
∼ cosϕ. This implies that fields are largest precisely in the
azimuthal regions where the ferrites are absent. This results
in diminished damping of the cavity modes. For a small
vertical offset, the azimuthal dependence is ∼ sinϕ so that
the ferrites are located optimally to damp the fields.
Moreover, the ferrites are only absent in the locations
where the fields are weakest. For this reason, the vertical
offset case is nearly the same as the axisymmetric case.
These results are qualitatively similar and in relatively

good quantitative agreement with the results of Dighe [28].

FIG. 9. Simulation geometry of shorted pillbox gap with the
addition of a ferrite (shown in red). Left: cross section of gap
geometry at x ¼ 0 (θ ¼ π=2). Cross sections at z ¼ 3 cm of (top
right) axisymmetric ferrite ring. Bottom right: discrete ferrite arc.

FIG. 10. Z⊥ as a function of frequency for pillbox with ferrite.
Black: axisymmetric ferrite ring. Red: ferrite arc with horizontal
(x) offset of the beam, and Blue: vertical (y) offset.
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But we are unable to directly compare results due to an
omission of some geometric data in Dighe’s report,
specifically, the angle and radial location of the ferrite
wedge. The peak values and widths of the BBU resonances
are quite sensitive to such parameters.

VIII. SIMULATION RESULTS FOR ETA-II
ACCELERATING GAP

As a further illustration of the method, we will consider
the perpendicular impedance of the cell for the ETA-II
accelerator which is described by DeFord, et al. [12]. The
geometry of the cell is shown in Fig. 1 of Ref. [12] and is
axisymmetric except for the presence of two pulsed-power
feeds separated by 180° azimuthally. DeFord simulates this
cell in the 2D AMOS code by neglecting the pulsed-power
feeds and we retain this approximation. Our approximate
axisymmetric cell geometry is shown in Fig. 11. We have
also neglected some fine detail in the geometry (compare
with Fig. 1 of Ref. [12]).
The ferrite (shown in red) is again taken to be PE11BL,

with the permeability modeled by the two-term fit shown in
Fig. 7 and a constant real permittivity of 13. This is the
same fit used in Ref. [12]. The oil (shown in yellow) is
modeled as a dielectric with a permittivity of 2.23 and the
alumina with a permittivity of 10.
The numerical grid is given by Δr ¼ Δz ¼ 0.05 cm, and

Δθ ¼ π=10, and a time step of cΔt ¼ Δr is used. The
resulting frequency-dependent Z⊥ is plotted in Fig. 12.
Results from the AMOS code, taken from Ref. [12], are
shown in black, and the CHICAGO simulation results are
shown in red. There is generally good agreement between
the two codes for this axisymmetric gap geometry. There is
some discrepancy between the two codes above 1 GHz (the
beam cutoff frequency is ∼ 1.3 GHz). This could be due to
the effect of a finite L of 60 cm in the CHICAGO simulation,
differences in the permittivity used for the oil and alumina,
or some minor differences in the approximate geometry in
the two codes. It is difficult to sort out these possible

sources of discrepancy, as some of the details of the AMOS

simulation are not spelled out in Ref. [12].

IX. COMPARISON OF SIMULATION RESULTS
WITH EXPERIMENT FOR PERPENDICULAR

IMPEDANCE OF SCORPIUS
PROTOTYPE TEST CELL

Having verified the models in CHICAGO for calculating
Z⊥ for LIA gaps containing damping ferrites, we now
calculate the impedance for the PAC test cell, used in
testing for the upcoming Scorpius accelerator at the Nevada
test site. The PAC has a nonaxisymmetric geometry and is
modeled in 3D cylindrical in CHICAGO. The test cell
includes eight (oil-filled) induction cells, and three sets
of ferrite arcs near the gap are included to dampen the
cavity modes. In our model of the PAC, the ferrites are
composed of CN20 ferrite. The frequency-dependent per-
meability of the ferrite materials is plotted in Fig. 13. The
solid lines in the figure show the real (black) and imaginary
(red) parts of the measured values of the permeability of the
ferrite. The dotted lines show the result of fitting the data
with a series of weighted Lorentzians (52) and a single
Debye response function as described in Sec. V D. Note
that by including a sufficient number of response functions,

FIG. 12. Z⊥ as a function of frequency for ETA-II cell. Black:
AMOS results from Ref. [12]. Red: CHICAGO simulation results.

FIG. 11. Simulation geometry of test accelerating gap for ETA-
II [12]. Damping ferrite is shown in red. Adapted from Fig. 1 in
Ref. [12].

FIG. 13. Permeability data for CN20 ferrite. Measured data
shown as dots, solid lines fitted data used in CHICAGO simulation.
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a good wide-band fit to the data can be obtained. The slight
discontinuity seen in the imaginary part of μ=μ0 in Fig. 13
at 100 MHz is an artifact due to the fact that different
calibration techniques are used in the measurements above
and below this frequency. There is also a frequency band
from about 300 MHz to 1.8 GHz in which the real part of
μ=μ0 is negative.
This fitting is used in the CHICAGO simulation to perform

the recursive convolution treatment for the ferrite arcs. The
permittivity of the ferrites is well approximated by a real
frequency-dependent value of ε ≃ 13. The oil-filled cell
regions are separated from the beam pipe by a plastic gasket
similar to the Alumina gasket shown in Fig. 11.
The CHICAGO simulation is performed with a grid of

Δr ¼ Δz ¼ 0.25 cm and Δθ ¼ π=24. The time step is set
by the particle Courant condition, cΔt ¼ Δz. A stiff
electron beam of radius 1 cm and horizontal offset of
0.25 cm (one radial cell width) is injected into the beam
pipe with a prescribed Gaussian current profile. The
perpendicular impedance is calculated from the simula-
tion results by the procedure in Sec. VII. Measurement
results were obtained on the PAC at LANL [19]. The
comparison between the measurement and the CHICAGO

simulation results is shown in Fig. 14, demonstrating good
agreement.

X. CONCLUSIONS

We have shown that the parallel and perpendicular
impedances of accelerating gaps in LIAs can be calculated
numerically from simple PIC simulations in 3D cylindrical
coordinates with relatively few azimuthal cells. The use of
full 3D coordinates allows for the simulation of a more
general class of problems than the restrictions imposed by
codes such as AMOS of axisymmetric cell gap geometries.
Ferrite materials used to damp cavity resonances are
modeled using an implicit field solver in concert with a
recursive convolution technique for treating the linear
isotropic dispersion of the ferrites. The use of the implicit
solver relaxes the usual time step constraints on the
simulation, and the time step is restricted only by a particle

“Courant” condition in which the beam particles used to
seed (vz ≃ c) the cavity modes may not cross a cell
longitudinally during a single time step, i.e., cΔt ≤ Δz,
rather than the more restrictive condition required for a
3D cylindrical grid.
An accurate knowledge of Z⊥ is necessary for designing

LIA accelerating gaps as the growth rate of the BBU
instability is proportional to this quantity. It is possible, in
principle, to model a full LIA entirely with a PIC
simulation in which the fully self-consistent interaction
of the beam and gap cavities is captured. Modern LIAs
such as DARHT [29,30] can be on the order of 50–100 m
in length and include hundreds of accelerating cells.
Explicitly modeling the entire accelerator length as well
as all of the accelerating gaps leads to an extremely large
and time-consuming simulation. Another obstacle, perhaps
more serious in the near term than a lack of computing
resources, to full end-to-end LIA modeling by 3D PIC is
the numerical Cherenkov instability (NCI) [31], in which
numerical dispersion error of the field solver generates
unphysical radiation due to coupling with relativistic PIC
particles. In practice, NCI results in nonphysical emittance
growth in beam simulations for accelerator segments
greater than about 10 m for currents on the order of a
kA. For this reason, self-consistent 3D PIC simulations of
LIAs on the order of 100 m in length remain challenging.
Mitigation of NCI in PIC codes is an active area of research
[32,33], however, advances in this area should relax this
length constraint.
To circumvent the NCI problem, BBU is studied at

present by using codes such as LAMDA. Beam-induced
voltage perturbations and centroid deflections are applied
to beam disks by incorporating Zk and Z⊥ gap data. Until a
robust solution to NCI can be developed for lengthy
LIA simulations, this will likely remain the method of
choice for studying BBU and related instabilities. We have
here described a new means by which Zk and Z⊥ can be
obtained by modest-sized 3D PIC simulations. We have
also demonstrated that the BBU model used by the beam
transport code LAMDA gives beam deflections at gap
locations which are in good agreement with full PIC
simulations over short accelerator segments, for which
NCI is sufficiently suppressed.
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FIG. 14. Comparison of measurement of the perpendicular
impedance of PAC test cell to CHICAGO simulation result.
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