
Multivariant spatial and geometric interpolation of field maps through
model order reduction

X. Du * and L. Groening
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt D-64291, Germany

(Received 15 February 2022; accepted 17 November 2022; published 7 December 2022)

Complex three-dimensional field maps can be efficiently denoised and compressed in data volume by
high order single value decomposition. Extension of the method to inter/extrapolation and determination of
basis function representation is reported here. Inter/extrapolation of denoised and compressed maps is
applied to spatial coordinates and especially to the parameters defining the geometry of devices creating
such maps. It significantly increases the efficiency of the provision of compact and noise-free maps
combined with high resolution. The method is illustrated by creating corresponding maps for rf cells of
radio-frequency quadrupoles.
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I. INTRODUCTION

The first conceptual design of beam dynamics of modern
accelerators is done through linear beam optics. It provides
basic parameter lists and quantifies the orders of magnitude
of an accelerator project. Further steps involve nonlinear
effects on the beam. These are from beam self-forces or
from external fields imposed by rf cavities, electrostatic
optics elements, or by magnets. Such fields determine the
achievable beam quality as well as loss scenarios. Precise
knowledge of these issues is essential for further planning
of the overall project resources as well as the range of
applications of the respective machine. This applies espe-
cially to circular machines. From first principles, non-
linearities from external fields can be quantified to any
desired precision through detailed design and machining of
the devices which create them, in combination with high-
resolution three-dimensional (3D) field map calculations
(sometimes referred to as “transfer map” calculations).
However, the required resources increase with the

aimed precision. In practice, both are to be balanced with
each other. Field map simulations are prone to numerical
noise and require large data volumes. Unfortunately, the
impact of noise on the high order field components
increases with the order of the latter. A distinction of
physical content from noise is difficult if not impossible
especially at high orders.

The issue of noise reduction and compression of essen-
tial data volume has been addressed recently through high
order single value decomposition (HOSVD) of 3D field
maps [1] (“high order” is also referred to as “high rank” in
related literature; here it does not refer to convergence
order). Using the example of 3D electric field maps of a
drift tube linac (DTL), the data volume was reduced by
4 orders of magnitude with simultaneous elimination of
noise from numerics and/or finite mesh size. Such tech-
niques can be classified as model order reduction.
There is further potential for the drastic reduction of

efforts to provide noise-free and precise field maps. First,
different classes of beam optical elements create different
classes of field maps as for instance the classes of octupole
magnets, rf cells of a DTL, a radio-frequency quadrupole
(RFQ), an rf antenna, or rf coupling loop. The element
(map) of each class is defined by a set of parameters.
However, all elements of the same class have many
properties that are intrinsic to this special class. Once some
few “probe” elements of one class have been fully
characterized by a field map, these intrinsic properties
of this special class are known. Other elements can be
characterized to the same detail with much less efforts since
intrinsic properties are not redetermined but readapted.
Determination of intrinsic class properties requires the bulk
of resources as CPU time and storage space. The latter is
not needed to reconfirm intrinsic class properties.
Another contribution to reduce efforts for provision of

compact and noise-free field maps is through further
augmenting the efficiency of interpolation. Particle-in-cell
(PIC) simulations include huge amounts of trilinear and
tricubic interpolations. Their efficiency dominates the
simulation speed. Most PIC codes use conventional inter-
polation methods, i.e., picking a few surrounding mesh
nodes from linearized data. Some codes may involve
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special mathematical algorithms to perform interpolations
without revealing them. Finally, efficiency can be aug-
mented by high precision approximation of the maps
through analytic expressions.
Codes for the geometry design of RFQs or DTLs often

include algorithms that generate denoised field maps
from geometric parameters. The most known ones are
PARMTEQ [2] and LIDOS [3]. These codes gradually vary
these parameters such that they match the actual beam
energy and emittance at the respective rf cell. A complete
cavity is accordingly modeled by the sequence of all cells.
RFQ design codes increasingly base on modern coding
methods allowing for more detailed physics simulations.
The bunch of macroparticles is tracked through the cells
and statistics of the beam (size, energy, emittance, particle
loss, etc.) is recorded for later analysis. This process is
iterated until an acceptable solution has been found.
Accordingly, the geometric parameters of the RFQ electro-
des are determined to produce proper field maps. The
design of other types of elements follows similar processes.
During overall optimization of such processes, fast avail-
ability of high quality field maps for arbitrary cell param-
eters is required.
In the case of RFQs, the on-axis potential can be

expanded as infinite Fourier-Bessel series in cylindrical
coordinates. Historically, the first RFQs were generated
using the two-term potential to calculate particle trajecto-
ries and these RFQs worked well. However, performances
partially did not fully meet expectations w.r.t. beam trans-
mission and output beam quality. A major contributor was
the truncation of the field equations after two terms.
Developers added six more terms (and later two more
for off-axis trajectories). The eight-term potential field
description is widely used and trusted for the case of
sinusoidal vane modulation [4].
Solving the Laplace equation takes into account the real

geometry of the vanes, which is determined by several
parameters. However, this method delivers inaccurate
descriptions of the fields near the boundary surfaces.
Surface-based fitting methods have been studied as sol-
utions to obtain accurate transfer maps and are successfully
applied to magnets [5–8] and rf cells [9]. The error close to
boundaries and effects from numerical noise can be over-
come by fitting field data on a boundary surface far from
the beam axis and continuing inwards using Maxwell’s
equations. The coefficients of expansion can be determined
by the projection of the numerical solution. Codes use a
number of predefined lookup tables for predefined geom-
etries. Coefficient values for any rf cell are calculated by
interpolation [10].
Fitting of the cell geometry by the least-square method

results into an accuracy of several percent, from which in
turn the accuracy of beam dynamics simulations is suffer-
ing [11,12]. The accuracy is especially poor outside the
cylinder of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< a, which may still be populated by

considerable fractions of the beam. One alternative is to
simulate numerically the fields at each iteration, being time
consuming and needing a lot of memory to store the mesh
for several cells.
Similar needs for dealing with high order, aligned, and

prestacked data occur in other research fields such as
plasma modeling or seismic modeling for instance.
HOSVD has been developed as a mathematical tool to
perform operations with high order tensors that represent
these data. It is applied in computer graphics [13], machine
learning [14], scientific computing [15], and signal process-
ing [16]. The technique uses multilinear generalization of
matrix SVD to high order tensors, and it provides for
adequate preservation of the data essentials through the
representation of a tensor through appropriate bases [17].
This paper is organized as follows: in the next section,

HOSVD is applied to a set of complex RFQ potential maps
together with illustrating the proposed multivariant inter-
polation and fitting algorithm. The latter is applied to
decomposed and compressed data. The third section is on
systematic benchmarking of these results to field maps
obtained from direct simulations w.r.t. accuracy and effi-
ciency. The paper closes with summarizing conclusions.
Mathematical details on the method of inter/extrapolation
and fitting are given within the appendixes.

II. DEMONSTRATION OF THE METHOD WITH
COMPLEX RFQ POTENTIAL MAP

This section illustrates the complete process of HOSVD
and subsequent algorithms using an explicit example.
Notations being used throughout the paper are borrowed
to a large extent from tensor algebra and will be introduced
briefly at first use. The first subsection introduces a set of
complex potential maps as dummy data. The second
subsection applies HOSVD, compression, and noise reduc-
tion (trimming) to the data, applying a process described in
detail in [1] including the discussion of the related
consequences. Afterward, multivariate interpolation and
fitting algorithms are presented which use decomposed
and trimmed data. The basic features of interpolation and
extrapolation are presented in Appendix A.

A. Field map data of RFQ cells

This section introduces a set of complex potential maps
of an RFQ. It serves as preparation of benchmarking of
algorithms for inter/extrapolation with those for obtaining an
approximate basis function expression of the map. The
algorithms are also applicable to other types of transfer maps
as quadrupole magnets and DTLs, as long as their character-
istics are determined by a finite number of geometric
parameters. The RFQ cell is chosen since its structure is
more complex w.r.t. a DTL cell. Additionally, the field
outside the aperture needs partially to be considered within
the calculations.
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RFQ cavities are commonly used at hadron linear
accelerators. Various geometries of electrodes have been
developed to meet a wide range of beam dynamics
specifications. Beam transmission through an RFQ is
calculated with dedicated simulation codes and precise
knowledge of the 3D potential distribution between the four
vanes is essential. The quadrupolar electric field varies as
cosðωtÞ and this time dependence is not further considered
in this paper.
Initially, the electric potential inside of an RFQ cell is

simulated using CST-MWS [18]. In exploiting symmetry,
just one-quarter of the RFQ cell needs to be simulated.
Since the aperture is much smaller than the rf wavelength,
electrostatic approximation is applied. Although the cell
length and other geometry parameters change gradually
along the RFQ, the field analysis is done assuming identical
cells along a fully periodic cavity. The potential on the vane
tips is set to �1 V.
As shown in Fig. 1, the data volume is represented by the

blue box with a being fixed to 1.0 mm as minimum
aperture radius of the cell. The simulated volume is one
quarter within x ¼ ½0; a�, y ¼ ½0; a�, and z ¼ ½0; l�. Here x,
y, and z refer to the horizontal, vertical, and longitudinal
coordinates, respectively, and l to the rf cell length. In
general, this volume includes the bulk of beam particles,
and usually, there is a difference of a few percent in
transmission efficiency depending on whether particles
outside that volume are being considered lost [19].
The simulated field map is projected onto a regular

rectangular grid using appropriate interpolation. During
simulation and projection, unavoidable discretization errors
occur from the finite resolution of the mesh grids. Those
errors will be treated later through HOSVD. For each
cell, the geometry is completely determined by the three
parameters m, r, and l. The field properties have been

calculated for many rf cells within a 3D array ofm, r, and l.
Six sweep steps have been applied for each parameter, thus
6 × 6 × 6 rf cells have been simulated in total. To each rf
cell 201 × 41 × 41 (long. × hor. × ver.), mesh nodes have
been assigned. The entire potential map set is stored as a
sixth-order tensor A ∈ R6×6×6×201×41×41.
RI1×I2×…×IN specifies the dimension of A and In is the

dimension of the n-mode vector in A. A½i1; i2; i3; i4; i5; i6� is
the scalar potential value being stored at data point
ði1; i2; i3; i4; i5; i6Þ, thus in ≤ In. Accordingly, a matrix
U ∈ R2×3 of two rows and three columns is a second-
order tensor and U½i; j� is the jth element in the ith row.
Each row is a two-mode vector with three dimensions
ðI2 ¼ 3Þ and each column is a one-mode vector with two
dimensions ðI1 ¼ 2Þ. The concept of an n-mode vector is
explicitly explained in [17].
The numbers of entries in A along each mode arem step,

r step, l step, z step, y step, and x step. Accordingly, each
scalar potential value is uniquely labeled by six numbers as
listed in Table I.

B. HOSVD and trimming

Applying the standard HOSVD procedure [17] onto the
sixth-order tensor A delivers its decomposed form

A¼S×1Uð1Þ×2Uð2Þ×3Uð3Þ×4Uð4Þ×5Uð5Þ×6Uð6Þ; ð1Þ

where S ∈ R6×6×6×201×41×41 is called the core tensor or
coefficient tensor. UðnÞ ∈ RIn×In includes singular vectors,
i.e., a set of horizontal vectors being stacked vertically.UðnÞ

satisfies UðnÞ−1 ¼ UðnÞT , meaning that these singular vec-
tors are normalized and orthogonal to each other. The
operator ×n, refers to the n-mode product, being the key to
HOSVD explicitly explained in [17] and briefly introduced
in [1]. The explicit expression for each element in A is an
expansion of mutually orthogonal first-order tensors

A½k1; k2;…; k6� ¼
XI1
i1¼1

XI2
i2¼1

…
XI6
i6¼1

S½i1; i2;…; i6�

×Uð1Þ½i1; k1�Uð2Þ½i2; k2�…Uð6Þ½iN; k6�:
ð2Þ

FIG. 1. A typical RFQ cell comprises one-half of an oscillation
of the sinusoidal vane tip. a: minimum distance from the axis,
ma: maximum distance from the axis, m: modulation factor, l: rf
cell length, r: vane tip radius.

TABLE I. Mesh grid of the discrete 6D potential. x, y, z: spatial
positions, r, l, m: geometry parameters of rf cell vanes.

Label Parameter Mesh nodes Range

m Modulation factor I1 ¼ 6 1.5–2.5
r Vane tip radius I2 ¼ 6 0.6–1.6 mm
l Cell length I3 ¼ 6 5–20 mm
z z mesh nodes I4 ¼ 201 0–l
y y mesh nodes I5 ¼ 41 0–3 mm
x x mesh nodes I6 ¼ 41 0–3 mm
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The method also delivers singular values for each
singular vector thus reflecting the vectors’ weights.
λðnÞ ∈ RIn denotes the array of singular values for UðnÞ.
The singular vectors in UðnÞ are sorted according to their
singular values, such that the most relevant singular vectors
can be identified for further use.
For the example of an RFQ cell, the highest singular

values for each n-mode obtained after decomposition are

λð1Þ ¼ ð46.180; 1.2870; 0.0006; 0.0002;…Þ
λð2Þ ¼ ð47.411; 0.0554; 0.0002; 0.0001;…Þ
λð3Þ ¼ ð47.425; 0.0371; 0.0002; 0.0001;…Þ
λð4Þ ¼ ð1273.8; 316.10; 0.1255; 0.0896;…Þ
λð5Þ ¼ ð291.95; 32.394; 0.0135; 0.0001;…Þ
λð6Þ ¼ ð291.95; 32.394; 0.0135; 0.0001;…Þ: ð3Þ

First, denoising and compression are applied to the
decomposed tensor A of Eq. (1), hence elimination of
redundancy, unphysical fluctuations, and noise. The algo-
rithm neglects low-valued singular vectors (singular vectors
corresponding to low singular values) by preserving just a
few high-valued singular vectors. This process, being one
case of model order reduction, is called trimming of S and it
is explained in detail in [1], where it has been successfully
applied to a set of electric 3D field maps of DTL cells. The
decomposed tensor described by Eq. (1) can be trimmed to

A ≈ s ×1 uð1Þ ×2 uð2Þ ×3 uð3Þ ×4 uð4Þ ×5 uð5Þ ×6 uð6Þ; ð4Þ

where uðnÞ ∈ Rjn×In and jn < In is the chosen threshold for
the n mode. s ∈ Rj1×j2×…×j6 is the preserved smaller core
tensor. Dropping low single value data will reduce the data
volume from

Q
6
n¼1 In to

Q
6
n¼1 jn and increase the data

quality through reduction of redundancy, unphysical fluc-
tuations, and noise. The values of jn depend on the
threshold. Section II of [1] describes the method of proper
threshold determination. In most cases, less than 10% of the
singular vectors are needed to preserve the physical content
of the data, which in turn implies that for an Nth-order
tensor of about ð0.1ÞN of the data is preserved and others
are considered as redundancy, unphysical noise, or high
frequency terms.
In general, it is not straightforward to distinguish

between the latter, and literature discussing this issue is
sparse. Their only common feature is representation by
low-valued singular vectors. Redundancy has low singular
values as the variation of data distributions hardly manifests
along the new axis defined by these singular vectors. Noise
delivers low singular values due to its randomness. Finally,
high frequency terms of the data intrinsically result in low
singular values. Theoretical analysis is missing for the time
being and in practical applications, these three quantities

are usually discarded together. The numerical experiment
reported in [1] confirms that for a typical field map,
properly trimmed data have much less deviation from
perfect analytical solution w.r.t. untrimmed data.
A good qualitative indicator for a noise-dominated sin-

gular vector is its smoothness. Figure 2 plots singular vectors

λð4Þ1 to λð4Þ5 ofUð4Þ as functions of the z step. The first four are
very smooth while the fifth features obvious random
fluctuations. Its singular value is more than 6 orders of

magnitude smaller than the singular value of λð4Þ1 and 2

orders of magnitude smaller than the one of λð4Þ4 . Strong
fluctuations together with very small relative singular values
identify noise-dominated singular vectors. Instead, smooth
singular vectors with small relative singular values identify
vectors corresponding to physical higher order terms.
The thresholds Cn have been chosen such that the

singular values of the omitted singular vectors are at least
4 orders of magnitude lower than the highest one, assuring
that the physical data content is preserved sufficiently well.
Accordingly, j1 ¼ j2 ¼ j3 ¼ 2; j4 ¼ j5 ¼ j6 ¼ 3, is
trimmed to a much smaller tensor s ∈ R2×2×2×3×3×3 by
deleting all elements whose entries are out of range
1 ≤ in ≤ jn. UðnÞ is trimmed to uðnÞ by deleting all rows
below jthn , thus uð1Þ ∈ R2×6, uð2Þ ∈ R2×6, uð3Þ ∈ R2×6,
uð4Þ ∈ R3×201, uð5Þ ∈ R3×41, and uð6Þ ∈ R3×41. As an illus-
tration, Fig. 3 shows the distribution of Uð2Þ and how it is
trimmed to uð2Þ.
Binary storage of the original data A takes 240 MB of

storage volume. Instead, storage of the compressed and
denoised data (s and uðnÞ) requires just 10 kB. Furthermore,
the algorithm significantly reduces the amount of noise
and preserves a smooth distribution with less than 1% of
deviation from the original data. Hence, compression and
noise reduction have been well achieved. Benchmarking is
skipped for this instance since the method already has been
successfully benchmarked in [1]. The computing process

FIG. 2. Singular vectors λð4Þ1 to λð4Þ5 of Uð4Þ as functions of
the z step.
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has been coded with PYTHON and its source code is shared
on GitHub [20]. An extension of the algorithm will be
introduced in the following section.

C. Further operations on singular vectors:
Inter/extrapolation and curve fitting

Field maps, whether discrete or analytical, are used to
evaluate the field strength at the location of the macro-
particle. Evaluation of field values at arbitrary coordi-
nates involves multivariate approximations. In general,
approximations can be provided through interpolation or
from fitting functions. The fitting function can be
expressed as a product of tensors being sums of products
of univariate functions [21]. Fortunately, Eq. (4) already
presents the data in form of a tensor product. The high-
valued singular vectors being preserved are essentially
smooth and degenerate 1D distributions. Their smooth-
ness is inherited from the intrinsic properties of the
original data.
The good properties of preserved singular vectors in uðnÞ

suggest performing 1D interpolation on them or determi-
nation of 1D fitting functions for them. The expectation is
that once uðnÞ is inter/extrapolated for all n-modes, multi-
variate interpolation can be achieved. Multivariate fitting
will then be achieved accordingly. Figure 4 represents

an illustration using uð2Þ as an example. Both 1D inter/
extrapolation and 1D curve fitting are well studied,
thus the 1D module in PYTHON is applied for establishing
methods to determine potential values at any 6D
coordinate.

1. Interpolation

This section illustrates multivariate inter/extrapolation
using the explicit example treated in the previous section.
The data remain decomposed and the inter/extrapolation
strategy is applied to this decomposed and trimmed data.
Considering a point coordinate ðm0; r0; l0; z0; y0; x0Þ, the
scalar potential value from multivariate interpolation on the
point is written as

fðm0; r0; l0; z0; y0; x0Þ
≈ s ×1 ûð1Þ ×2 ûð2Þ ×3 ûð3Þ ×4 ûð4Þ ×5 ûð5Þ ×6 ûð6Þ; ð5Þ

where ûðnÞ ∈ Rjn×1 is the result of several (jn) 1D inter-
polations on the base set uðnÞ for the nth parameter. The left
plot of Fig. 4 visualizes this process. The 1D interpolation
method is not strictly defined and one may choose linear,
polynomial, or spline functions. Equation (5) decomposes

FIG. 3. Example for a plot of Uð2Þ (left) and uð2Þ (right) as functions of the r step. The vertical axis displays the real values of singular
vector elements. According to Eq. (3), Uð2Þ

3 ∼Uð2Þ
6 correspond to singular values that are at least 4 orders of magnitude lower than the

largest singular value occurring in the two-mode decomposition.

FIG. 4. Interpolation and fitting of preserved singular vectors of uð2Þ. Left: interpolation to r step ¼ 3.5 or r ¼ 1.1 mm. Right:
replacement of singular vectors by smooth and best-fitting functions.
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any multivariate inter/extrapolation problem into several
(
P

N
n¼1 jn) 1D inter/extrapolations.
The interpolation procedure may be applied to x, y, and z

to perform the spatial interpolation. However, applying the
algorithm to geometric parameters instead will deliver the
particular 3D potential map at any value of m, r, and l
within the range of the arrays. For realistic cell-by-cell PIC
simulations, for each iteration, just one 3D field map of one
single cell with specific geometric parameters is required.
Accordingly, the interpolation process is divided into
two steps.
The first step interpolates the geometric parameters m, r,

and l to obtain a lower rank core tensor s0 ∈ R3×3×3

s0 ¼ s ×1 ûð1Þ ×2 ûð2Þ ×3 ûð3Þ: ð6Þ

The 3D potential map F ∈ R201×41×41 for a cell with
parameters m0, r0, and l0 can be easily obtained by

F ≈ s0 ×1 uð4Þ ×2 uð5Þ ×3 uð6Þ: ð7Þ

Equation (7) allows for generating high quality RFQ field
maps from just 10 kB of data with a few lines of code. Field
maps for other beam optics elements can be treated the
same way.
It should be emphasized that the resolution of the output

field file can be adjusted arbitrarily by just resampling uð4Þ,
uð5Þ, and uð6Þ. The method can be implemented into PIC
simulation codes either as a module, or be developed into
an independent, extremely light-weighted field map gen-
eration program. We have realized such a program with
PYTHON as an example and Fig. 5 illustrates the interface.
The source code for the algorithm and the program have
been added to GitHub [20].
Within the second step, a large amount of spatial

interpolations is performed by PIC simulations for the
sequence of specified coordinates, where macroparticles

are located. It is proposed to keep F in the decomposed
form and to perform 3D spatial interpolation as

fðz0; y0; x0Þ ≈ s0 ×1 ûð4Þ ×2 ûð5Þ ×3 ûð6Þ: ð8Þ

Multivariate inter/extrapolation has been well studied since
it comprises a highly relevant mathematical application
[22,23]. However, to the best of our knowledge, the
presented method has not been widely used in PIC
simulations as an alternative to the traditional methods
that have been used for decades. The method’s accuracy
and efficiency will be evaluated in the following section.

2. Fitting

The ultimate solution for inter/extrapolation is finding an
expression that fits best the multivariate data points. As
mentioned in the Introduction, efforts have been made to
find basis representations for some beam optics elements
such as multipole magnets and RFQ cells. The following
describes the construction of basis function representations
of the field, using the decomposed and compressed
numerical field map.
Given that uðnÞ contains different but smooth singular

vectors, it can be fit through some expansion of a few terms
without any inconveniences from overfitting. The issue to
be addressed is what kind of basis and how many terms
are required. Let PðnÞ denote the tn terms basis functions
chosen for the fitting of uðnÞ, then those high value singular
vectors can be fitted by

uðnÞ ≈ KðnÞP̂ðnÞ; ð9Þ

where P̂ðnÞ ¼ PðnÞðXðnÞÞ ∈ Rtn×In are tn terms basis func-
tions projected onto uniform mesh nodes at defined
locations XðnÞ ∈ RIn . The relation tn ≥ jn has to be met
since all singular vectors in uðnÞ are orthogonal. The
coefficients KðnÞ ∈ Rjn×tn can be calculated with the least
square method and the detailed procedure is presented in
Appendix B. By plugging Eq. (9) into Eq. (4), the complete
coefficient tensor S̄ ∈ Rt1×t2×t3×t4×t5×t6 reads

S̄¼ s×1Kð1Þ×2Kð2Þ×3Kð3Þ×4Kð4Þ×5Kð5Þ×6Kð6Þ: ð10Þ

Afterward, the basis function representation of the fitting
Āðm; r; l; z; y; xÞ can be found as a tensor product by
simply replacing P̂ðnÞ in Eq. (9) with their basis function
version PðnÞ

Ā¼ S̄×1Pð1Þ×2Pð2Þ×3Pð3Þ×4Pð4Þ×5Pð5Þ×6Pð6Þ: ð11Þ

Ā is naturally stacked as a tensor product being convenient
for all types of linear operations. By continuously increas-
ing the mesh nodes of P̂ðnÞ, such that In → ∞ for all n

FIG. 5. Illustration of the executable program producing field
maps for typical accelerator elements.
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modes, the discrete basis will turn into basis function
representation as well as the recovered tensor.
There is no special requirement for the choice of PðnÞ.

Depending on the specific data, the fitting accuracy may
improve or the required terms may be reduced by choosing
a suitable basis set of functions according to its character-
istics. For example, the Fourier series is suitable for data
with periodic features. If polynomials are chosen for all
PðnÞ, the mathematical interpretation is identical to tensor
product splines, box splines [24], or multivariate splines
[25] in terms of multivariate polynomial spline approxi-
mation. The fitted multivariate function in this paper
applies to the full data range, instead of limited regions,
being determined by individual local polynomials.
The algorithm is applied to the decomposed and com-

pressed data being produced at the end of Sec. II B.
In that case, PðnÞ are Legendre polynomials which can
be expressed as basis transformation from Maclaurin series
2
666666664

P0ðxÞ
P1ðxÞ
P2ðxÞ
P3ðxÞ

..

.

3
777777775
¼

2
666666664

1 0 0 0

0 1 0 0 ..
.

−1=2 0 3=2 0

0 −3=2 0 5=2

… . .
.

3
777777775

2
666666664

1

x

x2

x3

..

.

3
777777775
;

ð12Þ

with different terms, where PðnÞ
i corresponds to remapping

of Pi−1ðxÞ from range −1 < x < 1 to the range of the
nth variable. The chosen terms for this example are
t1 ¼ t3 ¼ 3, t2 ¼ t4 ¼ t5 ¼ t6 ¼ 4, although a different
basis could have been chosen for each dimension. For
example, along any RFQ cell structure, the potential
distribution along the z axis is periodic, thus a Fourier
expansion should be the most promising to be used as Pð4Þ.
On the other hand, for other cases, the use of Fourier series

representations might impose artificial periodicity. The
coefficient matrix calculated from Eqs. (B1) and (12) is
listed in Table II.
tn is chosen such that 1D fitting of uðnÞ can be calculated

already in advance up to the desired accuracy. In order to
achieve multivariant fitting with an accuracy of better than
1%, the omitted columns within λðnÞKðnÞ are at least 3
orders of magnitude lower than the respective largest
number, e.g., the gray values within Table II are omitted,
meaning t1 ¼ 3 and t3 ¼ 3. For the other dimensions
t2 ¼ t4 ¼ t5 ¼ t6 ¼ 4 and Kð5Þ ¼ Kð6Þ, caused by the
symmetry relating x and y, i.e., rotation of the RFQ cell
by 90° around the z axis followed by swapping x and y
preserves the cell geometry.
It is emphasized that obtaining 1% of accuracy requires

significantly more terms of Legendre polynomials w.r.t. the
number of singular vectors for all n modes. Singular
vectors are revealed from the original data and form an
orthogonal set of base vectors, unlike the terms of the
Legendre polynomial. Each vector k models the most
dominant contribution to the residual deviation left by
the summed models of vectors i < k. Hence, they form a
much better base for the data being considered.
Since all KðnÞ are known, the potential maps can be

expressed by Eq. (11) through the new coefficient tensor
S̄ ∈ R3×4×3×4×4×4. s together with KðnÞ comprise 272 float
numbers being the coefficients of the tensor product of six
sets of Legendre polynomials. A function of all six variants
that models the potential is given at once. The method is
independent of the cell type and can be applied to any class
of maps mentioned in the Introduction. For the special case
of RFQs, trapezoidal modulation has been widely used
recently to improve the shunt impedance, though its
analytical potential formula remains to be determined
[26]. Given that the method described here is not limited
to Fourier-Bessel series and terms, the method is also
applicable to RFQ cells with trapezoidal modulation.

TABLE II. Transformation matrix for each set of basis.

Kð1Þ −4.08 × 10−1 −6.33 × 10−2 1.26 × 10−2 −1.70 × 10−3

−5.22 × 10−2 5.77 × 10−1 −1.11 × 10−1 1.57 × 10−2

Kð2Þ −4.10 × 100 −1.96 × 10−2 1.34 × 10−2 −6.05 × 10−3

−4.27 × 10−1 −4.53 × 10−1 3.02 × 10−1 −1.35 × 10−1

Kð3Þ −4.08 × 10−1 −3.21 × 10−2 4.94 × 10−3 −6.11 × 10−4

−1.43 × 10−2 5.99 × 10−1 −4.00 × 10−2 6.06 × 10−3

Kð4Þ 3.07 × 10−7 1.21 × 10−1 −2.95 × 10−7 −2.47 × 10−2

−7.05 × 10−2 5.33 × 10−7 7.48 × 10−4 −1.94 × 10−8

4.14 × 10−4 0.98 × 10−5 −1.50 × 10−1 5.25 × 10−4

Kð5Þ or Kð6Þ −1.56 × 10−1 3.55 × 10−4 −7.52 × 10−4 −5.84 × 10−4

−1.98 × 10−3 2.56 × 10−1 8.27 × 10−2 −1.50 × 10−3

7.71 × 10−3 7.10 × 10−2 −2.90 × 10−1 −1.68 × 10−1
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With chosen tn, each of the smooth singular vectors can
be fitted by Legendre polynomials of up to four terms. For
better understanding, the final expression for the used data
set can be also expressed through a Maclaurin series

Āðm; r; l; z; y; xÞ

¼
X2
i¼0

X3
j¼0

X2
k¼0

X3
o¼0

X3
p¼0

X3
q¼0

Cijkopqmiljrkzoypxq: ð13Þ

The coefficients Cijkopq can be calculated from S̄ by the
transformation matrix between the Legendre polynomial
and the Maclaurin series, which is stated in Eq. (12).
The peak electric surface field is a crucial rf parameter to

be well considered during the design process of any rf
cavity and especially of RFQs. Each simulation of single
cells provides this scalar together with the 3D potential
map. The database can be established as a third-order tensor
Epeak ∈ R6×6×6. For further use, it can be fitted by a
function Ēpeakðm; r; lÞ, which may provide the highest
surface field together with the 3D potential value according
to the parameters m, r, l. This convenient capability of the
method will enormously increase the efficiency of the
design process. Unlike well-studied surface-based fitting
methods, the present algorithm does not enforce the fitted
map to meet the Laplace equation. Original field maps from
finite element method (FEM) simulations intrinsically
possess this property, such that the fitting function will
satisfy the Laplace equation sufficiently well.
The algorithm paves an alternative path to find a basis

function description of the field. Hence, this approach is
quite distinguished from the methods mentioned in the
Introduction. A considerable advantage rising from
Eq. (11) is that performing any linear operation to the
base PðnÞ is equal to performing it to the distribution Ā.
Commonly used linear operators include inter/extrapola-
tion, integration, and differentiation.
For instance, the partial differential of a multivariate

distribution with decomposed form can be directly trans-
formed into its gradients with minor effort. This advantage
is based on an important property of linear operators: if a
function is expressed as a tensor product of base functions,
then the linear operator applied to these functions is
equivalent to applying it to its base functions. Here for
instance, the electric field components Ex=Ey=Ez are easily
obtained by replacing Pð6Þ=Pð5Þ=Pð4Þ with their derivatives.
This is straightforward through representation of the
potential map Ā by Eq. (11). Choosing smooth basis
functions has the advantage of differentiability at the
expense that all basis functions need to be evaluated,
which, however, for the reduced model has little impact
since the number of basis functions is rather small.
Section III B compares efficiencies of interpolation and
basis function evaluation.

III. BENCHMARKING OF
INTER/EXTRAPOLATION AND

FITTING ALGORITHM

Benchmarking of the algorithm has been done w.r.t.
two important figures of merit, namely accuracy and
efficiency. Unfortunately, they are coupled to each other,
and generally, the optimization of one is at the expense of
the other.
Accuracy of fitting can be increased by including addi-

tional terms, thus reducing efficiency drastically since an
increased amount of computing power is consumed. For a
given method as PIC, it is up to the programmer to define
the proper balance. The new algorithm shall improve this
trade-off, i.e., while keeping the efficiency, the accuracy
can be improved or vice versa.

A. Accuracy

In the following, the map of the cell with parameters
m ¼ 2, r ¼ 1.1, l ¼ 14 is simulated for comparison with
the map generated from parameter inter/extrapolation
[Eq. (5) with coordinates ð2; 1.1; 14; ½0; l�; ½0; 2�; ½0; 2�Þ].
These parameters refer to a cell in the middle of the RFQ.
The volume of the original potential is expanded to
x ¼ ½0; 2� and y ¼ ½0; 2� accordingly. This simulation will
serve as a benchmark of accuracy in the following steps.
All 1D interpolations and extrapolations call the same

functions imported from the PYTHON module “scipy.inter-
polate.interp1d.” The quadratic method is used, being a
common spline technique to interpolate functions. Figure 6
displays one slice of the simulated 3D potential within the
specified cell, the inter/extrapolated map, and their relative
difference. The results demonstrate that within the relevant
volume enclosing the beam bulk, the accuracy is within the
requirements, which for rf cells is less than 1%. Within the
adjacent volume, the deviations remain low. They increase
sharply as the distance from the center increases consid-
erably, i.e., beyond the volume populated by relevant
amounts of beam particles. It is reiterated that inside the
volume being relevant for beam dynamics simulations, the
deviations are below 1%. Accordingly, the method delivers
sufficiently accurate potential maps.
In the following, three different paths parallel to the

beam axis are chosen for evaluation. The resulting com-
parison between simulated and inter/extrapolated potential
distributions is presented in Fig. 7.
All these three paths are located inside of the extrapo-

lated volume. Two of them are partially inserted into the
metallic vane tips where the real potential is constant. On
the surface of the vane tips, the potential distributions
feature a sharp corner indicating infinite large curvature.
Such nonsmooth distributions at boundaries shall be
removed from the original data since they lower the quality
of HOSVD. Such data fractions introduce many nonsmooth
(nondifferentiable) singular vectors with low singular
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values, being less distinguishable from noise. Such singular
vectors do not occur in smooth distributions.
Interpolation produces field maps of high precision

within the beam aperture. Extrapolation successfully fills
metallic volumes with unnatural but smooth values, such
that transitions from vacuum to metallic volumes are

continuous and physical. Since the data are denoised,
results from interpolation inside of the volume being
relevant for the beam are physically correct. As a result,
the proposed algorithm produces accurate potential maps
inside the relevant volume; it also extrapolates to adjacent
volumes (containing low fractions of the beam) to the same
precision. Interpolation of the geometric parameters m, r,
and l delivers the same accuracy.
The fitting function obtained in Sec. II C 2 has been

evaluated and compared as well with the reference data
from simulations. As an illustration, Fig. 8 shows the 1D
fitting of uð4Þ.
There are three high-valued singular vectors preserved in

uð4Þ, drawn with dotted lines in Fig. 8, and their corre-
sponding basis function expressions are drawn with solid
lines. The coefficients for the basis functions are Kð4Þ from
Table II. Figure 8 demonstrates that the function expres-

sions for uð4Þ1 and uð4Þ2 fit the z dependence to very good

precision. There remains some deviation concerning uð4Þ3 ,
which can be eliminated by introducing one more term to
the polynomial. However, this will not be of any consid-

erable benefit since the singular value of uð4Þ3 is much lower

than those of uð4Þ1 and uð4Þ2 .
Figure 9 shows the comparison between the simulated

potential map Vs and the values obtained from the
expansion Ā. It uses a 2D map with parameters m ¼ 2,
r ¼ 1.1, l ¼ 14, z ¼ 0.4, x ¼ ½0; 2�, and y ¼ ½0; 2�.
The algorithm serves to find a multivariate formula

modeling the data to very good precision, hence demon-
strating its high efficiency. The results demonstrate that the
obtained basis function expression can represent simula-
tions with high accuracy, i.e., with deviations of less than
1% within the beam aperture volume and its close sur-
rounding. It is possible to further reduce the residuals by
including more terms. However, these residuals are already

FIG. 7. Potential distribution along three straight paths parallel
to the beam axis. In the upper and middle case, the path is
partially inside of the metallic vane tip, in which the real potential
is constant. However, the extrapolation method fills this volume
with a smooth distribution, i.e., it ignores the metallic boundaries
and presumes a vacuum instead.

FIG. 8. Fitting of uð4Þ through basis function expressions
using four terms of Legendre polynomials. The fittings of other

bases uðlÞ are as good as of uð4Þ1 and uð4Þ2 . Fitting of uð4Þ3 is worse
but its low singular value makes this loss of accuracy effec-
tively negligible. λ1, λ2, and λ3 are the first three elements of λð4Þ
in Eq. (3).

FIG. 6. Upper left: simulated potential map Vs for an RFQ cell
with parameters m ¼ 2, r ¼ 1.1, l ¼ 14, z ¼ 0.4l, x ¼ ½0; 2�,
y ¼ ½0; 2�. Upper right: potential map from inter/extrapolation.
Lower: relative difference between simulated and inter/extrapo-
lated potential maps.
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sufficiently small for beam dynamic simulations. It is re-
emphasized that the geometric parameters are also included
in the expression, as the algorithm conceptually does not
distinguish between geometric parameters and spatial
coordinates.

B. Efficiency

Rigorous discussion of efficiency requires expert coding
skills. Accordingly, just a preliminary evaluation shall be
presented here. The PYTHON code shared in GitHub pays
attention to the clarity of logic but it still lacks code
efficiency w.r.t. treatment of tensor transpose operations.
The algorithm should be implemented through an efficient
low-level language, properly chosen for the specific appli-
cation. Tests have been performed using a desktop com-
puter with an Intel Core W Processor 2155 @ with a speed
of 3.3 GHz and running PYTHON with one single processor.
The runtime for the decomposition of the sixth-order
potential map was 96 s and the runtime for tensor recovery
was just 4 s. As mentioned at the beginning of the section,
runtime for estimation at a given range of spatial coor-
dinates is crucial for the efficiency of any simulation code.
A set of dummy data for tensors of flexible order and each n
mode with 50 dimensions has been established. After
HOSVD, each n mode has been trimmed from 50 to
just 3 dimensions.
The widely used PYTHON mathematical module

“scipy.interpolate.RegularGridInterpolator” is taken for

reference. Unfortunately, this module just supports “linear”
and “nearest” interpolation for tensors. Another module
called “scipy.interpolate.interpn” supports higher degree
interpolation methods for 1D and 2D cases only, however.
In the first step, a numerical test of the module

“scipy.interpolate.interp1d” has been done, which is used
for interpolation and fitting of singular vectors. It assumed
a 1D degenerate distribution of 50 data points fitted by
three terms of polynomial/Fourier series. It revealed that to
obtain a value at a specific location, the evaluation of the
polynomial/Fourier series is 20=4 times faster than the
interpolation of the degenerate distribution. It must be
emphasized that more complex expressions are usually
slower in comparison.
Afterward, 1000 random n-dimensional coordinates

have been generated for interpolation of n-dimensional
data. The scipy-module is capable to treat all coordinates at
once. Being a well-coded module, it divides tasks into
multiple subtasks and processes them simultaneously. A
loop of 1000 steps has been used for both, the algorithm
presented here and the scipy-module, such that they can be
compared under the same conditions. Table III lists
runtimes for the 1000 data points interpolation of a tensor
of nth order.
Traditional linear interpolation requires 2n n-dimensional

points to be taken as surroundings. The present algorithm
requires 2 × ð3 × nÞ 2D points instead. Thus, the algorithm
is advantageous for high orders of interpolated tensors,
hence especially for interpolation methods using orders
higher than linear. For instance, with third-order methods
applied to 3D data, the new algorithm takes 3 × 3 × 8
surrounding 2D points, whereas the conventional method
takes 83 3D data points.
The algorithm works very well in treating data on

aligned mesh grids, thus the 505 dummy data have been
resampled to 502 × 3003 by interpolation. With the reduced
model, the required time is 0.13 s. This duration does not
increase much as the degree of interpolation is augmented
from linear to cubic. Though for the scipy-module, the
duration is 19 s, even if the module is well optimized and
tasks are processed in parallel. It is concluded that in
such cases the algorithm’s benefits are overwhelming.

FIG. 9. Upper left: simulated potential map Vs for an RFQ cell
with parameters m ¼ 2, r ¼ 1.1, l ¼ 14, z ¼ 0.4, x ¼ ½0; 2�, and
y ¼ ½0; 2�. Upper right: basis function potential map Va. Lower:
relative difference between basis function potential and the
simulated potential map.

TABLE III. CPU runtime (seconds) for 1000 random spatial
interpolations. Third column: time for the interpolation algorithm
proposed here, fourth column: time for evaluation of multivariant
polynomial with three terms per variant, fifth column: time for
interpolation performed by the SciPy module.

Tensor Data Interpolation Polynomial SciPy module
order volume “cubic” three terms “linear”

2 502 0.10 0.05 0.08
3 503 0.16 0.08 0.16
4 504 0.22 0.11 0.36
5 505 0.28 0.13 0.80
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Finally, the order for interpolation can be selected by just
setting this order for 1D interpolation of singular vectors. In
contrast, traditional methods require rewriting the entire
code for implementation.
Surface-based fitting methods employ field values on 2D

surfaces to determine an appropriate fitting function, albeit
3D degenerate data are available. Instead, the new algo-
rithm uses the full 6D data to obtain a fitting function and in
consequence, it is significantly more robust w.r.t. noise.
The presented algorithm is quite distinguished from 2D

surface-based approaches. Existing methods start from
expansions following the Laplace equation, while the
new one paves a path to finding fitting functions of any
type. These fitting functions and the data intrinsically
fulfill the Laplace equation at a sufficient level since they
originate from FEM simulations.
The free choice of coordinate systems and basis func-

tions comes with many benefits, e.g., here the Cartesian
coordinate system has been chosen together with a fourth-
order polynomial, being very beneficial to the efficiency.
The basis function is no longer restricted to lengthy circular
cylinder harmonic (multipole) expansions whose evalu-
ation is much slower than polynomials of the same term.
Additionally, this kind of basis sometimes introduces
boundary conditions that are not conducive to extrapola-
tion. Finally, geometric parameters are also included in the
fitting function, thus further parameter interpolation
through look-up is obsolete.

IV. CONCLUSION

For the first time, multivariate inter/extrapolation and
fitting through model order reduction have been applied
to model particle accelerators, here the e.m. fields of rf
cavities. It allows for the extension of the concept of inter/
extrapolation of spatial coordinates to geometric parame-
ters determining the boundaries of the map. Additionally,
basis function expressions can be extracted which match
simulated data very well. These expressions are free from
unphysical noise and preserve the intrinsic field properties
of a given class of field maps. Inter/extrapolation and
extraction of basis function formulas based on data pre-
viously compressed by HOSVD, which has been reported
earlier [1]. Compared to traditional methods introduced
in [11], the new method significantly improves the quality
of field description and provides many other practical
advantages. The related routine needs just a few hundred
lines of (PYTHON) code and an auxiliary file with some tens
of KB to store the compressed field.
Future efforts, being beyond the scope of this paper,

shall be put on the same data embedded into cylindrical
coordinates for scenarios of appropriate symmetry. This
aims especially at the treatment of maps from RFQs for
which design codes use coordinate projection on cylindri-
cal harmonic base functions.
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APPENDIX A: CONCEPT OF INTERPOLATION
AND EXTRAPOLATION

Within the numerical analysis, interpolation is a type of
estimation, i.e., a method of constructing new data points
within the range of a discrete set of known data points.
Extrapolation instead is a type of estimation on new data
points beyond this range, i.e., into the trial space. Any new
data point is constructed from its relation to existing data
points. It is similar to interpolation, using assumptions for
this relation. Extrapolation is subject to enhanced uncer-
tainty and the risk of producing meaningless results.
Figure 10 shows a simple example of inter/extrapolation
of arbitrary 1D data with noise.
Accordingly, multivariate inter/extrapolation is inter/

extrapolation of multidimensional functions of more than
one variable. In case the variates are spatial coordinates, it is
called spatial interpolation.

APPENDIX B: CALCULATION OF
COEFFICIENTS FOR BASIS REPRESENTATION

With the relation of Eq. (9), the coefficients KðnÞ can be
calculated with the least square method as

KðnÞ ¼ uðnÞP̂ðnÞTðP̂ðnÞP̂ðnÞTÞ−1; ðB1Þ

where the number of terms tn should be much less than In,
such that the equation for KðnÞ is overdetermined. The
explicit expression of elements in P̂ðnÞP̂ðnÞT is

ðP̂ðnÞP̂ðnÞTÞ½a; b� ¼ P̂ðnÞ
a P̂ðnÞT

b ¼
XIn
i¼1

P̂ðnÞ
a ½i�P̂ðnÞ

b ½i�: ðB2Þ

FIG. 10. Example for one-dimensional interpolation and
extrapolation.
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For each dimension, a square matrix DðnÞ ∈ Rtn×tn is
defined with elements to be calculated from

DðnÞ½a; b� ¼
Z

1

−1
PðnÞ
a PðnÞ

b : ðB3Þ

DðnÞ is independent of the original data, which is a feature
originating from the chosen basis PðnÞ. It is known once
PðnÞ has been chosen. Its elements, specified by entries
DðnÞ½a; b�, are the inner products of the ath term and the bth
term of P̂ðnÞ, i.e., DðnÞ is the identity matrix if PðnÞ forms an
orthonormal basis.
Approximating the sum through an integral as

XIn
i¼1

P̂ðnÞ
a ½i�P̂ðnÞ

b ½i� ≈ I2n

Z
1

−1
PðnÞ
a PðnÞ

b ; ðB4Þ

one obtains

P̂ðnÞP̂ðnÞT ≈DðnÞ: ðB5Þ

Plugging Eq. (B5) into Eq. (B1), the solution for KðnÞ is

KðnÞ ¼ uðnÞP̂ðnÞTDðnÞ−1 1

I2n
: ðB6Þ

After KðnÞ has been determined for all dimensions and
plugging Eq. (9) into Eq. (4), the data can be expressed as

A ≈ s ×1 Kð1ÞP̂ð1Þ ×2 Kð2ÞP̂ð2Þ… ×6 Kð6ÞP̂ð6Þ

¼ S̄ ×1 P̂
ð1Þ ×2 P̂

ð2Þ… ×6 P̂
ð6Þ; ðB7Þ

where the new coefficient tensor S̄ ∈ Rj1×j2…×j6 is
expressed as

S̄ ¼ s ×1 Kð1Þ ×2 Kð2Þ… ×N Kð6Þ: ðB8Þ

Afterward, the multivariate fitting function Āðm;r;l;z;y;xÞ
can be found as a tensor product expressed by Eq. (11) by
simply replacing P̂ðnÞ in Eq. (B7) by their basis function
version PðnÞ.
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