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In this paper, we study single-bunch instabilities observed in the CERN Super Proton Synchrotron
(SPS). According to the linearized Vlasov theory, radial or azimuthal mode-coupling instabilities result
from a coupling of bunch-oscillation modes, which belong to either the same or adjacent azimuthal modes,
respectively. We show that both instability mechanisms exist in the SPS by applying the Oide-Yokoya
approach to compute van Kampen modes for the realistic longitudinal impedance model of the SPS. The
results agree with macroparticle simulations and are consistent with beam measurements. In particular, we
see that the uncontrolled longitudinal emittance blowup of single bunches observed before the recent
impedance reduction campaign (2018–2021) is due to the radial mode-coupling instability. Unexpectedly,
this instability is as strong as the azimuthal mode-coupling instability, which is possible in the SPS for other
combinations of bunch length and intensity. We also demonstrate the significant role of rf nonlinearity and
potential-well distortion in determining these instability thresholds. Finally, we discuss the effect of the
recent impedance reduction campaign on beam stability in single- and double-rf configurations.
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I. INTRODUCTION

Longitudinal single-bunch instability is a possible per-
formance limitation in many synchrotrons and its mecha-
nism is the subject of various studies for a long time [1–16].
The standard approach to evaluate beam stability is based
on a solution of the linearized Vlasov equation for a small
initial perturbation of a stationary distribution function. To
simplify the analysis, the modification of a stationary
potential well by self-induced fields, called potential-well
distortion (PWD), is often neglected. The only possible
mechanism of longitudinal single-bunch instability with
neither PWD nor multi-turn wakes, a coupling of different
azimuthal modes, was proposed by Sacherer [1].
Another type of instability can be caused by asymmetry

of the potential well due to PWD, resulting in a coupling of
two radial modes within one azimuthal mode [8,9]. An
explicit condition required for this instability to occur was
found for the double-waterbag model [10]. For an imped-
ance model consisting of one broadband resonator with
frequency fr ¼ ωr=2π, the instability thresholds computed
with and without PWD are similar for ωrσ ≳ 0.4, where σ is
the rms bunch length, [8]. This result was also confirmed in

calculations based on the orthogonal polynomial expansion
[14]. The azimuthal mode coupling was also found in the
self-consistent analysis of electron bunches forωrσ ≈ π [13].
Similar to electron bunches, the thresholds of the single-

bunch instability for proton bunches are often computed
neglecting bunch asymmetry due to PWD and rf non-
linearity, as for example, in [11,17], and thus only azimu-
thal mode-coupling instability was found. To our best
knowledge, for proton bunches, so far a radial mode-
coupling instability was not observed in measurements nor
in calculations.
In the SPS, the longitudinal instability of single proton

bunches occurs during the acceleration ramp. The attempts
to cure this instability by reducing the voltage in a single
rf system and thus increasing the synchrotron frequency
spread for a constant longitudinal emittance were not
successful. Instead, a higher rf voltage was more beneficial
[18]. In operation, this instability is cured by the application
of a higher-harmonic (HH) rf system. Due to the strong
frequency dependence of the SPS impedance [19,20]
(Fig. 1), the observed instability was mainly studied in
macroparticle simulations using the code BLonD [21]. The
latest results of simulations through the ramp are consistent
with measurements and the agreement has been improved
with the refined impedance model [22].
In the present work, the mechanism of the SPS single-

bunch instability is studied using code MELODY [23] which
is able to find in a fully self-consistent way the numerical
solutions of the matrix equations derived from the Vlasov
equation for the full SPS impedance model. We show that
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the previously observed instability during the ramp was due
to the coupling of multiple radial modes within one
azimuthal mode. For a specific set of bunch parameters,
we find an instability caused by the coupling of neighbor-
ing azimuthal modes for which Landau damping is lost.
The main results are confirmed by macroparticle simula-
tions with BLonD and are consistent with previous mea-
surements [18].
The paper is organized as follows: In Sec. II, we briefly

discuss the main definitions and numerical methods to
evaluate single-bunch instabilities. Two possible instability
mechanisms in the SPS and a comparison of calculations
with measurements are presented in Sec. III. We consider
different instability mitigation measures in Sec. IV and,
finally, present the main conclusions.

II. MAIN EQUATIONS AND DEFINITIONS

The longitudinal motion of a particle in a synchrotron
can be described in terms of its energy and phase devia-
tions, ΔE and ϕ, relative to the synchronous particle with
the energy E0. For the efficient numerical implementation
of beam stability analysis, it is convenient to introduce
another set of variables, the energy E and the phase ψ of
synchrotron oscillations

E ¼
_ϕ2

2ω2
s0
þ UtðϕÞ; ð1Þ

ψ ¼ sgnðηΔEÞ ωsðEÞffiffiffi
2

p
ωs0

Z
ϕ

ϕmaxðEÞ

dϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − Utðϕ0Þp : ð2Þ

Here η ¼ 1=γ2tr − 1=γ2 is the phase slip factor, γ is the
relativistic Lorentz factor, γtr is the Lorentz factor at
transition energy, fs0 ¼ ωs0=2π is the frequency of
small-amplitude synchrotron oscillations in a bare single-
rf system, ωsðEÞ is the synchrotron frequency as a function
of E, and ϕmaxðEÞ is the maximum phase of the particle with
synchrotron oscillation energy E ¼ Ut½ϕmaxðEÞ�. The total
potential includes contributions from both the rf system and
the beam-induced fields

UtðϕÞ ¼
1

V1 cos ϕs0

Z
φ

Δϕs

½Vrfðϕ0Þ þV indðϕ0Þ− δE0=q�dϕ0;

ð3Þ

where V1 is the rf voltage amplitude of the main rf system,
δE0 is the energy gain per turn of the synchronous particle
with charge q excluding intensity effects, Δϕs is the
synchronous phase shift due to intensity effects that
satisfies the relation δE0=q ¼ V1 sin ϕs0 ¼ VrfðΔϕsÞ þ
V indðΔϕsÞ, and ϕs0 is the synchronous phase in a bare
single-rf system. Below, we consider a double-rf system
with a total voltage of

VrfðϕÞ¼V1½sinðϕþϕs0Þþ r sinðnϕþnϕs0þΦnÞ�; ð4Þ

where Φn is the relative phase offset between the main and
the HH rf systems with harmonic numbers h and nh,
respectively, and Vn ¼ rV1 is the voltage amplitude of the
HH rf system. For particular values of Φn, one can define
two distinct regimes: bunch-shortening mode (BSM) when
both rf systems are in phase at the bunch center and bunch-
length mode (BLM) when both rf systems are in counter-
phase at the bunch center. In the SPS operation, they are
chosen such that the contribution of the HH rf system is
zero at ϕ ¼ 0 and it does not contribute to a shift of the
synchronous phase. Thus, Φn ¼ π − nϕs0 for BSM and
Φn ¼ −nϕs0 for BLM.
Note that the energy of the synchrotron oscillations, E, is

defined in units of the normalized rf potential,Ut, as can be
seen from Eq. (3). The stationary rf bucket for the single-rf
case without beam-induced fields is full when Emax ¼ 2.
In general, the total potential Ut depends on the particle
distribution function, impedance model, and bunch inten-
sity. It can be calculated using an iterative procedure
[12,24]. In this work, we consider a particle distribution
of the binomial family

FIG. 1. SPS impedance model separated by real (top) and
imaginary (bottom) parts before and after the impedance reduc-
tion campaign during the second Long Shutdown (LS2), which
ended in March 2021.
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F ðEÞ ¼ 1

2πωs0AN

�
1 −

E
Emax

�
μ

; ð5Þ

with the normalization constant

AN ¼ ωs0

Z
Emax

0

dE
ωsðEÞ

�
1 −

E
Emax

�
μ

: ð6Þ

For μ → ∞, the bunch has a Gaussian line density and the
corresponding bunch length τ4σ is typically defined as 4
times the rms bunch length σ, i.e., τ4σ ¼ 4σ. The bunch
length τ4σ is related to the full width at half maximum
(FWHM) bunch length τFWHM as τ4σ ¼ τFWHM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= ln 2

p
. In

practice, SPS proton bunches are far from being Gaussian,
and the best fit to the measured bunch profiles is for
μ ≈ 1.5. This value will be assumed in the present work for
all calculations and simulations. For easy comparison with
measurements, we use

τeff ¼ τFWHM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= ln 2

p
; ð7Þ

as a definition of the effective bunch length. We also define
the total longitudinal emittance in units of eVs as

ϵ ¼
I

ΔEðϕÞ
hω0

dϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
V1 cos ϕs0 qβ2E0

πηω2
0h

3

s
ϵN; ð8Þ

with a dimensionless emittance

ϵN ¼ 2

Z
ϕmax

ϕmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Emax −UtðϕÞ�

p
dϕ; ð9Þ

where ω0 ¼ 2πf0 is the revolution frequency, ϕmin and
ϕmax are the minimum and maximum phases of the particle
with the energy of synchrotron oscillation Emax.

A. Linearized Vlasov equation

When the perturbation F̃ to the stationary particle
distribution function F ðEÞ grows with time t, the beam
is unstable. The initial time evolution of F̃ is dictated by the
linearized Vlasov equation (e.g., [25])

∂F̃
∂t

þ dF
dE

dE
dt

þ ∂F̃
∂ψ

dψ
dt

¼ 0: ð10Þ

After expansion over the azimuthal harmonics m of
synchrotron motion, the solution of Eq. (10) at frequency
Ω with the eigenfunctions CmðE;ΩÞ [8]

F̃ ðE;ψ ; tÞ

¼ e−iΩt
X∞
m¼1

CmðE;ΩÞ
�
cos mψ þ iΩ

mωsðEÞ
sin mψ

�
ð11Þ

leads to the integral equation

½Ω2 −m2ω2
sðEÞ�CmðE;ΩÞ

¼ 2iζω2
s0m

2ω2
sðEÞ

dF ðEÞ
dE

X∞
m0¼1

Z
Emax

0

dE0

ωsðE0Þ

×
X∞
k¼−∞

ZkðΩÞ=k
hZ0

ImkðEÞI�m0kðE0ÞCm0 ðE0;ΩÞ: ð12Þ

Here ZkðΩÞ ¼ Zðkω0 þΩÞ is the longitudinal impedance
at frequency kω0 þΩ and Z0 ≈ 377 Ω is the impedance of
free space. We also introduced the dimensionless intensity
parameter

ζ ¼ − qNph2ω0Z0

V1 cos ϕs0
; ð13Þ

with Np being the bunch intensity. The function ImkðEÞ is
defined as

ImkðEÞ ¼
1

π

Z
π

0

eikϕðE;ψÞ=h cos mψ dψ : ð14Þ

Detailed derivations of Eq. (12) using variables (E, ψ) can
be found in [26] and it is identical to Eq. (41) therein. For a
given impedance model, the single-bunch stability depends
on the two dimensionless parameters, ζ and ϵN , as well as
on the parameters of the rf potential: n, ϕs0, r, andΦn. This
fact will be applied below to understand the mechanisms of
instabilities observed in the SPS.

B. van Kampen modes

The integral equation (12) is equivalent to the equation
that describes collective modes in a plasma [27–29]. An
initial perturbation can be expressed as a superposition of
van Kampen modes, which are, in general, described by
nonregular functions. In the early 80s, the concept of van
Kampen modes was introduced by Chin et al. to describe
bunch oscillations [4]. Additionally, the general expression
for these modes was derived. Here, we revisit this expres-
sion of van Kampen modes to highlight the specificity of
stable and unstable modes.
First, one can perform the substitution in Eq. (12)

CmðE;ΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ωsðEÞ

dF ðEÞ
dE

r
m
ωsðEÞ
ω2
s0

C̃mðE;ΩÞ; ð15Þ

which leads to

�
Ω2

ω2
s0
−
m2ω2

sðEÞ
ω2
s0

�
C̃mðE;ΩÞ

¼ −2iζ
X∞
m0¼1

Z
Emax

0

Kmm0 ðE; E0ÞC̃m0 ðE0;ΩÞdE0: ð16Þ
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Here, the kernel K is defined as

Kmm0 ðE; E0;ΩÞ ¼
X∞
k¼−∞

ZkðΩÞ=k
hZ0

×m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ωsðEÞ

dF ðEÞ
dE

r
ImkðEÞ

×m0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ωsðE0Þ dF ðE0Þ

dE0

r
I�m0kðE0Þ: ð17Þ

Then, introducing a set of orthonormal functions sðmÞ
n ,

Z
Emax

0

sðmÞ
n ðEÞsðmÞ

n0 ðEÞdE ¼ δnn0 ;

with the Kronecker delta δij, we can decompose C̃m and
Kmm0 , similarly to [4]:

C̃mðE;ΩÞ ¼
X∞
n¼0

anmðΩÞsðmÞ
n ðEÞ; ð18Þ

Kmm0 ðE; E0;ΩÞ ¼
X∞
n¼0

X∞
n0¼0

Knn0
mm0s

ðmÞ
n ðEÞsðm0Þ

n0 ðE0Þ; ð19Þ

with the coefficients anm and Knn0
mm0 defined as

anmðΩÞ ¼
Z

Emax

0

C̃mðE;ΩÞsðmÞ
n ðEÞdE; ð20Þ

and

Knn0
mm0 ðΩÞ ¼

Z
Emax

0

Z
Emax

0

Kmm0 ðE; E0;ΩÞsðmÞ
n ðEÞ

× sðm
0Þ

n0 ðE0ÞdEdE0; ð21Þ

respectively. The examples of the orthogonal functions
which can be used in practice will be discussed in Sec. II D.
Finally, inserting Eqs. (18) and (19) in Eq. (16), we obtain
the eigenfunctions, i.e., the general expression for van
Kampen modes

C̃mðE;ΩÞ¼−
�
P

1

Ω2−m2ω2
sðEÞ

þαðE;ΩÞδ½Ω2−m2ω2
sðEÞ�

�

×2iζω2
s0

X∞
m0¼1

X∞
n¼0

X∞
n0¼0

Knn0
mm0 ðΩÞan0m0 ðΩÞsðmÞ

n ðEÞ;

ð22Þ

where P denotes the principal value of the integral, and
αðE;ΩÞ can be found from the normalization condition

X∞
m¼1

Z
Emax

0

C̃mðE;ΩÞdE ¼ 1:

For ImΩ → �0, for example, one gets α ¼ ∓iπ.
Most of the stable modes are located within the inco-

herent spectrum Ω ∈ mωsðEÞ and have singular eigenfunc-
tions due to the second term in braces in Eq. (22). Unstable
modes and modes for which Landau damping is lost,
Ω ∉ mωsðEÞ, have regular eigenfunctions as they are
defined by the first terms in braces.

C. Instability mechanisms

The eigenfunctions are related to the perturbed line
density harmonics (see, e.g., in [26])

λ̃kðΩÞ ¼
ω2
s0

h

X∞
m¼1

Z
Emax

0

CmðE;ΩÞI�mkðEÞ
ωsðEÞ

dE: ð23Þ

Multiplying Eq. (16) with C̃�
mðE;ΩÞ, integrating over E,

and summing over m leads to

Ω2 ¼
X∞
m¼1

Z
Emax

0

m2ω2
sðEÞ

jC̃mðE;ΩÞj2
BðΩÞ dE

þ 2ζhω2
s0

BðΩÞ
X∞
k¼−∞

ImZkðΩÞ=k
Z0

jλ̃kðΩÞj2

−
2iζhω2

s0

BðΩÞ
X∞
k¼−∞

ReZkðΩÞ=k
Z0

jλ̃kðΩÞj2; ð24Þ

where

BðΩÞ ¼
X∞
m¼1

Z
Emax

0

jC̃mðE;ΩÞj2dE:

Below the instability threshold, i.e., ImΩ ¼ 0, the contri-
bution of the last term in Eq. (24) must be zero as it is
purely imaginary. Depending on the sign of the sum on
the second line of Eq. (24), the mode frequency can be
shifted upwards or downwards with respect to the weighted
incoherent frequency, i.e., first line of Eq. (24). Thus, two
modes those frequencies approach each other can couple
leading to mode-coupling instability. In some cases, one
can distinguish two types of instabilities: radial and
azimuthal mode coupling. The former usually appears
when different azimuthal modes are well separated as a
result of a small synchrotron frequency spread and two
coupled modes belong to the same azimuthal mode. The
latter mechanism requires a significant frequency shift of
the modes as well as a significant synchrotron frequency
spread, so the modes with different azimuthal mode
numbers can couple. Both instability types can be found
using self-consistent analysis. Neglecting PWD and
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rf nonlinearity, only the classical azimuthal mode-coupling
instability [1] is possible (see Appendix).
The above-mentioned mode-coupling instabilities can

be driven by broadband resonator impedance sources, for
example. In the presence of the multiturn wakes, Robinson-
type instabilities can potentially exist. However, the charac-
teristic damping times 2Qr=ωr with Qr being the quality
factor of the resonator impedance are significantly shorter
than the revolution period for all known elements of the SPS
impedance model. Also, the resistive-wall wake of the SPS
decays bymore than 5 orders ofmagnitude after one turn due
to a large SPS circumference. Thus, the Robinson-type
instability is excluded from the analysis in this paper.
In the case of instability, we obtain the growth rate from

Eq. (24)

ImΩ ¼ −
ζhω2

s0

BðΩÞReΩ
X∞
k¼−∞

ReZkðΩÞ=k
Z0

jλ̃kðΩÞj2; ð25Þ

which shows that for a smooth impedance, Z−kðΩÞ≈
Z�
kðΩÞ, at least for some harmonics of the revolution

frequency, k, the power spectral harmonics must differ

jλ̃−kðΩÞj2 ≠ jλ̃kðΩÞj2:

A similar conclusion was obtained in [13], pointing out the
possibility of radialmode-coupling instabilitywithin a single
azimuthal mode in the presence of PWD. Equation (25)
shows, however, that the asymmetry of the mode spectrum is
the general property of unstable modes, irrespective of the
single-bunch instability mechanism.
Below, we will discuss the methods of computing the van

Kampen modes for cases of practical applications.

D. Methods to solve the linearized Vlasov equation

To solve the integral equation (12), it is usually converted
to the infinite system of equations

Ω2

ω2
s0
anmðΩÞ ¼

X∞
n0¼0

X∞
m0¼1

Mnn0
mm0 ðΩÞan0m0 ðΩÞ; ð26Þ

where the matrix elements are defined as (see, e.g., [2,4])

Mnn0
mm0 ðΩÞ ¼ m2δmm0

Z
Emax

0

ω2
sðEÞ
ω2
s0

sðmÞ
n ðEÞsðmÞ

n0 ðEÞdE

− 2iζKnn0
mm0 ðΩÞ: ð27Þ

The system of equations (26) becomes linear if the
dependence of the matrix elements Mnn0

mm0 on Ω can be
neglected. This requires a rather smooth dependence of
impedance on the frequency, so that ZkðΩÞ ≈ Zkð0Þ, which
is valid for the SPS impedance where the bandwidth of all
relevant resonant peaks is larger than the revolution
frequency f0. Then, after truncation of the infinite sums

over indices m, n, and k, Eq. (26) can be solved as a
standard eigenvalue problem.
Two methods exist to compute the matrix elements

depending on the choice of the orthonormal functions:
the orthogonal polynomial expansion [2] and the Oide-
Yokoya method [8]. For the former method, the orthonor-
mal functions for a particle distribution according to Eq. (5)

can be constructed from the Jacobi polynomials Pðα;βÞ
n ðxÞ,

sðmÞ
n ðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþmþ μÞΓðnþ 1ÞΓðnþmþ μÞ

Γðnþmþ 1ÞΓðnþ μÞ

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2πωs0AN

μ

dF ðEÞ
dE

s �
E

Emax

�
m=2

× Pðm;μ−1Þ
n

�
1 −

2E
Emax

�
; ð28Þ

where n is the radial mode number and ΓðxÞ is the Gamma
function. For the latter approach, steplike functions [8]
are used

sðmÞ
n ðEÞ ¼

� 1ffiffiffiffiffiffi
ΔEn

p ; En −
ΔEn
2

< E ≤ En þ ΔEn
2

0; elsewhere;

where En is the nth mesh point on the energy grid, and ΔEn
is the thickness of the corresponding strip. Additionally,
integrals in Eq. (21) are approximated by sums, so
Knn0

mm0 ðΩÞ ≈ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔEnΔEn0

p
Kmm0 ðEn; En0 ;ΩÞ and the matrix ele-

ments of the eigenvalue problem (26) become

Mnn0
mm0 ðΩÞ ¼ m2ω2

sðEnÞ
ω2
s0

δnn0δmm0

− 2iζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔEnΔEn0

p
Kmm0 ðEn; En0 ;ΩÞ: ð29Þ

Both methods to solve the linearized Vlasov equation are
implemented in the MELODY code and allow the evalu-
ation of single-bunch stability for arbitrary impedance
models. As the first step, the stationary potential Ut is
found using an iterative procedure [12,24,26]. Then, 2D
arrays of functions ImkðEÞ are computed for grid points in E
and k for different azimuthal modes m. The “continuous”
functions are constructed from these arrays using a cubic
spline interpolation to evaluate the matrix elements Mnn0

mm0 .
Finally, the eigenvalue problem is solved. We find that the
Oide-Yokoya method has better convergence properties
than the orthogonal polynomial expansion. This is thanks
to a nonuniform mesh with respect to the energy of
synchrotron oscillations En, which allows for improved
resolution around “critical” points. For example, in the case
of instability with ReΩ ¼ mωsðẼÞ, one can expect a
resonance with a characteristic width of
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δE ≈
				ImΩ=m

dωsðEÞ
dE

				
E¼Ẽ

				:
If δE ≪ Emax, a very high-resolution mesh in E might be
needed to find a converged solution.

III. LONGITUDINAL SINGLE-BUNCH
INSTABILITIES IN THE SPS

In this section, we will show first the results of stability
analysis at the SPS flattop (450 GeV) and then through
acceleration. The SPS has a double-rf system with frequen-
cies of 200 and 800MHz (n ¼ 4). The main accelerator and
beam parameters are listed in Table I. Here, we will discuss
a single-rf operation, while stability in a double-rf case will
be addressed in Sec. IV.
It has been shown in previous studies that in a single-rf

operation, the single-bunch intensity threshold is a non-
continuous and nonmonotonic function of the bunch length
[18,31]. Since then, the SPS impedance model has been
further refined, and below, we will show the simulation
results based on this latest model (Fig. 1).
The beam stability in simulations is probed by observing

the growing oscillations of the bunch position (dipole) and
length (quadrupole). The instability can emerge from the
initial seed and can be detected during a finite simulation
time for a sufficiently large instability growth rate. In Fig. 2,
we show a stability map obtained from a scan in bunch
intensity Np (in steps of 2.5 × 1010) and bunch length τeff
(in steps of 50 ps) in simulations for 106 macroparticles.
For each pair (Np, τeff ) a bunch is generated initially
matched to the total potential Ut including intensity effects
so that the longitudinal emittance is found iteratively
assuming constant rf parameters and the distribution
type (5). The impedance model before the second long
shutdown (LS2) shown in Fig. 1 was taken. In simulations,
the maximum amplitude of the bunch-length oscillations
Δτeff divided by the average bunch length τeff during 105

turns (about 600 synchrotron periods) indicates the bunch
stability [32].
The numerical results calculated using code MELODY

with up to ten azimuthal modes are shown in Fig. 3. This
number of azimuthal modes was sufficient to obtain
converged results. The scan was performed on a grid of
ðE; ζÞ values. The bunch length τeff and intensity Np values

were computed for each pair of parameters and then used to
create an interpolatedmap of the corresponding growth rates.
The impedance model is truncated at kmaxf0 ≈ 6.4 GHz,
while the radial mesh is automatically refined depending on
the bunch length (in some cases up toNE ≈ 103 mesh points
in the energy of synchrotron oscillations).

TABLE I. The SPS parameters at the flattop energy [30].

Parameter Units Value

Circumference, C m 6911.554
Beam energy, E0 GeV 450
Transition Lorentz factor, γtr 17.951
Main harmonic number, h 4620
Main rf frequency, frf MHz 200.394
Main rf voltage amplitude, V1 MV 7.2

FIG. 2. Longitudinal stability map obtained from BLonD
simulations for single-rf operation (r ¼ 0) and with the pre-
LS2 impedance model (Fig. 1). The color code indicates the
maximum relative oscillation amplitude of the bunch length
during 105 turns. The gray area indicates parameters for which
the initial stationary distribution was not found. The SPS
parameters are according to Table I.

FIG. 3. Longitudinal stability map obtained from calculations
with code MELODY (bottom) for the same parameters as in Fig 2.
The color code shows the growth rate of the most unstable mode,
while the gray area indicates parameters for which stationary
distribution was not found. The bunch parameters for which
synchrotron frequency is a nonmonotonic function of E are
shown as black circles. The black and red lines show examples
of the bunch-length dependence on intensity due to PWD for
constant energy of synchrotron oscillations Emax ¼ 0.12 and
Emax ¼ 0.57, respectively. The solid white curve corresponds
to the LLD threshold computed with MELODY.
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In general, one can see that the stable solutions (purple)
correspond to BLonD simulations where bunch length stays
constant (the oscillation amplitude is below the noise level
Δτeff=τeff < 0.04), while τeff grows for most of the unstable
solutions with nonnegligible growth rates. Both methods
show that there is an unstable “island” approximately for
intensities above 1.5 × 1011 and the bunch length in the
range of 1.5–1.9 ns.
In addition, in Fig. 3, the circles indicate the cases with a

nonmonotonic behavior of the synchrotron frequency as a
function of the energy of synchrotron oscillations. In the
past, it was shown that coupling of radial modes within a
single azimuthal can occur in this case [9]. We observe that
the instability often is correlated with the presence of
dωs=dE ¼ 0 inside the bunch, however, it is not always the
case. This can be understood from the fact that for a
particular set of bunch parameters, the growth rate can be
very small, and it is difficult to detect in simulations or to
properly resolve in numerical calculations. Still, the non-
monotonic behavior of the synchrotron frequency distri-
bution could be a useful indication that we can expect
instability.
We also show in Fig. 3 with a solid white line, the

threshold of loss of Landau damping (LLD) computed
numerically with MELODY for a dipole mode (m ¼ 1) in
the same way as in [26]. Alternatively, it can be also
evaluated analytically by applying a concept of the effective
impedance and effective cutoff frequency [26,33], which
for the SPS impedance model before LS2 are about 2Ω and
1.4 GHz, respectively. The LLD threshold is a monotonic
function, thus it increases for a larger bunch length.
However, the actual instability threshold is significantly
higher. Even though Landau damping is already lost and
the coherent modes are outside the incoherent band, their
amplitudes do not grow in simulations without external
noise. In operation, the excitation of these modes, for
example, due to some noise in the rf system, is suppressed
by the phase loop. Thus, we conclude that LLD does not
trigger the observed instability of a single bunch in the SPS.
Two other instability mechanisms will be discussed in the
following subsection.

A. Radial mode-coupling instability

To clarify the instability mechanism inside an unstable
“island,” we plot van Kampen modes as a function of
intensity for constant energy of synchrotron oscillations
Emax ¼ 0.57 (beam parameters according to the red line in
Fig. 3) in Fig. 4. The real part of the first six azimuthal
modes (top plot) does not overlap for the entire intensity
range. It means that only coupling of radial modes of the
same azimuthal mode is possible for these parameters. The
lowest threshold intensity is for the third azimuthal mode
(green curve on the bottom plot of Fig. 4), while for higher
intensity other azimuthal modes are also unstable. In that
case, we can observe “microwave-like” instability as the

bunch line density will be modulated by a mixture of
several unstable modes.
The synchrotron frequency distribution inside the unstable

“island” is strongly affected by PWD and the initial rf
nonlinearity plays an important role (see Fig. 5). At the
threshold of instability (orange curve),dωðEÞ=dE approaches
zeroandat the same timed2ωðEÞ=dE2 ¼ 0. This shapecanbe
achieved for double-rf operation in BSM for n > 2, while
here it is a result of PWD. For even higher intensity, the
overlap of synchrotron frequencies for different E values
becomes more significant.
In this example, instability occurs due to the coupling of

two modes inside the incoherent synchrotron frequency
spread. The unstable modes of the first four azimuthal
modes move below the minimum incoherent frequency and
remain unstable for higher intensities. The instability of
higher-order azimuthal modes is suppressed above a certain
intensity. For example, a zoomed region around the fifth
azimuthal mode is shown in Fig. 6. At the intensity of about
3.1 × 1011 the modes are again decoupled, which results in
suppression of this instability.
For completeness, the results of analysis when rf non-

linearity and PWD are neglected are also performed for the

FIG. 4. Real (sorted and joined by light blue lines, top) and
imaginary (blue dots, bottom) parts of van Kampen modes as
functions of bunch intensity for Emax ¼ 0.57. Unstable modes of
the first six azimuthal modes are plotted as colored lines. Beam
parameters correspond to those indicated by the red line in Fig. 3.
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same Emax ¼ 0.57. As discussed in Sec. II C, only azimu-
thal mode-coupling instability is possible in this case. Its
threshold is almost a factor of 5 higher than the one
obtained in self-consistent calculations (Fig. 7). It means
that the self-consistent analysis is crucial to predict the
instability threshold for relatively long bunches.

B. Azimuthal mode-coupling instability

A different mechanism of instability can be observed for
shorter bunches. Figure 8 shows the real part of van
Kampen modes of quadrupole and sextupole azimuthal
modes as a function of intensity for Emax ¼ 0.12 (black
curve in Fig. 3). One can see a quadrupole mode for which
Landau damping is lost. It is moving toward the frequency

band of radial modes with azimuthal mode number m ¼ 3.
At the same time, a sextupole mode of LLD type moves
down toward the radial modes with m ¼ 2 (Fig. 9). This
mode could emerge due to a strong PWD, which leads to

FIG. 6. Zoomed version of Fig. 4 (top plot). Blue lines
represent van Kampen modes, while the unstable mode is shown
in purple. The minimum and maximum incoherent synchrotron
frequencies of the fifth azimuthal mode are plotted as dashed and
dotted lines, respectively.

FIG. 7. Real (solid lines) and imaginary (dashed lines) parts of
van Kampen modes as functions of bunch intensity for
Emax ¼ 0.57, neglecting rf nonlinearity and PWD.

FIG. 5. Synchrotron frequency as a function of synchrotron-
oscillation energy for different intensities and Emax ¼ 0.57. Solid
lines are for single-rf potential, while dashed lines are for a
parabolic-rf potential. The black curve illustrates the case without
PWD.

FIG. 8. Real (sorted and joined by light blue lines, top) and
imaginary (blue dots, bottom) as functions of bunch intensity for
Emax ¼ 0.12 (bunch parameters correspond to those indicated by
the black line in Fig. 3). Black lines show the frequencies of the
mode for which Landau damping is lost. The red and blue lines
indicate the unstable modes.
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the formation of a local minimum of the synchrotron
frequency as a function of the synchrotron oscillation
energy (blue curve in Fig. 10). Note also that rf nonlinearity
does not play a significant role, as itself it results in a
synchrotron frequency spread that is negligible in com-
parison to the one created by PWD (black curve in Fig. 10).
At the intensity of 1.37 × 1011, those two modes are
coupled and thus result in azimuthal mode-coupling insta-
bility. The growth rate of the instability increases while the
coupled modes remain outside the incoherent frequency
bands (Np ≲ 1.4 × 1011). Then, the growth rate is slightly
suppressed and weakly depends on intensity once the
coupled modes move inside the sextupole synchrotron
frequency band. This is very different from the azimu-
thal-mode coupling instability predicted by Sacherer [1] for
which the growth rate is a strong function of intensity. Since

this instability involves the LLD mode of the sextupole
synchrotron frequency band, which emerges below the
minimum synchrotron frequency, it is very sensitive to
particle distribution. As the distribution modifies after the
start of the instability, the modes can be decoupled again
leading to beam stabilization.
Equation (24) can be applied to understand why these

modes move in different directions as a function of
intensity. Figure 11 shows that the power spectrum of
the quadrupole mode (blue curve) has a larger overlap with
positive values of ImZk=k (Fig. 1). Thus, its frequency shift
will be positive as the cumulative sum

P
k ImZk=kjλ̃kj2 is

positive. The opposite situation is true for the LLD mode
with m ¼ 3, for which the maximum power spectrum is
localized at the higher frequencies where ImZk=k is mostly
negative. In this case, the mode is moving downwards in
frequency as the intensity increases.
We also find that the LLD mode above the maximum

incoherent frequency of the second azimuthal mode is
dominated by the zeroth radial mode (dashed curve in
Fig. 11), which is defined by Eqs. (23) and (28). On the
contrary, the LLD mode below the third azimuthal mode is
actually a superposition of a few hundred radial modes,
which makes it more difficult to find a converging solution
using the orthogonal polynomial expansion. To see this
precisely, the computed expansion coefficients anm from
Eqs. (20) and (28) are shown in Fig. 12.
There are no LLD modes above maximum incoherent

frequency for m > 2. This can be understood from the fact
that their power spectra are localized at higher frequencies,
and the modes sample mostly the negative values of
ImZk=k. Thus, the modes are pushed inside the incoherent
frequency band and remain Landau-damped.
Although the threshold of azimuthal mode-coupling

instability is clearly defined (Np ≈ 1.37 × 1011), one can

FIG. 9. Zoomed version of the top plot in Fig. 8 demonstrating
the coupling of quadrupole and sextupole modes. The dashed line
is the minimum incoherent synchrotron frequency of the third
azimuthal mode.

FIG. 10. Synchrotron frequency as a function of synchrotron-
oscillation energy for different intensities and Emax ¼ 0.12. Solid
lines are for single-rf potential, while dashed lines are for a
parabolic-rf potential (linear rf voltage). The black curve illus-
trates the case without PWD.

FIG. 11. Power spectra of quadrupole (blue) and sextupole
(orange) azimuthal modes of the LLD type. The dashed line
corresponds to the zeroth radial mode of the quadrupole azimu-
thal mode evaluated using Eqs. (23) and (28).
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observe the modes with growth rates ImΩ=ωs0 ∼ 10−4 for
lower intensities. In this case, ωsðEÞ has a local minimum
(Fig. 10) and, therefore, radial mode-coupling instability
can appear. However, these unstable modes are localized at
small values of E, which makes it difficult to find converged
solutions as was discussed in Sec. II D. Additionally, the
spectra of these modes are localized at high frequencies and
they sample a rather small residual part of the real
impedance (Fig. 1), which supports expectations of very
small growth rates.
Above a certain intensity of about ∼1.8 × 1011, we also

observe another unstable mode (blue curve in Fig. 8). It
involves van Kampen modes, which are inside the syn-
chrotron frequency spread leading to the radial mode-
coupling instability. However, a strong PWD leads to an
overlap of several azimuthal synchrotron frequency bands
as the minimum synchrotron frequency is rather low

(Fig. 10). The eigenvector of the unstable mode has
resonant behavior for several azimuthal modes where
mωsðEÞ ¼ ReΩ, which can be seen in the longitudinal
phase space (Fig. 13). This can be called a “mixed” mode-
coupling instability, which has features of both radial and
azimuthal mode-coupling instabilities. For even higher
intensities, the PWD leads to the formation of the second
local minimum of the potential well and the minimum
synchrotron frequency approaches zero. In that case, there
are two distinct branches for the possible solutions that start
from two different fixed points [8,14]. In our calculations,
we show the results for the branch with the lowest
minimum of the potential well and, in most cases, we
observe an extremely fast instability with a growth time of a
few synchrotron periods. Since the synchrotron frequency
bands for different azimuthal modes significantly overlap,
it is difficult to distinguish which modes are coupled for a
particular set of bunch parameters.
Figure 14 shows the results of calculations where rf

nonlinearity and PWD are neglected, similar to Fig. 7 in the
previous subsection. In that case, we again find the
coupling of the quadrupole and sextupole azimuthal modes,
while the instability threshold is about 25% higher in
comparison to the results of the self-consistent analysis. A
similar dependence of the mode frequencies as a function
of intensity can be achieved by using a single broadband
resonator impedance model with the resonant frequency at
about 1.4 GHz. Since the zero-intensity bunch length is
τeff ≈ 0.75 ns, we get ωrσ ≈ 1.7. As was shown in the
original work of Oide and Yokoya [8], the results of self-
consistent calculations are close to those obtained neglect-
ing PWD and rf nonlinearity ωrσ > 0.4.
In the recent publication [17], the instability analysis was

performed for the SPS parameters and the azimuthal mode-
coupling instability was found assuming a single broad-
band resonator impedance with a resonant frequency of
1 GHz. Additionally, a 10 times smaller rf frequency

FIG. 12. Coefficients of the orthogonal polynomial expansion
according to Eq. (20) for the LLD mode shown as an orange
curve in Fig. 11.

FIG. 13. Phase space of the most unstable mode for Np ¼
2.0 × 1011 and Emax ¼ 0.12 computed with MELODY using the
SPS impedance model from before LS2. The SPS parameters are
according to Table I.

FIG. 14. Real (solid lines) and imaginary (dashed lines) parts of
van Kampen modes as functions of bunch intensity for
Emax ¼ 0.12, when rf nonlinearity and PWD are neglected.
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compared to the actual rf frequency was used to exclude the
contribution of rf nonlinearity. The computed instability
threshold was slightly higher than the one obtained in
simulations. Our self-consistent analysis, instead, finds the
radial mode-coupling instability. Since ωrσ ≈ 4.3, two
types of numerical calculations give similar results as
expected. Nevertheless, the growth rates as a function of
intensity could be very different.

C. Comparison with measurements

During previous instability studies [18], macroparticle
simulations were compared with dedicated measurements,
where bunches with different intensities and approximately
constant longitudinal emittance were injected into the SPS,
accelerated following the cycle shown in Fig. 15, and were
getting unstable above certain intensity. In general, the
results of simulations through the ramp are very close to the
observations if the latest impedance model is applied as
shown in [22]. However, the instability mechanism was not
yet proposed. Since the results of macroparticle simulations
and numerical solutions of the linearized Vlasov equation
agree for the parameters at the SPS flattop (Figs. 2 and 3),
below we explore the mechanism of instabilities observed
in the past measurements.
To understand the instability during the acceleration, we

apply the eigenvalue analysis using matrix equations (29),
which is implemented in the code MELODY. The main
advantage of this approach is that we can obtain a snapshot
of beam stability at any time during the cycle. In simu-
lations, however, this is difficult since the energy changes
every turn during acceleration, and only a very fast
instability can be properly observed during the limited
time of the small change in beam energy. Note that in the
stability analysis, one also has to include the space-charge
contribution to the total impedance model. At the injection
energy of 26 GeV, the computed ImZ=k is about −1Ω [18],

but it drops by an order of magnitude at 100 GeV and thus
can be neglected at higher energies.
As was discussed in Sec. II A, the single-bunch stability

for a given impedance model depends only on a few
dimensionless parameters. In the single-rf case, these are ζ,
ϵN , and ϕs0. Thanks to the systematic analysis performed
by Gadioux [34], we have found that stability maps at
intermediate energies through the cycle have similar non-
monotonic behavior that the one at the flattop with the
unstable “island.” In Fig. 16, as an example, the map of
bunch intensity versus the dimensionless emittance
obtained from calculations with code MELODY is shown
for ϕs0 ¼ 2.59. It illustrates the beam stability during
acceleration from 200 to 300 GeV since ϕs0 and V1 are
constants (see Fig. 15). Since the dimensionless emittance
ϵN reduces as energy increases for a given emittance ϵ [see,
Eq. (8)], the bunch parameters move on the horizontal lines
from right to left.
In Fig. 17, the measured data from [18] for bunch lengths

and intensities after the arrival at the SPS flattop are
presented. It includes the impact of the transfer function
of the measurement system on the bunch profiles. Bunches
with intensity below 1.2 × 1011 remain stable for the whole
cycle. There is a “mild” instability in the intensity range
1.2–1.8 × 1011 already during the acceleration. Bunches
with even higher intensities suffer from strong instability,
which leads to uncontrolled longitudinal emittance blowup.
The measured bunch length as a function of intensity
approximately follows the line for the total longitudinal
emittance of 0.33 eVs up to Np ≈ 1.8 × 1011 (red dashed
line). For this emittance, the dimensionless emittance
changes from 1.15 to 0.94 (the dashed lines in Fig. 16).
Based on the stability map in Fig. 16, the bunches with an
intensity of above 1.2 × 1011 will enter the unstable island

FIG. 15. The SPS acceleration cycle used during beam mea-
surements [18]: beam energy (blue), main rf voltage (orange), and
synchronous phase (green).

FIG. 16. Stability map applicable to various points of the
acceleration (200–300 GeV) obtained with melody for
ϕs0 ¼ 2.56. Background color describes the instability growth
rates. Two vertical dashed lines indicate the range of the
dimensionless emittances for the total longitudinal emittance
ϵ ¼ 0.33 eVs.
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where the radial mode-coupling instability occurs.
Depending on the time spent in that region, a fast enough
instability will be able to develop. For even higher
intensities, the bunches will become unstable even earlier
in the ramp. Thus, we can conclude that the instabilities
observed in the dedicated measurements during the ramp
are indeed caused by the coupling of the radial modes.

IV. MITIGATION OF THE SPS INSTABILITIES

In this section, we discuss the ways applied to improve
beam stability in the SPS. We saw above that the type of
single-bunch instability and its threshold strongly depend
on the synchrotron frequency distribution ωsðEÞ. This
function can be significantly modified by the PWD,
determined in turn by the SPS impedance model, and a
HH rf system. The two stabilization methods based on this
effect are used in the SPS and considered below.

A. Impact of the SPS impedance reduction

As an injector for the Large Hadron Collider (LHC), the
SPS has been majorly upgraded during the last long
shutdown (LS2) to be able to produce the multibunch
beam required for the High Luminosity (HL)-LHC
[35–37]. In particular, an impedance reduction campaign
[37] has been performed, involving shielding of the specific
type of vacuum flanges, 200 MHz rf system upgrade, and
damping of its higher-order mode around 630 MHz by a
factor of 3. A significant increase of instability thresholds
for single-bunch and LHC-type beams in the double-rf
system was expected from simulations and already
observed for available intensities [38]. However, the
stability of a single bunch in a single-rf configuration
could be degraded for some bunch parameters [31]. Indeed,

the top plot in Fig. 18 demonstrates that the stable region on
the left-hand side of the unstable island now disappeared.
This effect can be again understood from the new shapes

of ωsðEÞ shown in Fig. 19. Bunches with an intensity of
2 × 1011 and a length of 1.3 ns were stable before
impedance reduction because ωsðEÞ was a monotonic
function (blue). After LS2, an overlap of synchrotron
frequencies for different E (orange) occurs, which results
in the radial mode-coupling instability.

B. High-harmonic rf system

Double-rf operation in the SPS significantly increases
the stability of all beams. The 800-MHz voltage is always
applied in BSM, while there is no improvement of stability
in BLM. The latter is practically limited by the extremely
accurate programming of the relative phase Φ4 in Eq. (4)

FIG. 18. Longitudinal stability map obtained from BLonD
simulations for the SPS impedance model after LS2 (orange
curve in Fig. 1) and single-rf configuration. Background colors
indicate the maximum relative oscillation amplitude of the bunch
length. The SPS parameters are according to Table I.

FIG. 17. The maximum oscillation amplitude of the bunch
length during acceleration for different intensities and bunch
lengths at the arrival at the SPS flattop obtained from measure-
ments [18]. The red dashed line corresponds to computed bunch
parameters with a constant emittance of ϵ ¼ 0.33 eVs.

FIG. 19. Synchrotron frequency distributions for different
impedance models and rf configurations at the intensity Np ¼
2 × 1011 and the bunch length τeff ¼ 1.3 ns.
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between the 200- and 800-MHz rf systems during the entire
cycle [39]. Additionally, a strong PWD, especially due to
the resistive part of the SPS impedance, also introduces
a shift of the synchronous phase Δϕs, such that the
relative phase Φ4 computed without intensity effects is
not optimal anymore. This leads to a nonmonotonic
synchrotron frequency as a function of E (Fig. 19, red)
and radial mode-coupling instability can occur. To suppress
this instability for given bunch parameters, the relative
phase Φ4 must be precisely tuned to reestablish ωsðEÞ as a
monotonic function. If the intensity is very low, or the
resistive impedance is negligible, the instability can be
avoided, which is consistent with observations in another
CERN synchrotron, the PS Booster (PSB) [40]. It is also
known, that HH cavities operating in BLM allow raising
the instability threshold of electron bunches (e.g., [13]). In
particular, passive rf cavities can be used with a purely
beam-induced rf voltage. To obtain a flat bunch profile, the
amplitude and phase of the rf voltage are controlled by
tuning the cavity center frequency. In this case, a weak
radial mode-coupling instability due to nonmonotonic
synchrotron frequency distribution is suppressed by the
synchrotron radiation damping.
The operation in BSM is much less sensitive to the

relative phase between rf systems and can help to suppress
the harmful impact of PWD (Fig. 19, green). This rf
configuration is routinely used in the SPS to deliver
high-intensity bunches to the AWAKE experiment [41].
For example, for a voltage ratio of r ¼ 0.1, there is a
significant improvement in beam stability, in comparison
to a single-rf case (Fig. 20). Typically, the instability
threshold for short bunches gets higher for a larger ratio
of rf voltages r, however, special attention is necessary for
long bunches. These bunches may have a nonmonotonic

synchrotron distribution for r > 1=n and n > 2 even at zero
intensity. The instability mechanism in this configuration is
under study.

V. CONCLUSION

We have demonstrated the existence of two different
mechanisms of longitudinal single-bunch instability in the
SPS: radial and azimuthal mode coupling. The results of
fully self-consistent numerical calculations done using the
code MELODYare able to explain all relevant observations in
the SPS, including nonmonotonic dependence of thresh-
olds on intensity and the presence of the unstable island. As
this approach provides a snapshot of beam stability, the
instability mechanism can be evaluated at any moment of
the acceleration cycle. The predictions also agree well with
the performed macroparticle simulations.
Previously, radial-mode coupling instability was

obtained for very short, electron, bunches, when poten-
tial-well distortion plays an important role but rf non-
linearity can be neglected. We have shown that neglecting
rf nonlinearity for long proton bunches leads to an under-
estimation of the real instability threshold up to a factor of
5. With intensity increase, radial mode coupling can appear
simultaneously for several azimuthal modes and then has a
signature of microwave instability.
Another instability type, azimuthal mode coupling, is

also possible in the SPS, but for shorter bunches. In this
case, the corresponding modes lose Landau damping
(moving outside the incoherent frequency bands) and
can become coupled above a certain beam intensity. This
instability has a similar threshold but seems to be signifi-
cantly weaker than the one obtained previously using non-
self-consistent analysis (without PWD and rf nonlinearity).
It can be suppressed by a small change in the particle
distribution or even an increase in intensity. Additionally,
we also observed a mixed mode-coupling instability, in
which phase-space perturbation involves several azimuthal
modes, and it has higher growth rates.
Longitudinal instabilities in the SPS are cured by

operating in the bunch-shortening mode of the double-rf
configuration, as it removes the nonmonotonic behavior of
the synchrotron frequency as a function of synchrotron
oscillation energy at the bunch center. Thus, for example,
applying the fourth harmonic voltage at 10% of the main-rf
voltage improves the stability of short bunches by almost
a factor of 3, especially after the recent impedance
reduction campaign. Longer bunches should be treated
with caution due to the nonmonotonic behavior of
synchrotron frequency distribution occurring with the
fourth harmonic rf system.
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APPENDIX: AZIMUTHAL MODE-COUPLING
INSTABILITY

The azimuthal mode-coupling instability mechanism
was proposed by Sacherer in [1]. Here, we demonstrate

that this is the only instability mechanism when rf non-
linearity and PWD are neglected. In this case, the functions
Imk according to Eq. (14) can be evaluated analytically.
They become

ImkðEÞ ¼ imJmðk
ffiffiffiffiffiffi
2E

p
=hÞ;

where JmðxÞ is the Bessel function of the first kind and the
order m. Then, the nominator of the integrand of the
spectral harmonics λ̃kðΩÞ from Eq. (23) becomes
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Based on the Bessel function property for the integer argu-
ment Jmð−xÞ ¼ ð−1ÞmJmðxÞ, jλ̃kðΩÞj2 is a symmetric func-
tion of k if eitherRe½CmðE;ΩÞ� ¼ 0 or Im½CmðE;ΩÞ� ¼ 0 for
all azimuthal modes m. Thus, ImΩ ¼ 0 according to
Eq. (25), and the mode is stable. The instability requires
that for at least one pair of azimuthalmodesm andmþ 1, the
eigenfunctions Re½CmðE;ΩÞ� ≠ 0 and Im½CmðE;ΩÞ� ≠ 0.
Then, at least one element of the sum in the integrand is
nonzero and jλ̃kðΩÞj2 is asymmetric function of k, which is
necessary condition for the instability. If only single azimu-
thal mode m has nonzero eigenfuctions Re½CmðE;ΩÞ� and
Im½CmðE;ΩÞ�, the symmetry of jλ̃kðΩÞj2 is preserved and the
bunch remains stable.
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[17] E. Métral and M. Migliorati, Longitudinal and transverse
mode coupling instability: Vlasov solvers and tracking
codes, Phys. Rev. Accel. Beams 23, 071001 (2020).

[18] A. S. Lasheen, Beam measurements of the longitudinal
impedance of the CERN Super Proton Synchrotron, Ph.D.
thesis, Université Paris Saclay, Paris, 2017.

[19] A. Lasheen and E. Shaposhnikova, Evaluation of the
CERN Super Proton Synchrotron longitudinal impedance
from measurements of the quadrupole frequency shift,
Phys. Rev. Accel. Beams 20, 064401 (2017).

[20] CERN SPS Longitudinal Impedance Model, https://gitlab
.cern.ch/longitudinal-impedance/SPS.

[21] CERN Beam Longitudinal Dynamics code BLonD, http://
blond.web.cern.ch.

[22] J. Repond, Possible mitigations of longitudinal intensity
limitations for HL-LHC beam in the CERN SPS, Ph.D.
thesis, Ecole Politechnique, Lausanne, 2019.

[23] I. Karpov, Matrix Equations for LOngitudinal beam
DYnamics (MELODY) code, https://gitlab.cern.ch/ikarpov/
melody.

[24] A. Burov, Van Kampen modes for bunch longitudinal
motion, in Proceedings of 46th ICFA Advanced Beam
DynamicsWorkshoponHigh-Intensity andHigh-Brightness
Hadron Beams, Morschach, Switzerland, 2010, arXiv:
1207.5826.

[25] A. W. Chao, Physics of Collective Beam Instabilities in
High Energy Accelerators (Wiley, New York, 1993),
Chap. 6, pp. 273–278.

[26] I. Karpov, T. Argyropoulos, and E. Shaposhnikova,
Thresholds for loss of Landau damping in longitudinal
plane, Phys. Rev. Accel. Beams 24, 011002 (2021).

[27] N. G. Van Kampen, On the theory of stationary waves in
plasmas, Physica (Utrecht) 21, 949 (1955).

[28] N. G. Van Kampen, The dispersion equation for plasma
waves, Physica (Utrecht) 23, 641 (1957).

[29] K. M. Case, Plasma oscillations, Ann. Phys. (N.Y.) 7, 349
(1959).

[30] M. Benedikt, P. Collier, V. Mertens, J. Poole, and K.
Schindl, LHC design report Vol. 3: The LHC injector
chain, CERN, Geneva, Switzerland, CERN Yellow
Reports: Monographs, Report No. CERN-2004-003-V-3,
2004.

[31] E. Radvilas, Simulations of single-bunch instability on flat
top, Technical Report No. CERN-STUDENTS-Note-
2015-048, 2015.

[32] I. Karpov and M. Gadioux, Mechanism of longitudinal
single-bunch instability in the CERNSPS, inProceedings of
12th International Particle Accelerator Conference,
Campinas, SP, Brazil, 2021 (JACoW, Geneva, Switzerland,
2021), pp. 3161–3164.

[33] I. Karpov, T. Argyropoulos, S. Nese, and E. Shaposhnikova,
New analytical criteria for loss of Landau Damping in
longitudinal plane, in Proceedings of 64th ICFA Advanced
Beam Dynamics Workshop on High-Intensity and High-
Brightness Hadron Beams, Batavia, IL, 2021 (JACoW,
Geneva, Switzerland, 2022), pp. 100–105.

[34] M. Gadioux, Evaluation of longitudinal single-bunch
stability in the SPS and bunch optimisation for AWAKE,
CERN, Geneva, Switzerland, Technical Report
No. CERN-STUDENTS-Note-2020-030, 2020.

[35] LHC Injectors Upgrade, Technical Design Report, Vol. I:
Protons, edited by J. Coupard, H. Damerau, A. Funken, R.
Garoby, S. Gilardoni, B. Goddard, K. Hanke, A. Lombardi,
D. Manglunki, M. Meddahi, B. Mikulec, G. Rumolo, E.
Shaposhnikova, and M. Vretenar, CERN, Geneva,
Switzerland, Report No. CERN-ACC-2014-0337, 2014.

[36] E. Shaposhnikova, E. Ciapala, and E. Montesinos,
Upgrade of the 200 MHz rf system in the CERN SPS,
in Proceedings of 2nd International Particle Accelerator
Conference, San Sebastian, Spain, 2011 (JACoW, Geneva,
Switzerland, 2011).

[37] E. Shaposhnikova, T. Argyropoulos, T. Bohl, P.
Cruikshank, B. Goddard, T. Kaltenbacher, A. Lasheen,
J. Perez Espinos, J. Repond, B. Salvant, and C. Vollinger,
Removing known SPS intensity limitations for High
Luminosity LHC goals, in Proceedings of 7th Inter-
national Particle Accelerator Conference, Busan, Korea,
2016 (JACoW, Geneva, Switzerland, 2016).

[38] V. Kain et al., Achievements and performance prospects of
the Upgraded LHC injectors, in Proceedings of 13th
International Particle Accelerator Conference, Bangkok,
Thailand, 2022 (JACoW, Geneva, Switzerland, 2022),
pp. 1610–1615.

[39] T. Bohl, T. P. R Linnecar, E. Shaposhnikova, and J.
Tückmantel, Study of different operating modes of the
4th rf harmonic Landau damping system in the CERN
SPS, CERN, Geneva, Switzerland, Technical Report
No. CERN-SL-98-026-RF, 1998.

[40] S. C. P. Albright, F. Antoniou, F. Asvesta, H. Bartosik, C.
Bracco, and E. Renner, New longitudinal beam production
methods in the CERN Proton Synchrotron Booster, in
Proceedings of 12th International Particle Accelerator
Conference, Campinas, SP, Brazil, 2021 (JACoW, Geneva,
Switzerland, 2021), pp. 4130–4133.

[41] A. Caldwell, E. Adli, L. Amorim, R. Apsimon, T.
Argyropoulos, R. Assmann, A.-M. Bachmann, F.
Batsch, J. Bauche, V. K. Berglyd Olsen et al., Path to
AWAKE: Evolution of the concept, Nucl. Instrum.
Methods Phys. Res., Sect. A 829, 3 (2016).

LONGITUDINAL MODE-COUPLING … PHYS. REV. ACCEL. BEAMS 26, 014401 (2023)

014401-15

https://doi.org/10.1103/PhysRevAccelBeams.23.071001
https://doi.org/10.1103/PhysRevAccelBeams.20.064401
https://gitlab.cern.ch/longitudinal-impedance/SPS
https://gitlab.cern.ch/longitudinal-impedance/SPS
https://gitlab.cern.ch/longitudinal-impedance/SPS
http://blond.web.cern.ch
http://blond.web.cern.ch
http://blond.web.cern.ch
http://blond.web.cern.ch
http://blond.web.cern.ch
https://gitlab.cern.ch/ikarpov/melody
https://gitlab.cern.ch/ikarpov/melody
https://gitlab.cern.ch/ikarpov/melody
https://gitlab.cern.ch/ikarpov/melody
https://arXiv.org/abs/1207.5826
https://arXiv.org/abs/1207.5826
https://doi.org/10.1103/PhysRevAccelBeams.24.011002
https://doi.org/10.1016/S0031-8914(55)93068-8
https://doi.org/10.1016/S0031-8914(57)93718-7
https://doi.org/10.1016/0003-4916(59)90029-6
https://doi.org/10.1016/0003-4916(59)90029-6
https://doi.org/10.1016/j.nima.2015.12.050
https://doi.org/10.1016/j.nima.2015.12.050

