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Accelerators produce too many signals for a small operations team to monitor in real time. In addition,
many of these signals are only interpretable by subject matter experts with years of experience. As a result,
changes in accelerator performance can require time-intensive consultations with experts to identify the
underlying problem. Herein, we focus on a particular anomaly detection task for radio-frequency (rf)
stations at the SLAC Linac Coherent Light Source (LCLS). The existing rf station diagnostics are
bandwidth limited, resulting in slow, unreliable signals. As a result, anomaly detection is currently a
manual process. We propose a beam-based method, identifying changes in the accelerator status using shot-
to-shot data from the beam position monitoring system; by comparing the beam-based anomalies to data
from rf stations, we identify the source of the change. We find that our proposed method can be fully
automated while identifying more events with fewer false positives than the rf station diagnostics alone.
Our automated fault identification system has been used to create a new dataset for investigating the
interaction between the rf stations and accelerator performance.
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I. INTRODUCTION

The increasing complexity of particle accelerators is
creating new challenges in operating user facilities with
high-uptime. The tasks of predicting, identifying, and
recovering from anomalies have already grown beyond
what a human operator can monitor unassisted [1]; for
example, the control system for SLAC’s Linac Coherent
Light Source (LCLS) includes 200,000 different process
variables (PV) stream while the next-generation LCLS-II
will record 2 million. This growth in data rates opens new
opportunities for data science techniques to improve the
automation of accelerator operations.

The problem of anomaly detection, the task of finding
abnormal events or data, is common beyond particle
accelerators. Nearly all modern data-heavy systems, such
as complex internet, industrial, and engineering systems,
produce thousands of real-time signals, overwhelming the
human operators tasked with monitoring performance.
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Moreover, research has shown that humans, even trained
operators, are severely limited when detecting rare events
[2—4]. Nonetheless, human operators have the necessary
causal reasoning and deep institutional knowledge to
investigate and understand the root cause of anomalies.
To better detect anomalies in these complex systems, we
seek to delegate the constant monitoring of a large number
of complex data streams to an automated artificial intelli-
gence (Al) agent and refocus human attention, cognition,
and causal reasoning to anomaly investigation and
recovery.

A. Anomalies at LCLS

LCLS, like many complex engineering systems, expe-
riences unplanned downtime and unexpected behavior that
is difficult to pinpoint and correct. LCLS loses at least 3%
of availability [5]—more than 180 h per year—to
unplanned downtime, equivalent to more than three full
user experiments. We also focus on more subtle changes to
performance which degrade the free-electron laser (FEL)
performance, even when the beam is still delivered.
Furthermore, fluctuations in performance can restrict the
operational range of the accelerator (e.g., if spare rf stations
must be held in reserve, the range of x-ray energy available
to users is limited) or contribute noise to experiments
through changes in x-ray photon energy. Therefore, our
goal is to minimize the number of interruptions to stable
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beam rather than integrated downtime. Due to limited
bandwidth across the multikilometer accelerator, subsys-
tem diagnostics are typically low fidelity, and existing
methods for identifying faults purely on subsystem diag-
nostics have both too many false positives and false
negatives to be deployed in operation.

The motivation for this work is threefold: (i) develop an
algorithm that will alert an operator that an anomaly has
occurred and propose a candidate source; (ii) automate
logging of anomalous events; and (iii) create a new labeled
anomaly dataset that can be used for future studies.

First, by alerting operators that an anomaly has occurred
and localizing a candidate source, we aim to increase
uptime and reliability, decrease time to restore the beam to
user operation, lower maintenance costs, and, indirectly,
expand the effective operational limits of the machine.
Second, automating the anomaly detection process enables
automated logging of events, which can in turn identify
subsystems in need of repair prior to failures or subsystems
that are recurrently problematic. These goals align with
ongoing work at other organizations, such as the Smart
LINAC project at CERN [6], which is utilizing Al-based
anomaly detection to maximize uptime and decrease
maintenance costs for LINACs.

Finally, the creation of labeled, voluminous, datasets is
often the first step in tackling any machine learning (ML)
problem [7]. Thus, in addition to the operational benefits
just mentioned, an algorithm that can automatically detect
anomalous behavior can also enable the creation of a
labeled dataset. The problem of assembling datasets has
been mentioned in a number of recent works on applying
ML at accelerators. Specifically, they point to the burden
created by the amount of effort required to produce a
suitable dataset [8—10] or they expressed a desire for more
data to improve the performance of their algorithms
[11,12]. In the rf station example, a dataset labeled with
slow rf station data could enable a future algorithm based
entirely on fast, beam-based signals.

B. Contribution

In this work, we introduce a fully automated, beam-
based diagnostic method for rf station fault detection at
LCLS. Our key contribution is the combination of high
fidelity beam position monitoring data with bandwidth
limited (and noisy) rf station diagnostic data to achieve
highly accurate, nearly real-time fault identification. This
approach, of using beam-based data as a way of under-
standing subsystem performance, is applicable beyond rf
stations at LCLS to anomaly problems at LCLS-II and
other accelerators. We primarily present an interpretable
unsupervised anomaly detection algorithm that exploits
knowledge of LCLS’s design and seeks to mimic a human
operator’s fault analysis process.

Our paper makes several contributions. First, we
describe the current problem of identifying rf station faults

at LCLS, notably the bandwidth limitation and inaccuracy
of the existing rf station diagnostics system, and explain
how pulse-by-pulse beam position data can be used to
supplement these diagnostics (see Sec. III). Second, we
present how to identify possible rf station faults, which we
refer to as anomaly candidates, from two primary existing
rf station diagnostics. See Sec. IVA. Third, we define a
statistics-based unsupervised time-series anomaly detection
algorithm on the beam position data. The algorithm assigns
an anomaly score to each anomaly candidate to determine
whether an rf station fault occurred. See Sec. IV B. Fourth,
we compare our fully automated system to an existing
detection system, over a labeled study period, and find our
system reduces the number of false positives by a factor of
20x while correctly identifying 96% of the faults. Over a
longer unlabeled period, we analyze the faults identified by
our approach and correlate our findings with faults that
were manually logged by LCLS operators. Finally, we
describe the creation of a public anomaly detection dataset
from the rf station diagnostics, beam position data, and
hand labels and demonstrate that a proof of concept DNN
trained on this data achieves comparable results to our
original (unsupervised) system. See Sec. V.

II. RELATED WORK

Fault identification and recovery reduce downtime and
improve performance metrics. Within the last 5 years,
various accelerators have investigated machine learning
algorithms to identify unusual (i.e., anomalous) accelerator
states to increase the performance of the accelerator:
isolation forests to improve the quality of optics measure-
ments by detecting faulty BPMs [13]; autoencoders to
show sensitivity to parameter drifts in drift-tube LINACs
[14]; Gaussian mixture models and isolation forests to
detect anomalous behavior in injection kicker magnets
[15]; transfer learning to detect anomalous vacuum pres-
sure changes at a synchrotron [16]; principal component
analysis and local outlier factor to detect collimation
system settings that need improvement [17]; Siamese
neural network model to predict anomalous pulses at a
proton LINAC and prevent damage to the accelerator [18];
and recurrent autoencoders to detect failing rf power
modulators [19]. Reference [20] applies a variety of
different model-based and nonmodel-based techniques
for detecting anomalies in a cryogenic system, includ-
ing an online update to the definition of anomaly.
References [8,21] also apply a number of methods to
detect anomalies of different types in the rf power of a
proton source. Several algorithms have been used to
monitor the cryogenic system at the European XFEL, such
as a residual of the eigenvalues of a state matrix to detect
quenches in superconducting cavities at a reduced repeti-
tion rate [22], and anomaly detection using a model-based
parity space algorithm and classification using support
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vector machines [23,24]. In the latter case, anomalies are
defined on an ad hoc basis by separating clusters.

III. rf STATION ANOMALIES

The health of LCLS is judged by the quality of the x-ray
beam delivered to users, typically through metrics such as
energy per pulse, stability of photon energy, and x-ray
bandwidth. For the purposes of this work, we define an
anomaly to have occurred when there is an unexpected
change in the state of the accelerator that either degrades the
performance of the x-ray beam or causes a machine fault
that halts operation entirely. After observing the onset of
degraded performance, operators retune based on previous
operational experience, a collection of physical models, and
intuition. With strong anomalies, the machine-protection
system will turn off beam delivery, and the same techniques
are used to recover accelerator operation. Searching for the
root cause of an anomaly can be time-consuming, both due
to a large number of process variables and due to the
complex interaction between the accelerator and its various
automated control systems, which may blur cause and
effect.

Out of LCLS’ various failure modes, we focus on the
challenge of identifying anomalous behavior in the 82 rf
stations that power the x-ray laser’s accelerator. Changes in
the power delivered by an rf station can range from nearly
imperceptible impact to the electron beam to completely
stopping operation (i.e., a machine fault). Fault identifica-
tion and recovery currently require an experienced operator
to search through hundreds of data streams in real time after
the fault occurs. Anomalies in the rf stations are an
interesting source of study for multiple reasons: (i) they
are a major failure mode, with several drops in rf station
performance per hour during beam operation; (ii) they
directly affect the beam energy, causing degradation of
free-electron laser (FEL) performance; and (iii) they have
an existing but inaccurate detection system.

A. Current method

There are two existing methods for detecting rf station
faults at LCLS. A drop in rf station performance may be
observed either through (i) system diagnostics that directly
monitor the rf station or (ii) through the subsequent impact
on the accelerator itself.

Unfortunately, the rf station diagnostics have two short-
comings: the data are reported no faster than once every 5 s
(600 x slower than the beam rate) due to limited bandwidth
in the control system; and, more fundamentally, the
diagnostic info is often incorrect, falsely reporting normal
performance as anomalous and missing real dips in
performance (as shown in Sec. VA).

Consequently, LCLS primarily uses a human-centered
approach following a drop in accelerator performance, with
operators checking by hand a set of rf station diagnostics

for a possible cause of the anomalous behavior. This
human-driven fault detection and recovery have drawbacks,
requiring the attention of a human operator for routine
activity. Moreover, because the search for an anomaly is
prompted by an operator, the human-centered approach
only addresses significant and prolonged changes in
performance that catch the operator’s attention and misses
less noticeable—but possibly frequent—drops in perfor-
mance that may still impact user experiments or may
predict future failures.

B. Combining LCLS data sources

As an alternative to the human-centered approach, we
combine two sources of data available at LCLS: rf station
diagnostic data, which are sensitive to the source of the
fault, and beam-based diagnostics, which are sensitive to
pulse-by-pulse accelerator performance. Combining the
two data streams makes it possible to, accurately and with
full autonomy, both detect rf station anomalies and identify
the responsible rf station, thereby avoiding the shortcom-
ings of the inaccurate and manual current method.

The rf station diagnostic data consist of roughly a dozen
status bits (0—healthy, 1—unhealthy) as well as several
real-valued signals. Most notably, there is a klystron AMM
(amplitude mean out of tolerance) status bit that reports if
the station klystron’s accelerating rf amplitude is too
high or low and a downsampled version of the real-valued
AMPL (amplitude) signal. Klystron amplitude is related to
the energy gain of the electron bunch so a change in
amplitude will change the energy of the bunch and
degrade the ability to transport the bunch through the
magnetic lattice. The amplitude is derived from directional
couplers at the rectangular waveguides that feed the
accelerating structures. When searching for a fault by
hand, operators typically use the AMM status bit.
However, since both the AMM and AMPL are inaccurate,
we cannot rely on this source of data alone. We continue to
explore using the unused rf station diagnostic information,
including phase information PHAS, for improved anomaly
detection.

The second source is beam-based diagnostic data. The
human-centered evaluation of FEL performance leans on x-
ray diagnostics, which measure the quantities of interest for
the FEL users. However, x-ray performance is sensitive to
nearly every potential type of failure. Instead, we focus on
stripline beam position monitor (BPM) [25] data in dis-
persive regions, which are sensitive primarily to fluctua-
tions in beam energy. The BPM data are included in the
beam-synchronous acquisition (BSA) service [26], which
aligns a subset of the machine signals to the individual
beam pulses; this enables BPM data to be read and recorded
at the full LCLS operational rate of 120 Hz. As the “ground
truth” for the beam status, the BPM data allow anomalies to
be discovered at the full beam rate; however, as the
BSA service does not record any rf station diagnostic
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Layout of the LCLS showing the location of the klystrons included in this work above the accelerating sections (blue

rectangles: LO, L1, L2, and L3) and the names of the BPMs used to detect changes in beam energy: LTUH:250, LTUH:450, DMPH:502,
and DMPH:693. The green triangles show dipoles and the red rectangles represent the free-electron laser undulators.

information, attributing the anomaly to a particular com-
ponent of the accelerator is challenging.

Each of the 175 BPMs along the accelerator produces
three signals: X, Y, and TMIT. X and Y measure transverse
position; TMIT (transmitted intensity) measures the pass-
ing beam charge. Of the 175 BPMs, there are 4 BPMs of
interest to our work: BPMS:LTUH:250, BPMS:LTUH:450,
BPMS:DMPH:502, and BPMS:DMPH:693. As shown in
Fig. 1, all of these BPMs are located in regions of the
accelerator with nonzero dispersion in either X or Y,
making them sensitive to changes in beam energy, and
are downstream of all rf stations. We take the four beam
positions in the dispersive plane and the four TMIT signals
as our input BPM data.

We then seek to use the BPM data to corroborate and
enrich the rf station status that is reported by the diagnostic
data. By cross-referencing the faster, more sensitive BPM
data with the slower, easier-to-interpret diagnostic data, the
algorithm adopts the strengths of both: changes in the rf
station diagnostic that are not corroborated by the BPMs
are rejected, and subtle changes to the rf station that were
previously rejected can be confirmed by the BPMs. We
evaluate the performance of this strategy on archival data
at LCLS.

IV. METHOD

Our method can be broken down into two steps. The first
step is anomaly candidate identification, where we use the

rf station diagnostic data

|

Anomaly candidate
identification
(Sec. IV A)

Anomaly
confirmation
(Sec. IVB)

|

Confirmed anomalies

Beam data ———

FIG. 2. Two-stage rf station anomaly identification method.

slowly updating rf station diagnostic data to identify
possible anomalies. The second is to confirm the anomaly
using the full-rate BPM data. A flowchart for this process is
shown in Fig. 2.

A. Anomaly candidate identification

The first step generates candidates independently for each
rf station based on each station’s diagnostic data. Formally,
given diagnostic data /., from rf station k at time ¢, we want
to identify anomaly candidates C = {C;}. A candidate is
C; = (s;, e;, k;) for start time s;, end time e;, and station k;.
Candidates are merged across all rf stations with overlapping
anomaly windows. We then drop candidates associated with
more than one 1f station for the sake of the interpretability of
the performance metrics. This yields a set of anomaly
candidates with a unique rf station association: C =
{(s;, e;, k;)} where s; < e; < 55 < ... < e,. (We note that
multiple stations can fail simultaneously, for example, after a
faultin the substation. The uniqueness requirement is only to
simplify the analysis metric and can be discarded during
deployment.)

Generating the set of candidates for each station requires
defining a function that takes the diagnostic data {A; ,} and
produces a set of candidates. We require this function to be
computationally simple enough to run in real time and
produce no overlapping candidates. For the AMM status bit
(O—healthy, 1—unhealthy), the function returns a candi-
date for every time range where the bit is continuously 1.
(See Sec. III for details.) Creating anomaly candidates from
the real-valued AMPL signal is slightly more involved.
LCLS has several automatic and operator-driven controls
that constantly but slowly adjust the rf amplitudes.
Therefore, we subtract the 3.5-min rolling median value
from the current AMPL value and threshold the absolute
difference to create a new AMPL-based status bit. Using
this computed status bit, we can recover anomaly candi-
dates as with the AMM bit. The 3.5-min rolling window
duration was chosen to be substantially longer than short-
duration dips, to prevent cases where the machine recovers
on its own from strongly disturbing the median, but shorter
than the time scale of machine drift. The threshold (0.5%)
was chosen to be deliberately tight (i.e., it will be prone to
false positives) to flag subtle anomaly candidates, improv-
ing the sensitivity over the AMM-derived candidates.
Additional details on how these diagnostic signals are
converted into candidates can be found in Appendix A.
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B. Anomaly confirmation

In the second stage, we use the BPM data to corroborate
or reject anomaly candidates C; = (s;, ¢;, k;). We require
this step to be: unsupervised (there is a high volume of data,
and manually labeling anomaly candidates is very time-
intensive); drift tolerant (the BPM data distribution is
constantly changing due to operator input and automated
feedback mechanisms); jump sensitive (sensitive to sudden
and possibly short-lived changes in BPM readings); inter-
pretable (the anomaly confirmation should be easily inter-
preted by an operator and closely match their intuition); and
real-time capable (anomalies should be confirmed in
“human time", i.e., on the order of several seconds).

We use a simple strategy based on univariate median
absolute deviation (MAD) [27] and a geometric mean
aggregation rule. This strategy requires no training, uses
only two hyperparameters, and depends on only the last
~10 s of data (making it drift tolerant, easily computed, and
available in near real time). Specifically, given a multi-
variate time series x;, for signal s at time ¢, we define the
anomaly score as follows. First, we run MAD on each BPM
signal individually to get per-signal anomaly scores ay,,
using a 5-s rolling window. Note that we use MAD as a
robust z score, where the mean and standard deviation
estimates are replaced by robust median-based counter-
parts. The standard z-score, which measures the number of
standard deviations above or below the mean, is quite
sensitive to outlier behavior (e.g., the standard deviation
will increase quickly and aggressively due to outlier data,
lowering the z-scores of subsequent outlier data and
thereby underweighting the outlier severity). Next, we
aggregate across all signals to suppress beam noise and
boost detection of beam energy changes. We use a geo-
metric mean to more heavily penalize disagreement as
compared to the arithmetic mean. This yields a single
anomaly time series @,. Then, we aggregate across several
consecutive pulses. This boosts the score for sustained
beam anomalies. As before, we use a geometric mean.
Lastly, we threshold the maximum score in the anomaly
window to determine whether an anomaly has occurred.

The full definition is given in Appendix B. A key
assumption here is that the beam is in a stable, non-
anomalous condition prior to the rf station diagnostics
identifying a potential problem. Therefore, the rolling
windows used to define the anomaly score should capture
the expected beam position and provide a meaningful
baseline.

V. RESULTS

We assess the performance of our method relative to the
existing AMM-based detection system for the period
stretching from November 2, 2020, to February 10,
2022. We only analyze periods of operation where the
beam is being delivered to experiments with certain

operational conditions to simplify data processing. We
also remove time periods in which the BSA data-recording
service itself had anomalous performance, which we
identify using the BOCPD (Bayesian online changepoint
detection) [28] algorithm. See Appendix C for full details
on the data filtering.

As mentioned in Sec. IV B, labeling anomaly candidates
is time-intensive. However, for the purposes of evaluating
our approach, we hand-labeled the anomaly candidates
generated during the start of our study window, specifically
from November 2, 2020, to December 10, 2020. Labels
follow the operators’ process for identifying anomalous rf
station behavior, selecting as anomalous any rf station
diagnostic warnings that are nearly simultaneous with
unusual changes in beam energy as measured by the BPMs.

A. Improvement over existing system

During the labeled period, the AMM status bit identifies
1237 anomaly candidates. However, we found that only
385 (31%) coincided with visible drops in accelerator
performance, meaning the vast majority of predicted
anomalies are false positives. Additionally, we will see
later that the AMM bit misses a significant number of true
anomalies as well. In sum, the AMM bit alone is an
unreliable anomaly detector.

The premise of this paper is that corroborating the AMM
status bit (or other rf station diagnostics) with the BPM data
using the procedure in Sec. IV improves the precision of
anomaly detection. With corroboration, we reduce the
number of false positives to 37 (3%), a factor of 20 lower
than using the AMM bit alone (69%). At the same time, we
still correctly identify 368 of the 385 anomalies present in
the candidate set, meaning the corroboration only reduces
the number of anomalies found (i.e., recall) by 4%. The full
confusion matrix is given in Table I.

Since we suspected that the AMM bit was missing
anomalies, we also investigated using the underlying
AMPL signal to improve the recall of the rf station anomaly
detection. With a permissive threshold of just 0.5%, the
AMPL signal identifies 2845 anomaly candidates during
the labeled period, more than twice as many identified by

TABLE I. Confusion matrix for BPM corroboration of AMM-
based candidates. Of the 385 anomalies, 368 are correctly
confirmed; only 37 nonanomalies are mistakenly confirmed.
Uses a BPM threshold that maximizes the F'; score. Note that
the 17 false negatives consider only candidates selected by the
AMM bit; true anomalies missed by the AMM bit itself are not
considered here.

True class
Anomaly No anomaly
Predicted class Anomaly 368 37
No anomaly 17 815
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TABLEII. Confusion matrix for BPM corroboration of AMPL-
based candidates. Of the 553 anomalies, 504 are correctly
confirmed; only 68 nonanomalies are mistakenly confirmed.
Uses a BPM threshold that maximizes the F; score. Note that
the 49 false negatives consider only candidates selected by the
AMPL signal; true anomalies missed by the AMPL signal itself
are not considered here.

True class
Anomaly No anomaly
Predicted class Anomaly 504 68
No anomaly 49 2224

the AMM bit. Of these, we find 553 (19.4%) coincide with
drops in accelerator performance according to the BPM
data. Using the underlying AMPL signal, therefore, iden-
tifies at least 168 anomalies that are missed by AMM,
increasing recall by 44%. Note that both AMM and AMPL
likely fail to identify true anomalies as candidates due to the
bandwidth and noise issues mentioned in Sec. IIl, leading
to additional false negatives. Future work will aim to
predict anomalies solely from full beam-rate BPM data
to capture additional anomalies (see Sec. V C). The full
confusion matrix and interpolated precision-recall (PR)
curve for the AMPL signal are shown in Table II and Fig. 3,
respectively. To obtain the PR curve and confusion matrix,
we vary only the threshold on the BPM-based anomaly
score from Sec. IV B, keeping the 0.5% permissive AMPL
deviation threshold fixed.

The precision and the number of anomalies found with
all three methods are given in Table III. (Note that the raw
number of anomalies is given rather than recall because
there are likely additional anomalies that are undiscovered

1

0.6

Precision

0.4+

024 = === m e e e e o L

0 0.2 0.4 0.6 0.8 1
Recall

FIG. 3. Interpolated precision-recall curve for the BPM thresh-
old on AMPL-based candidates. The best F'; score is 0.897, at a
BPM anomaly score threshold of 2.848, corresponding to an
accuracy of 96%. The dashed line is the precision-recall curve for
a random classifier. Note that recall here does not include
anomalies missed by the AMPL threshold and is only an upper
limit on the recall for the full algorithm.

TABLEIII. Precision and number of anomalies found using the
AMM bit alone, AMM bit corroborated by BPMs, and AMPL
corroborated by BPMs. The corroborated data use the BPM
thresholds that maximize the F; score.

Precision Anomalies found
AMM-only 0.31 385
AMM + BPM 0.91 368
AMPL + BPM 0.88 504

by any of the existing methods.) The addition of the BPM
corroboration to the AMM bit results in only a small drop in
the number of anomalies found while greatly improving
precision. Switching the trigger to the AMPL signal
significantly improves the number of anomalies found at
the expense of a small drop in precision.

Both the AMM and AMPL signals are evidently noisy
and inaccurate to differing degrees. By combining these
signals with the anomaly detection algorithm on the full-
rate BPM data, we are able to significantly improve
detection accuracy by rejecting numerous false positives.
Furthermore, using the AMPL signal in addition to the
AMM status bit reduces the number of missed anomalies
(false negatives). In particular, of the 385 true anomalies
detected by the AMM signal, the AMPL signal flagged 305
of them while only missing 13 anomalies. The remaining
67 anomalies were given a different or multiple attributions
according to the AMPL signal. Of the 553 true anomalies
detected by the AMPL signal, the AMM signal flagged 307
of them but missed 245; there was 1 anomaly that AMPL
attributed to KLYS:LI29:11 but AMM attributed it to
KLYS:LI27:41.

As a by-product of our analysis, during hand labeling of
the anomaly candidates, we discovered a natural grouping
of the candidates into two types: (i) Faults: The beam is lost
(TMIT goes to 0). Figure 4 shows an example. (ii)
Sustained anomalies: initial large deviation followed by
a recovery period lasting several hundred pulses. Figure 5
shows an example, in which AMM misses the anomaly.

Of the 553 anomalies detected by combining the AMPL
signal and BPM data, 217 were Faults and 336 were
Sustained anomalies. The majority of the anomalies,
including both examples (Figs. 4 and 5), are short-lived,
lasting less than ~10 s. Human operators are likely to miss
these anomalies, as by the time they notice a degradation in
beam performance, the problem is likely resolved and the
klystron health signal reverted to normal. Particularly in the
case of Sustained anomalies, human operators might not
even notice the moderate performance degradation, despite
the impact on FEL energy and therefore user experiments.

B. Anomalies at LCLS

We now apply the same algorithm in an unsupervised
manner to the entire dataset to search for anomalies. After
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FIG. 4. Example of an rf station fault at KLYS:LI29:11. The top plot shows the klystron diagnostic data (both the AMM status bit and
the AMPL signal). The middle plot shows the relative energy deviation (calculated from the beam position in the dispersive plane). The
bottom plot shows the TMIT readings (which is the approximate number of electrons, subject to some calibration). The gray region
defines the implied anomaly window, due to the delayed reporting of the klystron health information. This extreme example shows the
AMPL drop nearly to 0, which causes the beam to be lost. The missing pulses in the energy deviation plot are the result of there being no

beam to measure.

applying the criteria for data selection at the beginning of
Sec. V, we have approximately 80 days worth of data to
survey. Over this time period, we find 29,739 anomaly
candidates in the rf station diagnostic data: 3615 from the
AMM bit alone, 22,570 from the AMPL signal alone, and
1777 found by both. Of these 6529 (21.9%) exceed the
BPM anomaly threshold found in the previous section and
are labeled as anomalous. Of the more restrictive AMM
candidates, 47.5% are labeled as anomalous, while only
16.3% of the more permissive AMPL signal candidates are
labeled as anomalous. Figure 6 shows that anomalies are
not distributed equally among the rf stations; in particular,
the AMPL signal usually identifies many more anomalies
in the rf stations that experienced the most anomalies. The
top 5 rf stations (of 82) account for ~36% of the identified
anomalies.

It is possible that the BPM data contain anomalylike
behavior even in the absence of an rf station anomaly,
which would lead to corroboration of false positives. To
investigate the false positive rate, we take 6453 random
samples (approximately half of a day) of the BPM data

independent of the rf station diagnostics. All samples of the
BPM data are of the same length as the candidate samples.
We find 176 =13 (2.7 £0.2%) samples exceed the
anomaly threshold and are labeled anomalies despite no
apparent anomaly in the rf station data (the 1-sigma
confidence interval assumes the random samples are
independent identically distributed Bernoulli random var-
iables). Taking the conservative assumption that all events
found in the random stream are false positives sets an upper
limit on the false-positive rate.

A secondary benefit of an automated detection scheme is
the ability to log large numbers of events to track
performance, predict future failures, or enable later analy-
sis. At present, rf station anomalies are logged through the
manual CATER system [29]. The CATER reports are
limited by the need for operator attention; operators may
not notice a transient anomaly, or may not have the time to
manually log an event, and there is no way for one or two
operators to watch thousands of potential signals.
Moreover, the CATER system does not try to quantify
the anomaly rate for any particular subsystem.

122804-7



RYAN HUMBLE et al. PHYS. REV. ACCEL. BEAMS 25, 122804 (2022)

55
=l —e— Amplitude

504 —e— AMM Bit
R
-~ & = BPMS:LTUH:250
L a5 o
2 -0-5§ ~—— BPMS:LTUH:450
=y
S 40 < BPMS:DMPH:502
<

354 ~——— BPMS:DMPH:693

-0
T T T - -
£ 1
[
.o
©
3 04
%
a)
>
2 14
Q
=
w
2 2
1.1x10°
1.05x10°
E 1x10°-|
}_

0.95x10°
0.9%10%
0.85x10° . ; . . .

07:57:20 07:57:25 07:57:30 07:57:35 07:57:40 07:57:45

Nov 2, 2020

FIG. 5. Example of a sustained anomaly at KLYS:LI28:11. The top plot shows the klystron diagnostic data (both the AMM status bit
and the AMPL signal). The middle plot shows the relative energy deviation (calculated from the beam position in the dispersive plane),
with a brief but large deviation followed by a recovery period. The bottom plot shows the TMIT readings (which is the approximate
number of electrons, subject to some calibration). The gray region defines the implied anomaly window, due to the delayed reporting of
the klystron health information. Note this anomaly is missed by AMM.
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To assess our automated approach, we compare the
automated logging to CATER events during the studied
time period. In total, there were 597 requests for work made
to the groups charged with maintaining the rf stations. 444
of these reference a specific rf station, compared to 6529 for
the automated approach despite the BSA service being
active for only a subset of the time period. All 82 stations
studied in this work are referenced at least once. Figure 7
shows predictions for three of the stations showing the most
anomalies: 26-5, 24-3, and 21-8.

Station 26-5 had the most anomalies of any station.
Figure 7 (top) shows a histogram of the anomalies (binned
by week) and the times at which problems with the rf
station were reported through CATER. Both the AMM bit
and the AMPL signal capture events. The performance on
the data from stations 25-3 and 30-5 (not shown) was
similar. For stations 21-8 and 24-3, the importance of the
AMPL signal specifically is more apparent (see Fig. 7
middle and bottom). For 24-3, there are two periods, in
April and November 2021, where our algorithm detects
anomalies that were totally missed by the AMM bit. These
periods of high anomaly counts were followed by several
CATER events. Station 21-8 shows more overlap (in time)
of the anomalies identified using the AMM bit and the
AMPL signal, but there are still periods of anomalies
missed entirely by the AMM bit.

C. rf station anomaly dataset and classifier

For the labeled study period, we have compiled a dataset
of the rf station diagnostic data and the BPM signals,
alongside the hand labels, as a public anomaly detection
dataset. The dataset consists of two HDF5 files (one for
AMM and one for AMPL) containing the raw data, two
CSV files containing information about the candidates, and
two CSV files containing the hand labels. We also include
in the HDF5 files random samples of beam operation to
serve as negative or background examples. A full descrip-
tion of the files can be found in Appendix D. The files can
be accessed at [30].

While our study focused on unsupervised anomaly
detection, the existence of a labeled dataset opens the
possibility to train more powerful supervised models,
including deep neural networks (DNNs). For example,
we have only looked at the most direct rf station and BPM
signals in the amplitude and beam energy, respectively.
Future work could extend to more subtle diagnostics, such
as phase information for the rf station or nondispersive
BPM:s. rf phase information is expected to reveal additional
anomalies not observed solely through amplitude variation,
but the signal was too complex to be analyzed with an
unsupervised method. A DNN may be more successful.
Similarly, nondispersive BPMs located throughout the
accelerator are both full beam rate and have rf station
specificity and may be able to sidestep the bandwidth
limitations of the rf station diagnostics entirely. While the
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FIG. 7. Count of the number of anomalies detected by AMPL
(red bars), the AMM bit (blue bars), and problems reported in
CATER (black dashed lines) for various stations. The anomaly
counts have been binned by week to produce the histograms. The
shaded regions show weeks where the BPM data were available
through the BSA service. Top: station 26-5. For this station, both
the AMPL and AMM bit signals detect anomalies at approx-
imately the same time. Middle: station 21-8. AMPL detects
anomalous activity more often than the AMM bit does. Bottom:
station 24-3. AMPL detects anomalous activity in April and
November 2021 that the AMM bit misses entirely.
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nondispersive BPMs are sensitive to many other types of
anomalies that would confuse our unsupervised approach, a
DNN trained on a labeled dataset may be capable of
distinguishing anomaly categories and identifying the
faulty rf station. As a brief demonstration, we trained a
deep binary classifier using the raw BPM signals as input.
The experimental setup is described in Appendix E. On the
20% held-out test set, which contains 569 candidates, our
trained model achieved an F1 score of 0.88, correctly
identifying 95%, showing the DNN is at least as accurate as
the algorithm presented in Sec. IV B. We present the full
precision-recall curve in Appendix E. Further improvement
will require an extension of the dataset to include rf phase
diagnostics or nondispersive BPMs. We leave the problem
of identifying rf station performance changes solely from
BPM data to future work. We emphasize that this proof-of-
concept DNN is not targeted toward deployment in the
operation room but is mostly a suggestion for potential
future work.

VI. CONCLUSION AND DISCUSSION

This work describes a beam-based approach to automat-
ing the detection of anomalous behavior at LCLS. We focus
on a particularly common failure mode, rf station anoma-
lies, and improve upon the existing diagnostic system. We
have developed a fully automated system that combines
slow-updating, inaccurate rf station diagnostic data with
full-rate BPM data. By corroborating the diagnostic data
with measurements of the beam, we are able to filter out
more than 95% of the false positives signaled by the rf
station diagnostic data. Moreover, by using the underlying
AMPL signal, in addition to the current AMM status bit, we
detect significantly more rf station drops and faults,
reducing the number of anomalies missed (false negatives).
On a hand-labeled dataset, our approach improved preci-
sion and the number of events found from 0.31 and 385 for
the raw AMM bit to 0.88 and 504 for AMPL corroborated
by the beam. On an extended unlabeled dataset, our
algorithm found a total of 6529 events, compared to 597
CATER events logged during the same time period. The
proposed algorithm will give operators a higher degree of
confidence that rf station faults are being detected and the
responsible station identified and provides rf technicians
with a detailed history of faults to guide repairs.

The need to combine expert knowledge with anomaly
detection systems will only grow as accelerator systems
become more complex. Moreover, as the data volume
grows, data collection cannot always be at the full system
rate, forcing some signals to be recorded at slower rates.
The beam-based method presented, leveraging high-fidelity
diagnostics on the beam to corroborate low-fidelity sub-
system diagnostics, may find common use in other accel-
erator anomaly prediction tasks. Future work will expand
the existing dataset and can serve as a test bed for the
development of new beam-based anomaly detection

algorithms for accelerators. We also plan to detect and
classify rf station anomalies using data from both dispersive
and nondispersive BPMs, as different rf stations will affect
the beam to different degrees and in different manners.
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APPENDIX A: CREATING CANDIDATES

In practice, the AMM status bit is a noisy and unwieldy
signal, so creating candidates from it is not as trivial as
taking consecutive regions where the status bit is 1. The
AMM status bit is itself the result of applying an operator-
configurable threshold to internal klystron diagnostic infor-
mation. Unfortunately, this threshold can often be miscon-
figured, leading to Ay anvm, = 1 for implausibly long
periods of time. This affects the candidate identification
step by technically overlapping with many other possible
candidates, which for the sake of interpretability, we would
then drop. To counteract this, and attempt a fairer compari-
son with AMPL, we will ignore A an . if it exceeds 10%
unhealthy over a period of otherwise apparently normal
beam operation. This trouble in generating anomaly candi-
dates from AMM further supports the conclusion that
AMPL is a better diagnostic for rf station health.

Also, each klystron is not constantly in use, with at least a
couple held in reserve for operators to swap out malfunction-
ing klystrons for healthy ones. Therefore, before assessing
the diagnostic signal (AMM or AMPL), we need to first
check if the klystron is in use. This information is stored in a
different PV in the EPICS Archiver, which we fetch along-
side the diagnostic signal itself.

Finally, the klystron signals are only recorded in the
EPICS Archiver infrequently (~0.2 Hz for AMM and
AMPL) and only when the value changes. This has the
effect of time stamping the AMM and AMPL data in the
Archiver with a delay possibly as large as the inverse of
the logging rate. Therefore, we say AMM or AMPL implies a
candidate window in the ~5 s before the timestamp actually
stored in the Archiver. Also, when we take rolling windows
in creating the AMPL-based candidates, we need to carefully
weigh the data due to the nonuniform sampling in time.

APPENDIX B: ANOMALY
CONFIRMATION ALGORITHM

Given the multivariate time series BPM data x,;
for signal s at time ¢, we define the per-signal anomaly
score as a,, = MAD(x,, 5, ...,x;,;) where [ is the lag-
ging rolling window used to compute the median and
median-absolute deviation of the signal x;,. Specifically,
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we estimate ji;, = median(x,, ;,...,x;,_;) and &, =
kmedian(|x,,_; — fis ;| ..o |X5 -1 — fs-1]). The extra
factor k ensures that 6, is a consistent estimator of the
true standard deviation, where the underlying data are
normally distributed. Rigorously, k=1/®~!(3/4)~1.4286
(where @(x) is the cumulative distribution function of
a normal distribution) [27]. Thus, MAD(x,,_;, ..., X,,) =
6-3_} (xs,t - ﬁs,f)'

Now, we want to aggregate into a single anomaly score a,.
Recall that we are using both the dispersive X /Y signals and
the TMIT signals from the four dispersive BPMs at the end of
the beamline. Unfortunately, if the anomaly is severe enough
to cause loss of beam at a BPM (TMIT lower than 1 x 10%),
the X/Y reading for that pulse is simply repeated from the
last known value. This can make the dispersive reading
appear perfectly normal. Therefore, we define the anomaly
score for each BPM as the anomaly score associated with the
TMIT signal if the beam is lost (as the TMIT anomaly score
will be large); otherwise, we define it to be the anomaly score
associated with the dispersive signal.

Given an anomaly score for each BPM then, we finally
create a single anomaly score using a geometric mean rule:
a; = (], a,,)"/". We further aggregate across ten con-
secutive pulses to get the final score

9 1/10
AAGG, = (H ax,t—i)
i=0

to boost the score for sustained beam anomalies. Finally,
each candidate (as identified in IV A) suggests an anomaly
might have occurred during some time period from start
time s to end time e. We say the BPM data confirms the
anomaly if

maxa >7
s<i<e AGG,t

for a configurable threshold z.

APPENDIX C: BEAM and BSA
STATUS FILTERS

During our study period from November 2, 2020, to
February 10, 2022 (457 days), we applied a series of data
filters, ultimately yielding ~80 days of data. The aim of
these filters is to ensure the beam is in a steady operation
mode within normal operational bounds and that the
recorded BPM data is quality. We also restrict this analysis
to hard x-ray operation, because the hard and soft lines use
different BPMs; this restriction can be lifted in the future
with additional data processing work.

We start by imposing a number of checks on the beam
state: (i) Does the beam have a standard charge at the
injector? We require BPMS:IN20:221:TMITCUH >
0.5 x 10° and be logged every second in the EPICS

Archiver. A lower charge or the charge not being logged
can indicate the beam is not being operated in a standard
operational mode. (ii) Is the beam stopper being used? We
require STPR:BSYH:2:STD2INA = 0, indicating the
beam stopper is out. (iii) Is the beam rate 120 Hz?
We require IOC:BSY0:MPO1:PCRATE = 8. (iv) Is the
entire beam being delivered to the hard x-ray line? We
require IOC:IN20:EV01:RGO2ACTRATE = 10. We do
allow temporary (<90 s) violations of these conditions to
not disallow short periods of “nonstandard” beam operation
caused by automatic feedback or protection-based control
mechanisms. This reduces the 457-day study period to
~153 days of beam operation (~103 days are removed
due to charge violations, ~76 days are removed due to
beam delivery violations, and ~125 days are removed due
to both).

Separately, we check if the data from the BSA service
[26] exists during these periods of beam operation and was
recorded correctly. Due to a number of engineering issues,
significant portions of our study window do not have good
quality data. The BSA service records over 1000 PVs
synchronously at the beam operational rate into hour-long
HDFS5 data files. To verify the quality of the data, we check
the following: (i) Do the data files exist? Many data files
were simply never written due to issues with the BSA
service. (i1) Can we read the data from the file? Some data
files are corrupted and cannot be read. (iii) Was real data
recorded? We drop any data where NaNs are recorded. (iv)
Was the data recorded at the correct rate? We expect data to
be recorded at 120 Hz. This check was somewhat chal-
lenging, so we discuss it at more length below. Of the 457-
day study period, 231 days (just over 50%) must be
dropped due to a violation of one of these conditions.
The primary reason was missing data files: roughly
154 days of data were not recorded. The majority of the
remaining 72 invalidated days were due to an invalid
record rate.

Unfortunately, the rate recording issues varied widely
and required additional work to discover. Let #; be the
timestamp for the ith row of data. Since the standard
operational rate of LCLS is 120 Hz, we expect
A; =t; —t;_; = 1/120 s. We first define a timestamp mask
m; = 1(|]Ay — 1/120] £ 2.5 x 107#); this defines whether
the current row is recorded at the correct rate with respect to
the previous row, up to a tolerance. To identify time periods
with bad data recording, we employed the BOCPD
(Bayesian online changepoint detection) [28] algorithm.
Using a constant hazard A =1 x 10° and a binomial
likelihood with prior p = 0.9 with strength (pseudo-obser-
vations) 2, we ran the BOCPD algorithm on the mask m
signal. We define a change point at time i if the probability
of having a run of length 100 at time i 4+ 100 exceeds 10%.
This yields a list of time periods whose mask behavior is
statistically distinct from their neighbors. Finally then, we
drop time periods where the average mask value was below
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85%. All of these hyperparameters were chosen on a best
effort/empirical basis to remove known periods of invalid
rate recording. We set the seemingly permissive 85%
threshold because the rate recording issue can in fact often
be repaired. The most common observed rate failure mode
was a double logging issue, where A; ~ 1/120, A, =0,
and the i+ 1 data row was an exact duplicate of the
previous row i. Therefore, we simply repaired these periods
by dropping the offending duplicate rows.

To further refine our search period to periods of constant
beam delivery, we only analyze periods of operation where
all of the above are continuously satisfied for at least 5 min.
Combined together, these conditions reduced our study
period from 457 days to only ~80 days of operation that
could be analyzed. Finally, as the intricacy of LCLS, there
are certain operation modes that forcibly kick pulses at a
configurable cadence out of the beamline. This has the
effect of making the TMIT reading at our dispersive BPMs
crash toward 0. Without additional handling, these kicks
appear to an observer as single pulse anomalies, despite this
phenomenon being a deliberate, operator-controlled behav-
ior. Therefore, we apply a preprocessing step to remove
these kicked pulses from our data.

APPENDIX D: DATASET DETAILS

The rf station anomaly dataset is composed of sev-
eral files. For both AMPL and AMM, there are three files:
“klys_anom_dset_{type}.h5,” “candidates_{type}.csv,” and
“labels_{type}.csv.”

The HDFS file has two top level HDF5 groups, one for
candidates and one for samples, corresponding to the
anomaly candidates and random samples of the beam
operation, respectively. Each top-level group is composed
of a number of subgroups corresponding to the individual
examples. The subgroups are named according to the end
time of the anomaly candidate (or randomly sampled
window); the time is stored as nanoseconds since the
epoch. Each subgroup contains two datasets called health
and bpm. Each dataset is written as a 2D array of data,
where the rows correspond to individual measurements and
the columns correspond to the signal name. The timestamps
of the rows are stored as the attribute index on the dataset;
the values denote the number of nanoseconds past the
epoch. The column names are stored as the attribute
columns on the dataset. The subgroups within candidates
additionally have a group attribute called klys, which lists
the rf station associated with the candidate.

The health dataset stores the rf diagnostic data of the
given type over a period of 3.5 min (which corresponds to
the look-back duration of the algorithm defined in IV A for
AMPL). It will have a shape (n, 82) where n is the number
of measurements and 82 is the number of rf stations.
Because the rf station diagnostic data are not beam
synchronous, the reporting timestamps are not aligned
with one another nor the beam, meaning n can vary from

dataset to dataset. In particular, it can be assumed that the
AMM and AMPL diagnostic data can be reported with a
delay of up to roughly 5 s. All of the NaN values
correspond to no new data for that rf station at that
timestamp, and the actual value can be assumed to be
equal to the last known value. If there is no good last
value, then the rf station was not in use during that period
of time.

The bpm dataset stores the BPM data over a period of
roughly 17 s (which corresponds to the look-back duration of
the algorithm defined in IV B). It will have a shape (n, 8)
where n is the number of pulses and 8 is the number of signals
(two signals for each of the four dispersive BPMs of interest).
The number of pulses n can vary due to the rate recording and
pulse-kicking behaviors mentioned in C. These BPM data
were additionally modified from the original raw data by
several transforms. First, if the BPM’s TMIT value was
below 1 x 108, there was not enough beam to record a
reliable value of the dispersion, so the raw data merely repeat
the last known value. This often erroneously repeats a
“normal” value, so we artificially set the dispersive reading
to 100 (well outside its feasible range) when the minimum
TMIT condition is violated. Second, we apply a dispersive
scaling to each BPM to place it on the order of beam energy
loss. The scalings are as follows: (BPMS:LTUH:250, 0.125),
(BPMS:LTUH:450, —0.125), (BPMS:DMPH:502, 0.964),
and (BPMS:DMPH:693, 0.469).

The candidates CSV file lists all of the candidates and
has six columns: (i) start (earliest time anomaly could
have occurred); (ii) end (latest time anomaly could have
occurred); (iii) klys: (associated rf station); (iv) source
(reporting diagnostic signal - AMM or AMPL); (v) cor-
roborate (detailed below); and (vi) corr anomaly list (lists
the associated rf stations and the reporting diagnostic
source). The corroborate column can take several differ-
ent values, depending on what the other diagnostic signal
(AMM if considering AMPL candidates and vice versa)
reports: (i) missing (other diagnostic signals did not flag
this candidate); (ii) reinforced (other diagnostic signal
flagged the candidate and supports the attribution); or
(iii) disagree (other diagnostic signal flagged the candi-
date but disagrees on the rf station attribution).

The labels CSV file gives the hand labels for the
candidates. Like the candidates’ file, it has start and end
columns. It has two additional columns: (i) is_anom:
Boolean indicating whether the candidate is an anomaly
(i1) anom_type: Either “f” for Fault, “s” for Sustained
anomaly, or blank for no anomaly

APPENDIX E: CLASSIFIER
EXPERIMENTAL SETUP

We trained a deep neural network on the BPM data and
labels described in Appendix D. We use the last 720 pulses
before the candidate’s end time to create a constant input
size of (8, 720) to our network, which we defined using
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FIG. 8. The model architecture of the demonstration DNN,
showing the input size to each layer.
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FIG. 9. Interpolated precision-recall curve for the DNN clas-
sifier on our new rf station anomaly dataset. The dashed line is the
precision-recall curve for a random classifier.

PyTorch [31] and initialized using Kaiming’s uniform dis-
tribution [32]. As shown in Fig. 8, our network consists of
three 1D convolutions with kernel size 8, padding 1,
dilation 3, stride 4, and out channels of 32, 64, 128,
respectively, followed by two FC layers of output size 128
and 1. All layers but the final layer are followed by a 1D
batch normalization and ReL.U activation. We split the
dataset into a train and test set with a 80%/20% split and
normalize the data using the median and MAD of the train
data. We use a binary cross entropy loss with positive
weighting equal to 4.15 since the candidate set is only
19.4% anomalous. We use the Adam optimizer [33] with a
learning rate of 10~* and weight decay of 10~ and train for
240 epochs. The resulting precision-recall curve is shown
in Fig. 9. We also trained the classifier with several different
random splits and with a split done in time (i.e., the most

recent examples become the test set). We found no
significant performance difference due to different seeds;
however, splitting in time does cause the F1 score to drop to
0.78 from 0.88. We suspect that this is due to a notable
difference in the anomaly percentage between the train and
test sets when splitting in time: the train set is 21.2%
anomalous while the test set is only 12.5% anomalous.
Random splits of the dataset do not exhibit this same
discrepancy. The practical problem of dealing with data
drift in the rf station anomaly dataset, such as anomaly
fraction, is deferred to future work.
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