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Highly overmoded iris-line structures carry desirable features for the efficient transportation of THz
radiation over long distances. Previous studies have analyzed the iris line, modeled approximately as a long
open-resonator structure with thin screens, using methods such as Vainstein’s impedance boundary
condition or perturbative mode matching. The aim in those methods was to seek the eigensolution that
represents the dominant (least lossy) propagation mode in a long iris-line structure at a steady state. In this
paper, a forward-traveling wave analysis is presented, wherein a short THz pulse paraxially traverses the
oversized structure cell by cell, including the transient regime. The iris line’s periodic discontinuities are
analyzed in terms of forward-wave orthogonal mode decompositions, which are then used to build a
“forward-scatter” model (matrix) for each cell. The presented approach predicts a diffraction loss behavior
that agrees with that of the eigensolution found by the previous analytical methods for a long waveguide at
the steady state but adds the ability to analyze waveguides of finite lengths, showing transients as they
evolve and settle to the dominant mode down the line, and offers numerical implementation speeds that are
typically an order-of-magnitude faster than those previously reported for the mode-matching method. This
approach may also be easily extended to analyze iris lines with mechanical imperfections (e.g.,
misalignments or aperiodic defects), allowing for investigations of performance sensitivity against
manufacturing tolerances.

DOI: 10.1103/PhysRevAccelBeams.25.123501

I. INTRODUCTION

The highly overmoded iris-line structure (Fig. 1) has
been recently investigated as a candidate solution for the
efficient transportation of THz radiation over long distances
[1,2]. One application example, which was discussed in
Refs. [1,2], is the transport of radiation in the 3–15 THz
range (20–100 μm wavelength), generated by a THz
linearly polarized undulator, over hundreds of meters at
the Linac Coherent Light Source (LCLS), SLAC National
Accelerator Laboratory. Advantages offered by the iris line
compared to other transport methods, such as beam
relaying using a combination of planar and paraboloidal
mirrors [2–4], include its lower propagation loss over long
distance (e.g., around 10–15% power loss, compared to
approximately 30%, for 150 m distance [2,3]) and its
simple geometrical setup. Specifically, the power loss for
the dominant dipole mode on the iris line is well approxi-
mated in the limit of thin screens by the following law,

derived from Vainstein’s impedance boundary condition
[1,5,6],

L ≈ ½1 − e−4.75c
3=2b1=2ω−3=2a−3z� × 100%; ð1Þ

where c is the speed of light in vacuum, ω is the angular
frequency, a is the radius of the iris, b is the period of the
iris line, and z is the distance traveled down the line. The
attenuation constant (exponent) is seen to drop with larger
radii and higher frequencies (proportional to a−3 and
ω−3=2). This mode has also been shown to preserve the
linear polarization across the iris and support an amplitude
profile that follows the J0ð2.4r=aÞ Bessel function profile,
which happens to overlap conveniently with the approxi-
mate Gaussian profile typically emitted from a linear
undulator [2], where r denotes the radial distance from
the axis z. Although law (1) is a good approximation in
general, when the thin screens have a finite (nonzero)
thickness, δ > 0, this law starts to overestimate diffraction
loss and underestimate ohmic loss at the screen edges. The
predictions of this law can be corrected, or superseded, by
the estimates found from the mode-matching technique [2],
but at a higher computational price. As δ increases,
diffraction loss is decreased (as the gaps between the
screens start to gradually close up) and ohmic loss at the
screen edges starts to increase [2]. For relatively thin
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screens (δ ≪ b), however, ohmic loss at screen edges
remains small (typically less than 1%) compared to diffrac-
tion loss.
These attractive features of the iris line were established

by solving for the dominant eigenmodes supported by the
structure. The found eigenmodes represent the steady-state
solutions of the wave equation in a periodic geometry. As a
boundary-value problem, it has been solved using the
mode-matching technique assuming a Bloch-wave-like
propagation [2,7] or using an equivalent impedance boun-
dary condition (named Vainstein’s boundary condition) that
converts the problem into a smooth-pipe structure [1,5,6].
In such analyses, the iris-line structure is modeled approx-
imately as an open resonator (with r0 → ∞) and assumed
to be infinitely long.
In this paper, we perform a different type of field analysis

to solve for the fields in a line of finite length and to
visualize any transient regime that may exist near the
entrance of the line. In other words, we solve the “forward”
problem, rather than the settled steady-state problem. Using
the example of THz pump-probe experiments as a typical
application [1–3], where the THz pulse width is taken to be
much smaller than the repetition rate, we can assume a
single THz pulse passage through the structure. The driving
source is assumed to be of dipole polarization (e.g., linear
THz undulator [2,3]) and we exploit the fact that the
structure is oversized (overmoded) to make simplifying
assumptions in the field analysis. Specifically, since the
dimensions a, b are much larger than the THz wavelength
(λ) and the THz pulse width, a paraxially incident wave is
assumed to have a slowly varying envelope and a pre-
dominantly forward-scattered propagation along the axial
(z) direction. The forward-scatter analysis presented uses
transverse electric (TE)-transverse magnetic (TM) orthogo-
nal decompositions to represent any arbitrary wave or

geometrical discontinuity in the iris line. Given the perio-
dicity of the iris line, we only have to work out the
decompositions for one cell (period) of the line, modeling
it as a forward-scatter matrix, to deduce the behavior of the
entire line as a cascade of such cells.
The diffraction behavior trends obtained from this

approach are shown to correlate well with the predictions
made by the Vainstein boundary condition method and the
perturbative mode-matching method, [1,2], but with an
order-of-magnitude improvement in computational speed
compared to the latter and with the ability to reveal transients
along the line for arbitrary source (excitation) profiles. The
approach is easily extendable to include tolerance sensitivity
tests, whereby mechanical defects or aperiodic effects in
specific cells can be inserted stochastically into the iris line.
This is a natural result of formulating the problem in terms of
scattering models (matrices).
The paper is organized as follows. Starting from first

principles, Sec. II builds the theoretical formulation of the
problem and develops its approximate forward-scatter field
solution. An orthogonal basis for modal decomposition
inside the iris-line cells is developed, which is then used to
represent the discontinuities of the geometry. Section III
implements the theoretical model numerically using for-
ward-scatter transmission matrices and applies the method
to several numerical examples, each with a different
excitation source. The performance of the presented
method is discussed and compared to the methods based
on Vainstein’s boundary condition and on perturbative
mode matching. The paper is concluded in Sec. IV,
followed by two Appendixes that contain several deriva-
tions for wave solutions and integrals needed in Sec. II.
Throughout the paper, we assume a time-harmonic

dependence of the form e−iωt, where i ¼ ffiffiffiffiffiffi
−1

p
, t is the

time, and ω is the angular frequency.
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FIG. 1. (a) The iris-line geometry in three dimensions, showing the screens without the enclosing chamber at the outer radius.
(b) A cross section in the iris line, showing the enclosing chamber.
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II. ANALYTICAL FORMULATION

A. Orthogonal basis representation in each cell

Figure 2 shows the geometry of each cell in the iris line.
For convenience and conformity with the literature (e.g.,
[8]), we will use the following terminology: the short
regions (regions 1 and 3) at the entrance and exit of each
cell are referred to as “waveguide” sections, whereas the
wider middle region (region 2) is referred to as the “cavity”
section; the transition (discontinuity) from region 1 to
region 2 is referred to as a “step-out” transition, whereas the
transition from region 2 to region 3 is referred to as a “step-
in” transition. Given the axisymmetric nature of the
geometry, we work chiefly in the cylindrical frame of
coordinates, denoted by ðr;ϕ; zÞ.
In this subsection, we summarize the paraxial TE-TM

mode expansions for all the components of a dipole field in
a smooth circular pipe section, which is applicable to both
the waveguide and cavity sections of our cell. Full
derivations are provided in Appendix A, starting from
the wave equation and using the transverse field compo-
nents ðEr; EϕÞ as the main variables, for convenience. Note
that although the scaling and derivation steps used may
appear somewhat different from the traditional approach
that relies on deriving the fields from their longitudinal
components ðEz;HzÞ in canonical TE/TM waveguides
(e.g., [9–11]), the final results can be shown to be
fundamentally equivalent under the same paraxial propa-
gation assumptions. Indeed, it is known from Whittaker’s
theorem that we can solve the wave equation (i.e., all six
components of the electric and magnetic field) in terms of
any two field components [12].
The following equations represent the final field expres-

sions for the TE and TM modes in the waveguide section,
with similar expressions found for the cavity section after
replacing the radius a with r0. We expect a mode that is
incident from the input waveguide (region 1) upon the step-
out transition leading to the cavity (region 2) to be

expanded as an infinite series of cavity modes. To signify
this, the fields are written below as infinite sums in the
cavity region. Note, however, that a parallel situation exists
between a cavity mode incident upon the step-in transition,
which is then decomposed into a series of waveguide
modes in the output waveguide (region 3). In all the
following equations, Z0 denotes the free-space wave
impedance, νij denotes the jth zero of the Bessel function
of the first kind and ith order (Ji), and ν0ij denotes the jth
zero of the derivative of the Bessel function of the first kind
and ith order (J0i).
TE nth mode in the wavgeuide:

Er ¼
Ana
ν01nr

J1

�
ν01n

r
a

�
cosϕe−iz

ν02
1n

2ka2
þikz ð2Þ

Eϕ ¼ −AnJ01

�
ν01n

r
a

�
sinϕe−iz

ν02
1n

2ka2
þikz ð3Þ

Ez ¼ 0 ð4Þ

Hr ¼
−An

Z0

�
ν021n
2k2a2

− 1

�
J01

�
ν01n

r
a

�
sinϕe−iz

ν02
1n

2ka2
þikz ð5Þ

Hϕ ¼ −Ana
Z0rν01n

�
ν021n

2k2a2
− 1

�
J1

�
ν01n

r
a

�
cosϕe−iz

ν02
1n

2ka2
þikz ð6Þ

Hz ¼
−iAnν

0
1n

Z0ka
J1

�
ν01n

r
a

�
sinϕe−iz

ν02
1n

2ka2
þikz ð7Þ

TE modal expansion in the cavity:

Er ¼
X∞
n¼1

Anr0
ν01nr

J1

�
ν01n

r
r0

�
cosϕe

−iz
ν02
1n

2kr2
0

þikz ð8Þ

Eϕ ¼
X∞
n¼1

−AnJ01

�
ν01n

r
r0

�
sinϕe

−iz
ν02
1n

2kr2
0

þikz ð9Þ

Ez ¼ 0 ð10Þ

Hr ¼
X∞
n¼1

−An

Z0

�
ν021n
2k2r20

− 1

�
J01

�
ν01n

r
r0

�
sinϕe

−iz
ν02
1n

2kr2
0

þikz

ð11Þ

Hϕ ¼
X∞
n¼1

−Anr0
Z0rν01n

�
ν021n
2k2r20

− 1

�
J1

�
ν01n

r
r0

�
cosϕe

−iz
ν02
1n

2kr2
0

þikz

ð12Þ
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FIG. 2. One cell of the iris line and regions of solution.
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Hz ¼
X∞
n¼1

−iAnν
0
1n

Z0kr0
J1

�
ν01n

r
r0

�
sinϕe

−iz
ν02
1n

2kr2
0

þikz ð13Þ

TM nth mode in the waveguide:

Er ¼ −BnJ01

�
ν1n

r
a

�
cosϕe−iz

ν2
1n

2ka2
þikz ð14Þ

Eϕ ¼ Bna
ν1nr

J1

�
ν1n

r
a

�
sinϕe−iz

ν2
1n

2ka2
þikz ð15Þ

Ez ¼
þiBnν1n

ak
J1

�
ν1n

r
a

�
cosϕe−iz

ν2
1n

2ka2
þikz ð16Þ

Hr ¼
−Bn

Z0r

�
ν1n
2ak2

þ a
ν1n

�
J1

�
ν1n

r
a

�
sinϕe−iz

ν2
1n

2ka2
þikz ð17Þ

Hϕ ¼ −Bn

Z0

�
1þ ν21n

2a2k2

�
J01

�
ν1n

r
a

�
cosϕe−iz

ν2
1n

2ka2
þikz ð18Þ

Hz ¼ 0 ð19Þ

TM modal expansion in the cavity:

Er ¼ −
X∞
n¼1

BnJ01

�
ν1n

r
r0

�
cosϕe

−iz
ν2
1n

2kr2
0

þikz ð20Þ

Eϕ ¼
X∞
n¼1

Bnr0
ν1nr

J1

�
ν1n

r
r0

�
sinϕe

−iz
ν2
1n

2kr2
0

þikz ð21Þ

Ez ¼
X∞
n¼1

þiBnν1n
r0k

J1

�
ν1n

r
r0

�
cosϕe

−iz
ν2
1n

2kr2
0

þikz ð22Þ

Hr ¼
X∞
n¼1

−Bn

Z0r

�
ν1n
2r0k2

þ r0
ν1n

�
J1

�
ν1n

r
r0

�
sinϕe

−iz
ν2
1n

2kr2
0

þikz

ð23Þ

Hϕ ¼
X∞
n¼1

−Bn

Z0

�
1þ ν21n

2r20k
2

�
J01

�
ν1n

r
r0

�
cosϕe

−iz
ν2
1n

2kr2
0

þikz

ð24Þ

Hz ¼ 0 ð25Þ

B. Derivation of the paraxial forward-scatter
model for each cell of the iris line

Using the orthogonal mode expansions developed in
Sec. II A, we now derive the modal expansions that
represent the step-out and step-in transitions within each

cell, both for the case of an incident TE and an incident TM
mode. From the results of such expansions, we then build
the paraxial forward-scatter model for each cell.
We shall simplify the scattering model of the cell by

exploiting the fact that the iris-line cell dimensions (a, b)
are much larger than the THz wavelength (λ) and the
paraxial pulse width. Figure 3 depicts how one may
generally decompose the electromagnetic wave traveling
in each section of the cell using forward- and backward-
traveling mode expansions. In this analysis, we ignore the
local backward reflections or standing waves created by the
oversized step-in/out transitions and expand the fields in
terms of forward modes only (symbolized in Fig. 3 by
positive superscripts) when matching boundary conditions
at the transitions. One can envisage a scenario in which
multiple reflections between the screens in a closed-
chamber setup could lead to the formation of echo-like
pulses that trail the primary pulse after some delay.
However, such a delay will be at least the time required
to travel the round-trip distance 2b, which is assumed to be
much longer than the typical interval between a THz pump
pulse and its corresponding x-ray probe pulse (in typical
pump-probe experiments). We therefore confine our atten-
tion in this analysis to the single-pulse passage scenario,
with no secondary pulses or echoes.

1. Incident TM on a step-out discontinuity

Consider a TM mode (call it the lth mode) incident from
the left upon the step-out transition, with z ¼ 0 set for
convenience as the location of the transition. This can
represent a mode launched in the input waveguide (region
1) and traveling toward the cavity (region 2). From (14) and
(15), we have the radial and azimuthal components of the
electric field in the region z < 0 given by

Er ¼ −BlJ01

�
ν1l

r
a

�
cosϕe−iz

ν2
1l

2ka2 ; ð26Þ

Eϕ ¼ Bla
ν1lr

J1

�
ν1l

r
a

�
sinϕe−iz

ν2
1l

2ka2 ; ð27Þ

which will be expanded into a sum of TE and TMmodes in
region z > 0, when matched at the transition’s plane
(z ¼ 0), as implied by (8)–(13) and (20)–(25). We thus
write the continuity of the radial fields as

−BlJ01

�
ν1l

r
a

�
¼
X∞
n¼1

Anr0
ν01nr

J1

�
ν01n

r
r0

�
−
X∞
n¼1

BnJ01

�
ν1n

r
r0

�
;

ð28Þ

and the continuity of the azimuthal fields as
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Bla
ν1lr

J1

�
ν1l

r
a

�
¼ −

X∞
n¼1

AnJ01

�
ν01n

r
r0

�

þ
X∞
n¼1

Bnr0
ν1nr

J1

�
ν1n

r
r0

�
: ð29Þ

We now proceed to find coefficients An and Bn analyti-
cally, which would characterize the step-out transition’s
effect on incident TM waves. Multiplying (28) by
J01ðν1mr=r0Þ and integrating across with

R r0
0 rdr, which

reduces to
R
a
0 rdr on the lhs (since the radial field is zero for

a < r < r0), gives

− Bl

Z
a

0

rdrJ01

�
ν1l

r
a

�
J01

�
ν1m

r
r0

�

¼ −
X∞
n¼1

Anr0
ν1m

Z
r0

0

drJ01

�
ν01n

r
r0

�
J1

�
ν1m

r
r0

�

−
X∞
n¼1

Bn

Z
r0

0

rdrJ01

�
ν1n

r
r0

�
J01

�
ν1m

r
r0

�
; ð30Þ

where we have used integration by parts to condition the
first sum on the rhs. Similarly, multiplying (29) by
ðr0=ν1mrÞJ1ðν1m r

r0
Þ and integrating across with

R r0
0 rdr,

which reduces to
R
a
0 rdr on the lhs (since the azimuthal

field is zero for a < r < r0), gives

Bla
ν1l

r0
ν1m

Z
a

0

dr
r
J1

�
ν1l

r
a

�
J1

�
ν1m

r
r0

�

¼−
X∞
n¼1

Anr0
ν1m

Z
r0

0

drJ01

�
ν01n

r
r0

�
J1

�
ν1m

r
r0

�

þ
X∞
n¼1

Bnr0
ν1n

r0
ν1m

Z
r0

0

dr
r
J1

�
ν1n

r
r0

�
J1

�
ν1m

r
r0

�
: ð31Þ

We can now eliminate the coefficients An and find
coefficients Bn by subtracting (31) from (30) to yield

−BlðI3Þ ¼ −
X∞
n¼1

BnðI1Þ; ð32Þ

where I1 and I3 denote the integrals

I1 ¼
Z

r0

0

rdrJ01

�
ν1n

r
r0

�
J01

�
ν1m

r
r0

�

þ r20
ν1nν1m

Z
r0

0

dr
r
J1

�
ν1n

r
r0

�
J1

�
ν1m

r
r0

�
; ð33Þ

FIG. 3. A qualitative sketch of a short THz pulse traveling
through the oversized cell, with indicative forward and backward
mode expansions at each boundary plane within the cell. For
clarity, the pulse (in red) is shown at different moments in time.
At t0, a forward-traveling wave is incident onto the cell. At t1, the
wave reaches the first discontinuity and we generally have a
forward mode and a backward scattered-mode expansion in
region 1, along with a forward scattered–mode expansion in
region 2 (due to the shortness of the pulse, no backward
reflections exist yet in region 2). At t2, the forward wave
continues through region 2, and at t3, the second discontinuity
is met: again, we generally have forward and backward scattered-
mode expansions in region 2 and only a forward scattered–mode
expansion in region 3. At t4, forward traveling waves propagate
in region 3 toward the cell’s exit, and the cycle repeats through the
next cells. A key assumption made in the forward-scatter high-
frequency analysis under consideration (see the main text) is that
we can expand the wave in forward modes only, ignoring the
backward reflections as a first approximation, which turns out to
be a good approximation at the high-frequency limit.
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I3 ¼
Z

a

0

rdrJ01

�
ν1l

r
a

�
J01

�
ν1m

r
r0

�

þ
Z

a

0

dr
a
ν1l

J1

�
ν1l

r
a

�
r0

ν1mr
J1

�
ν1m

r
r0

�
: ð34Þ

Analytical calculation of integrals I1 and I3 can be found
in Appendix B. Substituting from (B3) and (B7) into (32)
gives the final result as

Bm ¼
−2Blaν1mJ0ðν1lÞJ1ðν1m a

r0
Þ

r30J
0
1ðν1mÞ2ðν

2
1l
a2 −

ν2
1m
r2
0

Þ
ðTM on step-outÞ:

ð35Þ

In a similar manner, we find coefficients An by multi-
plying (28) by J1ðν01mr=r0Þðr0=ν01mrÞ and integrating
across with

R r0
0 rdr, which reduces to

R
a
0 rdr on the lhs,

to give

− Bl

Z
a

0

rdrJ01

�
ν1l

r
a

�
J1

�
ν01m

r
r0

�
r0

ν01mr

¼
X∞
n¼1

Anr0
ν01n

Z
r0

0

drJ1

�
ν01n

r
r0

�
J1

�
ν01m

r
r0

�
r0

ν01mr

þ
X∞
n¼1

Bn
r0
ν1n

Z
r0

0

drJ1

�
ν1n

r
r0

�
J01

�
ν01m

r
r0

�
; ð36Þ

where we have used integration by parts to condition the
second sum on the rhs. Multiplying (29) by J01ðν01m r

r0
Þ and

integrating across with
R r0
0 rdr, which reduces to

R
a
0 rdr on

the lhs, similarly gives

Bla
ν1l

Z
a

0

drJ1

�
ν1l

r
a

�
J01

�
ν01m

r
r0

�

¼ −
X∞
n¼1

An

Z
r0

0

rdrJ01

�
ν01n

r
r0

�
J01

�
ν01m

r
r0

�

þ
X∞
n¼1

Bnr0
ν1n

Z
r0

0

drJ1

�
ν1n

r
r0

�
J01

�
ν01m

r
r0

�
: ð37Þ

To eliminate Bn and find An, we subtract (37) from (36),
to yield

−BlðI4Þ ¼
X∞
n¼1

AnðI2Þ; ð38Þ

where I2 and I4 denote the integrals

I2 ¼
r0
ν01n

Z
r0

0

drJ1

�
ν01n

r
r0

�
J1

�
ν01m

r
r0

�
r0

ν01mr

þ
Z

r0

0

rdrJ01

�
ν01n

r
r0

�
J01

�
ν01m

r
r0

�
ð39Þ

I4 ¼
r0
ν01m

Z
a

0

drJ01

�
ν1l

r
a

�
J1

�
ν01m

r
r0

�

þ a
ν1l

Z
a

0

drJ1

�
ν1l

r
a

�
J01

�
ν01m

r
r0

�
ð40Þ

We notice that the integrand in I4 is actually the perfect
differential

r0
ν01m

a
ν1l

d
dr

�
J1

�
ν1l

r
a

�
J1

�
ν01m

r
r0

��
; ð41Þ

from which the integral I4 is immediately found to be zero.
Integral I2 is calculated in Appendix B and its result is
substituted from (B5) into (38) to give the final result

Am ¼ 0 ðTM on step-outÞ: ð42Þ

In Fig. 4, we compare the rhs of (28) and (29) with the
corresponding lhs, using the results in (35) and (42) and
with the sums truncated to n ¼ 300 terms. Good agreement
is observed between the original mode and its decom-
position. A local oscillatory effect is noticed near the edge
of the pipe (r → a), as expected from the Fresnel diffrac-
tion. Interestingly, it can be shown that this local oscillation
near the edge, where the parameter r=a − 1≡ τ is small in
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0.0

0.2

0.4

r/

E
r
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0.4

0.5

r /

E

FIG. 4. Comparison of the rhs (green color line) with the lhs
(dashed black line) of Eq. (28) for Er and Eq. (29) for Eϕ, with the
upper limit of the sums truncated at 300 terms and the ðAn; BnÞ
values substituted from the results in (42) and (35). In this plot,
we took r0=a ¼ 2 as an example.

ADHAM NAJI and GENNADY STUPAKOV PHYS. REV. ACCEL. BEAMS 25, 123501 (2022)

123501-6



magnitude, is asymptotically well approximated (after
removing the average value) by the form
∼Erfðτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka2=2iz

p
− τÞ, where Erfð·Þ denotes the error

function. We shall leave the details of this asymptotic
analysis for a future publication.

2. Incident TM on a step-in discontinuity

We now repeat the analysis done in Sec. II B 1, but for
the case of a wave incident from the cavity (region 2) into
the narrower output waveguide (region 3). Specifically, we
now have the following radial and azimuthal matching
conditions

BlJ01

�
ν1l

r
r0

�
¼

X∞
n¼1

−
Ana
ν01nr

J1

�
ν01n

r
a

�
þ
X∞
n¼1

BnJ01

�
ν1n

r
a

�

ð43Þ

Blr0
ν1lr

J1

�
ν1l

r
r0

�
¼ −

X∞
n¼1

AnJ01

�
ν01n

r
a

�

þ
X∞
n¼1

Bna
ν1nr

J1

�
ν1n

r
a

�
: ð44Þ

Following similar steps to those taken above for (38) (but
multiplying with Bessel functions of arguments that con-
tain r=a, instead of r=r0, and integrating across with

R
a
0 rdr

since we now are expanding in the waveguide region where
there is no field beyond r ¼ a), we solve for An and obtain

AmðÎ2Þ ¼ −BlðÎ4Þ; ð45Þ

where Î2 and Î4 are integrals with forms similar to I2 and I4
in (39) and (40). Specifically, the integral Î2 can be
obtained from the integral I2 in (39) by interchanging
the radii r0 ↔ a in all terms and integration limits. As was
shown in the calculation of (B5), we can easily deduce that

Î2 ¼ δmn
a2

2
ð1 − 1=ν21mÞJ21ðν01mÞ; ð46Þ

where δmn is Kronecker’s delta function.
On the other hand, integral Î4 can be obtained from

integral I4 in (40) by exchanging the radii r0 ↔ a in all
terms, while keeping the integration limits from 0 to a;
namely,

Î4 ¼
a
ν01m

Z
a

0

drJ01

�
ν1l

r
r0

�
J1

�
ν01m

r
a

�

þ r0
ν1l

Z
a

0

drJ1

�
ν1l

r
r0

�
J01

�
ν01m

r
a

�

¼
r0aJ1ðν1l a

r0
ÞJ0ðν01mÞ

ν1l
; ð47Þ

where in the last step, we used the fact that J1ðν01mÞ ¼
ν01mJ0ðν01mÞ since J01ðν01mÞ ¼ 0 by definition.
Substituting the results from (46) and (47) back into (45)

and simplifying give the value for An as

Am ¼ −2Blr0J1ðν1la=r0Þ
aν1lðν01m − 1

ν0
1m
ÞJ1ðν01mÞ

ðTM on step-inÞ: ð48Þ

It is worth noting that Am ≠ 0 here, unlike the case for the
step-out discontinuity. This indicates that TE modes (not
only the TM modes) will be expanded in the waveguide
following a TM incidence on the step-in discontinuity.
Coefficients Bn are obtained in a similar way, which

parallels that used to reach (32) from Sec. II B 1, leading to

BmðÎ1Þ ¼ BlðÎ3Þ; ð49Þ

where Î1 and Î3 are integrals with forms similar to I1 and I3
in (33) and (34). Specifically, the integral Î1 can be
obtained from the integral I1 in (33) by interchanging
the radii r0 ↔ a in all terms and integration limits. As was
shown in the calculation of (B3), we can easily deduce that

Î1 ¼ δmn
a2

2
J021ðν1mÞ: ð50Þ

Integral Î3 can be obtained from integral I3 in (34) by
exchanging the radii r0 ↔ a in all terms while keeping the
integration limits from 0 to a; namely,

Î3 ¼
Z

a

0

dr

�
rJ01

�
ν1l

r
r0

�
J01

�
ν1m

r
a

�

þr
r0
ν1lr

J1

�
ν1l

r
r0

�
a

ν1mr
J1

�
ν1m

r
a

��

¼
aν1lJ0ðν1mÞJ1ðν1lar0 Þ
r0ðν21l=r20 − ν21m=a

2Þ ; ð51Þ

noting that this result has ν1m ↔ ν1l interchanged, com-
pared to the result of I3 in (B7). The value of Bn is now
found by substituting (51) and (50) into (49) and simplify-
ing to yield

Bm ¼
−2Blaν1lJ0ðν1mÞJ1ðν1l a

r0
Þ

r0ðν21m − ν21l
a2

r2
0

ÞJ021ðν1mÞ
: ðTM on step-inÞ: ð52Þ

In Fig. 5, we compare the rhs of (43) and (44) with the
corresponding lhs, using the results in (48) and (52) andwith
the sums truncated to n ¼ 300 terms. Good agreement is
observed between the original mode and its decomposition.

3. Incident TE on a step-out discontinuity

Let us now consider a step-out discontinuity with an
incident TE mode (incidence from waveguide toward
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cavity). At the discontinuity location, again taken as z ¼ 0
for convenience, the matched radial electric field gives

Ala
ν01lr

J1

�
ν01l

r
a

�
¼

X
n

Anr0
ν01nr

J1

�
ν01n

r
r0

�
− BnJ01

�
ν1n

r
r0

�
;

ð53Þ

whereas the matched azimuthal electric field gives

AlJ01

�
ν01l

r
a

�
¼
X
n

AnJ01

�
ν01n

r
r0

�
−
Bnr0
ν1nr

J1

�
ν1n

r
r0

�
: ð54Þ

To find coefficients Bn, we multiply (54) by J1ðν1mr=r0Þ
and integrate across with

R r0
0 rdr, which is clipped toR

a
0 rdr on the lhs for the waveguide fields, to yield

Al

Z
a

0

J01

�
ν01l

r
a

�
J1

�
ν1m

r
r0

�
dr

¼
X
n

An

Z
r0

0

J01

�
ν01n

r
r0

�
J1

�
ν1m

r
r0

�
dr

−
Z

r0

0

Bnr0
ν1nr

J1

�
ν1n

r
r0

�
J1

�
ν1m

r
r0

�
dr: ð55Þ

Similarly, we multiply (53) by −ν1mr
r0

J01ðν1mr=r0Þ, inte-
grate, then use integration by parts on the first term on the
rhs to obtain

−Alaν1m
ν01lr0

Z
a

0

J1

�
ν01l

r
a

�
J01

�
ν1m

r
r0

�
dr

¼
X
n

An

Z
r0

0

J1

�
ν1m

r
r0

�
J01

�
ν01n

r
r0

�
dr

þ Bn
ν1m
r0

Z
r0

0

rJ01

�
ν1n

r
r0

�
J01

�
ν1m

r
r0

�
dr: ð56Þ

Subtracting (56) from (55) now allows us to find An as

AlðL1Þ ¼
X
n

− BnðL2Þ; ð57Þ

where L1 and L2 are given by the following integrals:

L1 ¼
Z

a

0

J01

�
ν01l

r
a

�
J1

�
ν1m

r
r0

�
dr

þ aν1m
r0ν01l

Z
a

0

J1

�
ν01l

r
a

�
J01

�
ν1m

r
r0

�
ð58Þ

¼ aJ0ðν01lÞJ1
�
ν1m

a
r0

�
; ð59Þ

L2 ¼
Z

r0

0

r0
ν1nr

J1

�
ν1n

r
r0

�
J1

�
ν1m

r
r0

�
dr

þ ν1m
r0

Z
r0

0

rJ01

�
ν1n

r
r0

�
J01

�
ν1m

r
r0

�
dr ð60Þ

≡ ν1m
r0

I1 ¼ δmn
r0ν1m
2

J20ðν1mÞ; ð61Þ

where, in (59), we used the fact that J0ðν01lÞ−J1ðν01lÞ=ν01l ¼
J01ðν01lÞ¼ 0 by definition and hence J1ðν01lÞ=ν01l ¼ J0ðν01lÞ,
and we substituted for I1 from the former result in (B3).
Substituting the results from (59) and (61) into (57) now
gives the sought answer

Bm ¼ −Al
2aJ0ðν01lÞJ1ðν1ma=r0Þ

r0ν1mJ20ðν1mÞ
ðTE on step-outÞ: ð62Þ

To find the coefficients An, we multiply (54) by
ðrν01m=r0ÞJ01ðν01mr=r0Þ, integrate by

R r0
0 rdr (again, clipping

the integral to
R
a
0 rdr on the lhs), then use integration by

parts on the second term on the rhs, to yield

r /a
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FIG. 5. Comparison of the rhs (green color line) with the lhs
(dashed black line) of Eq. (43) for Er and Eq. (44) for Eϕ, with the
upper limit of the sums truncated at 300 terms and the ðAn; BnÞ
values substituted from the results in (48) and (52). In this plot,
we took r0=a ¼ 2 as an example.
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Al

Z
a

0

ν01mr
r0

J01

�
ν01l

r
a

�
J01

�
ν01m

r
r0

�
dr

¼
X
n

An

Z
r0

0

ν01mr
r0

J01

�
ν01n

r
r0

�
J01

�
ν01m

r
r0

�
dr

þ Bn

Z
r0

0

J01

�
ν1n

r
r0

�
J1

�
ν01m

r
r0

�
dr: ð63Þ

We also multiply (53) by J1ðν01mr=r0Þ and similarly
integrate to obtain

Al

Z
a

0

a
ν01lr

J1

�
ν01l

r
a

�
J1

�
ν01m

r
r0

�
dr

¼
X
n

Z
r0

0

Anr0
ν01nr

J1

�
ν01n

r
r0

�
J1

�
ν01m

r
r0

�
dr

− Bn

Z
r0

0

J01

�
ν1n

r
r0

�
J1

�
ν01m

r
r0

�
dr: ð64Þ

Adding (63) to (64) gives

AlðL3Þ ¼
X
n

AnðL4Þ; ð65Þ

where L3 and L4 are the following integrals, whose solution
is derived in Appendix B,

L3 ¼
Z

a

0

dr

�
ν01mr
r0

J01

�
ν01l

r
a

�
J01

�
ν01m

r
r0

�

þ a
ν01lr

J1

�
ν01l

r
a

�
J1

�
ν01m

r
r0

��
ð66Þ

¼ r0ν01mν
0
1lJ1ðν01lÞJ01ðν01ma=r0Þ

ðν021lr20=a2 − ν021mÞ
; ð67Þ

L4 ¼
Z

r0

0

dr

�
ν01mr
r0

J01

�
ν01n

r
r0

�
J01

�
ν01m

r
r0

�

þ r0
ν01nr

J1

�
ν01n

r
r0

�
J1

�
ν01m

r
r0

��
ð68Þ

¼ δmn
r0
2
ðν01m − 1=ν01mÞJ21ðν01mÞ: ð69Þ

Substituting (67) and (69) into (65) now gives

Am ¼
2Alν

0
1lJ1ðν01lÞJ01ðν01m a

r0
Þ

ðν021l r
2
0

a2 − ν021mÞð1 − 1
ν02

1m
ÞJ21ðν01mÞ

ðTE on step-outÞ:

ð70Þ

Using these definitions for An and Bn, we can now plot
and compare the lhs and rhs of (53) and (54), as shown in
Fig. 6. Good agreement is observed between the original
mode and its decomposition.

4. Incident TE on a step-in discontinuity

Finally, let us now consider a step-in discontinuity with
an incident TE mode (incident from the cavity toward the
output waveguide). We write the matched radial electric
field equations as

Alr0
ν01lr

J1

�
ν01l

r
r0

�
¼

X
n

Ana
ν01nr

J1

�
ν01n

r
a

�
− BnJ01

�
ν1n

r
a

�
;

ð71Þ

and the matched azimuthal electric field’s as

AlJ01

�
ν01l

r
r0

�
¼
X
n

AnJ01

�
ν01n

r
a

�
−
Bna
ν1nr

J1

�
ν1n

r
a

�
: ð72Þ

Notice the symmetry between these equations and
Eqs. (53) and (54) for the step-out TE case; the parameters
r0 and a are interchanged. We proceed with the same
approach from the last section. To find coefficients Bn,
multiply (72) by J1ðν1mr=aÞ and integrate across withR
a
0 rdr to yield
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r/a

E
r
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FIG. 6. Comparison of the rhs (green color line) with the lhs
(dashed black line) of Eq. (53) for Er and Eq. (54) for Eϕ, with the
upper limit of the sums truncated at 300 terms and the ðAn; BnÞ
values substituted from the results in (62) and (70). In this plot,
we took r0=a ¼ 2 as an example.
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Al

Z
a

0

J01

�
ν01l

r
r0

�
J1

�
ν1m

r
a

�
dr

¼
X
n

An

Z
a

0

J01

�
ν01n

r
a

�
J1

�
ν1m

r
a

�
dr

−
Z

a

0

Bna
ν1nr

J1

�
ν1n

r
a

�
J1

�
ν1m

r
a

�
dr; ð73Þ

and we multiply (71) by −ν1mr
a J01ðν1mr=aÞ, integrate, and use

integration by parts for the first term on the rhs, to yield

−Alr0ν1m
ν01la

Z
a

0

J1

�
ν01l

r
r0

�
J01

�
ν1m

r
a

�
dr

¼
X
n

An

Z
a

0

J1

�
ν1m

r
a

�
J01

�
ν01n

r
a

�
dr

þ Bn
ν1m
a

Z
a

0

rJ01

�
ν1n

r
a

�
J01

�
ν1m

r
a

�
dr: ð74Þ

We can find Bn now by subtracting (74) from (73), which
gives

AlðL̂1Þ ¼ −
X
n

BnðL̂2Þ; ð75Þ

where L̂1 and L̂2 are the following integrals:

L̂1 ¼
Z

a

0

J01

�
ν01l

r
r0

�
J1

�
ν1m

r
a

�
dr

þ aν1m
aν01l

Z
a

0

J1

�
ν01l

r
r0

�
J01

�
ν1m

r
a

�
dr ð76Þ

¼ r0
ν01l

�
J1

�
ν01l

r
r0

�
J1

�
ν1m

r
a

��
a

0

¼ 0; ð77Þ

L̂2 ¼
X
n

− Bn

Z
a

0

a
ν1nr

J1

�
ν1n

r
a

�
J1

�
ν1m

r
a

�
dr

þ ν1m
a

Z
a

0

rJ01

�
ν1n

r
a

�
J01

�
ν1m

r
a

�
dr ð78Þ

≡ ν1m
a

I1 ¼ δmn
aν1m
2

J20ðν1mÞ; ð79Þ

where I1 has been calculated earlier in (B3). Upon sub-
stituting into (75), we find that

Bm ¼ 0 ðTE on step-inÞ: ð80Þ

Notice the symmetry between this TE step-in case (giving
Bm ¼ 0) and the TM step-out case (giving Am ¼ 0) in
Sec. II B 1.
Table I summarizes the above results for all four

combinations of incident-mode type and discontinuity type,
from Secs. II B 1 to II B 4.
To find the coefficients An, we multiply (72) by

ðrν01m=aÞJ01ðν01mr=aÞ, integrate across with
R
a
0 rdr, and

use integration by parts on the second term on the rhs,
to yield

Al

Z
a

0

ν01mr
a

J01

�
ν01l

r
r0

�
J01

�
ν01m

r
a

�
dr

¼
X
n

An

Z
a

0

ν01mr
a

J01

�
ν01n

r
a

�
J01

�
ν01m

r
a

�
dr

þ Bn

Z
a

0

J01

�
ν1n

r
a

�
J1

�
ν01m

r
a

�
dr: ð81Þ

We also multiply (71) by J1ðν01mr=aÞ and similarly
integrate across to obtain

Al

Z
a

0

r0
ν01lr

J1

�
ν01l

r
r0

�
J1

�
ν01m

r
a

�
dr

¼
X
n

Z
a

0

Ana
ν01nr

J1

�
ν01n

r
a

�
J1

�
ν01m

r
a

�
dr

− Bn

Z
a

0

J01

�
ν1n

r
a

�
J1

�
ν01m

r
a

�
dr: ð82Þ

TABLE I. Summary of results for the forward-scatter expansion coefficients ðAn; BnÞ, for a TE/TM mode incident
on a step-out/in discontinuities in the oversized iris-line cell under consideration. Notice the symmetry of zeros in
the table’s diagonal.

Output TEn=TMn mode coefficients (An for TEn and Bn for TMn)

Step-out Step-in

TMl incident mode An ¼ 0 An ¼ −Bl
2r0J1ðν1la=r0Þ

aν1lðν01n−1=ν01nÞJ1ðν01nÞ

Bn ¼ −Bl
2aν1nJ0ðν1lÞJ1ðν1n a

r0
Þ

r3
0
ðν2

1l=a
2−ν2

1n=r
2
0
ÞJ02

1
ðν1nÞ

Bn ¼ −Bl
2aν1lJ0ðν1nÞJ1ðν1la=r0Þ
r0ðν21n−ν21la2=r20ÞJ021ðν1nÞ

TEl incident mode An ¼ Al
2ν0

1lJ1ðν01lÞJ01ðν01n a
r0
Þ

ðν02
1lr

2
0
=a2−ν02

1nÞð1−1=ν021nÞJ21ðν01nÞ An ¼ Al
2r2

0
ν0
1nJ

0
1
ðν0

1l
a
r0
Þ

a2ðν02
1nr

2
0
=a2−ν02

1lÞð1−1=ν021nÞJ1ðν01nÞ
Bn ¼ −Al

2aJ0ðν01lÞJ1ðν1na=r0Þ
r0ν1nJ20ðν1nÞ

Bn ¼ 0
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Adding (81) to (82) yields

AlðL̂3Þ ¼
X
n

AnðL̂4Þ; ð83Þ

where L̂3 and L̂4 are the following integrals, whose solution
is derived in Appendix B,

L̂3 ¼
Z

a

0

dr
ν01mr
a

J01

�
ν01l

r
r0

�
J01

�
ν01m

r
a

�

þ
Z

a

0

dr
a
ν01lr

J1

�
ν01l

r
r0

�
J1

�
ν01m

r
a

�
ð84Þ

¼ ar20ν
02
1mJ1ðν01mÞJ01ðν01la=r0Þ

a2ðν021mr20=a2 − ν021lÞ
ð85Þ

L̂4 ¼
X
n

An

Z
a

0

dr

�
ν01mr
a

J01

�
ν01n

r
a

�
J01

�
ν01m

r
a

�

þ a
ν01nr

J1

�
ν01n

r
a

�
J1

�
ν01m

r
a

��
ð86Þ

¼ δmn
a
2
ðν01m − 1=ν01mÞJ21ðν01mÞ: ð87Þ

Substituting (85) and (87) into (83) gives

Am ¼ Al

2r20ν
0
1mJ

0
1ðν01l a

r0
Þ

a2ðν021mr20=a2 − ν021lÞð1 − 1=ν021mÞJ1ðν01mÞ
ðTE on step-inÞ ð88Þ

Using these definitions for An and Bn, we can now plot
and compare the lhs and rhs of (71) and (72), as shown in
Fig. 7. Good agreement is observed between the original
mode and its decomposition.

III. IMPLEMENTATION AND NUMERICAL
EXAMPLES

The theoretical forward-scatter analysis developed in
Sec. II can now be numerically implemented on a computer
to predict the performance of practical iris-line examples.
The iris line will be represented as a series of connected
cells, the model of each of which is a transmission matrix
that captures the modal decompositions summarized in
Table I. The periodic iris line is therefore conveniently
represented by matrix multiplication or raising the matrix to
power M, where M is the number of cells in a practical iris
line. We can look at the field profiles at the output of each
cell, to examine the transient regime, mode launching
purity, and how an excited mode settles gradually along
the line. It is clear that anomalies or defects in the geometry
can also be incorporated by adapting this approach to
include some cells that are different from the remaining
(periodic) ones. In this section, we discuss implementation
aspects and illustrate the theory using numerical examples.
We also compare the diffraction loss behavior obtained
from this method with that obtained from the mode-
matching method [2], demonstrating good agreement,
but faster computations.

A. Transmission matrix representation

Figure 8 illustrates a conceptual picture of how we may
represent the cell matrix based on the decompositions
found in the field equations (2)–(25) and Table I. The
signal from the source is represented by an input vector (a
mix of TE and TM modes) and each cell of the iris line is
represented by five matrices: a propagator matrix for the
input waveguide (region 1), a converter matrix for the step-
out transition, a propagator matrix for the cavity (region 2),
a converter matrix for the step-in transition, and finally a
propagator matrix for the output waveguide (region 3). The
output of the cell is another vector (mix of TE and TM
modes) that is then inputted to the following cell, and so
forth. We may also have the freedom of truncating the
modal sums in each region arbitrarily, where N1, N2, and
N3 denote the number of terms included in each of the TE
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FIG. 7. Comparison of the rhs (green color line) with the lhs
(dashed black line) of Eq. (71) for Er and Eq. (72) for Eϕ, with the
upper limit of the sums truncated at 300 terms and the ðAn; BnÞ
values substituted from the results in (80) and (88). In this plot,
we took r0=a ¼ 2 as an example.
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sums and TM sums, for regions 1, 2, and 3, respectively
(see Fig. 8).
Using block matrices, the input/output vectors for the Er

field, for example, can be represented by the column
matrices

ð89Þ

where we use San Serif symbols, such as E, to denote
matrices. We divide each vector into an upper half that
contains the amplitudes of its TE modes (the An coef-
ficients) and a lower half that contains the amplitudes of its
TM modes (the Bn coefficients). Uppercase N symbols
denote the number of terms taken for TE or TM in each
region (e.g., TEN1

denotes having as many as N1 modes of
type TE). The tilde superscript is used above some of the
symbols of the output vector to distinguish them from those
of the input vector. Similar columns are used for the other
field components, such as Eϕ; Hr, etc.
For the straight sections along the z direction, we know

that the mode compositions are not altered but merely
“propagated” in phase as they travel down the line. This can

be readily inferred from the field exponents given by
Eqs. (2)–(7) and (14)–(19) for the waveguide sections,

for example, which are e−iz
ν02
1n

2ka2
þikz (for TE modes) or

e−iz
ν2
1n

2ka2
þikz (for TM modes); with similar exponents for

the cavity section (replace a ↔ r0). The propagator sec-
tions for the input waveguide or cavity, for example, can be
represented by the diagonal matrices

P1 ≡

0
BBBBBBBBBBBBBBBBBBB@

e−iz
ν02
11

2ka2
þikz

0 � � � 0

0 e−iz
ν02
12

2ka2
þikz � � � 0

..

. ..
. . .

.

0 0 � � � e−iz
ν02
1N1

2ka2
þikz

e−iz
ν2
11

2ka2
þikz 0 � � � 0

0 e−iz
ν2
12

2ka2
þikz � � � 0

..

. ..
. . .

.

0 0 � � � e−iz
ν2
1N1

2ka2
þikz

1
CCCCCCCCCCCCCCCCCCCA

;

ð90Þ

P2 ≡

0
BBBBBBBBBBBBBBBBBBBBB@

e
−iz

ν02
11

2kr2
0

þikz
0 � � � 0

0 e
−iz

ν02
12

2kr2
0

þikz � � � 0

..

. ..
. . .

.

0 0 � � � e
−iz

ν02
1N2

2kr2
0

þikz

e
−iz

ν2
11

2kr2
0

þikz 0 � � � 0

0 e
−iz

ν2
12

2kr2
0

þikz � � � 0

..

. ..
. . .

.

0 0 � � � e
−iz

ν2
1N2

2kr2
0

þikz

1
CCCCCCCCCCCCCCCCCCCCCA

:

ð91Þ

Multiplying the Er field’s input column, Er, from (89) by
the P1 matrix from (90), for example, will give us the state
of the field composition after traveling along the input
waveguide section of the iris line for a distance z.
We use “converter” matrices to represent the step-out/in

transitions in a similar way. For example, the step-out
transition from the input waveguide section (region 1) to
the cavity section (region 2) is given by

one cell

region 2

region

1

region

3

b
δ/2δ/2

a

r0

waveguide

propagator

matrix

step-out

converter

matrix

cavity

propagator

matrix

waveguide

propagator

matrix

step-in

converter

matrix

FIG. 8. A sketch illustrating how the different sections of the
cell are modeled using different transmission matrices in the
numerical analysis.
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Sstep-out ≡

0
BBBBBBBBBBBBBBBB@

ATE
1;1 � � � ATE

1;N2
BTE
1;1 � � � BTE

1;N2

ATE
2;1 � � � ATE

2;N2
BTE
2;1 � � � BTE

2;N2

..

. ..
. ..

. ..
.

ATE
N1;1

� � � ATE
N1;N2

BTE
N1;1

� � � BTE
N1;N2

ATM
1;1 � � � ATM

1;N2
BTM
1;1 � � � BTM

1;N2

ATM
2;1 � � � ATM

2;N2
BTM
2;1 � � � BTM

2;N2

..

. ..
. ..

. ..
.

ATM
N1;1

� � � ATM
N1;Nn

BTM
N1;1

� � � BTM
N1;N2

1
CCCCCCCCCCCCCCCCA

;

ð92Þ

where, ATE
ln denotes the An coefficients obtained from

Table I when the incident mode is the lth TE mode, and
so forth. Thus, the upper half of matrix (92) is the
decomposition matrix when the TE modes are incident
(we have N1 of such modes). Each row among the top half,
call it the lth row, therefore, represents the ðAn; BnÞ values
when the lth TE mode is incident. For the lower part, TM
modes are incident, and we interpret the rows in the same
way. Within each row, the first N2 terms represent the TE
modes scattered forward from the transition into the cavity,
whereas the second N2 terms are the TM modes scattered
into the cavity. Note that terms in each entire column of the
matrix actually represent the same cavity mode (same mode
at the output of the transition), but each comes from a
different waveguide-mode contribution (inputs of the
transition). Matrix multiplication between an input vector
and the converter matrix, like (92), will cause each of these
columns to be weighted appropriately by the input mode
amplitudes and then collapsed (summed up) into one
number, which represents the corresponding mode coming
out of the transition on the cavity side.
It is now clear that an entire cell can be represented by

the multiplication of the matrices introduced above. For
example, the Er field at the output of the cell is given by

ET
r;out ¼ ET

r;in · P1 · Sstep-out · P2 · Sstep-out · P3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡C

; ð93Þ

where C denotes the equivalent cell matrix and the T
superscript denotes taking the transpose of a matrix. For a
periodic iris line that holds M such cells, we can simply
represent the entire iris line by the power law L ¼ CM,
where L represents the matrix for the entire line. For an iris
line that has, for example, 50 periodic cells, followed by a
mechanically deformed cell, then by another 20 periodic
cells, we can find the equivalent matrix for the line by
L ¼ C50 · Ĉ · C20, where C represents any of the periodic
cells and Ĉ, the deformed cell.
Matrix multiplication or exponentiation operators can be

efficiently computed on modern computers using standard

tools, such as Wolfram Mathematica. Indeed, the devel-
oped model has proved to be typically an order of
magnitude faster than the mode-matching approach
reported in [2], as in the latter we had to solve the
numerically challenging problem of finding the zeros of
a complex determinant for the eigenvalue problem. For the
same iris line setup (for example, see Sec. III B 3 below)
and using the same computational tool, when the mode-
matching technique took several hours to find a solution
point (e.g., see Scale-3 in Table II in Ref. [2]), the current
method typically took only a few minutes on the same
computer.

B. Numerical examples

In the following examples, we apply the developed
theoretical model to the same iris line structure under
different excitation scenarios. To facilitate the comparison
with the diffraction loss results found previously by the
perturbative mode-matching method [2] (for arbitrary δ)
and the Vainstein-boundary condition method [1] (for
δ → 0), we choose an iris-line example with an iris radius
of 5.5 cm, a period of 33.3 cm, length of 150 m (approx-
imately equivalent to 450 cells and 451 irises) and a
frequency of 3 THz (0.1 mm wavelength). In these
examples, all the modal sums were truncated toN1 ¼ N2 ¼
N3 ¼ 500 terms, which was more than sufficient for an
accuracy better than 0.1% in all the diffraction loss results.
The diffraction loss is calculated from the transmission
matrix of the full line (L), by comparing the total power
(from all modes) at the output with the inputted power, in
the absence of ohmic losses (see Sec. III C for more details
on the ohmic loss). The iris thickness is taken at the
nominal value of δ ¼ 2 mm, except when it is being varied,
and the chamber radius for the present closed model is
chosen arbitrarily as twice the iris’s radius (see [2,13–15]
for a discussion on the chamber radius and diffraction scale
approximations).
To avoid having overcrowded transient plots, we plot

transient samples at fixed intervals (every 50 irises) along
the line. We also plot the field amplitudes with and without
normalization with respect to their amplitude on axis
(r ¼ 0). The normalized plots help in observing how the
profile shape (as a function of r) of the propagating mode is
evolving along the line. For the sake of demonstration, we
demonstrate the transients in the Er field across all the
examples; similar plots can be calculated for the other field
components.

1. An iris line with a TM11 source

If a TM11 mode is launched from the source inside the
input waveguide (region 1), one can expect a mismatch
with the dominant eigenmodes supported by the iris line.
This is, indeed, demonstrated in Fig. 9, where the transient
field profiles are sampled at fixed intervals along the line.
The instantaneous amplitude and phase of the transients
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will generally change from iris to next, but their profile will
evolve to eventually settle, after a sufficient distance, on
one of the eigenmodes of the line or a linear combination
thereof. Ideally, we aim to minimize mode competition and
maximize mode purity by matching the inputted mode to
the dominant (least lossy) eigenmode, which is approxi-
mated [1,2] by the function J0ð2.4r=aÞ, and which will be
the main surviving mode in the case of a long iris line. This
eigenmode is plotted in Fig. 9, alongside the second
eigenmode approximated by J0ð5.52r=aÞ, for reference.
The settlement of the transient can in general take a short or
long distance from the input, depending on the profile of
the source signal. In this case, the input is not well matched
to any of the leading eigenmodes and, for a total length of
150 m, the wave arrives at the final iris with an overall
diffraction loss (L) of 53.5%, which is relatively high.

2. An iris line with a TE11 source

As in the case of a TM11 source, launching a TE11 mode
in the input waveguide will lead to a mismatch between the
excited mode and the eigenmodes supported by the iris line,
but to a lesser extent, since the TE11 mode is closer in
profile to the dominant eigenmode, J0ð2.4r=aÞ. Figure 10

demonstrated this fact by showing the sampled transients
along the line. At the last iris, the total accrued loss (L) is
21.9%, which is much better than that for the TM11 mode.

3. An iris line with a well-matched Bessel source

When the line is excited by a mode that is well matched
to its dominant mode, approximated by J0ð2.4r=aÞ, one
would expect a minimal transient regime, since the
launched field’s profile does not need to evolve signifi-
cantly to meet the dominant eigenmode’s profile. Indeed,
this is equivalent to the eigensolution scenario used by the
mode-matching method [2] for an infinitely long line,
where the mode is assumed to have already settled in the
steady state. Figure 11 shows the sampled transients for this
case. As expected, this excitation type results in the least
accrued diffraction loss over the line, with L ¼ 13.6%. This
least-lossy scenario requires a Bessel mode source, which
may not be readily available in practice compared to other
more common sources. Sources with a Gaussian profile, for
example, may be easier to find in practice and are
considered below. Note that a linear THz undulator may
also be approximated as a Gaussian source [2,16].
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FIG. 9. Transients along the iris line (sampled at the indicated
irises) for the TM11 excitation case. The plots show the
magnitude of the field component Er, without (top) and with
(bottom) normalization with respect to the amplitude on the axis
r ¼ 0. Heavy trace lines in the plot highlight the field profiles at
the first iris and last iris of the line, while dashed lines highlight
the first two eigenmodes of the iris line (denoted J01, J02).
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FIG. 10. Transients along the iris line (sampled at the indicated
irises) for the TE11 excitation case. The plots show the magnitude
of the field component Er, without (top) and with (bottom)
normalization with respect to the amplitude on the axis r ¼ 0.
Heavy trace lines in the plot highlight the field profiles at the first
iris and last iris of the line, while dashed lines highlight the first
two eigenmodes of the iris line (denoted J01, J02).
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4. An iris line with a nearly-matched Gaussian source

Consider now a Gaussian beam source whose beam
waist is aligned with the input plane of the cell, so as to
have flat wavefronts (no curvature) at the waveguide’s input
iris. The skirt of the Gaussian profile, e−r

2=w2

, can be
controlled by adjusting w relative to the iris radius a, where
w is the 1=e2 width of the Gaussian. An optimal overlap
between the skirts of the Gaussian function and the
J0ð2.4r=aÞ Bessel function may be obtained by backing
off from the iris’s full width (i.e., putting w < a). This
maximizes the power transfer (projection) between the two
modes, leading to a shorter transient regime and a lower
diffraction loss overall. Figure 12 shows the sampled
transients corresponding to the value of w ≈ 0.65a, which
results in a minimal (“nearly matched”) diffraction loss on
the line. The total loss accrued in this case is L ¼ 14.3%,
which is a little higher than the ideal case of the Bessel
source given in the previous example. It is worth noting that
a Gaussian beam that fills the iris with w ¼ a would have
given a total loss of L ¼ 18.8% in comparison.
Table II summarized the predicted behavior of diffraction

loss as we vary the thickness δ of the thin screens over a
selection of indicative values that were originally

investigated in [2]. The table compares the results obtained
using the present (forward-scatter) model with those pre-
dicted by the Vainstein-based model (for δ ¼ 0) [1] and the
mode-matching method (for any δ) [2]. The comparison also
shows the performance of the matched Bessel mode [eigen-
mode J0ð2.4r=aÞ] versus the nearly matched Gaussian
mode [expð−r2=ð0.65aÞ2].
Figure 13plots thedata shown inTable II. It is clear that the

diffraction loss will decrease as we gradually thicken the
screens (closing the gaps between the irises), which is an
expected result and in agreement with [2]. The diffraction
loss behavior shows a good correlation with the trends
reported by the mode-matching method. A small offset of
approximately 2% is observed between the numerical values
from the two methods. The present method seems to be in
closer agreement with Vainstein’s model predictions at the
limit of infinitely thin screens (δ → 0). We note that for a
practical iris line with relatively thin screens (say,
δ=b ≤ 1%), the loss due to diffraction remains dominant
compared to ohmic loss at the screen edges (e.g., 1%
compared to 14%, for the example with δ¼ 2mm,
b ¼ 33.3 cm, and a ¼ 5.5 cm).
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FIG. 11. Transients along (sampled at the indicated irises) the
iris line for the matched J0ð2.4r=aÞ source case. The plots show
the magnitude of the field component Er, without (top) and with
(bottom) normalization with respect to the amplitude on the axis
r ¼ 0. Heavy trace lines in the plot highlight the field profiles at
the first iris and last iris of the line, while dashed lines highlight
the first two eigenmodes of the iris line (denoted J01, J02).
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FIG. 12. Transients along the iris line (sampled at the indicated
irises) for the backed-off Gaussian excitation case. The plots
show the magnitude of the field component Er, without (top) and
with (bottom) normalization with respect to the amplitude on the
axis r ¼ 0. Heavy trace lines in the plot highlight the field
profiles at the first iris and last iris of the line, while dashed lines
highlight the first two eigenmodes of the iris line (denoted
J01, J02).
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C. Other implementation considerations

For completeness, this section summarized how to
decompose an arbitrary source signal into modal expan-
sions in region 1 (input waveguide) and how ohmic loss can
be estimated using the presented model.

1. Decomposition of a dipole source of an arbitrary profile

For practical implementation, we would like to represent
an incident wave from a source of an arbitrary transverse

profile in terms of the paraxial TE-TM modes in region 1.
Since we are mainly concerned with incident waves of
linear polarization (e.g., along x̂) and axisymmetric inten-
sity profiles, we can explicitly write the transverse electric
field of the incident wave in rectangular coordinates as

E⃗ ¼ x̂fðrÞ þ ŷ0; ð94Þ

where fðrÞ describes the profile of the source wave.
We can now convert the field components into polar

components using the transformation: x̂ ¼ r̂ cosϕ −
ϕ̂ sinϕ and ŷ ¼ r̂ sinϕþ ϕ̂ cosϕ, to write in general form

E⃗ ¼ r̂frðrÞ cosϕþ ϕ̂fϕðrÞ sinϕ; ð95Þ

where here fr ≡ f and fϕ ≡ −f. We can expand this field
in terms of the input waveguide components (including TE
and TM modes) as

r̂fðrÞ cosϕ − ϕ̂fðrÞ sinϕ ¼ E⃗ ¼ r̂E1r þ ϕ̂E1ϕ: ð96Þ

From Eqs. (2), (3), (14), and (15) we see that E1r has a
cosϕ dependence, whereas E1ϕ has a sinϕ dependence.
Therefore, the expansion (96) becomes

−fðrÞ ¼
X∞
n¼1

−Ana
rν01n

J1ðν01nr=aÞ þ BnJ01ðν1nr=aÞ ð97Þ

−fðrÞ ¼
X∞
n¼1

−AnJ01ðν01nr=aÞ þ
Bna
rν1n

J1ðν1nr=aÞ ð98Þ

To find An, we multiply (97) by J1ðν01mr=aÞa=ν01m and
integrate with

R
a
0 rdr; multiply (98) by rJ01ðν01mr=aÞ,

integrate with
R
a
0 rdr and take integration by parts on

the second term on rhs; then add the results from the two
resulting equations. This gives

Z
a

0

½−fðrÞrJ01ðν01mr=aÞ −
a
ν01m

fðrÞJ1ðν01mr=aÞ�dr

¼ −
X
n

An
a
ν01m

Z
a

0

�
a

rν01n
J1ðν01nr=aÞJ1ðν01mr=aÞ

þrJ01ðν01nr=aÞJ01ðν01mr=aÞ
�
dr: ð99Þ

The integral on the rhs is the same as the integral L4 in
(68), but with the replacement r0 → a. This simplifies
Eq. (99) to yield, after some algebraic manipulation, the
general An coefficient sought

TABLE II. Comparison of the diffraction loss (L) results
obtained by different models for a matched Bessel source (the
dominant eigenmode) and a backed-off Gaussian source, as we
vary the thickness δ of the thin screens. For the well-matched
input (or eigenmode), which has a profile ∼J0ð2.4r=aÞ, the
comparison is among the Vainstein-based model (for δ ¼ 0) [1],
the mode-matching model (for any δ) [2], and the present
forward-scatter model (abbreviated as ‘Fwd-Sctr’). For the
backed-off Gaussian input, which has a profile ∼ exp½−r2=
ð0.65aÞ2�, the comparison is only meaningful with the matched
Bessel mode using the present model. All modes are assumed
linearly polarized and δ is varied over the indicative values used
in [2]. A frequency of 3 THz is assumed, with iris-line
dimensions: a ¼ 5.5 cm, b ¼ 33.3 cm, and a total length of
150 m. For this calculation, the chamber radius was taken
arbitrarily as r0 ≈ 2a in the present model (the other models
assume open chambers).

Eigenmode or well-matched source Gaussian source

δ (mm)
LVainstein
(%)

Lmode-match
(%)

LFwd-Sctr
(%)

LFwd-Sctr
(%)

0 14.6 17.1 14.1 14.8
1 11.7 13.8 14.4
2 11.6 13.6 14.3
3 11.3 13.6 14.2
5 11.2 13.4 14.1
10 10.9 13.0 13.7
25 10.3 12.2 12.8
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FIG. 13. Plot of the data shown in Table II.
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Am ¼ 2
R
a
0 rfðrÞJ0ðν01mr=aÞdr
a2ð1 − 1

ν02
1m
ÞJ21ðν01mÞ

: ð100Þ

To findBn, wemultiply (97) by rJ01ðν1mr=aÞ and integrate
with

R
a
0 rdr; multiply (98) by J1ðν1mr=aÞa=ν1m, integrate

with
R
a
0 rdr and take integration by parts on the second term

on rhs; then add the results from the two resulting equations.
This gives

−
Z

a

0

½rfðrÞJ01ðν1mr=aÞ þ
a
ν1m

fðrÞJ1ðν1mr=aÞ�dr

¼
X
n

Bn

Z
a

0

�
rJ01ðν1nr=aÞJ01ðν1mr=aÞ

þ a2

rν1nν1m
J1ðν1nr=aÞJ1ðν1mr=aÞ

�
dr ð101Þ

The integral on the rhs is nothing but I1 in (33) if we
replace r0 → a. This leads, after simplification, to the
sought Bn coefficients as

Bm ¼ −2
R
a
0 rfðrÞJ0ðν1mr=aÞdr

a2J20ðν1mÞ
; ð102Þ

which completes the decomposition.

2. Carried power and attenuation
constant α for each mode

Each inputted mode will carry complex power in the z
direction, which can be derived from the following integral
of Poynting’s vector

Pin ¼
1

2

Z
a

0

Z
2π

0

E⃗ × H⃗ · ẑrdrdϕ

¼ 1

2

Z
a

0

Z
2π

0

ðErH�
ϕ − EϕH�

rÞrdrdϕ: ð103Þ

Upon substitution of the field components from (2) to (7)
and (14) to (19), using integration by parts and simplifying,
we find the following power in the TE or TM lth mode:

Pin;l;TE ¼ −πa2ðν021l − 1Þ
4kZ0

jAlj2
�

ν021l
2ka2

− k

�
J20ðν01lÞ ð104Þ

Pin;l;TM ¼ πa2

4kZ0

jBlj2
�

ν21l
2ka2

þ k

�
J20ðν1lÞ ð105Þ

which are real values.
Given the thin skin layer on the screen conductor at THz

frequencies, we can employ the conventional perturbative
method (e.g., see [9–11,17]) of finding the ohmic attenu-
ation constant, denoted α, from our knowledge of the
tangent magnetic field at the screen-edge surface when

using a perfect conductor. We can then estimate α as
α ¼ P0

2Pin
, with P0 being the power lost on the walls per unit

length,

P0 ¼
Rs

2

Z
2π

0

Z
1

0

½jHϕða;ϕ; zÞj2 þ jHzða;ϕ; zÞj2�adϕdz;

ð106Þ

where Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kZ0=2σ

p
is the surface resistance and σ is the

conductivity. Substituting (106) from (6) and (7) (for the
TE case), and from (18) and (19) (for the TM case), we
obtain

P0;TE ¼ jAlj2
aRs

2

π

k2Z2
0

�
ν021l
a2

J21ðν01lÞ

þ ðν021l=2ka2 − kÞ2
ν021l

J21ðν01lÞ
�
; ð107Þ

P0;TM ¼ jBlj2
aRs

2

π

k2Z2
0

ðkþ ν21l=2ka
2Þ2J021 ðν1lÞ: ð108Þ

We can now find αTE;l using (104) and (107), and αTM;l
using (105) and (108), as

αTE;l ¼ −
Rs

akZ0

ν041l=a
2 þ ðν021l=2ka2 − kÞ2

ðν021l − 1Þðν021l=2ka2 − kÞ ; ð109Þ

αTM;l ¼
Rs

akZ0

ðkþ ν21l=2ka
2Þ; ð110Þ

where we have used the fact that J01ðν1lÞ ¼ ½J0ðν1lÞ−
J2ðν1lÞ�=2 ¼ ½J0ðν1lÞ þ J0ðν1lÞ�=2 ¼ J0ðν1lÞ.
The forward-scatter model developed in the previous

sections to calculate diffraction loss, which is the dominant
form of loss for thin screens, may now be extended to
include ohmic losses on the screen edges of each cell, by
simply replacing the phase propagation term as follows:

TE mode∶ e−izð
ν02
1l

2ka2
−kÞ → e−zαTE;l · e−izð

ν02
1l

2ka2
−kÞ;

TM mode∶ e−izð
ν2
1l

2ka2
−kÞ → e−zαTM;l · e−izð

ν02
1l

2ka2
−kÞ:

IV. CONCLUSIONS

Field and transient analysis for the paraxial propagation
of a short THz pulse in an oversized iris line has been
presented, where we have exploited the shortness of the
pulse and the largeness of the structure to approximate the
problem as a forward-scatter problem. The developed
model allows for the study of transients along the iris line
and for the investigations of propagation performance for a
finite length of line and an arbitrary driving source. This is
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contrasted to the steady-state eigensolutions found by
previous methods, such as the mode-matching method.
The developed model boosts the computational speed by an
order of magnitude compared to the mode-matching
method and offers a convenient computational platform
that can be easily extended to examine sensitivity to
mechanical tolerances or geometrical defects.
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APPENDIX A: WAVE EQUATION SOLUTION
DERIVATIONS

Solving Maxwell’s curl equations together in free space
gives the vector wave equation for the electric field E

∇2E⃗ −
1

c2
∂
2

∂t2
E⃗ ¼ 0: ðA1Þ

Given the time-harmonic dependence e−iωt, we may

write the field in phasor form as E⃗ðr; z; tÞ ¼
Re½E⃗ðr;ϕ; zÞe−iωt�, converting (A1) into the vector
Helmholtz equation

∇2E⃗þ k2E⃗ ¼ 0: ðA2Þ
We assume the field E⃗ ¼ r̂Er þ ϕ̂Eϕ þ ẑEz to have the

form

Er ¼ Arðr;ϕ; zÞeikz; ðA3Þ
Eϕ ¼ Aϕðr;ϕ; zÞeikz; ðA4Þ

Ez ¼ Azðr;ϕ; zÞeikz; ðA5Þ

where the functions Ar; Aϕ, and Az represent the complex
field envelopes.
Let us expand the vector Laplacian into its orthogonal

components and solve for each component in the
Helmholtz equation (A2) separately. Starting with the r
component, (A2) reduces to

1

r
∂

∂r
r
∂Er

∂r|fflfflfflfflffl{zfflfflfflfflffl}
term 1

þ 1

r2
∂
2Er

∂ϕ2|fflfflffl{zfflfflffl}
term 2

þ ∂
2Er

∂z2|ffl{zffl}
term 3

−
Er

r2
−

2

r2
∂Eϕ

∂ϕ
þ k2Er ¼ 0

ðA6Þ

Since we know that the azimuthal dependence is dipolar
(i.e., either of the form sinϕ or cosϕ), we know that the

operator ∂2=∂ϕ2 is equivalent to multiplication by scalar
−1, and we can expand the terms 1–3 in (A6) to arrive at

term 1 ¼ eikz
�
1

r
∂Ar

∂r
þ ∂

2Ar

∂r2

�
ðA7Þ

term 2 ¼ −eikz
Ar

r2
ðA8Þ

term 3 ≈ eikz
�
2ik

∂Ar

∂z
− k2Ar

�
; ðA9Þ

where for term 3, we have also assumed a slowly varying

envelope for Ar along z (implying ∂
2Ar
∂z2 ≪ k2Ar).

Substituting these terms back into (A6) and assuming
the following separable form for the field envelopes
(justifiable by the separability of the Helmholtz equation
itself in cylindrical coordinates [18] as well as the axisym-
metrical geometry of the iris line)

Arðr;ϕ; zÞ ¼ RðrÞZðzÞ cosϕ; ðA10Þ

Aϕðr;ϕ; zÞ ¼ R̂ðrÞẐðzÞ sinϕ; ðA11Þ

give us, after algebraic simplification, the following equa-
tion:

ZR00 þ ZR0

r
−
2ZR
r2

þ 2ikRZ0 ¼ 2R̂ Ẑ
r2

: ðA12Þ

Following similar steps for the ϕ component, we obtain

1

r
∂

∂r
r
∂Eϕ

∂r
þ 1

r2
∂
2Eϕ

∂ϕ2
þ ∂

2Eϕ

∂z2
−
Eϕ

r2
þ 2

r2
∂Er

∂ϕ
þ k2Eϕ ¼ 0;

ðA13Þ

which, upon assuming a slowly varying envelope for Aϕ

envelope along z (implying ∂
2Aϕ

∂z2 ≪ k2Aϕ) and simplifying,
yields the following equation:

ẐR̂00 þ ẐR̂0

r
−
2Ẑ R̂
r2

þ 2ikR̂Ẑ0 ¼ 2RZ
r2

: ðA14Þ

We notice the symmetry in form between Eqs. (A12) and
(A14). Given that the envelopes Ar; Aϕ are both slowly
varying in z and given the axisymmetrical nature of the
structure, we expect the variation and derivatives in z to be
uncoupled of those in r and ϕ, allowing us to make the
assumption that Z ¼ Ẑ. We proceed to take the sum and the
difference of Eqs. (A12) and (A14), to yield the equation
pair

ZðR̂ − RÞ00 þ Z
r
ðR̂ − RÞ0 þ 2ikZ0ðR̂ − RÞ ¼ 0; ðA15Þ
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ZðR̂þ RÞ00 þ Z
r
ðR̂þ RÞ0 þ 2ikZ0ðR̂þ RÞ ¼ 4Z

r2
ðR̂þ RÞ:

ðA16Þ

Let us derive the solutions for (A16) and (A15) of Sec. II
A. If we define the function fðrÞ≡ R − R̂, then (A15) can
be reduced to a separable equation, with the lhs in r only,
while the rhs in z only, as

f00

f
þ 1

r
f0

f
¼ −2ik

Z0

Z
¼ −c2o; ðA17Þ

where c0 is an arbitrary separation constant to be deter-
mined later by the boundary conditions. We recognize the
lhs as a Bessel equation in r, while the rhs as a harmonic
equation in z,

f00 þ 1

r
f0 þ c20f ¼ 0 ⇒ fðrÞ ¼ AJ0ðc0rÞ; ðA18Þ

Z0

Z
¼ −

2c20
2k

⇒ ZðzÞ ¼ e−iz
c2
0
2k; ðA19Þ

where A is a constant.
Similarly, let us define the function gðrÞ≡ Rþ R̂, so

that (A16) can be reduced to the separable equation

g00

g
þ 1

r
g0

g
−

4

r2
¼ −2ik

Z0

Z
¼ −d20; ðA20Þ

where d0 is an arbitrary separation constant. We recognize
the lhs as a Bessel equation in r, while the rhs as a harmonic
equation in z,

g00 þ 1

r
g0 þ

�
d20 −

22

r2

�
g ¼ 0 ⇒ gðrÞ ¼ A0J2ðd0rÞ; ðA21Þ

Z0

Z
¼ −

2d20
2k

⇒ ZðzÞ ¼ e−iz
d2
0
2k ; ðA22Þ

where A0 is a constant.
We put c0 ¼ d0 to have the z dependences equal, giving

us in summary,

ZðzÞ ¼ e−iz
d2
0
2k ; ðA23Þ

Rþ R̂ ¼ gðrÞ ¼ A0J2ðc0rÞ; ðA24Þ

R − R̂ ¼ fðrÞ ¼ AJ0ðc0rÞ: ðA25Þ

Given that 2R ¼ f þ g, that J1ðzÞ=z ¼ J0ðzÞ þ J2ðzÞ,
and that we can write the constant A0 as Aþ B, where B is
some constant, we can simplify and obtain

RðrÞ ¼ A
c0r

J1ðc0rÞ þ BJ2ðc0rÞ: ðA26Þ

Similarly, given that 2R̂ ¼ g − f, that 2J01ðzÞ ¼
J0ðzÞ − J2ðzÞ, and that we can write the constant A0 as
Aþ B, we can simplify and obtain

R̂ðrÞ ¼ −AJ01ðc0rÞ þ BJ2ðc0rÞ: ðA27Þ

It is interesting to note in passing that the functions R and
R̂ have different forms in general, even though
equations (A12) and (A14) exhibited symmetry. We can
now collect the different terms and substitute in the
definitions of the envelopes Ar; Aϕ to arrive at the field
envelopes Ar; Aϕ and Az as

Arðr;ϕ;zÞ¼
�
A
c0r

J1ðc0rÞþBJ2ðc0rÞ
�
cosϕe−iz

c2
0
2k; ðA28Þ

Aϕðr;ϕ; zÞ ¼ ½−AJ01ðc0rÞ þ BJ2ðc0rÞ� sinϕe−iz
c2
0
2k; ðA29Þ

Azðr;ϕ; zÞ ¼
iBc0
k

J1ðc0rÞ cosϕe−iz
c2
0
2k; ðA30Þ

where A, B are arbitrary complex constants and to find Az,
we used Maxwell’s divergence equation ð∇ · E⃗ ¼ 0Þ, with
the assumption of slowly varying envelope Az along z
(implying ∂Az

∂z ≪ kAz), as shown below.
We have

Az ¼
i
rk

�
Ar þ r

∂Ar

∂r
þ ∂Aϕ

∂ϕ

�
; ðA31Þ

and the terms r ∂Ar
∂r and ∂Aϕ

∂ϕ can be shown to reduce to (in
shorthand notation)

r
∂Ar

∂r
¼

�
AJ01 −

A
c0r

J1 þ Bc0rJ02

�
cosϕe−iz

c2
0
2k; ðA32Þ

∂Aϕ

∂ϕ
¼ ð−AJ01 þ BJ02Þ cosϕe−iz

c2
0
2k; ðA33Þ

leading us to the final Az expression

Az ¼
iBc0
k

J1ðc0rÞ cosϕe−iz
c2
0
2k; ðA34Þ

which was cited earlier.
Note that the magnetic field can be derived from the

electric field found above via Maxwell’s curl equation
H⃗ ¼ − i

ωμ∇ × E⃗. Upon writing the curl components explic-
itly, we obtain (after simplifying)
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Hr ¼
−i
ωμ

�
1

r
∂Az

∂ϕ
−
∂Aϕ

∂z
− ikAϕ

�
eþikz; ðA35Þ

Hϕ ¼ −i
ωμ

�
∂Ar

∂z
þ ikAr −

∂Az

∂r

�
eþikz; ðA36Þ

Hz ¼
−i
ωμ

1

r

�
Aϕ þ r

∂Aϕ

∂r
−
∂Ar

∂ϕ

�
eþikz; ðA37Þ

which are the general components of the magnetic field.
These components will be further specified for the TE and
TM modes below.
Let us now impose the boundary conditions Az ¼ 0 and

Aϕ ¼ 0 at r ¼ q (for waveguide sections) and at r ¼ r0 (for
the cavity section). Starting at the waveguide wall case
(r ¼ a), from (A30) we see that it will require one of two
nontrivial solutions: either B ¼ 0, giving Az ¼ 0, which
corresponds to the TE case; or c0 ¼ ν1n=a, with B ≠ 0,
which corresponds to the TM case, where ν1n is the nth root
of the J1 function.
We can now proceed with applying the boundary

condition also on Eq. (A29) for each of the TE and TM
cases as follows:

TE case: here B ¼ 0; Az ¼ 0 generally and we still need
to determine c0 by requiring Eq. (A29) to be zero at
r ¼ a. This leads to either requiring A ¼ 0 or
c0 ¼ ν01n=a. We reject the former option because it
leads to all fields vanishing (trivial solution) and adopt
the latter one. Substituting back into our fields and
simplifying, we find the final TE fields given in
Eqs. (2)–(7). For the cavity section, replace a with
r0, which results in the expansion equations (8)–(13).
Note that Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
denotes the free-space imped-

ance, and themagnetic field components are found from
the electric field components using (A35)–(A37).

TM case: here c0 ¼ ν01n=a, with B ≠ 0; Az ≠ 0 generally,
and for Eq. (A29) to be zero at r ¼ a, we need

BJ2ðν1nÞ − AJ01ðν1nÞ ¼ 0: ðA38Þ

We have J01ðν1nÞ ¼ J0ðν1nÞ − 1
ν1na

J1ðν1nÞ ¼ J0ðν1nÞ−
0 ¼ J0ðν1nÞ here, however, so (A38) becomes

BJ2ðν1nÞ − AJ0ðν1nÞ ¼ 0: ðA39Þ

Since ν1n are the zeros of the J1 functions, and sincewe
know that the zeros of the functions J0, J1, and J2 are
nonoverlapping [19], we know that the only solution for
this equation is obtainable by finding the suitable values
for A, B constants. This gives us A ¼ BXa, where
Xa ¼ J2ðc0aÞ=J0ðc0aÞ. However, we know that J2 ¼
J0 − 2J01 and J01ðν1nÞ ¼ J0ðν1nÞ, since J1ðν1nÞ ¼ 0,
which leads toXa ¼ −1 ⇒ A ¼ −B. Substituting back
into our fields and simplifying, we find the final TM

fields given in Eqs. (14)–(19). For the cavity section,
replace a with r0, which results in the expansion
equations (20)–(25).

APPENDIX B: ANALYTICAL CALCULATION
OF INTEGRALS

Integral I1 from (33) can be calculated as follows:
Simplify the integral

I1 ¼
Z

r0

0

rdrJ01

�
ν1n

r
r0

�
J01

�
ν1m

r
r0

�

þ r20
ν1nν1m

Z
r0

0

dr
r
J1

�
ν1n

r
r0

�
J1

�
ν1m

r
r0

�
; ðB1Þ

by expanding each term according to the identity
2J01ðν1n r

r0
Þ ¼ J0ðν1n r

r0
Þ − J2ðν1n r

r0
Þ or the identity

ð2r0=ν1nrÞJ1ðν1n r
r0
Þ ¼ J0ðν1n r

r0
Þ þ J2ðν1n r

r0
Þ, then group-

ing the terms to give

I1 ¼
1

2

Z
r0

0

rJ0

�
ν1n

r
r0

�
J0

�
ν1m

r
r0

�

þ 1

2

Z
r0

0

rJ2

�
ν1n

r
r0

�
J2

�
ν1m

r
r0

�
ðB2Þ

¼
�
0; m ≠ n
r2
0

2
J20ðν1mÞ ¼ r2

0

2
J021ðν1mÞ; m ¼ n

¼ δmn
r20
2
J20ðν1mÞ ¼ δmn

r20
2
J021ðν1mÞ; ðB3Þ

since we have J0ðν1nÞ ¼ J01ðν1nÞ. Here, δmn denotes
Kronecker’s delta function.
Integral I2 from (39) can be calculated as follows: First,

let us simplify the integral

I2 ¼
r0
ν01m

�Z
r0

0

r0
ν01nr

drJ1

�
ν01n

r
r0

�
J1

�
ν01m

r
r0

�

þ
Z

r0

0

dr
ν01mr
r0

J01

�
ν01n

r
r0

�
J01

�
ν01m

r
r0

��
; ðB4Þ

by using the shorthand notation J1ðν01nr=r0Þ → J1n;
J1ðν01mr=r0Þ → J1m, and so forth. Then, using the Bessel
identities of the form ðrν01m=r0ÞJ01m ¼ ðν01mr=r0ÞJ0m − J1m
and ðr0=rν1nÞJ1n ¼ J0n − J01n a few times, and rearranging
the terms, we can finally arrive at
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I2 ¼
r0
ν01m

Z
r0

0

dr

�
J0nJ1m − J01n

�
2J1m −

ν01mr
r0

J0m

��

¼ r0
ν01m

Z
r0

0

dr
ν01mr
r0

�
1

2
J0nJ0m þ 1

2
J0nJ2m − J01nJ2m

�

¼ r0
ν01m

Z
r0

0

dr
ν01mr
2r0

½J0nJ0m þ J2nJ2m�

¼ r0
ν01m

�
0; m ≠ n
r0ν01m
2

J20ðν01mÞðν021m − 1Þ; m ¼ n

¼ δmn
r0ν01m
2

ðν021m − 1ÞJ20ðν01mÞ

¼ δmn
r0ν01m
2

ð1 − 1=ν21mÞJ21ðν01mÞ: ðB5Þ

Integral I3 from (34) can be calculated with the help of Bessel identities of the form ðrν1n=r0ÞJ01ðrν1n=r0Þ ¼
ðν1nr=r0ÞJ0ðrν1n=r0Þ − J1ðrν1n=r0Þ and regrouping the terms, to yield

I3 ¼
Z

a

0

dr

�
rJ01

�
ν1l

r
a

�
J01

�
ν1m

r
r0

�
þr

a
ν1lr

J1

�
ν1l

r
a

�
r0

ν1mr
J1

�
ν1m

r
r0

��

¼
Z

a

0

dr

�
rJ01

�
ν1l

r
a

�
J01

�
ν1m

r
r0

�
þ r

�
J0ðν1lr=aÞ−J01

�
ν1l

r
a

��
½J0

�
ν1m

r
r0

�
− J01

�
ν1m

r
r0

��	
; ðB6Þ

which, upon expanding the products, regrouping the factors of J01ðν1mr=r0Þ and J01ðν1lr=r0Þ, then simplifying using the
same Bessel identities used above, we obtain two simple integrands (one of which is a perfect differential). Namely,

I3 ¼ −
Z

a

0

dr

�
r0a

ν1lν1m

d
dr

�
J1

�
ν1l

r
a

�
J1

�
ν1m

r
r0

��
−rJ0

�
ν1l

r
a

��
ν1m

r
r0

�	

¼ 0þ
Z

a

0

rdrJ0

�
ν1l

r
a

��
ν1m

r
r0

�

¼ aν1mJ0ðν1lÞJ1ðν1ma=r0Þ
r0ðν21m=r20 − ν21l=a

2Þ : ðB7Þ

Using shorthand notation of the form J0ðν01nr=r0Þ → J0n0 ; J1ðν1mr=r0Þ → J1m, and so forth, we can rewrite and calculate
integrals L3, L4, L̂3, and L̂4 as follows:

L3 ¼
ν01m
r0

�Z
a

0

rJ01

�
ν01l

r
a

�
J01

�
ν01m

r
r0

�
drþ

Z
a

0

r
a
ν01lr

J1

�
ν01l

r
a

�
r0

ν01mr
J1

�
ν01m

r
r0

�
dr

�

¼ ν01m
r0

�Z
a

0

r
1

2
ðJ0l0 − J2l0 Þ

1

2
ðJ0m0 − J2m0 Þdrþ

Z
a

0

r
1

2
ðJ0l0 þ J2l0 Þ

1

2
ðJ0m0 þ J2m0 Þdr

�

¼ ν01m
4r0

Z
a

0

rð2J0l0J0m0 þ 2J2l0J2m0 Þdr

¼ ν01m
2r0

�Z
a

0

rJ0

�
ν01l

r
a

�
J0

�
ν01m

r
r0

�
drþ

Z
a

0

rJ2

�
ν01l

r
a

�
J2

�
ν01m

r
r0

�
dr

�
;

¼ r0ν01mν
0
1lJ1ðν01lÞJ01ðν01ma=r0Þ

ðν021lr20=a2 − ν021mÞ
: ðB8Þ

L4 ¼
Z

r0

0

dr
r0
ν01nr

J1

�
ν01n

r
r0

�
J1

�
ν01m

r
r0

�
þ
Z

r0

0

dr
ν01mr
r0

J01

�
ν01n

r
r0

�
J01

�
ν01m

r
r0

�
ðB9Þ
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¼
Z

r0

0

dr

�
J0
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¼
� 0; n ≠ m

ν0
1m
2r0

1
2
r20½J21ðν01mÞð1þ 1=ν021mÞ þ J22ðν01mÞ − J1ðν01mÞJ3ðν01mÞ�; n ¼ m

ðB12Þ

¼ δmn
r0
2
ðν01m − 1=ν01mÞJ21ðν01mÞ; ðB13Þ

where the last equality was reached using the fact that J3ðν01mÞ ¼ 4J2ðν01mÞ=ν01m − J1ðν01mÞ and that
J0ðν01mÞ ¼ J2ðν01mÞ ¼ J1ðν01mÞ=ν01m.
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It is interesting to note here how the integral result leading to (B18) differs from that leading to (B8) by the interchange of
ν01m ↔ ν01m (instead of r0 ↔ a).
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ðB22Þ

¼ δmn
a
2
ðν01m − 1=ν01mÞJ21ðν01mÞ; ðB23Þ

where the last equality was reached using the fact that
J3ðν01mÞ ¼ 4J2ðν01mÞ=ν01m − J1ðν01mÞ and that J0ðν01mÞ ¼
J2ðν01mÞ ¼ J1ðν01mÞ=ν01m.
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