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High-power particle accelerators are complex machines with thousands of pieces of equipment that are
frequently running at the cutting edge of technology. In order to improve the day-to-day operations and
maximize the delivery of the science, new analytical techniques are being explored for anomaly detection,
classification, and prognostications. As such, we describe the application of an uncertainty aware Machine
Learning method using the Siamese neural network model to predict upcoming errant beam pulses using
the data from a single monitoring device. By predicting the upcoming failure, we can stop the accelerator
before damage occurs. We describe the accelerator operation, related Machine Learning research, the
prediction performance required to abort the beam while maintaining operations, the monitoring device and
its data, and the uncertainty aware Siamese method and its results. These results show that the researched
method can be applied to improve accelerator operations.
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I. INTRODUCTION

The Spallation Neutron Source (SNS) facility is the
world’s highest power proton accelerator, delivering
1.4 MW of a 1-GeV pulsed beam at 60 Hz. The beam is
accelerated in the linear accelerator, which has both a
warm, normal conducting and a cold, superconducting
section. The accelerated beam is accumulated into the ring
to form a very short but intense pulse with an intensity of up
to 1.4 × 1014 protons. This short pulse is then sent to a
stainless steel vessel filled with liquid mercury where the
impact of the protons spalls the mercury atoms and
neutrons are released [1]. The neutrons are then guided
to experimental beam lines where the material research
takes place.
Achieving high availability is extremely difficult in high-

power proton beam accelerators. These accelerators use
thousands of subsystems, with many running on the cutting
edge of technology. Errant beam pulses can cause damage
to the accelerator and negatively impact the research
program [2]. To minimize downtimes, accelerator opera-
tions include preemptively replacing equipment, careful
scheduling of maintenance periods, utilizing diagnostic

instruments to equipment, and detailed tracking of down-
time statistics and patterning. These measures have limi-
tations, as failures still happen unexpectedly. Adding more
diagnostics instruments could help but is expensive.
Therefore, there is a need for methods that can utilize

existing diagnostic data to identify the onset of errant beam
pulses (see also [3–5] for using existing diagnostic data for
adaptive controls tuning applied to particle accelerators).
Errant beam pulses are caused by equipment failure as
concluded by years of analysis of beam trip data. As
equipment involved in the acceleration process must have
an effect on the beam, we assume that conditions leading to
errant beam pulses can be identified by monitoring signals
from beam measurements.
This paper describes the results of research being

conducted to exploit the extraordinary advantages of
machine learning (ML) and the large amounts of accel-
erator data in a neutron production facility to improve
accelerator availability. The focus of this research is on
using ML to predict beam loss due to the failure of various
accelerator equipment, using data (waveforms) from a
single existing beam monitoring device. If successful, we
can avoid the cost of installing additional monitoring
devices to predict upcoming failures and, instead, use
only existing diagnostics.

II. PREVIOUS WORK

Advances in computing power, the ability to stream and
collect large data sets, and the availability of open source
artificial intelligence initiatives have led to an increase in

*blokland@ornl.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 25, 122802 (2022)

2469-9888=22=25(12)=122802(10) 122802-1 Published by the American Physical Society

https://orcid.org/0000-0002-2385-6894
https://orcid.org/0000-0002-4430-9937
https://orcid.org/0000-0002-3475-2871
https://orcid.org/0000-0002-5191-0501
https://orcid.org/0000-0001-6372-1743
https://orcid.org/0000-0002-8740-5996
https://orcid.org/0000-0002-2627-0821
https://orcid.org/0000-0002-1363-9343
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.25.122802&domain=pdf&date_stamp=2022-12-15
https://doi.org/10.1103/PhysRevAccelBeams.25.122802
https://doi.org/10.1103/PhysRevAccelBeams.25.122802
https://doi.org/10.1103/PhysRevAccelBeams.25.122802
https://doi.org/10.1103/PhysRevAccelBeams.25.122802
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the use of ML methods in the accelerator and target
community with the primary focus on improvements in
beam tuning and beam quality [6,7]. Recent studies have
evaluated the potential for improving accelerator operations
by detecting deviations from normal or optimal conditions.
Relevant literature focuses on building models of the beam
behavior in order to identify scenarios that correspond to
less than optimal accelerator setup or equipment errors. Fol
et al. [8] provide an overview of several potential appli-
cations of ML for accelerators including optimization and
prediction for tuning accelerator operations, lattice imper-
fection corrections, and anomaly detection. The paper
discusses two specific applications of ML at the Large
Hadron Collider (LHC): optics correction (predicting con-
trol knob setting to cancel quadrupole field errors) and
anomaly detection [detecting faulty beam position monitors
(BPMs)] [9,10]. Emma et al. [7] describe a multilayer
perceptron-based prediction of the longitudinal phase space
of particle accelerators based on diagnostic measurements,
with good fault prediction accuracy. Similarly, [11] dis-
cusses a gradient boosting classifier for identifying beam
loss plane contributions to the measured beam loss monitor
(BLM) data at the LHC. Other studies discuss the appli-
cation of ML for superconducting radio frequency (SRF)
cavity fault classification [12], anomaly detection in super-
conducting magnets in the LHC [13], and for predicting
shot-to-shot x-ray properties in an x-ray free-electron laser
(XFEL) [14]. In all instances, the proposed ML appears to
be capable of producing reasonable results, though there
seems to be room for improvement in terms of true positive
(TP) and false positive (FP) rates, particularly for an
application such as ours that requires very low FP rates.
There are several studies using data from beam monitor

sensors to identify conditions leading to beam loss. Rescic
et al. [15,16] demonstrate that a random forest (RF) is
capable of identifying a beam loss event at SNS one pulse in
advance using data from one beam current monitor. In [17],
the authors examine the potential to predict interlocks (beam
interruptions) using multiple measurements along the accel-
erator and using a recurrence plots–based convolutional
neural network (RPCNN) for transforming measurements
into recurrence plots. They show that the performance of an
RFandRPCNN is comparable, although theRPCNN ismore
successful at identifying anomalies that build up over time
and in identifying the onset of faults earlier than the RF. The
drawback is that the approach requires data from multiple
measurements and may take additional computational time
to generate the recurrence plots. The above discussion
highlights the potential for using ML in accelerator appli-
cations for detecting anomalies.
This paper builds on the previous research in [15,16] by

exploring a new machine learning technique and incorpo-
rating uncertainty quantification. The objective is to deter-
mine whether the beam pulse prior to the errant beam pulse
is anomalous and can be detected. One of the challenges

associated with this problem is that a signal leading to an
incoming faulty signal cannot be distinguished by visual
inspection from a normal beam pulse signal and thus has
very small differences. Another challenging aspect is the
fact that in beam configuration changes may occur during
the day-to-day operation of the accelerator, resulting in
differences between two “normal” pulses. The range of
possible configuration changes makes it difficult to com-
pile a complete set of data from “normal” pulses. The
resulting limitations in examples of normal data, and the
small differences between normal and signal leading to an
errant beam pulse are expected to challenge ML solutions
(supervised and unsupervised) proposed to date for accel-
erator applications.
To overcome these challenges, this work applies a

similarity-based supervised ML algorithm that compares
reference known normal waveforms with an incoming
waveform. Similar waveforms indicate that the incoming
waveforms are normal. Additionally, the proposed model
computes the uncertainty in its comparison to indicate
incoming waveforms that have not been seen in the training
data, which is critical for robust and reliable model
predictions. Finally, in addition to the previously men-
tioned research in [15,16], a benchmark study is provided
in the Appendix to compare the proposed model’s perfor-
mance against classical autoencoder models for this prob-
lem. While autoencoders have shown promising results in
the past, the method we are exploring exceeds these results
as shown in the appendix.

III. DATA SET DESCRIPTION

A. Data source

The source of the data is the differential current monitor
(DCM) [18,19], shown in Fig. 1. This system acquires
beam current waveforms upstream and downstream of the
superconducting cavity linac (SCL). Its main function is to
protect the SCL from beam losses, which are detrimental to
the superconducting cavities [20]. The system aborts the
beam when it determines that less beam is coming out of
the SCL than is going into the SCL. It does so faster than
other devices, thanks to its dedicated communication line

FIG. 1. Setup of the differential current monitor showing beam
passing by the sensors and through the SCL.

WILLEM BLOKLAND et al. PHYS. REV. ACCEL. BEAMS 25, 122802 (2022)

122802-2



with the front-end machine protection system (MPS) and
the use of the field programmable gate array (FPGA). The
FPGA also makes it very flexible to control how it aborts
and when it archives. Data archived by the DCM are live
streamed from the protected accelerator network to a
remote accessible location for analysis.

B. Conditions for data archiving

The DCM archives the beam current waveforms not only
when it notices the upstream/downstream difference but
also if a beam current pulse is shorter than the previous
beam current pulse. This means that it also archives when
the beam is lost upstream or another device aborts the
beam, therefore capturing practically all errant beam
pulses. The DCM will not archive if the accelerator is
aborted between beam pulses. While a single shorter beam
pulse does not directly cause SCL beam losses, the RF
cavity controllers will learn the wrong beam loading for the
next normal length pulse which will then result in beam loss
in the SCL, see [21,22]. The DCM prevents this upcoming
beam loss by alerting the MPS (because the beam pulse was
shorter), which then results in the RF controller reusing the
previous full length beam pulse for its feed-forward setup.
We will refer to the anomalous pulse without beam loss as a
0011 event and the anomalous beam pulse with SCL beam
loss as an 1111 event.

C. Data set contents

A unique feature of the DCM, one that makes it possible
to use it for ML, is that it not only archives the beam current
waveforms of the aborted beam pulses in the data set but
also the beam current waveforms before the errant beam
pulse and additionally regularly archives nonerrant beam
current waveforms. The before waveforms can be used for
(semi)-supervised learning as the anomalous class, while
the nonerrant beam current waveforms can be used as the
normal class.
An example of the beam current waveform is shown in

Fig. 2. The upper plot shows what is referred to as a series
of macropulses, a 1-ms long pulse repeated at 60 Hz. This
macropulse consists of approximately 1000 minipulses.
Each minipulse is ∼650 ns and is followed by a gap of
∼350 ns. Within each minipulse are the micropulses, not
shown, which are the RF buckets filled with the beam
particles spaced at 402.5 MHz. The bottom plot shows a
beam pulse’s current waveform with the initial ramp-up in
intensity in the beginning of the macropulse, as well as the
different widths of the minipulses during the macropulse.
This setup is typical for the production of style beam.
The waveform has a length of about 1.2 ms and is

digitized at 100 MS=s. Along with the upstream and
downstream beam current waveforms, the beam pulse’s
timestamp and cycle ID are collected and archived.
The data set for the ML training and testing was

comprised of 4000 normal beam pulses and 4000

anomalous pulses. We excluded the anomalous pulses with
beam loss from the training set but included these in an
extended test set to be able to determine if this type of
anomalous beam pulse can also be detected with the
Siamese model but with higher uncertainty.

IV. METHODS

A. Siamese model

For this study, we explore the use of Siamese Neural
Network (SNN) models [23] to provide a natural similarity
ranking between two inputs. The SNN learns the similar-
ities between two input waveforms in contrast to a tradi-
tional classification approach that learns to classify each
data type. The SNN model developed in this paper includes
a final layer to approximate a Gaussian process (GP) model
in order to provide an out-of-distribution uncertainty
estimate. The SNN model with GP provides model flex-
ibility to include multiple input data modalities originating
from different sensors (beam position monitors, beam
phase monitors, etc). The SNN approach allows for a
limited amount of monitoring devices to identify beam loss
events, avoids extensive computational loads, can adjust the
threshold to change the TP and FP rates, can determine if
the trained model is outdated, and can detect anomalies that
are not in the training set from normal beam pulses. Our
aim is to use the Siamese model to learn the similarities
between normal and anomalous beam pulses, as measured
by the DCM beam current sensors. Developing an ML
model based on a similarity score provides robustness
against previously unseen anomalies that could be

FIG. 2. Beam macropulse pattern and beam current waveform.
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introduced to the system. The similarity score can be used
to reevaluate the applicability of the current model by
comparing a normal beam pulse used for training with the
current normal pulse. A trending change in the similarity
score would indicate the need to retrain the current Siamese
model. Alternatively, using an updated normal waveform,
not from the training set, for comparison with the input
waveform can possibly extend the life of the trained model.
A Siamese model consists of twin networks that accept

unique inputs, as illustrated in (A) of Fig. 3. The twin
networks are used to shrink the large amount of raw data to
a reduced representation that captures the salient features.
The reduced representations of each input are then com-
pared using a modified contrastive loss function [24]:

Lðy; ŷÞ ¼ α × ð1 − yÞ � ŷ2 þ y � ½maxðβ − ŷ; 0Þ�2 ð1Þ
The contrastive loss function is composed of two terms used
to decrease the output of like pairs and increase the output of
unlike pairs. Here y is the truth value, ŷ is the predicted value,
α is tuning parameter use to emphasize the similar pulses that
were set to 2 for this study, and β is a second tuning
parameter, set to 1, used to emphasize dissimilar pulse.
We used aResNets [25]model for the twin network. ResNets
consist of several stacked residual units, which can be
thought of as a collection of convolutional layers coupled
with a shortcut that improves the propagation of the signal in

a neural network. This shortcut allows for the construction of
much deeper networks since keeping a clean information
path in the network facilitates optimization.
The model was developed using KERAS [26] and

TensorFlow back end [27]. We used the Adam optimizer
[28] and a loss function defined in Eq. (1). For our study,
we used the similarity metric as defined in Eq. (2):

L2 ¼
����
XN
i¼0

ðx21;i − x22;iÞ
���� ð2Þ

Here x1 and x2 are the latent vector outputs from the ResNet
model for input pulse 1 and 2, and i is the element index.

B. Uncertainty aware Siamese model

Providing methods to reliably quantify the predictive
uncertainty for our models is critical for real-world appli-
cations. This is acutely visible when the input samples are
dissimilar to the training sample. The use of distance
awareness is particularly important because deterministic
models are only trained on a data setD ¼ fyi;xigNi¼1 where
D is a subset of the input space,HIDD ⊂ H. Consequently,
the model only learns the in-domain distributions,
p�ðyjx;x ∈ HIDDÞ from the data set D, and there is a
possibility of an orthogonal data set, p�ðyjx;x ∉ HIDDÞ,
existing in the same input space. This orthogonal distri-
bution p�ðyjx;x ∉ HIDDÞ can be very different from the
training distribution, and the predictions on this orthogonal
set can lead to unreliable results.
For this study, we extend the Siamese model described in

Sec. IVA by replacing the output layer with an approxima-
tion toGaussian process (GP) as described in [29] but applied
to the Siamese model. A classic deep learning model maps
the input space to a hidden representation space and its output
layer maps the hidden representation hðxÞ to the label space
y. By wrapping a GP layer around the output layer, we make
it distance-aware such that it outputs an uncertainty score
representing the distance between the hidden space of the test
data to that of the input space (distribution that the model is
trained on) jhðxÞ − hðx0Þj. The updated architecture is shown
in (b) of Fig. 3.

V. ML PERFORMANCE METRICS

Wemust determine the ML performance metrics in terms
of FP and TP rates required to maintain and improve
accelerator performance. One of the key metrics to track the
performance of the SNS facility is beam availability. To
prevent a negative impact on scientific research, any
method that can wrongly abort the accelerator beam should
not noticeably increase the current levels of beam trip
frequency or duration. While many ML applications often
allow single digit percentages of FP rates, in the SNS case,
a 5% wrongly aborted beam would reduce our integrated
power and adversely affect the material science research

FIG. 3. The deterministic Siamese model architecture (a) is
composed of two input layers for the reference waveforms and the
acquired waveform, followed by one common ResNet model and
a distance function. Then a dropout layer is applied to avoid
overfitting, and finally an output layer to compress the dimen-
sionality and produce the similarity scalar. The uncertainty aware
model (b) replaces the output layer with a Gaussian process
approximation layer in order to produce both the similarity and
the uncertainty values.
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program. We will define an acceptable FP rate by analyzing
the number and duration of recent beam trips using data
from the DCM.
If there is beam loss in the SCL, then the beam is held off

until an operator can verify it is safe to start up again. For
the month of March 2021, the total beam production time
was ≈26.4 days with an average daily trip frequency of
SCL beam loss trips of ≈ 5 per day, a total of 126 trips.
When including the recovery time to ramp-up to full beam
power, about 0.22% of beam pulses were lost. There were
many more events of truncated beam pulses, about 5500
trips, for a total downtime of about 1.3% over the data set.
In addition, each type of event can lead to much longer
downtimes on the order of hours. While preventing these
errant beam pulses might prevent these long downtimes as
well, we will not include these downtimes in our ML
performance criteria because of their rare occurrence. We
assume that a missed beam rate of 1.5% (0.22%þ 1.3%) is
an acceptable level and verified with operations that an
increase of up to 20% is acceptable and well within month-
to-month variations. The ML technique can then have an
FP level that contributes to around 0.2% of beam pulses
missed. ATP rate of 0.5 in case of the beam loss events will
gain us 0.1% of the beam. Any TP rate for truncated errant
beam pulses will not lower SCL losses as the loss of beam
is upstream. Preventing a truncated beam pulse will have as
benefit that the accelerator will not send an irregular lower
intensity pulse to the target. After a truncated pulse, the
accelerator is automatically re-enabled after four missed
beam pulses. If we predict a truncated pulse, we would still
get the same 4 pulse hold-off period unless the MPS is
modified to reduce the hold-off time for predicted errant
beam pulses. We can increase the beam to target only if the
hold off is reduced. The current minimal hold off of the
beam is 4 pulses thus the FP rate of truncated beam pulses
should be 0.2%/4 or 0.05%. This would put our recall,
TP=ðTPþ FNÞ, at 0.5 and our precision, TP=ðTPþ FPÞ,
at 0.999.

VI. RESULTS

For this study, we used the receiver operating character-
istic (ROC) curve to quantify the performance of our
models. The ROC curve indicates the relationship between
true positives (TP) and false positives (FP). In our case, a
true positive is defined as correctly identifying an anomaly
and a false positive is defined as incorrectly identifying a
normal pulse as anomalous. We trained a deterministic and
a distance-aware Siamese model with identical architec-
tures except for the output layer as explained in Sec. IV.

A. Data preprocessing

Example waveforms are shown in Fig. 4. The before
waveform (blue) is used for training. The errant beam pulse
(orange) shows a drop in beam current before it is aborted.

Each waveform contains 120,000 elements, of which
elements 3000–13,000 are used for the Siamese model
as we determined that this section holds the information on
whether a pulse is normal or anomalous.
Figure 5 displays the box plots for 20 randomly selected

waveforms from the normal set of waveforms. To remove
waveforms from the data set that are not part of the normal
neutron production, we apply preprocessing based on the
number of minipulses in the waveform and the beam
repetition rate. Peaks were identified using the find_peaks
method from the SciPy library [30], with a minimum height
of 2 mA and a minimum distance of 75 elements (750 ns)
between two neighboring peaks. An example waveform
demonstrating the identified peaks is shown in Fig. 6. In
addition, we require the macropulse to have at least
900 minipulses and to be repeated at 60 Hz.
To generate the data set for the Siamese model, we

extracted normal and anomalous “Before” waveforms from

FIG. 4. Digitized waveform of the beam current before the
errant beam pulse and the errant beam pulse itself.

FIG. 5. Box plot displaying a random sample of 20 waveforms
from the training set. The orange horizontal line corresponds to
the median, the upper (lower) edge of the whisker corresponds
to the maximum (minimum) value, and the upper (lower) edge of
the box denotes the third (first) quantiles.
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the archived data from March 2021 from the upstream
sensor. From this, after preprocessing to exclude non-
production beam pulses, we selected 4000 anomalous
waveforms and compared each of them to 15 randomly
selected normal waveforms. We used 4000 normal wave-
forms and also compared each to 15 randomly selected
normal waveforms. The comparisons between normal wave-
forms are assigned a label of 0 and comparisons between
normal and anomalous waveforms are assigned a label of 1.
The data are then divided into orthogonal training, testing,
and validation data sets that contain 76,800, 24,000, and
19,200 samples, respectively. Here, a sample is defined as a
combination of normal and/or anomalouswaveforms used as
an input to the Siamese model. The training, testing, and
validation data sets contain equal numbers of normal-to-
normal and normal-to-anomalous samples.

B. Deterministic Siamese model results

Figure 7 displays the results of the classification. The
model identifies most of the anomalies with very high
confidence, while the remaining anomalies are misclassi-
fied as normal.

For the developed solution to be of practical use, we
must identify the maximum number of correctly identified
anomalies while maintaining the FP rate below the estab-
lished 0.05%. As displayed in Fig. 8 (zoomed-in subplot),
we have a true positive rate of more than 60% on both train
and test data sets.

C. Uncertainty aware Siamese model results

To implement the uncertainties associated with the
outputs of our Siamese model, we wrapped the last layer
of the model with a Gaussian process layer. The uncertainty
aware Siamese model not only provides a classifier but also
outputs the uncertainty of the predictions. We can explore
how the model behaves in both dimensions.
As shown in Fig. 9, we introduced beam pulses (red dots)

with anomalies that the model was not used on during the

FIG. 6. Example results using scipy.signal.find_peaks function
with a minimum height of 2 mA and minimum distance of 75
elements between neighboring peaks.

FIG. 7. Classifier output histogram (the subplot represents a
zoomed-in version of the same histogram plot).

FIG. 8. Deterministic model ROC curves for train and test
samples.

FIG. 9. Model predicted uncertainty versus uncertainty aware
model prediction on a test data set. The blue dots are the normal
pulses, the orange dots are the anomaly type used for training, and
the red dots are the anomalous pulses that the model was not
trained on.
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model training. The model performs comparably in terms
of TP and FP to the originally trained anomalies, however,
with larger uncertainties. We interpret the increase in the
uncertainty as due to the difference in the samples corre-
sponding to these anomalies from the training samples,
thereby increasing the out-of-distribution uncertainty.
In order to incorporate the model prediction uncertainties

into the ROC curve, we smeared the model prediction
output with its associated uncertainty using a Gaussian
distribution. We conducted 250 trials to compute the ROC
curve bands, as shown in Fig. 10. The dark bands represent
the range between the 25th and 75th quantiles and the
lighter bands represent the range between the 10th and 90th
quantiles.

Figure 11 shows the ROC curve uncertainty band for the
unseen anomalies (type 1111 aka beam loss events)
discussed above. Even though the model was not trained
on these anomalies, it is able to identify more than 45% of
the anomalies correctly while keeping the false positive
below the threshold of 0.05%, although the predictions have
higher uncertainties as seen in Fig. 9. The uncertainty bands
in Figs. 10 and 11 provide a quantifiable estimation of the
model’s ability to identify existing and/or new anomalies.
It should be noted that the scatterplot also shows that

there is a threshold where the FP rate is negligibly small.

D. Siamese inference CPU timing results

The Siamese model has been tested on an Intel Core i9,
with the timing results coming out at about an average of
2 ms per inference for the deterministic model and 4 ms for
the distance-aware model. The current DCM CPU is a Core
i7 CPU and based on [31], it would still be able to infer
within 10 ms. It should be noted that the DCM is scheduled
to be upgraded to one of the Xeon CPU (W-2245 or E5-
2618) listed in Table I. As such, all CPUs considered are
expected to easily complete the inference within the allotted
time. As the data are transferred by DMA over a PXIe bus
on a point-by-point basis, during sampling, the data are
almost instantly available to the real-time CPU for process-
ing. Current CPU usage is around 2–3 ms per 16.6 ms
cycle. That means 16.6–1–3, or 12.6 ms, of CPU time, is
available to convert the data from fixed point to float,
evaluate with the Siamese model on the real-time OS on the
CPU, and send an abort signal back to the FPGA to abort
the accelerator. We also tested the deterministic model
inference running as a Cþþ code on NI PXIe-8840 (Core
i5-4400E CPU) system with LabVIEW Real-Time OS, one
inference took under 4 ms.

VII. DISCUSSION

A. Siamese improvements

In addition to the uncertainty quantification, we aim to
implement a class activation map (CAM) to highlight the
distinct region(s) of the pulse the model focuses on when
making a similarity classification. This method has been
used extensively in recent years upon the realization that

FIG. 10. Uncertainty aware model ROC curves for train and test
samples. Dark error bands are for the 25%/75% quantiles and the
light color bands are for the 10%/90% values.

FIG. 11. ROC curve with uncertainty band for the inferences
made on anomaly type 1111 with the model trained on anomaly
type 1100. The dark and light bands represent the same range as
Fig. 10.

TABLE I. Expected model inference time for select computing
hardware. Core i9-9880H and Core i5-4400E times were
measured.

Intel CPU CPU mark rating
Inference time (ms)

Deterministic/Uncertainty

Core i5-4400E 3251 3.2=NA (Cþþ)
Core i7-5700 5905 4.8=9.5
Core i9-9880H 14,075 2.0=4.0
Xeon E5-2618 10,464 2.7=5.4
Xeon W-2245 19,527 1.4=2.9
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convolutional neural networks can perform object locali-
zation without explicit supervision of the object [32]. This
can be used to determine specific equipment failure classes
that can be compared to failed equipment as indicated by
the MPS.

B. Implementation

Given the performance of the method in both execution
times and TP and FP rates, we plan to implement the model
on the actual DCM system in its real-time system. In this
paper, we only analyzed the beam pulse immediately before
the fault. However, the DCM also archives up to 25
preceding pulses. As such, we plan to study if the preceding
pulses can also provide additional discriminating power
which would allow us to detect a trend and thus identify
faults earlier and more accurately. We plan to determine
whether different equipment failures have a different
duration from the first detection of an anomaly to the
actual errant beam pulse and then apply the appropriate
hold-off time for each different type of equipment failure. If
the anomaly can be detected early enough, alternative
methods, such as adjusting the equipment that is about
to fail, can be used instead of aborting the beam. We are
also investigating to see if we can implement the Siamese
model inference on the FPGA to provide fast results and
run more inferences of the incoming waveform versus
multiple reference waveforms.
We now also have data becoming available from the

beam position monitors (BPMs). The phase data from the
BPMs are especially interesting, as the phase relates
directly to the momentum of the beam particles and the
momentum is directly related to the acceleration process.
Thus if the acceleration process is failing, we should see
this in the phase data immediately. We hope that in this data
even more precursors can be found.

VIII. CONCLUSION

In this paper, we developed and applied an uncertainty
aware method to predict impending faults using data from a
single data source. Using the unique uncertainty aware
Siamese model, we can set the FP rate low enough, 0.05%,
so that the performance of the accelerator is insignificantly
affected while maintaining a TP rate high enough, 60% for
errant beam events in the training set and 45% for events
not in the training set, to benefit the accelerator. This result
exceeds previously published studies, [15] and [16], by
reducing the FP rates while improving the TP. Another
feature of the Siamese model is that we can use it to
determine whether the latest normal pulse is still similar to
the trained normal reference pulse. This comparison can
help us determine whether we need to retrain the model.
Execution times of the model are such that practical
implementation is possible, which will help us determine
the benefits of preventing errant beam.
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APPENDIX: COMPARISON BETWEEN SIAMESE
MODEL AND CONVOLUTIONAL

AUTOENCODERS

Autoencoders are widely adopted ML techniques
utilized for fault detection and recently applied for particle
accelerators [34–36]. This section provides results of a
comparative analysis of proposed Siamese Neural Network
(SNN) against Convolutional AutoEncoders (CAE).
In this analysis, we trained nine CAE architectures with

varying depth and parameters (see Table II for architecture
details) using the same data set used to train the Siamese

TABLE II. Network details for autoencoder architectures used
in comparative study. Note that for the number of layers and
filters, we only report the encoder part, as the decoder is
symmetric to the encoder.

Arc.
No.

No. of
Layers Filters

Kernel
size

Activation
function Parameters

1 4 256=128=64=32 8 ReLU 702,721
2 3 128=64=32 8 ReLU 175,105
3 2 64=32 8 ReLU 42,309
4 4 256=128=64=32 12 ReLU 1,052,929
5 3 128=64=32 12 ReLU 262,145
6 2 64=32 12 ReLU 63,361
7 4 256=128=64=32 10 Sigmoid 877,825
8 3 128=64=32 10 Sigmoid 218,625
9 2 64=32 10 Sigmoid 52,865
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Twin model in this work. Figure 12 illustrates a generic
autoencoder model architecture, where each convolutional
block includes sequential layers of Conv1D (transpose for
the decoder stage), batch normalization, and dropout. We
tested model architectures that have an equivalent or greater
number of parameters as was used for SNN in this paper.
CAEs are trained with normal waveforms in order to
reconstruct the signal. Trained models are then used to
predict the reconstruction of both normal and anomalous
waveforms of the test set. Predicted waveforms are

compared against input waveforms and a reconstruction
error is obtained using root mean squared error [as
formulated in Eq. (A1)].

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼0

ðxi − x̂iÞ2
vuut ; ðA1Þ

where x is the input waveform vector, x̂ is the reconstructed
waveform vector, and N is the length of the waveform. This
metric is used to build ROC curves and the maximum TP
rate (TPR) for the target FP rate (FPR) is extracted.
Figure 13 depicts the comparison of CAE designs

against the SNN in terms of model size (No. of trainable
parameters within the model) and predictive performance.
This analysis shows that it is possible to improve the
performance of CAE by simply increasing the complexity
of the model. However, even the most complex CAE design
used in this analysis is outperformed more than twice by the
SNN, which consists of multiple orders of magnitude less
parameters.
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