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The EicC (The highly polarized Electron-ion collider in China) project proposes a scheme with different
numbers of bunches in the two rings, which leads to an asymmetric beam-beam effect, also known as the
gear-change effect. In order to investigate the feasibility of asymmetric collision in EicC, a self-consistent
simulation program named AthenaGPU, which uses GPU for high-performance computing, was developed. A
linearized matrix model is used to account for the dipole instability that occurs in the simulation. The
simulation results in different collision modes show that asymmetric collision can lead to instability, and the
beam can be stabilized by adjusting the nominal tunes. In the process of scanning the beam intensity,
instability may occur as the beam intensity decreases, and this instability can be suppressed by compensating
the nominal tunes. Offset collision simulations show that the decoherence time of the displaced bunch is
shorter in the asymmetric collision than in the symmetric collision. The study in this paper suggests that
asymmetric collision is promising for EicC when only the beam-beam effect is considered.
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I. INTRODUCTION

The highly polarized Electron-ion collider in China
(EicC) is proposed by the Institute of Modern Physics,
Chinese Academy of Sciences (IMP) with a center-of-mass
energy of 15–20 GeV to study the structure of the nucleons
[1]. EicC aims at a peak luminosity of 2.0 × 1033 cm−2 s−1
for electron-proton (e-p) collision, as well as ensuring an
average polarization for electrons and protons of about 80%
and 70%, respectively. In the proposed design of EicC, a
figure-8 ion collider ring (pRing), a polarized electron
injector, and a racetrack electron collider ring (eRing) will
be constructed based on the HIAF project [2], as shown in
Fig. 1. The existing HIAF-BRing can provide a polarized
proton beam for the pRing. The electron injector provides
the eRing with a polarized electron beam. Table I shows the
main parameters required to reach the peak luminosity for
e-p collision. EicC will only use one interaction point IP1 in
the current design, and the other interaction point IP2 is
reserved for future upgrades.

As shown in Table I, the number of electron and proton
bunches in eRing and pRing is different. In this asymmetric
collision mode, the beam-beam effect causes coupling
between multiple bunches in the two rings. This coupling
will introduce new resonances that do not occur in
symmetric cases and then limit the choice of the nominal
tunes. In this paper, all bunches in the two rings are
assumed to be equally spaced, so for simplicity, the number
of bunches in the two rings can be reduced to coprime. That
is, the collisions between 256 electron bunches and 448
proton bunches are equivalent to the collisions between 4
electron bunches and 7 proton bunches. Past studies have
shown that such an asymmetric design is not feasible if the
least common multiple of the number of bunches in the two
rings is large [3,4]. However, the value of the least common
multiple in EicC is 28, which is not a large value. To
investigate the feasibility of 4e vs 7p collision mode in
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FIG. 1. The layout of the EicC.
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EicC, the circulant matrix method is used to construct a
matrix for linearized analysis, and a self-consistent program
is developed for simulation.
Self-consistent simulation is suitable for arbitrary par-

ticle distributions, but it is very time-consuming, so
parallel algorithms are introduced to speed it up [5–7].
NVIDIA provides the cuFFT library [8], an efficient GPU-
based (Graphics Processing Unit) Fast Fourier Transform
library, which helps speed up computations when solving
the field. In addition, the linear transfer of particles is of a
single-instruction-multiple-data operation type, and the
GPU can achieve a good acceleration effect for this
operation. Therefore, a GPU-based self-consistent simu-
lation program named AthenaGPU is developed using Cuda
C++ language [9].
In this paper, simulation and matrix models are intro-

duced in Sec. II. The impact of collision modes on beam
stability is presented in Sec. III. The study of beam-beam
limit is presented in Sec. IV. Simulations of the transverse
offset due to a rapid disturbance are performed in Sec. V.
Finally, a summary is presented in Sec. VI.

II. MODELS

A. The simulation model

In the case of asymmetric collisions, the beam with fewer
bunches is called the basic beam, and the other beam is
called the nonbasic beam. A superperiod is complete when
all bunches of one beam have collided once with all
bunches in the other beam. In a superperiod, the number
of revolutions of the basic beam is called the basic turns,
which is equal to the number of nonbasic bunches, and the
concept of the nonbasic turns can be obtained in the same

way. The parameters in Table I show that the electron beam
is the basic beam, the proton beam is the nonbasic beam, 28
collisions occur in one superperiod, and the basic and
nonbasic turns are 7 and 4, respectively.
The entire simulation is performed according to the

following procedures.

1. Initialization

A macroparticle is described using charge, mass, phase
space coordinates ðx; px; y; py; z; δpÞ, and a tag in the
program. Here, x and y are transverse coordinates, px
and py are transverse momenta normalized by the total
momentum of the reference particle, z is the distance from
the reference particle, and δp is the momentum deviation. A
tag is a number greater than 0 and unique to each macro-
particle so that a specific macroparticle can be tracked.
When a macroparticle is lost, its tag is multiplied by −1,
after which it will no longer participate in any calculations.
The program can generate particles that obey Gaussian,

KV, or uniform distribution in the transverse direction and
Gaussian distribution in the longitudinal direction [10,11].
These distributions can satisfy various simulation condi-
tions. In this paper, the initial distributions of the bunches in
the transverse direction are all Gaussian distributions.

2. Crossing angle

When there is a crossing angle between the two beams,
the particles in the laboratory frames are transformed to the
same boosted frame through Lorentz transformation, and
then they can be treated as head-on collisions. An inverse
Lorentz transformation is performed on the particles
to bring them back to the laboratory frames when the

TABLE I. The main parameters of the EicC.

Parameter Electron Proton

Circumference (m) 767.47 1341.59
Kinetic energy (GeV) 3.5 19.08
Collision frequency (MHz) 100
Polarization 80% 70%
Particles per bunch (1011) 1.7 1.25
Number of bunches 256 448
β�x=β�y (m) 0.2=0.06 0.04=0.02
rms emittance (H/V) (nm) 60=60 300=180
rms bunch size (H/V) (μm) 110/60
Transverse tune (H/V) 0.58=0.56 0.315=0.3
rms bunch length (m) 0.02 0.04
rms momentum spread 1.0 × 10−3 6.5 × 10−4

Synchrotron tune 0.025 0.01
Beam-beam parameter (H/V) 0.088=0.048 0.004=0.004
Crossing angle (mrad) 2 × 25
Hourglass factor 0.788
Transverse damping time (turns) 2000 ∞
Longitudinal damping time (turns) 1000 ∞
Luminosity (cm−2 s−1) 2.0 × 1033
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interactions in the collision region are complete. The
transformation is well documented in Ref. [12]. EicC will
use crab cavities to avoid the luminosity degradation
caused by the crossing angle. This paper assumes that
there is no crossing angle between the two beams moving
in opposite directions, as the discussion about the crab
cavity is beyond the scope of this paper.

3. Hourglass effect

The program performs a linear map for the revolutions
and a stochastic map for synchrotron radiation damping
and quantum excitation effects [13].
In the interaction region, the transverse distribution of

the bunch undergoes an hourglass-like deformation, and
this geometric effect leads to a degradation of luminosity.
For two Gaussian bunches, the luminosity L is given by

L ¼ fcNeNi

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2ex þ σ2ixÞðσ2ey þ σ2iyÞ

q Rh; ð1Þ

where the subscripts e and i are used to distinguish between
electron and ion bunches, fc is the collision frequency, N is
the number of particles per bunch, and σx and σy are the
horizontal and vertical bunch sizes at the IP. The hourglass
reduction factor Rh is given by [14]

Rh ¼
Z þ∞

−∞

1ffiffiffi
π

p expð−t2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ t2=t2xÞð1þ t2=t2yÞ

q dt; ð2Þ

t2u ¼
2ðσ2eu þ σ2iuÞ

ðσ2es þ σ2isÞðσ2eu=β2eu þ σ2iu=β
2
iu
Þ ; u ¼ x; y; ð3Þ

where βx and βy are the horizontal and vertical beta
function at the IP, respectively, and σs is the bunch length.
The hourglass effect would couple the transverse and

longitudinal oscillations, which may lead to synchrobeta-
tron resonance. In order to accurately model the impact
caused by the hourglass effect, a sufficient number of slices
is required to make the result converge.
The transverse electric field is calculated by interpolation

to reduce the number of slices [15]. The transverse electric
field induced by the opposite slice and acting on the
forward slice can be given by

Ex;yðsÞ¼Ex;yðstailÞþ
Ex;yðsheadÞ−Ex;yðstailÞ

shead−stail
ðs− stailÞ; ð4Þ

Ex;yðsheadÞ ¼−
∂ϕðsheadÞ
∂x;y

; Ex;yðstailÞ ¼−
∂ϕðstailÞ
∂x;y

; ð5Þ

where s is the longitudinal position of the macroparticle
in the forward slice that has drifted to the real collision
point CP, shead and stail are the longitudinal positions of
the head and tail of the forward slice, as shown in Fig. 2.
The opposite slice is transferred to shead and stail, and then

the potentials ϕðsheadÞ and ϕðstailÞ induced by the opposite
slice are calculated by the particle-in-cell method.
The longitudinal electric field is given by

Ez ¼ −
ϕðsheadÞ − ϕðstailÞ

shead − stail
: ð6Þ

In the process of solving the field by the interpolation
method, if the number of slices of the two bunches involved
in the collision is Ne

s and Ni
s, respectively, the Poisson

equation needs to be solved 4Ne
sNi

s times during one
collision.

4. Field solver and one-turn map

The cloud-in-cell method [16] is used to project the
macroparticles in a slice onto a two-dimensional mesh to
obtain the transverse charge density distribution ρx;y, where
x and y are grid coordinates. Macroparticles projected
outside the mesh are considered lost.
This program uses the Green function to solve the

Poisson equation under open boundary conditions. In order
to reduce the error when the size of the grid is greatly
different in the horizontal and vertical directions and to
avoid the problem of the Green function having a singu-
larity at x2 þ y2 ¼ 0, the Green function is replaced by the
integral Green function [17]. The integral Green function is
given by

Gðxj; ykÞ ¼ −
1

2πϵ0

Z
xjþhx=2

xj−hx=2

Z
ykþhy=2

yk−hy=2
lnðx2 þ y2Þdxdy

¼ −
1

2πϵ0

�
−3xyþ x2 arctan

y
x
þ y2 arctan

x
y

þ xy lnðx2 þ y2Þ
�����

xjþhx=2

xj−hx=2

����
ykþhy=2

yk−hy=2
; ð7Þ

where hx and hy are the horizontal and vertical sizes of the
grid, respectively, ϵ0 is the vacuum permittivity, and the
subscripts j and k indicate the coordinates of the grid point
in the mesh.
The momentum changes of the macroparticle due to the

beam-beam kick are given by [13]

FIG. 2. Interpolation scheme of fields.
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Δpex;ey ¼
1þ jβeβij
jβej þ jβij

qeEix;iy

γemec2
; ð8Þ

Δpez ¼
1

2
Δpex

�
pex þ

1

2
Δpex

�

þ 1

2
Δpey

�
pey þ

1

2
Δpey

�

þ 1

jβej þ jβij
qeEiz

γemec2
; ð9Þ

where c is the speed of light, β ¼ v=c, γ is the Lorentz
factor, m and q are the rest mass and charge of the
macroparticle, and E is the electric field. Usually, Δpz
can be ignored because its value is very small. The program
provides an option to set whether to calculate the change
of pz. In the study of this paper, the change of pz is
not considered.

5. Parallelization

The program supports thread-level parallelism within a
GPU and hardware-level parallelism across multiple GPUs.
For a single GPU, thousands of Cuda cores can be called
for computation simultaneously. If multiple GPUs are
available, the program’s scheduler will evenly allocate
the basic bunches to each GPU. In each basic turn, the
scheduler uses the Cuda streams to asynchronously copy
the nonbasic bunches to the corresponding GPU to save the
data transmission time, i.e., the program transfers data
while performing calculations such as slicing on the basic
bunches. Then each GPU starts to compute independently.
The optimal acceleration effect can be achieved when the
number of GPUs and basic bunches are the same. A parallel
reduction algorithm is used to get bunch statistics such as
centroid, size, etc., and calculate the luminosity.

The performance of the program is tested using a 512 ×
512 mesh. In the case of 1 electron bunch colliding with 1
proton bunch and 10 slices per bunch, the computational
speed of the program is shown in Fig. 3(a). K20m, K80,
V100, and A100 are GPUs released in 2013, 2014, 2017,
and 2020, respectively. When the number of macroparticles
is ≤ 1 × 106, the limitation of the computational speed is
mainly in the process of solving the field, i.e., the limitation
of the clock frequency. When the number of macroparticles
is 1 × 107 and 1 × 108, the limitation of the computational
speed is mainly in the bunch slicing and hourglass process,
that is, the bandwidth limitation. Since the memory
required for the simulation exceeds the upper limit of
K20m and K80 when the number of macroparticles is
1 × 108, only the results of V100 and A100 are shown at
this point. The performance test results show that the
hardware upgrades have effectively improved the simula-
tion speed. Since GPU is still in rapid development, it is a
good choice to develop a GPU-based simulation program.
Figure 3(b) shows the computation speed of eight electron
bunches colliding with nine proton bunches. Here, eight
A100 GPUs are called for simulation. In the case of 1 × 106

macroparticles per bunch and 10 slices per bunch, the
speedup is 6.8 compared to using only one GPU.

B. The matrix model

A matrix including betatron oscillation, synchrotron
oscillation, hourglass effect, and asymmetric collision is
constructed and then used to analyze the instability by the
eigenvalues of the matrix. The details of using matrices
to implement synchrotron oscillation and asymmetric
collision are well described in Refs. [18] and [4], respec-
tively, and a combination of the two approaches will be
presented here.

FIG. 3. Performance of the AthenaGPU program. (a) Computation speed on different GPUs in the 1e vs 1p mode with 10 slices per
bunch. (b) Computation speed on A100 in the 8e vs 9p mode. Seventy-two collisions in one superperiod.
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In the process of constructing the matrix, the circulant
matrix will be used twice. In the polar coordinate system,
the longitudinal phase space of the bunch is decomposed
into Nr rings with the same number of particles, and each
ring is equally divided into Ns parts, i.e., the longitudinal
phase space is decomposed into NrNs slices. Then the
circulant matrix is used to perform synchrotron transport
for each slice. The hourglass effect is introduced by
calculating the beam-beam force of each slice at the
collision point. When multiple bunches collide asymmet-
rically, the circulant matrix is used again to simplify the
calculation. The circulant matrix can be used to rotate basic
or nonbasic bunches, and both ways will lead to the same
conclusion. In the case of rotating nonbasic bunches, the
total matrix Mt can be expressed as

Mt ¼ Mr ·Mk ·Ms ·Mβ; ð10Þ

in which Mβ is the betatron transfer matrix:

Mβ ¼

0
B@
IðnaÞ⊗Mðν1Þ 0 0

0 IðnbÞ⊗Mðν2Þ 0

0 0 Ið2ncÞ

1
CA; ð11Þ

na ¼ Nb1Nr1Ns1 ;

nb ¼ Nb1Nr2Ns2 ;

nc ¼ ðNb2 − Nb1ÞNr2Ns2 ; ð12Þ

where the subscripts 1 and 2 are used to indicate the
properties of the basic and nonbasic beam, respectively, Nb
is the bunch number, IðnÞ is the identity matrix with n × n
elements, MðνÞ is the 2 × 2 one-turn matrix with betatron

phase advance ν at the interaction point and ⊗ denotes the
Kronecker product.
Ms is the synchrotron transfer matrix:

Ms ¼

0
B@

IðndÞ ⊗ CsðNs1Þ 0 0

0 IðneÞ ⊗ CsðNs2Þ 0

0 0 Ið2nfÞ

1
CA;

ð13Þ

CsðNsÞ ¼ PNsνsðNsÞ ⊗ Ið2Þ; ð14Þ

nd ¼ Nb1Nr1 ;

ne ¼ Nb1Nr2 ;

nf ¼ ðNb2 − Nb1ÞNr2Ns2 ; ð15Þ

where νs is the synchrotron phase advance, PðnÞ is the
permutation matrix with n × n elements and can be
expressed in two-line notation as

P ¼
�
1 2 � � � n

n 1 � � � n − 1

�
: ð16Þ

Mk is the beam-beam kick matrix between all (Nb1)
bunches in the basic beam and the first Nb1 bunches in the
nonbasic beam. Since each slice of the bunch has a
corresponding longitudinal position, the real collision point
CP between the slice j (basic bunch) and slice k (nonbasic
bunch) involved in the collision can be calculated, as well
as the distance lj and lk of these two slices relative to CP.
The linearized beam-beam kick and drifts of the two slices
are given by

Mk;slice ¼

0
BBBB@

1 −lj 0 0

0 1 0 0

0 0 1 −lk
0 0 0 1

1
CCCCA ·

0
BBBB@

1 0 0 0

− 4πΞj

Nr1
Ns1

βj
1

4πΞj

Nr1
Ns1

βj
0

0 0 1 0
4πΞk

Nr2
Ns2

βk
0 − 4πΞk

Nr2
Ns2

βk
1

1
CCCCA ·

0
BBBB@

1 lj 0 0

0 1 0 0

0 0 1 lk
0 0 0 1

1
CCCCA; ð17Þ

where β is the beta function at CP, and Ξ is the coherent
beam-beam parameter of the bunch to which the slice
belongs at CP. The Ξ of the basic bunch is given by

Ξx;y ¼
Nr0βx;y

2πγΣx;yðΣx þ ΣyÞ
ð18Þ

where N is the number of particles in the nonbasic
bunch, r0, β, and γ are the classical particle radius, beta
function, and relativistic factor of the basic bunch,
and Σ is the effective bunch size calculated from the
horizontal or vertical bunch size of the two bunches

Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

p
. At the IP, Ξ is half of the nominal

incoherent beam-beam parameter ξ. When the matrix
dimension is expanded to include all slices, Mk is
obtained by multiplying Mk;slice between all slices in
order of collision.
Mr is the matrix that rotates the nonbasic bunches to

implement asymmetric collision:

Mr ¼
�
Ið2Nb1Nr1Ns1Þ 0

0 CrðNb2Þ⊗ Ið2Nr2Ns2Þ
�
; ð19Þ
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CrðNb2Þ ¼ PNb2
−Nb1 ðNb2Þ: ð20Þ

In the matrix model, we study the motion of the centroid
of a slice or bunch, which means that this model can only
account for dipole instability. Furthermore, the beam-beam
force is linearized so that the nonlinear effects, such as
Landau damping, are neglected. The matrix model can be
used to take into account the crossing angle [19]. However,
as already explained in Sec. II A 2, we assume no crossing
angle in this paper and therefore do not discuss it.
Figure 4 illustrates the difference between the results

when considering and not considering the longitudinal phase
space decomposition in the 3e vs 5pmode. The horizontal ξp

and νp of the proton bunch are set to 0.004 and 0.315,
respectively, and then the horizontal ξe and νe of the
electron bunch are scanned in steps of 0.0025. Solving
for the matrix Mt in Eq. (10) yields multiple eigentunes,
and the imaginary part of these eigentunes reflects the
instability growth rate. The maximum value of the imagi-
nary part of these eigentunes is plotted in Fig. 4. When
considering the longitudinal phase space decomposition,
the instability regions caused by the synchrotron oscilla-
tion of electron bunch can be observed on both sides of the
central instability region, and the central instability region
has covered the instability regions associated with the
synchrotron oscillation of proton bunch.

III. INSTABILITY IN DIFFERENT
COLLISION MODES

Assuming that there are N1 bunches of beam 1 and N2

bunches of beam 2, N1 and N2 are coprime. In the Fourier
spectrum of the bunch centroid of beam 1, the tune ν1 of
beam 1 and the N2 tunes νeff2 called effective tunes caused
by beam 2 can be observed. This νeff2 is given by [4]

νeff2 ¼ N1ν2 þ i
N2

; i ¼ 1; 2;…; N2: ð21Þ

It is clear that the number of effective tunes increases
with the number of bunches. More effective tunes mean that
the beam is more likely to enter the resonance region.
Figure 5 shows the horizontal spectrum of the electron

bunch and proton bunch in the 4e vs 7p collision mode.
Since the initial transverse distributions of the electron and
proton bunches are Gaussian, their initial horizontal
coherent frequencies are 0.624 and 0.317, respectively.
In Fig. 5(a), vertical lines represent the positions of νeffp

FIG. 4. The maximum value of the imaginary part of the
eigentunes as a function of the horizontal νe and ξe in the 3e vs 5p
mode. νp and ξp are 0.315 and 0.004, respectively. The
longitudinal phase space is decomposed (bottom) or not (top).
In the bottom figure, Nr and Ns are set to 5 and 33, respectively.

FIG. 5. In the 4e vs 7p collision mode, 1 × 105 superperiods are simulated using AthenaGPU. FFT algorithm is used to get the spectrum
from the bunch centroid. The values of νeff and 1 − νeff are indicated in each figure. (a) The horizontal spectrum of an electron bunch.
(b) The horizontal spectrum of a proton bunch.
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and 1 − νeffp of the proton calculated by Eq. (21), the
synchrotron sidebands of the proton also follow that
formula. The differences between the amplitude of proton
and electron frequencies are within an order of magnitude,
which reflects the significant influence of the proton
bunches on the electron bunches. In Fig. 5(b), the νeffe of
the electron bunch cannot be clearly distinguished because
of its wide spectrum width, but the positions of each νeffe in
the spectrum are consistent with the theoretical values.
Since the beam-beam force of the electron bunch has little
effect on proton bunch, the amplitude of νeffe is much
smaller than that of νp, and the amplitude of νeffe ¼ 0.342 is
covered by the amplitude of νp and cannot be observed.
Four sets of simulations with different collision modes

were performed to observe the instabilities caused by
asymmetric collisions: 1e vs 1p, 2e vs 3p, 3e vs 5p, and
4e vs 7p. In all four collision modes, the collision frequency
is 100 MHz, and the beam parameters and simulation
parameters are the same, as shown in Tables I and II,
respectively. The simulation results are shown in Figs. 6
and 7. Since the proton and electron beams are stable in
the vertical direction in these four collision modes, only
the evolution of the bunch centroid and bunch size in the
horizontal direction is shown. In collisions where the
number of bunches in both beams is asymmetric, all
bunches in a beam behave the same, so only one of them
is selected for demonstration. According to the simulation
results, if the amplitude of the bunch centroid increases,
then there is dipole instability, and if the amplitude of the
bunch size increases, then there is quadrupole instability.
In the 1e vs 1p and 4e vs 7p collision modes, all bunches

are stable, and the bunch states are the same. The same
luminosities are achieved in both collision modes. Due to
the dynamic beta effect driven by the beam-beam force of
the proton bunch, the electron bunch size readjusts to a

value lower than the design after dozens of turns, so the
simulated luminosity is higher than the design value
of 2.0 × 1033 cm−2 s−1.
In the 2e vs 3p mode, the electron and proton bunches

show quadrupole instability at the beginning, while the
centroids of all bunches are stable. Similar instabilities
were already observed using a different model in Ref. [4].
After a certain number of turns, as the amplitude of the
quadrupole oscillation gradually increases, the bunch
centroid also begins to oscillate, i.e., dipole instability
occurs. Although synchrotron radiation can suppress the
increase of the electron bunch size, the proton bunch size
still oscillates around a large value, which leads to a
degradation of luminosity. Through simulations, it is found
that the two beams will return to stability after adjusting the
horizontal tune of the electron beam to 0.62.
In the 3e vs 5p mode, the electron and proton bunches

show very strong coherent instability. The proton bunch
has lost 0.1% of the macroparticles after 10 × 104 super-
periods. A sum resonance between the electron and
proton bunches can be observed from the matrix model.
For the convenience of observation, Nr and Ns are both
set to 1. Figures 8(a) and 8(b) show the eigentunes
obtained by rotating electron (basic) bunches or proton
(nonbasic) bunches in the matrix model, respectively.
With the enhancement of the beam-beam effect, the two
beams become unstable when the two frequencies merge

TABLE II. The parameters for the simulation.

Parameter Electron Proton

Macroparticles per bunch 1 × 106 1 × 106

Number of grids (H/V) 512/512
Grid size (H/V) (μm) 10/6
Number of slices per bunch 20 5

FIG. 6. Evolution of the horizontal centroid (a) and size (b) of the proton and electron bunches in different collision modes.
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(ξe ¼ 0.054), and the instability disappears when the
frequencies are separated (ξe ¼ 0.13). From the perspec-
tive of the electron beam, the resonance occurs between
νe ¼ 0.58 and νeffp ¼ 0.389. From the proton beam per-
spective, the resonance occurs between νp ¼ 0.315 and
νeffe ¼ 0.633. These two perspectives are actually equiv-
alent, and they both correspond to the resonance
of N1ν2 þ N2ν1 ∼ integer.
In order to obtain the dipole instability region in the 3e vs

5p mode, the nominal tunes of the electron and proton
beam are scanned in steps of 0.0025, and the maximum
value of the imaginary part of the eigentunes is plotted in
Fig. 9. Here, to consider the synchrotron oscillation and the
hourglass effect in the matrix model, Nr and Ns are set to 5
and 33, respectively. It can be observed that the current
tunes are located in a dipole instability region.

According to the instability region shown in Fig. 9, the
instability can be avoided by moving νe to the area between
the instability region associated with the synchrotron oscil-
lation and the central instability region or to the area greater
than 0.61, but the simulation results show that the beam does
not become stable until increasing νe to 0.63. The reason for
the discrepancy between thematrix results and the simulation
results should be that the coherent frequency of the electron
bunch is a fixed value in thematrixmodel, while the coherent
frequency in the simulation is actually within a certain
frequency range similar to Fig. 5(a). Through the spectrum
of the electron bunch centroid, it can be concluded that the
horizontal ξe is in the range of [0.04, 0.09]. In order to
calculate the influence of the electron coherent spectrum
width on the area of the instability region by the matrix
model, the values of the imaginary part of the eigentunes in
the above range of ξe are projected on the νe axis using the
data from the bottom figure in Fig. 4, and the results are
shown in Fig. 10. It can be observed that instability occurs at
νe ¼ 0.61 and νe ¼ 0.62, which is consistent with the results
observed in the simulations.
The above simulations show that asymmetric collision

may destabilize the beams that are stable in symmetric
collision mode and adjusting the nominal tunes is an
effective way to avoid resonance.

IV. BEAM-BEAM LIMIT

In order to study the influence of asymmetric collision
on the beam-beam limit, several simulations are performed
in 1e vs 1p and 4e vs 7p modes with different bunch
intensities while keeping other parameters constant, and the
beam-beam limit is discussed by the luminosity relative
degradation, which is given by

FIG. 7. Evolution of the luminosity in different collision modes.

FIG. 8. The real part of the horizontal eigentunes in the 3e vs 5p mode. The matrix model is used to scan ξe in steps of 0.002 without
considering the synchrotron oscillation and the hourglass effect. ξp is fixed at 0.004. (a) Rotating electron bunches in the matrix model.
(b) Rotating proton bunches in the matrix model.
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DL ¼ −
Lfinal − Linit

Linit
; ð22Þ

where Linit is the average luminosity of the 100th to 300th
turns, Lfinal is the average luminosity of the last 200 turns.
The first 100 turns are ignored to avoid errors introduced by
large luminosity oscillations at the beginning of the
collision.
For asymmetric collision, the sum of the luminosity

acquired after one turn of all bunches in a beam is defined
as the beam luminosity. Since the number of turns of the
electron and proton bunches in asymmetric collisions is
different, the choice of simulation turns in the 1e vs 1p

mode is important for a fair comparison between the 1e vs
1p mode and the 4e vs 7p mode. When the beams are
stable, the main contribution to the luminosity degradation
is the increase of proton bunch size, so in this case, one
should let the proton beams in both modes rotate the same
number of turns for comparison. In contrast, when the
beams are unstable, the instability dominates the degrada-
tion of luminosity. Therefore, letting the electron or proton
beam rotate the same number of revolutions is fine.
In Fig. 11, 5 × 104 superperiods are simulated in the 4e

vs 7p mode and 20 × 104 turns in the 1e vs 1p mode, and
DL is calculated from the luminosity of the proton beam.
Figure 11(a) shows the effect of increasing electron bunch
intensity on the DL value. In the process of increasing the
electron bunch intensity from 0.1Ne0 to 4Ne0 , the electron

FIG. 9. The maximum value of the imaginary part of the
eigentunes as a function of the horizontal νe and νp in the 3e vs 5p
mode. ξe and ξp are 0.088 and 0.004, respectively. The cross
indicates νe ¼ 0.58, νp ¼ 0.315.

FIG. 10. Projection of the maximum value of the imaginary part
of the eigentunes corresponding to ξe on the νe axis in the 3e vs
5p mode.

FIG. 11. DL value as a function of electron bunch intensity (a) and proton bunch intensity (b) in 1e vs 1p and 4e vs 7p modes. Ne and
Np are the numbers of particles in each electron and proton bunch, respectively. Ne0 and Np0

are the design parameters that have been
listed in Table I.

ASYMMETRIC BEAM-BEAM EFFECT STUDY … PHYS. REV. ACCEL. BEAMS 26, 011001 (2023)

011001-9



and proton beams are always stable in both collision
modes, and there is no change in the electron bunch size,
while the proton bunch size keeps increasing, which is the
main source of luminosity degradation. The simulation
results show that the design intensity of the electron bunch
can continue to increase without considering other effects.
The growth of the proton bunch size can be suppressed by
methods such as beam cooling to achieve higher luminos-
ity. When Ne is less than or equal to 2Ne0 , there is less
luminosity degradation in the 4e vs 7p mode compared to
the symmetric collision mode.
The DL values obtained from the simulation at different

proton bunch intensities are shown in Fig. 11(b). At some
intensities, the two beams are always unstable within the
preset number of turns, so more turns are simulated until
the two beams reach equilibrium, at which point the DL
value is represented by a hollow circle (1e vs 1p) or hollow
square (4e vs 7p).
When the proton bunch intensity decreases from the

design value Np0
, there is a significant luminosity degra-

dation in the 4e vs 7p mode in the range of 0.4–0.9Np0
, but

not in the symmetric mode. Through the evolution of the
bunch centroid and size, the beams show similar quadru-
pole instability in the horizontal direction within the above
intensity range. To determine whether there is an instability
region near the design tunes, the nominal tunes of the
electron and proton beam were scanned. Taking the case of
Np ¼ 0.6Np0

as a typical example, the DL values from the
self-consistent simulation are shown by different colors in
Fig. 12. The arrows in Fig. 12 indicate the dipole and
quadrupole instability regions obtained by analyzing the
bunch states. It can be observed that the design tunes are
located in a quadrupole instability region. Keeping the
horizontal nominal tune of the proton beam constant, the
simulation results of scanning the proton bunch intensity

and the horizontal nominal tune of the electron bunch are
shown in Fig. 13. The scan step is 0.01, and the horizontal
tune of the proton beam is 0.31 for the convenience of
scanning. The region where the luminosity appears to be
significantly degraded is the quadrupole instability region.
It can be observed that the quadrupole instability region is
shifting to the right as the proton bunch intensity decreases.
Based on the above results, the process of instability

occurring in the 4e vs 7p mode when the proton intensity
decreases fromNp0

can be explained visually using Fig. 14.
When the proton intensity Np is equal to Np0

, the quadru-
pole instability region is indicated by the blue area, which is
on the left side of the nominal tunes ν1, and the beams are
stable at this time. As Np decreases, the quadrupole
instability region shifts to the right. When Np is in the

FIG. 12. DL value as a function of the horizontal νe and νp in
the 4e vs 7p mode. The cross indicates νe ¼ 0.58, νp ¼ 0.315.

FIG. 13. DL value as a function of the horizontal νe and proton
bunch intensity in the 4e vs 7p mode.

FIG. 14. Schematic diagram of the resonance region and
measures for compensating the nominal tune.
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range of 0.4–0.9Np0
, ν1 is located in the quadrupole

instability region, and the beams become unstable, as
shown by the orange area. When Np is in the range of
0.1–0.3Np0

, the quadrupole instability region no longer
covers ν1, and the beams return to stability. In order to keep
the nominal tune ν1 out of the quadrupole instability region
when Np is in the range of 0.4–0.9Np0

, the horizontal
nominal tune of the electron beam is compensated by a
value equal to the change of coherent tune due to the
decrease of the proton beam intensity, and the nominal tune
after compensation is denoted by ν2. This process is shown
by the red arrow. In addition, attempts are made to avoid
instability by compensating for the horizontal nominal tune
of the proton beam, as shown by the green arrow and ν3.
The values of νe and νp after compensation are listed in

Table III. The DL values using the compensated νe are
shown as red stars in Fig. 11(b), indicating that the
luminosity degradation is significantly reduced after the
νe is compensated. The bunch size data show that insta-
bility does not appear. The green triangles in Fig. 11(b)
represent the DL values after compensating for νp.
Although the effect is not as good as compensating for
νe, compensating for νp still reduces the luminosity
degradation and stabilizes the beams in the intensity range
of 0.4–0.9Np0

.
When the proton bunch intensity increases from the

design value Np0
to 1.5Np0

, there is significant luminosity
degradations in both collision modes and dipole instability
appears in the horizontal direction. The beam-beam param-
eter and nominal tune of the electron beam in the horizontal
direction are scanned using the matrix method, and the
scanning results are shown in Fig. 15. When the beam-
beam parameter of the electron beam is increased to about
0.14, that is, the proton bunch intensity is 1.59Np0

, the

nominal tune enters the dipole instability region associated
with the synchrotron oscillation, and dipole instability
appears, which is consistent with the simulation results
with a small deviation.

V. IMPACT OF A RAPID DISTURBANCE

The eRing and pRing of EicC may adopt a full-energy
injection scheme, so the injection kicker may rapidly and
drastically change the orbit of a bunch, resulting in an offset
between the transverse position of the bunch at the collision
point relative to its ideal position. When a bunch has a
transverse offset at the collision point, it will show coherent
motion and may become unstable. In order to study the
impact of such kind of offset collision in symmetric and
asymmetric collision modes, simulations are performed
without considering the intervention of the feedback
system. A horizontal offset Δx is added to all particles
in the bunch generated at the collision point at the
beginning of the simulation. For the electron bunch, even
if its horizontal offset reaches 15σx, the synchrotron
radiation will still damp its coherent oscillation, and the
luminosity will return to approximately the same value
without the offset, as shown in Fig. 16. Therefore, we only
study the case where the proton bunch has a horizontal
offset.
In the 1e vs 1p mode, the proton beam becomes unstable

when Δx increases to 0.4σx. The orange lines in Fig. 17

FIG. 15. The maximum value of the imaginary part of the
eigentunes as a function of the horizontal νe and ξe in 1e vs
1p (top) and 4e vs 7p (bottom) modes. νp and ξp are 0.315 and
0.004, Nr and Ns are 5 and 33.

FIG. 16. Luminosity for various horizontal offsets Δx of the
electron beam. In the 4e vs 7p collision mode, all four electron
bunches have the same Δx.

TABLE III. The horizontal tunes after compensation.

Np=Np0
0.4 0.5 0.6 0.7 0.8 0.9

νe 0.6064 0.602 0.5976 0.593 0.5888 0.5844
νp 0.42 0.39 0.38 0.3527 0.335 0.3227
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show the evolution of the luminosity and the centroid of the
proton bunch in this collision mode. As Δx increases, the
coherent motion of the displaced proton bunch becomes
stronger without any sign of decoherence. In the case when
only one proton bunch is displaced in the 4e vs 7p mode,
the instability threshold and luminosity are higher than that
of the 1e vs 1p mode, as shown by the blue lines in Fig. 17.
When Fourier spectrum analysis is performed on statistical
data such as bunch size or emittance of the electron bunch,
the frequencies of 1=7 and its multiples can be observed.
This is because the electron bunch does not encounter
the displaced proton bunch in every turn but collides with it
at a fixed frequency. As the number of displaced proton
bunches in the 4e vs 7p mode increases, the maximum
allowable offset while the beam remains stable decreases.
When all proton bunches are displaced, the maximum
allowable offset is the same as that of the 1e vs 1p mode. It
can be observed from Fig. 17(b) that the decoherence of the
displaced proton bunch is faster in the 4e vs 7p mode than
in the 1e vs 1p mode.
As shown in Fig. 17(b), all simulated offsets of the

displaced proton bunch are large enough to cause instability
in the 1e vs 1p mode. In the 4e vs 7p mode, the displaced
proton bunch also drives the electron bunch and causes
instability, and the electron bunch continues to interact with
other proton bunches. Eventually, the impact caused by the
offset collision is transmitted to all bunches in both rings
after one superperiod. However, the motions of all but the
displaced proton bunch are stable, so the asymmetric
collision mode takes longer than the symmetric collision
mode for all the bunches to become unstable. The more
undisplaced bunches in the beam, the faster the displaced
bunch will be decoherent. Regardless of the collision mode,
if the decoherence time is less than the instability growth

time, the final result is that the instability is suppressed,
otherwise, the instability appears.

VI. CONCLUSION

We developed a linear analysis program and a particle
tracking program to study the asymmetric beam-beam
effect in EicC.
The self-consistent simulations of different collision

modes verify the conclusion in Ref. [4] that the resonances
introduced by the asymmetric collision will lead to insta-
bilities such as dipole instability and quadrupole instability.
These resonances can be avoided by adjusting the nominal
tunes, but if the beam-beam parameter is large or the
resonance regions are dense, the nominal tunes adjustment
may fail, and then the collision mode or beam parameters
have to be changed.
The luminosity degradation at different bunch intensities

in 1e vs 1p and 4e vs 7p modes indicate that the same
luminosity can be achieved when the beams are stable in
both collision modes. In the 4e vs 7p mode, instability is
observed when the proton beam intensity decreases from
the nominal value to a certain range. This means that
although the beam is stable at the design parameters,
instability may occur if the coherent frequency is shifted
due to particle loss or other reasons. Therefore, when
choosing the nominal tunes, in addition to avoiding the
resonance region caused by asymmetric collision, a certain
margin should be reserved to deal with the potential
instability.
After adding a horizontal offset to the bunch to

introduce coherent motion, the simulation results show
that for a proton beam with weak radiation damping, the
decoherence time of the displaced bunch is shorter in the

FIG. 17. The orange color represents the 1e vs 1p collision mode. The blue, green, and red colors represent that 1, 2, and all 7 proton
bunches are displaced in the 4e vs 7p collision mode, respectively. (a) Luminosity for various horizontal offsets Δx of the proton beam.
(b) Evolution of the centroid of the displaced proton bunch for various horizontal offsets Δx.
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asymmetric collision mode than in the symmetric collision
mode. The more undisplaced bunches in the beam, the
faster the displaced bunch will be decoherent.
In conclusion, when only the beam-beam effect is

considered, the simulation and calculation results in this
paper show that the asymmetric collision mode is prom-
ising for EicC.

ACKNOWLEDGMENTS

Thank the support from the National Science Fund
for Distinguished Young Scholars (No. 11825505),
the National Key R&D Program of China (Grant
No. 2019YFA0405400), and the National Natural
Science Foundation of China (No. 12005274).

[1] D. P. Anderle, V. Bertone, X. Cao, L. Chang, N. Chang, G.
Chen, X. Chen, Z. Chen et al., Electron-ion collider in
China, Front. Phys. 16, 64701 (2021).

[2] J. C. Yang et al., High Intensity Heavy Ion Accelerator
Facility (HIAF) in China, Nucl. Instrum. Methods Phys.
Res., Sect. B 317, 263 (2013).

[3] K. Hirata and E. Keil, Barycentre motion of beams due to
beam-beam interaction in asymmetric ring colliders, Nucl.
Instrum. Methods Phys. Res., Sect. A 292, 156 (1990).

[4] Y. Hao, V. N. Litvinenko, and V. Ptitsyn, Beam-beam
effects of gear changing in ring-ring colliders, Phys. Rev.
ST Accel. Beams 17, 041001 (2014).

[5] J. Qiang, M. A. Furman, and R. D. Ryne, A parallel
particle-in-cell model for beam-beam interaction in high
energy ring colliders, J. Comput. Phys. 198, 278 (2004).

[6] Y. Zhang, K. Ohmi, and L. Chen, Simulation study of
beam-beam effects, Phys. Rev. STAccel. Beams 8, 074402
(2005).

[7] T. Pieloni, A study of beam-beam effects in hadron
colliders with a large number of bunches, Ph.D. thesis,
Ecole Polytechnique, Lausanne2008.

[8] cuFFT Library User’s Guide (2022).
[9] CUDA C++ Programming Guide (2022).

[10] Y. K. Batygin, Particle-in-cell code beampath for beam
dynamics simulations in linear accelerators and beamlines,
Nucl. Instrum. Methods Phys. Res., Sect. A 539, 455
(2005).

[11] W. JOHO, Representation of beam ellipses for transport
calculation, Paul Scherrer Institute, Technical Report
No. SIN-REPORT TM-11-14, 1980.

[12] K. Hirata, Analysis of Beam-Beam Interactions with a
Large Crossing Angle, Phys. Rev. Lett. 74, 2228 (1995).

[13] K. Hirata, H. Moshammer, and F. Ruggiero, A symplectic
beam-beam interaction with energy change, Part. Accel.
40, 205 (1993).

[14] M. A. Furman, Hourglass effects for asymmetric colliders,
in Proceedings of the 1991 Particle Accelerator
Conference, San Francisco, CA, 1991 (IEEE, New York,
1991), p. 422.

[15] K. Ohmi, M. Tawada, Y. Cai, S. Kamada, K. Oide, and J.
Qiang, Luminosity limit due to the beam-beam interactions
with or without crossing angle, Phys. Rev. ST Accel.
Beams 7, 104401 (2004).

[16] C. K. Birdsall and D. Fuss, Clouds-in-clouds, clouds-in-
cells physics for many-body plasma simulation, J. Comput.
Phys. 135, 141 (1997).

[17] K. Ohmi, Simulation of beam-beam effects in a circular
eþe− collider, Phys. Rev. E 62, 7287 (2000).

[18] S. White, X. Buffat, N. Mounet, and T. Pieloni, Transverse
mode coupling instability of colliding beams, Phys. Rev.
ST Accel. Beams 17, 041002 (2014).

[19] X. Buffat, Transverse beams stability studies at the Large
Hadron Collider, Ph.D. thesis, Ecole Polytechnique,
Lausanne (2015).

ASYMMETRIC BEAM-BEAM EFFECT STUDY … PHYS. REV. ACCEL. BEAMS 26, 011001 (2023)

011001-13

https://doi.org/10.1007/s11467-021-1062-0
https://doi.org/10.1016/j.nimb.2013.08.046
https://doi.org/10.1016/j.nimb.2013.08.046
https://doi.org/10.1016/0168-9002(90)91744-V
https://doi.org/10.1016/0168-9002(90)91744-V
https://doi.org/10.1103/PhysRevSTAB.17.041001
https://doi.org/10.1103/PhysRevSTAB.17.041001
https://doi.org/10.1016/j.jcp.2004.01.008
https://doi.org/10.1103/PhysRevSTAB.8.074402
https://doi.org/10.1103/PhysRevSTAB.8.074402
https://doi.org/10.1016/j.nima.2004.10.029
https://doi.org/10.1016/j.nima.2004.10.029
https://doi.org/10.1103/PhysRevLett.74.2228
https://doi.org/10.1103/PhysRevSTAB.7.104401
https://doi.org/10.1103/PhysRevSTAB.7.104401
https://doi.org/10.1006/jcph.1997.5723
https://doi.org/10.1006/jcph.1997.5723
https://doi.org/10.1103/PhysRevE.62.7287
https://doi.org/10.1103/PhysRevSTAB.17.041002
https://doi.org/10.1103/PhysRevSTAB.17.041002

