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Wedescribe a novel technique, based on image compression andmachine learning, for transverse phase space
tomography in two degrees of freedom in an accelerator beamline. The technique has been used in the CLARA
accelerator test facility at Daresbury Laboratory: results from the machine learning method are compared with
those from a conventional tomography algorithm (algebraic reconstruction) and applied to the same data. The
use of machine learning allows reconstruction of the 4D phase space distribution of the beam to be carried out
much more rapidly than using conventional tomography algorithms and also enables the use of image
compression to reduce significantly the size of the data sets involved in the analysis. Results from the machine
learning technique are at least as good as those from the algebraic reconstruction tomography in characterizing
the beam behavior, in terms of the variation of the beam size in response to variation of the quadrupole strengths.
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I. INTRODUCTION

Phase space tomography provides a valuable technique
for understanding the properties of a beam in a particle
accelerator and has been applied in a range of different
machines, for example [1–8]. However, conventional
tomography techniques present some challenges, including
the presence of artifacts in the reconstruction (which can be
especially prominent when the number of projections is
limited), and the computational time and resources required
to construct the phase space distribution with good reso-
lution. Tomography in two transverse degrees of freedom
allows characterization of betatron coupling, but the sizes
of the data structures required for the analysis increase
rapidly with the dimensionality of the system. Storage of a
4D phase space distribution in an array with dimension N
along each axis requires a data structure of N4 numerical
values, and the memory resources needed while processing
the input data to construct the phase space can be much
larger. The demands on computing power increase rapidly
with increasing dimensionality of the phase space, and this
may limit the use of high-dimensional phase space

tomography (with good resolution) in applications where
it could make a valuable contribution to machine operation,
for example in short-pulse, short-wavelength free electron
lasers [9] or injectors for machines using novel acceleration
technologies such as plasma cells or dielectric wakefield
structures [10,11].
Recent work [11] has shown (in simulation) how phase

space tomography can be performed in 2 1
2
degrees of

freedom to provide transverse phase space properties as a
function of longitudinal position along a bunch. Steps have
been taken toward full 6D phase space tomography, but the
methods that have been employed (which include the use
of machine learning) have not so far allowed the full
reconstruction of the 6D phase space [12]. Where betatron
coupling or synchrobetatron coupling is present, tracking a
beam from a given point in the accelerator to determine its
properties as function of position in the beamline requires the
full phase space in the coupled degrees of freedom to be
described, and in complex machines where multiple corre-
lations can be present, full 6D phase space reconstruction
would provide all the necessary information. Techniques
allowing reduction of the processing time and data storage
requirements for high-dimensional phase space tomography
offer the prospect of enabling routine complete and detailed
characterization of the charge distribution within bunches in
an accelerator, including all cross-plane correlations, with
significant benefits for advanced accelerator facilities.
In principle, image compression techniques can be used to

reduce the size of the data structures needed to store and
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process tomography data while maintaining the potential
for reconstructing the phase space with a given resolution.
Reduction in the size of the data sets can also be accompanied
by a reduction in the time taken to process those data sets.
However, it is not clear how existing tomography algorithms
can be adapted so that they can be applied directly to
compressed data. Machine learning techniques offer an
alternative to conventional tomography methods and have
the potential to allow a direct tomographic analysis of data in
a compressed form. Machine learning is already extensively
used for image analysis and tomography, particularly in
medical contexts [13]. There is also increasing interest in the
use of machine learning for a range of applications in
accelerator design and operation, including design optimi-
zation [14–16], modeling [17], collection and analysis of
diagnostic data [18–21], and operational optimization
[22,23]. Recent work [12,24,25] has shown the use of neural
networks for constructing two-dimensional projections of a
six-dimensional phase space, including the use of adaptive
feedback in the architecture of the neural network (allowing
for the analysis of cases where the beam distribution in
phase space varies with time). In [25], principal component
analysis is used to reduce the size of the input data by
decomposing each data set into a number of modes and
selecting those that make dominant contributions to the
data. Although data compression generally leads to some
loss of information, it is possible by optimizing the number
of components to achieve high-resolution phase space
reconstructions while still benefitting from a significant
reduction in the size of the input data sets.
In the current paper, we report the results of experimental

studies aimed at demonstrating the use of machine learning
for phase space tomography, working with beam images and
phase space distributions stored in compressed form. We
describe the principles of the technique, compare the results
with those using a conventional tomography algorithmon the
samedata sets, and discuss thepotential advantagesof the use
of machine learning for this application.
The experimentalwork thatwepresent has been carried out

on CLARA, the Compact Linear Accelerator for Research
and Applications at Daresbury Laboratory [26–28].
Relevant features of the facility are outlined in Sec. II, in
which we also describe the experimental technique
(Sec. II A), and present the results of an analysis of the
experimental data using a conventional tomography algo-
rithm, algebraic reconstruction (Sec. II B). In Sec. III, we
describe and present results from the tomography analysis
based on machine learning. Some conclusions from thework
are discussed in Sec. IV.

II. CHARACTERIZATION OF TRANSVERSE
PHASE SPACE IN CLARA USING A

CONVENTIONAL TOMOGRAPHY TECHNIQUE

Previous studies of phase space tomography in two
transverse degrees of freedom using CLARAwere reported

in [29]. At the time of the previous tomography studies,
carried out in 2019, the facility (CLARA Front End),
included an electron source and short linac designed to
provide bunches at a repetition rate of 10 Hz with charge up
to 250 pC, momentum up to 50 MeV=c, and transverse
emittance below 1 μm. Because of technical limitations
during the tomography data collection, measurements in
2019 were made with a beam momentum of 30 MeV=c
and bunch charge up to 50 pC. Since then, CLARA has
undergone further development, with a number of changes
to components and layout; however, the recent measure-
ments reported here were made with parameters compa-
rable to those used in the original study, specifically with
beam momentum 35 MeV=c and bunch charge up to
100 pC. Further development of CLARA is planned, both
to extend the energy reach and to test new rf gun
technology, in particular, a low-emittance high repeti-
tion-rate source (high repetition-rate gun, HRRG).
Detailed characterization of the HRRG performance will
include studies of the transverse phase space. Work to
develop novel phase space tomography techniques, in
particular, making use of image compression and machine
learning has been motivated by the need to facilitate beam
characterization in CLARA generally and HRRG perfor-
mance in particular. The results reported here are from
recent measurements on CLARA in its current form, with
the existing 10-Hz rf electron gun.

A. Experimental technique:
Design parameters and calibrated model

The tomography technique described in [29] was applied
to CLARA, following upgrade work performed since the
previous tomography studies. Some changes were made to
the details of the experimental procedure to take account of
changes in the beam optics and machine layout; however,
the overall procedure remained the same in its essential
points. A beam momentum of 35 MeV=c was used.
Measurements were made using a section of beamline
between the exit of the linac (the “reconstruction point”)
and a fluorescent screen on which the transverse beam
profile could be observed (the “observation point”). The
beamline between the reconstruction point and the obser-
vation point contains five quadrupoles.
To prepare for the measurements, a machine model [30]

was used to determine gradients for the five quadrupoles in
the measurement section that would allow control of the
betatron phase advances between the reconstruction and
observation points, while keeping approximately constant
the beta functions at the observation point (see the
schematic layout of CLARA in Fig. 1). A sequence of
32 sets of quadrupole gradients was determined, providing
a good range of variation in horizontal and vertical betatron
phase advance over the sequence. Maintaining constant
and approximately equal beta functions at the observation
point helps to provide good conditions for beam profile
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measurements: if the beam image has a large aspect ratio or
gets too large or too small, it can be difficult to determine
accurately the beam sizes. Data collection consisted of
recording the beam profile for each of the 32 steps in the
sequence. The order of steps in the sequence was chosen to
minimize the changes in the strength of the magnets from
each step to the next, and in particular to avoid as far as
possible changes in polarity: this helps to reduce the
frequency with which the magnets need to be degaussed
(the quadrupoles were degaussed at the start of each scan
and midway through the scan). At each step, ten screen
images were recorded plus an extra image with the photo-
injector laser turned off to allow for the subtraction of the
background resulting from the dark current. A complete
quadrupole scan was carried out first with a bunch charge
of 10 pC and then with bunch charge of 100 pC. Although
space-charge effects in the injector are significant at
100 pC, in the measurements section at beam momentum
35 MeV=c space charge has little impact.
The analysis presented here is carried out in normalized

phase space: this helps to improve the accuracy of the phase
space reconstruction [31]. Since the section of beamline in
CLARA where the measurements were performed consists
only of drift spaces and normal quadrupoles, coupling can be
neglected in constructing the normalizing transformation;
however, it should be emphasized that the data analysis
nevertheless still allows for full characterization of any
coupling in the beam. Normalized horizontal phase space
coordinates ðxN; pxNÞ at a particular location along the
beamline are related to the physical coordinates ðx; pxÞ by

�
xN
pxN

�
¼

0
B@

1ffiffiffiffi
βx

p 0

αxffiffiffiffi
βx

p ffiffiffiffiffi
βx

p

1
CA� x

px

�
; ð1Þ

where αx and βx are the usual Courant–Snyder optics
functions at the specified beamline location. If the phase
space distribution is matched to the optics functions, then the
distribution in normalized coordinates ρNðxN; pxNÞ will be
invariant under rotations in phase space. Furthermore, the
transport matrices in normalized phase space are simply
rotation matrices (through angles corresponding to the phase
advance), so a matched phase space distribution will be
invariant under linear transport along the beamline.
In practice, the phase space distribution is not known in

advance: the goal of the measurement is to determine the
distribution. Phase space normalization cannot, therefore,
be carried out using optics functions known to be exactly
matched to the phase space distribution. Instead, a
machine model is used to generate an expected distribu-
tion, and the optics functions describing this distribution
are used to normalize the phase space. If the real beam
distribution is reasonably close to that expected from the
machine model, then in the normalized phase space, the
real beam distribution will have at least approximate
rotational symmetry. Phase space tomography (in nor-
malized phase space) can be used to determine the actual
distribution, which can be transformed back to the
physical coordinates using the inverse of the normalizing
transformation given in Eq. (1).
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FIG. 1. Layout of CLARA, showing the electron source, magnetic elements, linac, and diagnostics. Distances between elements are
shown approximately to scale. The optical functions and phase space distribution at the exit of the linac (the reconstruction point) were
calculated from the measured beam profiles on the third YAG screen after the linac (the observation point) for different strengths of the
five quadrupoles, QUAD-01 to QUAD-05.
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For the measurements in CLARA, a design model of the
machine was used to predict the phase space beam
distribution at the reconstruction point (the exit of the
linac: see Fig. 1). The values of the optics functions are
shown in Table I. A preliminary analysis of the exper-
imental data was carried out using the parameter values
from the design model. The results indicated substantial
differences between the design values and the real values,
largely arising from differences between the operational
settings actually used for the injector and linac, and the
settings assumed in the machine model when preparing for
the experiments. Furthermore, closer investigations found
that the magnetic lengths of the quadrupoles in the beam-
line following the linac (the section used for the tomog-
raphy studies) were somewhat larger than had been
thought, resulting in changes in the transfer matrices
between the reconstruction point and the observation point
for the quadrupole gradients (calculated using the design
model) used during the quadrupole scan.
Differences between the design parameters and the

calibrated model are evident in Fig. 2, which shows the
beta functions at the observation point and the phase
advances from reconstruction to the observation point, at
each step in the quadrupole scan using the design quadru-
pole gradients. Note that the steps were not followed in the
order in Fig. 2, which shows the steps in order of increasing
horizontal phase advance, followed by increasing vertical
phase advance: as mentioned above, the actual order of the
steps during the measurements was designed to minimize
the changes in quadrupole strengths between successive
steps, to reduce the need for degaussing. The quadrupole
gradients used in the scan were determined using the design
model (top plots in Fig. 2); the same gradients, when used
in the calibrated model with the revised quadrupole lengths
and optics functions, lead to the observation point beta
functions and phase advances shown in the bottom plots in
Fig. 2. Following the initial analysis of the quadrupole scan
data using the design parameters, the analysis was repeated
using the parameters for the calibrated model (and the
transfer matrices calculated using the design quadrupole
gradients). The optics for the design model are shown in
Fig. 2 only to illustrate the intended conditions for the
tomography data collection and for comparison with those

for the calibrated model. In the remainder of this work, we
refer only to the calibrated model.

B. Quadrupole scan analysis using the algebraic
reconstruction tomography technique

Screen images collected during the quadrupole scans
were used in an algebraic reconstruction tomography (ART)
code, to determine the 4D transverse phase space charge
distribution. The same tomography code was used for the
recent data as was used in the studies on CLARA FE: the
earlier work included validation of the code, using simu-
lated data [29]. In principle, since the only changes in
machine settings made during the course of a quadrupole
scan are to the quadrupole gradients, the phase space
distribution at the reconstruction point (in the current
studies, at the exit of the linac, and upstream of the
quadrupoles) should vary a little during the scan.
Beam images collected during a quadrupole scan are

prepared for the tomography analysis by first subtracting a
background image (to remove any artifacts from dark
current) and then cropping and scaling the images. To
crop the images, we remove the area outside a certain range
of pixels from the point of peak intensity in the image. The
same cropping range is used on each step in the quadrupole
scan so that the cropped images all have the same
dimensions in pixels. The crop limits are chosen so that
the beam occupies as much of the cropped images as
possible, without clipping the beam in any of the images.
To scale the images, we demagnify each image along each
axis by the square root of the beta function corresponding
to that axis (while maintaining the same number of pixels in
each image). In effect, scaling means that given an initial
calibration factor in mm=pixel, the calibration factor after

TABLE I. Parameter values in the design and calibrated
CLARA machine models. Optics functions are given at the
tomography reconstruction point (the exit of the linac).

Parameter Design model Calibrated model

βx 15.0 m 5.5 m
αx −3.4 0.0
βy 15.0 m 5.5 m
αy −3.4 1.5
Quadrupole magnetic length 100.7 mm 127.0 mm

FIG. 2. Optics functions in the CLARA tomography measure-
ments, in the design model (top) and the calibrated model
(bottom). Left-hand plots show the beta functions at the obser-
vation point at each step in the quadrupole scan; right-hand plots
show the phase advances from the reconstruction point to the
observation point at each step in the quadrupole scan. Blue solid
points (with dashed lines) show the values in the horizontal plane;
red open points (with dotted lines) show the values in the
vertical plane.
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scaling will be in mm=
ffiffiffiffi
m

p
=pixel. The beta functions used

for scaling are found in the optics in the calibrated model
(propagating the values from the reconstruction point to the
observation point, using the transfer matrix calculated from
the corresponding quadrupole strengths). Scaling essentially
transforms the images to normalized phase space: this means
that if the phase space distribution at the reconstruction point
was correctly matched to the optics in the calibrated model,
then the scaled beam size (in pixels) would remain constant
over the course of the quadrupole scan. Finally, the resolution
of the normalized images is reduced (or increased, if
necessary) to 39 × 39 pixels.
For the tomography analysis (using ART), we reconstruct

the 4D phase space with a resolution equal (in pixels) to the
image resolution, i.e., 39 pixels on each axis. The phase
space resolution is not in principle constrained by the
technique, but is a practical choice, decided by a balance
between the desired level of detail in the reconstructed
phase space distribution and the computation time and
resources needed for the analysis (which can increase
rapidly with increasing phase space resolution). The results
of the tomography can be validated by transporting, for
each step in the quadrupole scan, the 4D phase space
distribution from the reconstruction point to the observation
point using the transfer matrix calculated from the known
quadrupole strengths and drift lengths; and then comparing

the projection onto coordinate space with the correspond-
ing observed beam image.
Projections of the reconstructed 4D phase space distri-

bution are shown in Fig. 3 for 10- and 100-pC bunch
charges. Note that the scales on the axes for each image
are given in normalized phase space (units of mm=

ffiffiffiffi
m

p
).

Validation images for 10- and 100-pC bunch charges are
shown in Fig. 4 for three steps in the quadrupole scan. The
screen images are generally reproduced from the coordinate
space projection of the reconstructed phase space distri-
bution with good accuracy, supporting the validity of the
reconstructed 4D phase space distribution. The screen
images with 100-pC bunch charge show significantly more
structure than those with 10-pC bunch charge, though the
additional structure is not immediately apparent from the
projections of the 4D phase space distribution at the exit of
the linac. The richer beam structure observed with 100-pC
bunch charge is believed to be associated with the proper-
ties of the photoinjector laser.
Variations in the beam size at the observation point

over the course of a quadrupole scan are shown in Fig. 5.
The plots (upper plot for 10-pC bunch charge and lower
plot for 100 pC) compare the beam sizes calculated in four
different ways: (i) The solid lines (labeled “linear optics”)
show the beam sizes (calculated at each point in the quadru-
pole scan) found by calculating the covariance matrix

FIG. 3. Projections of the 4D phase space distribution of the beam in CLARA at the exit of the linac, for (a) 10-pC bunch charge and
(b) 100-pC bunch charge, found from algebraic reconstruction tomography.
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describing the reconstructed 4D phase space distribution at
the reconstruction point and then transporting the covariance
matrix to the observation point. The shaded bands indicate the
uncertainties in the beam sizes arising from the uncertainties
in the elements of the covariance matrix. (ii) Crosses (labeled
“observed beam size” in Fig. 5) show the rms beam sizes
obtained from Gaussian fits to projections of the observed
beam images onto the horizontal and vertical axes. The error
bars indicate the standard deviations of the rms beam sizes
over the ten images collected at each step (which dominate
over uncertainties associated with the Gaussian fits). (iii) The
circular markers (labeled “calibrated model”) show the beam
sizes at each point in the quadrupole scan expected from the
lattice functions in the calibrated model, with emittances
found from the reconstructed 4D phase space. The error bars
show the uncertainty arising from the uncertainty on the
emittance (increased by a factor of 10, to make the error bars
more clearly visible). (iv) Points (dots, labeled “tomography”)

show the rms beam sizes obtained from Gaussian fits to
projections (onto the horizontal and vertical axes) of the
reconstructed 4D phase space transported from the
reconstruction point to the observation point. The error
bars in this case indicate the uncertainties in the fit.
Although there is a qualitative agreement between the beam
sizes in the calibrated model (using the optics functions
shown inTable I) and the observed beamsizes, there is a better
agreement with the observed beam sizes in the case of linear
transport of the covariance matrix calculated from the
reconstructed phase space distribution and in the case of
linear transport of the phase space distribution.
For completeness, and for comparison of the results

from tomographic analysis using ART and analysis using
machine learning, the emittances and optics functions at the
reconstruction point are given in Table II. The values shown
are calculated from the covariance matrices describing the
reconstructed 4D phase space distributions, for 10- and

FIG. 4. Validation images from algebraic reconstruction tomography, from three steps in the quadrupole scan at two different bunch
charges: 10 pC in cases (a), (b), (c); and 100 pC in cases (d), (e), (f). Within each set of four plots, the top right and bottom left images
show (respectively) the observed and reconstructed beam image at the observation point; continuous lines in the top-left and bottom-
right plots show the density projected onto (respectively) the horizontal and vertical axes, broken lines show Gaussian fits (used to
determine the beam sizes, with values shown alongside the relevant plots). Blue lines correspond to the observed image, and orange lines
correspond to the reconstructed image. Note the different scales on the coordinate axes for 10-pC and 100-pC bunch charges.
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100-pC bunch charges. Note that the values given are for
the normal mode emittances γεI, γεII and optics functions,
BI, BII [32]. In terms of these quantities, the covariance
matrix is expressed:

Σ ¼ εIBI þ εIIBII; ð2Þ

where the elements of the covariance matrix are the second-
order moments of the beam distribution over all combina-
tions of phase space variables:

Σij ¼ hxixji; ð3Þ

with xi ¼ x; px; y; py, for i ¼ 1, 2, 3, 4, respectively. The
symmetric matrices Bk can be written in terms of 2 × 2

submatrices σkuu (with u ¼ x or y):

Bk ¼
 

σkxx σkxy

ðσkxyÞT σkyy

!
: ð4Þ

In the absence of coupling,

σIxx ¼
�

βx −αx
−αx −γx

�
; σIIyy ¼

�
βy −αy
−αy −γy

�
; ð5Þ

and

σIyy ¼ σIIxx ¼ σIxy ¼ σIIxy ¼ 0: ð6Þ

III. PHASE SPACE TOMOGRAPHY USING
MACHINE LEARNING

Although the results shown in Sec. II suggest that the
algebraic reconstruction technique can be of value in
constructing the 4D transverse phase space distribution
of the beam in a machine such as CLARA, the method can
have some limitations. First, the structures visible in the
beam images at the observation point (especially at the
higher bunch charge) are not clearly evident in any of
the projections shown of the 4D phase space distribution at
the reconstruction point. The reasons for this are not well
understood: it may simply be a result of the relatively poor
resolution with which the 4D phase space distribution
is determined, or it may be that the orientation of the dis-
tribution in phase space is such as to obscure the structure
for the chosen 2D projections—note that the structures seen
at the observation point are only really evident for par-
ticular steps in the quadrupole scan, i.e., for some specific
range of betatron phase advances.
A second limitation of the algebraic reconstruction

technique is that it can take some time to process the data
to obtain the phase space distribution. The demands in
terms of processing time and computational resources
increase rapidly with increasing resolution of the
reconstruction and with increasing dimensionality of the
phase space. For the results presented here, a phase space
resolution of 39 pixels in each dimension of the 4D phase
space is used: this limits the detail visible in the phase
space but allows the reconstruction to be completed
reasonably rapidly (within a few minutes) using a standard
PC. Where a high resolution is required, or a rapid
reconstruction would be of value (for example, for several
iterations of machine tuning), then more powerful comput-
ing resources may be needed if algebraic reconstruction, or
a similar tomography technique, is to be used. There is also
interest in extending tomography from four to five or
six dimensions [12,16]: this can be of particular value in

FIG. 5. Variation in horizontal (blue points and lines) and vertical
(red points and lines) at the observation point, for 10 pC bunch
charge (top) and 100 pC bunch charge (bottom). Error bars on the
observed beam sizes (marked as crosses) show the standard
deviation of Gaussian fits to the ten beam images collected at the
observation point for each step in the quadrupole scan. Error bars on
the beam sizes from the tomographic reconstruction (solid points)
show the uncertainty in a Gaussian fit to the phase space density
projected onto the horizontal or vertical axis. Open circles show the
beam sizes calculated by propagating the lattice functions for
the calibrated model (Table I) from the reconstruction point to
the observation point, and combiningwith the emittances calculated
by a fit to the 4D phase space from ART tomography (Table II). The
line shows the beam sizes obtained by propagating the covariance
matrix fitted to the 4Dphase space distribution reconstructed byART

(Table II), with a shaded range showing the uncertainty arising from
the uncertainties on the elements of the covariance matrix.
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short-wavelength free-electron lasers, for example, where
understanding the transverse beam profile and energy
spread as a function of longitudinal position in the bunch
can be of significant importance.
Approaches based on machine learning may offer ways

to address some of the issues associated with conventional
tomography techniques for the reconstruction of the beam
phase space in four (or more) dimensions. The method
presented here, which we apply to the two transverse
degrees of freedom, uses a pretrained neural network, to
which the beam images at the observation point are
provided, in compressed form, as input; the output from
the neural network consists of the 4D phase space dis-
tribution, again in compressed form. In principle, using a
neural network in this way allows a rapid (almost imme-
diate) reconstruction of the 4D phase space distribution
once the beam images are provided. The computing
resources needed for carrying out the reconstruction can
also be much more modest than those needed for algebraic
reconstruction tomography. If images in uncompressed
form are used, the input and output data sets can still be
of significant size, but the use of machine learning enables
image compression techniques to be applied, reducing the
size of input and output data sets. In principle, a neural
network can be trained on images and phase space
distributions represented in some chosen compressed form,
for example, as discrete cosine transforms (DCTs) [33–35].
Image compression would be difficult to apply in the case
of conventional tomography methods, which usually rely
on a relationship between the sinogram and the object to
be reconstructed that is intrinsically expressed in regular
coordinate space. Neural networks offer much greater

flexibility and do not require a specific representation of
the input or output data.
In using a neural network to perform tomographic

reconstruction, an issue does arise with the need to train
the network. Training must necessarily be based on simu-
lated data, which would ideally include features character-
istic of the beam; but at least in cases where the beam shows
some detailed structure, the relevant features may not be
known at the time of generating the training data. In the
current study, we simply take the approach of generating
random phase spaces consisting of a number of superposed
4D Gaussian distributions, with the component distributions
in each generated phase space varying randomly in position,
shape, and intensity. Given the shape of the phase space
distribution in CLARA suggested by tomography using ART,
the phase space distributions constructed in this way may not
provide ideal training data; however, it is interesting to
consider the ability of a neural network to reconstruct phase
space distributions presenting features significantly different
from those present in the training data. If the techniques
described here are to be of value in a reasonably wide
range of situations, then they should be able to reproduce
phase space distributions with features significantly different
from those in the training data: this issue is discussed further
in Sec. III B.

A. Implementation of machine learning method

Before presenting the results of tomography using
machine learning, we discuss some further details of
how the technique was implemented.
For the preparation of training data, phase space

distributions were generated as mentioned above, by

TABLE II. Emittances and lattice functions describing the 4D phase space distributions obtained by phase space tomography in
CLARA. The values given refer to the normal modes [32]. In the absence of coupling, the elements of the matrices σIxx and σIIyy are
(respectively) βx and βy (top left elements) and −αx and −αy (top right elements); and all other matrices are zero.

10 pC 100 pC

Algebraic reconstruction Machine learning Algebraic reconstruction Machine learning

γεI 1.99� 0.04 μm 1.98� 0.03 μm 3.35� 0.44 μm 3.38� 0.16 μm
γεII 3.39� 0.19 μm 2.08� 0.06 μm 21.4� 1.7 μm 18.0� 0.3 μm
σIxx

�
8.63 m 1.06
1.06 0.245=m

� �
4.60 m 0.260
0.260 0.200=m

� �
14.4 m 0.782
0.782 0.112=m

� �
8.46 m 0.389
0.389 0.136=m

�
σIIyy

�
7.11 m 2.14
2.14 0.786=m

� �
3.44 m 1.06
1.06 0.572=m

� �
11.7 m 3.67
3.67 1.24=m

� �
4.50 m 1.62
1.62 0.804=m

�
σIxy

�
−0.355 m −0.0675
−0.0760 −0.0221=m

� �
−0.933 m −0.0708
−0.181 −0.0897=m

� �
−1.02 m −0.306
−0.100 −0.0317=m

� �
−0.370 m −0.148
−0.0306 −0.0185=m

�
σIyy

�
0.0238 m 0.00667
0.00667 0.00218=m

� �
0.278 m 0.0739
0.0739 0.0407=m

� �
0.101 m 0.0314
0.0314 0.00978=m

� �
0.0177 m 0.00781
0.00781 0.00375=m

�
σIIxx

�
0.0196 m 0.00189
0.00189 0.000555=m

� �
0.334 m 0.0242
0.0242 0.0194=m

� �
0.0376 m −0.00173
−0.00173 0.000135=m

� �
0.0181 m −0.000737
−0.000737 0.000330=m

�
σIIxy

�
0.245 m 0.0342
0.0624 0.0197=m

� �
0.859 m 0.0914
0.209 0.105=m

� �
0.148 m −0.00876
0.0179 0.00863=m

� �
0.261 m 0.0685
0.00419 0.0100=m

�
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superposing 4D Gaussian distributions with random var-
iations in position, shape, and intensity. The distributions
are constructed in normalized phase space; the sinograms
are then obtained by transforming the distribution using
phase space rotations (corresponding to the steps in a
quadrupole scan) and then projecting the distribution onto
the (normalized) x–y plane at each step in the quadrupole
scan. Note that we used phase advances corresponding to
those in the calibrated model, as shown in Fig. 2 (bottom
right). For consistency, it is important that the phase
advances should match those resulting from the quadrupole
strengths applied in the quadrupole scan, given the lattice
functions used for normalizing the phase space. It should be
emphasized, however, that the chosen lattice functions
do not need to match those describing the actual beam
distribution (which, in general, is not known in advance).
Having obtained the sinograms for the simulated 4D

phase space distributions, we compress both the phase
space distributions and the sinograms using discrete cosine
transforms (DCTs). There are several types of DCT: we use
a type II DCT, which is the default in many standard
scientific computing packages. In the case of a 2D M × N
array, a type II DCT is defined by

yjk ¼
XM−1

m¼0

XN−1

n¼0

xmn cos

�
πj

2mþ 1

2M

�
cos

�
πk

2nþ 1

2N

�
; ð7Þ

where the values xmn is the component of the initial array,
and yjk (for j ¼ 0…M − 1, k ¼ 0…N − 1) is the compo-
nent of the transformed array. Compression is achieved by
truncating the transformed array at some point, either
defined in terms of the magnitudes of the components
(which should all be below some specified threshold
beyond the truncation point) or simply in terms of a fixed
limit on the size of the transformed array. The inverse of
the type II DCT of an M × N array is given by

xmn ¼
1

MN

×
XM−1

j¼0

XN−1

k¼0

αjkyjk cos

�
πj

2mþ 1

2M

�
cos

�
πk

2nþ 1

2N

�
;

ð8Þ
where

αjk ¼
8<
:

1 if j ¼ k ¼ 0;

2 if j ¼ 0; k ≠ 0; or j ≠ 0; k ¼ 0;

4 if j ≠ 0; k ≠ 0.

ð9Þ

The expressions in (7) and (8) can be extended to higher-
dimensional arrays by including an additional summation
for each additional index and making the appropriate
modification to the numerical factors in (8). Truncating
the transformed array corresponds to reducing the upper

limits on the summations in the inverse transformation (8);
in this case, the array xmn is reconstructed with approxi-
mated values for its elements, but the number of elements in
the array remains the same. In the case of an image, the
effect of truncating the DCT is to lose some of the fine
detail. Figure 6 illustrates image compression using DCTs
truncated to different sizes, using (as an example) a beam
image collected during the quadrupole scan with 100 pC
bunch charge. The original image has a resolution (in
pixels) M × N ¼ 161 × 161. Truncating the DCT to
21 × 21 results in some loss of clarity, but the main features
and some details can still be clearly seen. Truncation to
16 × 16 results in more significant loss of detail. The
“optimum” truncation will depend on the experimental
context and should take into account factors such as the
machine and beam properties and the quality of diagnostic
data. For the case of CLARA, the number of steps in the
quadrupole scan will be one of the main limitations on the

FIG. 6. Image compression using truncation of the DCT.
In each pair, the left-hand image shows the beam image in
coordinate space reconstructed from the DCT shown in the right-
hand image. Images are reconstructed at the resolution of the
original image by padding the truncated DCT with zeros as
necessary. Top: full resolution, 161 × 161 pixels. Middle: DCT
truncated to 21 × 21. Bottom: DCT truncated to 16 × 16. Beam
images are from a quadrupole scan with 100-pC bunch charge.
The color scale shows the logarithm (to base 10) of the absolute
value of the DCT component.
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FIG. 7. Schematic showing the steps in the phase space tomography using image compression and machine learning. The beam
images collected during a quadrupole scan are compressed by applying a discrete cosine transform (DCT) to each image. The
transformed (and compressed) images are provided as input to a neural network, consisting of an input layer, two hidden (dense) layers,
and an output layer. The output of the neural network is a DCTof the 4D phase space distribution of the beam: applying an inverse DCT
allows reconstruction of the phase space density at any desired resolution.

FIG. 8. Examples of reconstruction of charge density in 4D phase space using a neural network. Two different cases are shown,
selected from the set of training data but reserved from (i.e., not used during) the training process. In each example, plots in the top row
show different projections of the original phase space distribution from which the sinograms (projections onto x-ycoordinate space
following phase space rotations corresponding to steps in a quadrupole scan) are constructed. Plots in the bottom row show the
corresponding projections from the 4D phase space reconstructed from the sinograms using the neural network.
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level of detail that can be achieved in reconstructing the
phase space distribution. Furthermore, in the experimental
results that we present here, the range of phase advances
from the reconstruction point to the observation point was
restricted because of the differences between the design
model and the actual machine conditions: this is evident,
for example, from the ART reconstruction of the phase space
distribution. Although a reconstruction retaining, in prin-
ciple, smaller-scale details of the beam distribution could
be achieved by increasing the number of DCT modes,
under current conditions on CLARA, there would be a little
practical benefit in doing so.
The training data for the neural network consist of some

number of pairs of the DCTs of the sinograms (input) and
corresponding phase space distributions (output). The
neural network itself is implemented in Keras [36]. We
use a rather straightforward architecture. Apart from the
input and output layers, there are two hidden layers, defined
as dense layers in Keras. To limit overtraining, each dense
layer is followed by a dropout layer. We use a resolution of
19 points on each axis for the DCT of the 4D phase space
(i.e., 194 voxels in total), and a resolution of 21 × 21 for the
DCT of each 2D projection in the set of “images” forming
the sinogram. In practice, these resolutions capture suffi-
cient numbers of DCT modes to allow the representation of
the screen images and the 4D phase space with good
resolution. Note that the size of the data for the 4D phase
space using machine learning (194) is substantially smaller
than the size used for the ART tomography reported in
Sec. II (394). To return to the issue mentioned above,
regarding the loss in detail of the distribution resulting from
truncation of the DCTs, we have found that for the data
collected in CLARA, increasing the numbers of DCT
modes, either in the input sinograms or the reconstructed
phase space, does not improve the quality of the results as
judged by a comparison between the projections of the
phase space at the observation point and the original beam
images (as shown, for example, in Fig. 13). In constructing
the sinogram, we use phase space rotations corresponding
to the phase advances in the calibrated model (see Fig. 2,
bottom-right plot), i.e., with 32 steps in the quadrupole
scan. With these parameters, the neural network has an
input layer with 32 × 212 nodes and an output layer with
194 nodes. We use 1500 and 3000 nodes for the first and
second hidden (dense) layers, respectively, with a dropout
layer specified to set 20% of inputs (selected randomly) to
zero for each dense layer during training. The tomography
process using image compression and machine learning is
illustrated schematically in Fig. 7.
The architecture of the neural network is rather simple,

and more sophisticated structures could of course be used.
For example, convolutional neural networks (CNNs) are
used in [12,24,25]. CNNs are often extremely effective for
image analysis tasks; however, in the present case, we have
found that better results are generally obtained using dense

(not convolutional) layers. The reason for this requires
further investigation; however, it may be that CNNs offer
limited benefit in the present case because the discrete
cosine transform leads to an “encoded” relationship
between pixels in local areas of the sinogram. It may be
possible, using appropriate design principles, to obtain the
benefits from a CNN despite the additional complexity
(from point of view of a CNN) associated with the encoding
of image information in the DCT. We hope to investigate a
wider range of neural network architectures in the future,
but at present, the relatively simple network structure based
on dense layers is more than sufficient for the current
operational needs of CLARA.
A total of 3000 sets of 4D phase space distributions and

sinograms were generated as training data; 100 sets were
reserved as validation sets for testing the performance of
the trained network and were not used in the training
process itself. The training was carried out using the Adam
optimization algorithm [37]. Training takes several minutes
on a standard laptop PC. The training time is comparable to
the time taken to process a single data set using ART;
however, training only needs to be performed once, to
produce a neural network that can (in principle) be applied
to any data set collected in a quadrupole scan using given
quadrupole strengths. The ART analysis would need to be
performed separately for each data set.

B. Testing the neural network using simulated data

Two examples illustrating results from the trained net-
work are shown in Fig. 8. The examples are selected at
random from the validation data sets. Each row of images in
the figure shows a different projection of a 4D phase space:
in each example, the top row shows the projections from
the original phase space, and the bottom row shows the

FIG. 9. Residuals of the fit to the phase space density using the
trained neural network. Left: histograms showing the frequency
of different values ofΔDCT=σDCT, whereΔDCT is the difference
between the known DCT values (in one case from the test data)
and the values found by the neural network from the correspond-
ing sinograms, and σDCT is the standard deviation of the DCT
values. Right: histograms showing the same residual analysis, but
using the phase space densities, rather than the DCT of the
densities. About 20 cases are superposed in each plot: there is
little variation between the cases in the distributions of residuals.
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projections from the phase space reconstructed by the
neural network when provided with the (DCTs of the)
corresponding sinograms. While there are clearly some
differences between the original and the reconstructed
phase spaces, the reconstruction is sufficiently similar to
the original to provide a useful practical indication of the
beam distribution in phase space.
To characterize further the reliability of the machine

learning reconstruction of the phase space, we calculate
the residuals between the original phase space density in the
test data and the phase space density found from the
sinograms using the trained neural network. The residuals
are shown in Fig. 9, as histograms of ΔDCT=σDCT and
Δρ=σρ. Here, ΔDCT is the difference between a particular
DCT coefficient predicted by the neural network, and the
corresponding DCT coefficient in the phase space distribu-
tion used to generate the sinogram data provided as input to

the network. σDCT is the standard deviation of the DCT
coefficients. Δρ is the difference in the phase space density
(at a particular element of 4D phase space) between the
original distribution and the distribution found by the neural
network, after performing an inverse DCT of the network
output; and σρ is the standard deviation of the phase space
density. Figure 9 shows histograms of these quantities for 20
cases from the validation data sets. Typically, between 75%
and 80% of phase space density values from the neural
network are within 0.1 σρ of the true phase space density.
A potential issue in the application of the neural network

for experimental data is the extent to which the training data
represent the phase space beam distribution in the actual
machine. Ideally, the phase space distribution in CLARA
will be a 4D Gaussian; however, it was known from screen
images collected during other work on the machine that the
distribution contained significant non-Gaussian structure and

FIG. 10. Comparison of phase space projections between an original simulated phase space based on a simple Gaussian distribution
(top row); the distribution reconstructed after compression and decompression using a discrete cosine transform (second row); and
reconstruction, using a trained neural network, from images obtained from simulation of a quadrupole scan (third row). The bottom row
shows 1D projections of the distribution onto the phase space axes, for the original distribution (black line), the distribution after DCT
compression and decompression (blue line), and the distribution reconstructed using the neural network (red line).
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that the features visible in the images depended strongly on
machine conditions (including, for example, injector and
linac settings, and bunch charge). One of the main motiva-
tions for the tomography studies presented here was the need
to develop a much better understanding of the phase space
distribution and its dependence on machine settings.
To test the ability of the neural network to reproduce

a phase space distribution with features significantly
different from the training data, a number of different
distributions were constructed, and the corresponding
sinograms were computed in simulation. In constructing
the sinograms, the calibrated machine model (as described
in Sec. II A) was used. Two examples, illustrating the
results, are shown in Figs. 10 and 11. The example in
Fig. 10 is based on a simple Gaussian distribution and is
intended to show that the neural network does not introduce
artificial structure not present in the real phase space

distribution and can reproduce with reasonable accuracy
the size and shape of the distribution (corresponding to the
emittances and lattice functions). Values for the covariance
matrix elements found from the original distribution and
from the distribution reconstructed using the neural net-
work with simulated quadrupole scan results are compared
in Table III. The results suggest that for a simple Gaussian
distribution, the reconstruction of the 4D phase space
distribution is reliable. Although there is some evidence
of non-Gaussian structure in the reconstructed phase space,
it should be remembered that the experimental settings
for the tomography procedure are not ideal (because of
limitations on the number of steps in the quadrupole scan
and differences in the optics between the design model and
calibrated model) and will impose some limitations on the
accuracy with which the phase space distribution can be
reconstructed, irrespective of the technique used.

FIG. 11. Comparison of phase space projections between an original simulated phase space based on a circular “ring” in coordinate
space (top row); the distribution reconstructed after compression and decompression using a discrete cosine transform (second row); and
reconstruction, using a trained neural network, from images obtained from simulation of a quadrupole scan (third row). The bottom row
shows 1D projections of the distribution onto the phase space axes, for the original distribution (black line), the compressed and
decompressed distribution (blue line), and the distribution reconstructed using the neural network (red line).
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The second example from tests of the neural network with
simulated data, shown in Fig. 11, is based on a distribution
that is far from ideal (for the real machine) and highly
artificial: the distribution consists of a ring in coordinate
space, with some correlation between transverse momentum
and coordinate in the vertical direction. Although the

projection of the distribution in coordinate space shows
significant blurring, it is still possible to identify the key
features of the distribution. The important conclusion from
these tests is that the neural network can still produce
meaningful and useful results in terms of the reconstructed
4D phase space distribution of the beam, even for cases
where the distribution is significantly different from the
distributions used in training the neural network.
As a further remark on the tests (in simulation) of the

neural network, it is worth noting that although there is
some loss in detail of the phase space distribution from the
use of image compression using the discrete cosine trans-
form, this does not appear to be a limitation on the accuracy
of reconstruction of the phase space distribution. More
extensive simulation studies suggest that one of the main
limitations on the accuracy of the reconstruction is the
quality of the experimental data: this is evident also in the
work reported in previous tomography studies on CLARA
using ART [29] (where the machine conditions were initially
better understood), and in the ART analysis of the recent
experimental data, shown in Sec. II B.

C. Experimental results from tomography
using machine learning

The trained neural network was applied to the analysis of
the quadrupole scan data collected on CLARA, described

TABLE III. Covariance matrix elements in the simple Gaussian
test distribution shown in Fig. 10. The values are obtained from
1D Gaussian fits to projections from the 4D phase space onto the
appropriate axes and are given in arbitrary units. Values from
the original simulated distribution are compared with the
reconstruction from the neural network with simulated quadru-
pole scan results (first and third rows in Fig. 10, respectively).

Matrix element Simulated distribution
Neural network
reconstruction

hx2i 0.619 0.637
hxpxi −0.075 −0.006
hxyi <10−4 −0.012
hxpyi <10−4 0.052
hp2

xi 1.625 1.626
hpxyi <10−4 <10−4

hpxpyi <10−4 <10−4

hy2i 1.336 1.651
hypyi 0.239 0.197
hp2

yi 1.040 0.920

FIG. 12. Projections of the 4D phase space distribution of the beam in CLARA at the exit of the linac, for (a) 10-pC bunch charge
and (b) 100-pC bunch charge, found from machine learning.
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in Sec. II. The screen images from each step of the
quadrupole scan were prepared, in the same way as for
the ART analysis, by cropping and then scaling to transform
to normalized phase space. The images were then com-
pressed by constructing the DCTs, which were truncated to
21 modes on each axis. The DCTs were provided as input
to the trained neural network, which provided the DCT
of the 4D phase space distribution, with a resolution of
19 modes along each axis. Projections from the recon-
structed 4D phase space distribution for 10-pC and 100-pC
bunch charges are shown in Fig. 12.
In Sec. II, we validated the ART reconstruction of the 4D

phase space distribution by comparing the projection of the
distribution onto x–y coordinate space at the observation
point with the observed beam images at different steps of
the quadrupole scan. We can make similar comparisons to
validate the 4D phase space distribution reconstructed
using the neural network: some examples (for the same
steps as shown in Fig. 4) are shown in Fig. 13. Once again,
we see generally good agreement between the projection of

the 4D phase space distribution and the observed images, in
both the 10-pC and the 100-pC cases. Comparing with
projections from the phase space reconstructed using ART in
Fig. 4, the machine learning projections do not all have
the same clarity, in terms of the finer details in some of the
images. It should be remembered, however, that ART

tomography uses beam images with a resolution of
39 × 39 pixels to reconstruct the 4D phase space distribu-
tion with a resolution of 39 pixels on each axis. The
machine learning technique uses beam images and 4D
phase space in a compressed form: the beam images are
represented by 21 DCT modes on each axis, and the phase
space is represented by 19 DCT modes on each axis.
Although this is sufficient to capture a significant amount
of detail, the truncation of the DCTs means that the
compression is not lossless. Given the compression ratio,
the machine learning method retains a reasonable level of
detail in the phase space distribution.
Comparisons between the observed and reconstructed

beam sizes are shown in Fig. 14: the results here can be

FIG. 13. Validation images for 10-pC bunch charge, found from machine learning, from three steps in the quadrupole scan. Within
each set of four plots, the top right and bottom left images show (respectively) the observed and reconstructed beam image at the
observation point; continuous lines in the top left and bottom right plots show the density projected onto (respectively) the horizontal and
vertical axes, broken lines show Gaussian fits (used to determine the beam sizes, with values shown alongside the relevant plots). Blue
lines correspond to the observed image, and orange lines correspond to the reconstructed image.
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compared with those in Fig. 5, which shows the beam sizes
reconstructed using ART. While there are some differences
in detail in the quality of the match between the beam sizes
expected from the reconstructed phase space and the beam
sizes observed during the quadrupole scan, both the ART

and the machine learning techniques show similar perfor-
mance in describing the beam behavior.

IV. CONCLUSIONS AND POSSIBLE FURTHER
DEVELOPMENTS

The machine learning technique we have described in
this paper uses relatively simple methods for reconstructing

the 4D phase space. Nevertheless, this approach appears
capable of producing useful results, as shown by the
comparison between projections onto x–y coordinate space
at the observation point for different quadrupole strengths
and beam images collected over the course of a quadrupole
scan. Values obtained for parameters describing the dis-
tribution (emittances and lattice functions) are consistent
with those obtained using a conventional tomography
technique. Data collection and analysis were planned using
a design model of the machine; despite significant
differences between the design model and the actual
machine conditions during the collection of experimental
data, results from both the ART and the machine learning
techniques provide useful information on the beam proper-
ties in CLARA.
The use of image compression (in the present case, using

discrete cosine transforms) allows a reduction of the size of
the data sets that need to be processed, in particular, for
representing the 4D phase space. Machine learning allows
direct tomographic analysis of compressed beam images
and phase space representations, without the additional
complications or difficulties that would be encountered in
attempting to apply conventional tomography techniques to
compressed images.
Inspection of projections of the 4D phase space onto

various planes (in particular, comparison of Fig. 3 with
Fig. 12) suggests that the machine learning technique is
capable of producing a representation of the 4D phase
space distribution that appears clearer than that obtained by
the conventional tomography algorithm. On the other hand,
the beam images obtained by projecting the 4D phase space
distribution onto coordinate space at the observation point
have slightly higher fidelity in the case of the conventional
tomography technique. Nevertheless, the consistency in the
results from the two methods suggests that the machine
learning approach could have some practical value, espe-
cially since the neural network provides results from
experimental data almost immediately, whereas the conven-
tional technique requires a potentially lengthy computation
time. There are a number of ways in which the machine
learning approach could be further developed. With an
improved understanding of the operational conditions of
CLARA, some optimization would be possible in terms of
the quadrupole strengths (and the number of steps) used in
the quadrupole scan. More sophisticated neural network
architectures or the use of more sophisticated machine
learning tools generally, could lead to a better recon-
struction of the 4D phase space distribution from a
given set of sinograms. There may be some benefits in
further increasing the number of sets of training data. An
indication of the quality to be expected in the recon-
struction can be obtained using simulated data, for exam-
ple, by calculating the residuals as shown in Fig. 9.
Although the phase space distributions in the training data
we used for the neural network had very different features

FIG. 14. Variation in horizontal (blue points and lines) and
vertical (red points and lines) at the observation point, for 10-pC
bunch charge (top) and 10-pC bunch charge (bottom). Error bars
on the observed beam sizes (marked as crosses) show the
standard deviation of Gaussian fits to the ten beam images
collected at the observation point for each step in the quadrupole
scan. Error bars on the beam sizes from the tomographic
reconstruction (solid points) show the uncertainty in a Gaussian
fit to the phase space density projected onto the horizontal or
vertical axis. Open circles show the beam sizes calculated by
propagating the lattice functions for the calibrated model (Table I)
from the reconstruction point to the observation point and
combining them with the emittances calculated by a fit to the
4D phase space from machine learning (Table II). The line shows
the beam sizes obtained by propagating the covariance matrix
fitted to the 4D phase space distribution reconstructed by machine
learning (Table II).
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from the phase space distribution in the real machine, the
trained network was still capable of reconstructing a phase
space distribution that provided a good description of beam
behavior. It is possible, however, that using training data
more closely resembling the real beam (once some initial
characterization of the beam has been obtained) could lead
to better results.
Discrete cosine transforms may not be the optimal way

to represent images and phase space distributions in com-
pressed form for the application described here. A DCT
essentially represents a multidimensional array as a set of
orthogonal modes, with each mode described by a cosine
function. This provides a convenient general purpose
approach, but alternative basis functions may allow a more
accurate representation of beam images and phase space
distributions with fewer modes. It may be possible, for
example, to take advantage of properties generally expected
of the beam (such as approximate symmetries) to construct
a more appropriate basis. The scope for further develop-
ment is rather wide, and while the results shown here are
encouraging and demonstrate the value of machine learning
for tomographic reconstruction in principle, more extensive
studies would be required to understand the full potential of
the technique.
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