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We present the design of a cylindrical corrugated waveguide for use in the A-STAR accelerator under
development at Argonne National Laboratory. A-STAR is a high gradient, high bunch repetition rate
collinear wakefield accelerator that uses a 1-mm inner radius corrugated waveguide to produce a
90 MVm−1, 180-GHz accelerating field when driven by a 10-nC drive bunch. To select a corrugation
geometry for A-STAR, we analyze three types of corrugation profiles in the overmoded regime with a=λ
ranging from 0.53 to 0.67, where a is the minor radius of the corrugated waveguide and λ is the free-space
wavelength. We find that the corrugation geometry that optimizes the accelerator performance is a rounded
profile with vertical sidewalls and a corrugation period p ≪ a. Trade-offs between the peak surface fields
and thermal loading are presented along with calculations of pulse heating and steady-state power
dissipation. In addition to the TM01 accelerating mode, properties of the HEM11 mode and contributions
from higher order modes are discussed.
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I. INTRODUCTION

A sub-terahertz accelerator (A-STAR) is being devel-
oped at Argonne National Laboratory to reduce the cost and
footprint of a future hard x-ray free-electron laser (XFEL)
facility [1,2]. A-STAR is a collinear wakefield accelerator
(CWA) that uses a cylindrical corrugated waveguide
(CWG) as a slow-wave structure, analogous to other
CWA configurations [3–8] and drive beam decelerator in
CLIC [9]. In operation, a high-charge drive electron bunch
passing through the CWA generates an electromagnetic
field, known as the wakefield, which accelerates a low
charge witness electron bunch following close behind the
drive bunch. The ratio of the maximum electric field behind
the drive bunch to the maximum electric field within the
bunch is known as the transformer ratioR and is limited to
2 for symmetric drive bunches [10]. The A-STAR design
uses a 10-nC asymmetrical drive bunch [10,11] to achieve a
transformer ratio of 5 and an accelerating gradient of
90 MVm−1, where the accelerating field is a 180-GHz
TM01 mode propagating with a group velocity of 0.57c,
where c is the speed of light. The accelerator ends when the

drive bunch exhausts almost all of its energy at which point
the witness bunch reaches a maximum energy approaching
E0ð1þRÞ, where E0 is the initial energy of the beam. The
entire CWA is composed of many 0.5-m long modules
connected in series, as shown in Fig. 1.
The CWA is driven directly by an electron bunch

propagating through the structure, making it operationally
different from conventional iris loaded linac structures driven
by external rf sources. The overall short duration of the rf
pulse behind the drive bunch is expected to reduce the rf
breakdown rate in the CWG while the growing length of the
pulse with distance causes power dissipation in the wall
material to increase along the length of the accelerator
module. Understanding these effects is critical to the design
of a high repetition rate CWA and they will be discussed

FIG. 1. Two 0.5-m long modules of the CWA connected in
series, showing the module on the left with the quadrupole
wiggler removed.
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further in Secs. V and VI. Creating a large accelerating
gradient with a 10-nC drive electron bunch requires the
inner radius of the CWG to be small, while manufacturing
limitations at the resulting scale require the corrugations/
irises to be shallow. These constraints cause the CWG slow-
wave structure to have higher group velocity and peak
surface fields than iris loaded structures commonly found in
the literature. In this paper, we investigate 1-mm inner radius
CWG geometries that attempt to minimize power dissipation
and peak surface fields, maximizing the bunch repetition rate
and accelerating gradient of the CWA. We also attempt to
minimize coupling to higher order modes (HOMs) which is
the preferred operating condition according to [12]. Using
the eigenmode and wakefield solvers in CST Microwave Studio

[13], we parametrically characterize a range of corrugation
geometries to arrive at the final design of the A-STAR CWG
presented in Sec. VIII. Fabrication and testing of the CWG
are described in [14] and the vacuum properties of the
structure are discussed in [15]. Parameters and variables used
throughout paper are given in Table I.

II. CORRUGATION GEOMETRY

The CWG is a round metallic pipe with grooves around
the inner circumference of the wall as shown in Fig. 2. The
minor radius, a, of the CWG is the distance between the
center axis of the waveguide and the tips of the corrugation
teeth. Here, we refer to the raised part of the profile as the
corrugation tooth and the space between adjacent teeth as
the vacuum gap. The radii of the tooth tip and vacuum gap
floor are connected by a flat surface called the sidewall and
the overall dimensions of the corrugation are small com-
pared to the minor radius a. The shape of the corrugation
tooth determines the peak fields and thermal properties of
the structure and must be optimized to obtain the maximum
accelerating gradient. Figure 3 shows three types of tooth
geometries considered in this paper. Each type is a subset
of a trapezoidal corrugation with rounded corners, where
we have created three separate categories to simplify the
presentation of the results.
The first profile is the rectangular corrugation with

minimum radii corners Fig. 3(a) which has vertical side-
walls and sharp corners. In this analysis, the corners were
given a radius of rt ¼ rg ¼ a=100 to produce accurate
simulation results for the peak surface fields which become
very large as the corner radius shrinks. The minimum radii
geometry has three degrees of freedom, namely the
corrugation tooth width t, vacuum gap g, and depth d.
Increasing the corner radius results in the maximum radii
profile as shown in Fig. 3(b), which has the same three
degrees of freedom but a corner radius as large as possible
while preserving the overall depth and period of the profile.
Here, rt ¼ rg ¼ minðt; g; dÞ=2, where the min function
returns its minimum argument. The final corrugation is
the rounded profile with unequal radii tooth tip and vacuum
gap, Fig. 3(c). This profile has 4 degrees of freedom: the

FIG. 2. Cylindrical corrugated waveguide (CWG) with minor
radius a. The specific design used in A-STAR has a ¼ 1 mm.

TABLE I. Parameters and variables used throughout the paper.

Parameter

κ Wakefield loss factor
βg Normalized group velocity
vg Group velocity
α Attenuation constant
Q Quality factor
σ Electrical conductivity
ξ Corrugation spacing parameter
ζ Corrugation sidewall parameter
a Corrugation minor radius
t Corrugation tooth width
g Corrugation vacuum gap
d Corrugation depth
p Corrugation period
rt Corrugation tooth radius
rg Corrugation vacuum gap radius
L Corrugated waveguide length
F Bunch form factor
q0 Drive bunch charge
fr Bunch repetition rate
τ rf pulse decay time constant
δ Skin depth
Prf rf pulse power envelope
P Instantaneous rf pulse power
Eacc Accelerating field
Emax Peak surface E field
Hmax Peak surface H field
Qdiss Energy dissipation
Pd Power dissipation distribution
W Average thermal power density
ΔT Transient temperature rise
c Speed of light
Z0 Impedance of free space
E0 Initial beam energy
R Transformer ratio
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corrugation period p, corrugation depth d, maximum tooth
width t, and maximum vacuum gap g. Here, t ¼ 2rt and
g ¼ 2rg where rt and rg are the radii of the tooth tip and
vacuum gap contours, respectively. The profile is drawn by
connecting the fully rounded corrugation tooth tip and
vacuum gap with an inner tangent line, allowing the
sidewall angle to vary.
In the parametric analysis that follows, the corrugation

dimensions are expressed in terms of the normalized
spacing parameter ξ and sidewall parameter ζ defined as

ξ ¼ g − t
p

; ð1Þ

ζ ¼ gþ t
p

: ð2Þ

The spacing parameter ξ determines the spacing between
the corrugation teeth and ranges from −1 to 1 for the
minimum and maximum radii profiles, where positive values
of ξ result in spacing greater than the tooth width and vice
versa for negative values. The sidewall parameter ζ controls
the sidewall angle of the unequal radii profile, where ζ < 1
leads to tapered sidewalls and ζ > 1 leads to undercut
sidewalls. These dependencies are illustrated in Fig. 4.
The condition for vertical sidewalls is ζ ¼ 1 and

d > p=2. Preventing a self-intersecting geometry requires
both the width of the tooth and vacuum gap to be less
than the corrugation period, as well as a sufficiently large
corrugation depth when ζ > 1 to ensure positive length of
the inner tangent line defining the sidewall. These con-
ditions can be expressed as

ζ − 2 < ξ < 2 − ζ; ð3Þ

d >
p
2

�
ζ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1

p �
for ζ > 1: ð4Þ

III. SIMULATION

Electromagnetic simulation of the TM01 accelerating
mode was performed using the eigenmode solver in CST

Microwave Studio [13]. In this analysis, only the fundamental
TM01 mode was considered since it accounts for the
largest portion of the accelerating gradient. It will be
shown in Sec. VII that the exclusion of higher order modes
(HOMs) is a very good approximation for the corrugated
structures under consideration. A tetrahedral mesh and
magnetic symmetry planes were used to accurately model
the rounded corners of the corrugation and minimize
computation time. Since the simulation only considers a
single period of the geometry, the run time was short
(approximately 1 m on a four-core desktop PC) allowing
large parametric sweeps to be run rapidly. The eigenmode
solver models the corrugated waveguide as a periodic
structure of infinite length by employing a periodic boun-
dary condition derived from beam-wave synchronicity:

ϕ ¼ 360fp
c

; ð5Þ

where ϕ is the periodic boundary condition phase advance
in degrees, f is the frequency of the electromagnetic mode,
p is the corrugation period, and c is the speed of light. The
electron bunch velocity is considered to be equal to c.
The structures were simulated at three fixed frequencies

in order to characterize frequency-dependent behavior of
the TM01 mode. Throughout the paper, we will refer to
results for the simulated frequencies by their respective
aperture ratios which we define as a=λ, where a is the
minor radius of the CWG and λ is the free-space

FIG. 4. Corrugation variation with the spacing parameter ξ and
sidewall parameter ζ for the minimum radii (top), maximum radii
(middle), and unequal radii (bottom) profiles at fixed period
and depth.

FIG. 3. Dimensions for corrugation types: (a) minimum radii
corners, (b) maximum radii corners, (c) rounded with unequal
radii corners connected by tangent sidewalls, where t ¼ 2rt
and g ¼ 2rg.
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wavelength of the synchronous mode. This normalization
allows the results to be applied to structures of any size and
frequency.
Parametric analysis began by treating the corrugation

depth d as a dependent variable determined by the aperture
ratio, eliminating it from the parameter sweeps. This was
done by using an iterative optimization process to find the
corrugation depths required to achieve predetermined
frequencies, producing aperture ratios of 0.53, 0.60, and
0.67 for each combination of p, ξ, and ζ in the study. The
resulting corrugation depths are plotted in Figs. 5 and 6. In
all cases, the corrugation depth decreases with increasing
aperture ratio, where shallower corrugations produce

higher synchronous TM01 frequencies. The sidewall
parameter ζ is found to modify the effective corrugation
depth where reducing ζ has an effect similar to reducing d.
Undercut corrugation profiles with ζ > 1 can only be found
when the conditions in Eqs. (3) and (4) are satisfied which
requires the period and aperture ratio to be sufficiently
small. For this reason, the dotted line solutions in
Fig. 6 only occur above the set values of the corrugation
depth. In the remainder of the analysis, we will pay special
attention to the maximum radii corrugation and unequal
radii corrugation with ζ ¼ 1 which are good candidates for
wakefield acceleration due to their manufacturability and
electromagnetic characteristics.

IV. ELECTROMAGNETIC PARAMETERS

Each synchronous eigenmode solution of the periodic
structure is characterized by a wakefield loss factor κ, group
velocity vg, and attenuation constant α. These parameters
determine how the electron beam interacts with the given
mode as well as the propagation characteristics of the
corresponding wakefield. In this section, equations for the
electromagnetic parameters are defined and applied to
the structures found in Sec. III. The results are plotted
against the corrugation spacing parameter ξ and period p at
each of the three aperture ratios to show how the wave
propagation and beam interaction depend on the corruga-
tion geometry and frequency. The loss factor κ describes
the energy coupled from a charged particle to the structure
and is defined as [16]:

κ ¼ V2=U
4ð1 − βgÞp

; ð6Þ

where V is the induced voltage, U is the stored energy in
the unit cell, and βg is the normalized group velocity vg=c.
The induced voltage is calculated from the time harmonic
electric field of the synchronous mode with angular
frequency ω as

V ¼
����
Z

p

0

EzðzÞejωz
cdz

����. ð7Þ

The group velocity vg is calculated from the time
averaged electromagnetic field power flow Pz, the unit
cell length p, and the stored energyU in the unit cell, where
Pz is found by integration of the Poynting vector,

vg ¼
Pz

U
p: ð8Þ

Loss in the structure due to the conductivity of the wall
material causes the fields to decay as expð−αzÞ, where the
attenuation constant α in Npm−1 is calculated in terms of
the quality factor Q of the unit cell as [17]:

FIG. 5. Corrugation depths calculated for minimum radii
corrugations (top) and maximum radii corrugations (bottom)
for aperture ratios of a=λ ¼ 0.53 (red), a=λ ¼ 0.60 (black), and
a=λ ¼ 0.67 (blue). See Fig. 4 for cell geometries.

FIG. 6. Corrugation depths calculated for unequal radii corru-
gations with ζ ¼ 0.85 (dashed), ζ ¼ 1.0 (solid), and ζ ¼ 1.15
(dotted) where the aperture ratios are a=λ ¼ 0.53 (red), a=λ ¼
0.60 (black), and a=λ ¼ 0.67 (blue). See Fig. 4 for cell
geometries.
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α ¼ ω

2Qvg
: ð9Þ

Figure 7 shows how the electromagnetic parameters
of the maximum radii corrugation depend on the geometry
for a CWG with minor radius a ¼ 1 mm and electrical
conductivity σ ¼ 4 × 107 Sm−1. The scaling laws derived
inAppendixA can be used to project the results to caseswith
different a and σ. The loss factor κ and group velocity βg
have similar behavior which can be explained in part by the
appearance of ð1 − βgÞ in the denominator of Eq. (6). This
dependence results in a reduction of κ as the corrugation
period increases since βg goes to zero as the phase advanceϕ
approaches the π point of the dispersion curve. Structures
with shorter corrugation periods, therefore, produce larger
group velocities and wake potentials making it desirable to
choose the period as short as possible. As the period shrinks,
κ approaches a maximum value, which for a single moded
steeply corrugated structure with d≳ p is [18]:

κmax ¼
Z0c
2πa2

; ð10Þ

where Z0 is the impedance of free space. In practical
corrugated waveguide designs, the loss factor is always
less than κmax due to manufacturing constraints on the
minimum corrugation size. In these structures, simulations
are required to accurately determine the loss factor.

V. PEAK FIELD MINIMIZATION

The maximum attainable accelerating gradient in the
CWA is limited by several factors, including pulse heating

and rf breakdown due to the peak surface fields and
modified Poynting vector [19–21] exceeding certain
threshold values. The corrugated waveguide must be
optimized to maximize the accelerating field of the
TM01 mode while minimizing these factors. Data collected
from existing accelerator structures operating up to 30 GHz
show that the breakdown rate (BDR), measured in break-
downs per pulse per meter, scales approximately with the
magnitude of the peak electromagnetic field Emax as well as
the duration of the rf pulse tp according to [21]:

E30
maxt5p
BDR

¼ const: ð11Þ

From a design perspective, reducing the BDR is achieved
by reducing the peak surface fields and the pulse length.
Calculation of the absolute threshold value of the fields that
induce breakdown in sub-THz structures is an active area of
research [19,22,23] and reliable models have not yet been
developed. The modified Poynting vector introduced in
[21] has been used to predict rf breakdown in structures
operating up to 30 GHz, but there are limited data for its
applicability at higher frequencies. For this reason, the
BDR and maximum gradient of the CWA must ultimately
be determined experimentally. For the purpose of optimi-
zation, we choose the peak surface fields Emax and Hmax as
figures of merit which should be minimized to increase
the attainable accelerating gradient. Since some evidence
suggests that pulse heating is of fundamental importance to
the initiation of rf breakdown in high frequency accelerat-
ing structures [24], we give additional weight to the
minimization of the peak magnetic surface field. This
choice leads to a higher overall thermal efficiency which
will be discussed further in Sec. VI.
In evaluating the peak surface fields for the various

corrugation geometries, we have normalized the fields over
the accelerating gradient given in Eq. (B29) in Appendix B
to allow a comparison of the results. Typical electric and
magnetic field distributions within the corrugation unit cell
are shown in Fig. 8, where the electric field is generally

FIG. 7. Loss factor κ, normalized group velocity βg ¼ vg=c, and
attenuation constant α for the maximum radii geometry with
a=λ ¼ 0.53 (red), a=λ ¼ 0.60 (black), and a=λ ¼ 0.67 (blue).
Plotted for a CWG with minor radius a ¼ 1 mm and electrical
conductivity σ ¼ 4 × 107 Sm−1.

FIG. 8. Peak electric field distribution (a) and magnetic field
distribution (b) of the 90 MVm−1 TM01 accelerating mode in the
A-STAR corrugated waveguide.

DESIGN OF A CYLINDRICAL CORRUGATED … PHYS. REV. ACCEL. BEAMS 25, 121601 (2022)

121601-5



concentrated around the tooth tip and the magnetic field is
highest in the vacuum gap.
The simulation results in Figs. 9 and 10 show that the

peak electric and magnetic fields always increase with
increasing aperture ratio, meaning higher choices of fre-
quency for the TM01 synchronous mode result in higher
peak fields for a given accelerating gradient. This obser-
vation is consistent with the results reported in [25] and
is seen in unequal radii geometries as well. Unlike the
rounded geometries, the peak fields of the minimum radii
rectangular geometry shown in Fig. 9 have a strong
dependence on the corrugation period and higher overall
values due to field enhancement at the corrugation corners.
At a period of p=a ¼ 0.4, the peak electric fields of the
minimum radii geometry are roughly double those of the
rounded designs making minimum radii rectangular corru-
gations unsuitable for high gradient CWA structures.
Comparing the maximum radii and unequal radii

rounded corrugation peak fields in Figs. 10 and 11, we
note that the two geometry types are identical when the
spacing parameter ξ ¼ 0 and the sidewall parameter ζ ¼ 1.
In both structure types, the minimum Emax occurs for
a negative spacing parameter ξ, corresponding to a

corrugation tooth width wider than the vacuum gap.
Increasing the corrugation spacing beyond the minimum
point decreases Hmax while increasing Emax. The sidewall
angle determined by ζ shifts the plots on the ξ axis but does
not significantly affect the minimum value of the peak
fields. While changing the sidewall parameter offers little
to no benefit in reducing the peak fields, the practical
implications of using values of ζ ≠ 1 have several dis-
advantages. For tapered corrugations with ζ < 1, the
corrugation depth must be greater requiring a thicker
vacuum chamber wall and additional manufacturing com-
plexity. Undercut corrugations with ζ > 1 are also imprac-
tical to manufacture for the dimensions of interest in a
compact wakefield accelerator. For these reasons, we
suggest the maximum radii corrugation with ξ close to
zero as a good candidate for a wakefield accelerator design.
Further refinement of the geometry requires experimental
determination of where rf breakdown is most likely to occur
in order to reduce the peak fields in those regions.

VI. THERMAL LOADING

Thermal loading of the corrugated waveguide places a
limit on the maximum repetition rate fr of the accelerator,
where fr is the number of bunches injected into the
structure per second. The thermal loading depends on
the electromagnetic properties of the TM01 mode as well
as the length of the corrugated waveguide and the con-
ductivity of the wall material. Achieving a high repetition
rate requires active cooling of the structure as well as an
optimally designed corrugation profile. Here we focus on
designing a corrugation that minimizes the steady-state
thermal load and transient pulse heating. The thermally
induced stresses due to temperature gradients in the wall
pose additional design considerations which are discussed
further in [26].

FIG. 9. Normalized peak surface E fields of the minimum
radii rectangular corrugation geometry with a=λ ¼ 0.53 (red),
a=λ ¼ 0.60 (black), and a=λ ¼ 0.67 (blue).

FIG. 11. Normalized peak surface E (Vm−1) and H (Am−1)
fields of the unequal radii corrugation geometry for aperture ratio
a=λ ¼ 0.60 and ζ ¼ 0.85 (dashed), ζ ¼ 1.0 (solid), and ζ ¼ 1.15
(dotted).

FIG. 10. Normalized peak surface E (Vm−1) and H (Am−1)
fields of the maximum radii corrugation geometry with a=λ ¼
0.53 (red), a=λ ¼ 0.60 (black), and a=λ ¼ 0.67 (blue).
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Because the group velocity vg of the electromagnetic
wave is less than the electron bunch velocity, the length of
the rf pulse behind the bunch grows as it traverses the
structure. This causes the thermal energy density deposited
in the CWG wall to increase along the direction of
propagation. At a distance z from the beginning of the
CWG, the field strength of the rf pulse induced by the
electron bunch entering at time t ¼ 0 is

P1=2ðz; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κq20jFj2vg
1 − βg

s
e
−αðvgt−βgzÞ

1−βg cos

�
ω

�
t −

z
c

�	

× Π
�
2vgt − zð1þ βgÞ

2zð1 − βgÞ
�
: ð12Þ

Here the field strength is defined in units of
ffiffiffiffiffi
W

p
for

consistency with the units provided by CST simulation,
F is the bunch form factor derived in Appendix B, q0 is the
drive bunch charge, and ΠðxÞ is the rectangular window
function.

ΠðxÞ ¼


1 jxj < 1=2

0 else
ð13Þ

The derivative of the one-dimensional energy dissipation
distribution QdissðzÞ along the corrugated structure is
obtained by multiplying P from Eq. (12) by the attenuation
constant α and integrating the product over time from t ¼ 0
to t ¼ ∞ giving

dQdissðzÞ
dz

¼ E2
acc

4κ
ð1 − e−2αzÞ; ð14Þ

where we have made the substitution Eacc ¼ 2κq0jFj as
derived in Appendix B. The total energy dissipated in the
CWG of the length L is obtained by integrating Eq. (14)
over the length L giving

Qdiss ¼
E2
acc

8ακ
ðe−2αL þ 2αL − 1Þ: ð15Þ

According to Eq. (14), the amount of energy deposited on
the CWG wall per unit length reaches a maximum after the
electron bunch propagates a distance z ≫ 1=α. It is further
convenient to approximate the CWG as a smooth cylinder
of radius a and elementary area dS ¼ 2πadz, leading to the
energy dissipation density on the cylinder wall:

dQdissðz → ∞Þ
dS

¼ E2
acc

8πaκ
: ð16Þ

Since the undulating wall of the CWG has a larger
surface area per unit length than the smooth cylinder,
Equation (16) is an upper bound on the average energy
dissipation density in the CWG wall. From Eq. (16), we
define the upper bound of the average thermal power
dissipation density as

W ¼ E2
accfr
8πaκ

: ð17Þ

Referring to the plot for κ in Fig. 7, the power dissipation
density is reduced by minimizing the corrugation period p
and maximizing the spacing parameter ξ. For structures
with p=a≲ 0.5, the power dissipation density decreases
with an increasing aperture ratio. This results in a trade-off
between minimizing the peak surface fields and minimizing
the thermal loading of the CWG, where choosing a larger
aperture ratio (higher TM01 frequency) results in higher
peak fields but less thermal power dissipation.
Using κmax from Eq. (10) in Eq. (16), we obtain the lower

bound of the energy dissipation density as

dQdissðz → ∞Þ
dS

≥
E2
acca

4Z0c
: ð18Þ

Herewe notice the linear scaling of the energy dissipation
with the minor radius, a, which helps smaller diameter
structures achieve less heating per pulse and thus higher
bunch repetition rates. At a gradient of Eacc ¼ 90 MVm−1,
a minor radius of a ¼ 1 mm, and a repetition rate of
fr ¼ 20 kHz, the minimum theoretical thermal power dis-
sipation density on the wall of the corrugated waveguide is
roughly 36 W=cm2. This is well within the cooling capabil-
ity of single phase cooling systems using water as a working
fluid, see for example [27].
In addition to the steady-state thermal load, the transient

heating of the corrugation plays an important role in
limiting the attainable accelerating gradient. The transient
temperature rise due to pulse heating causes degradation of
the surface which eventually leads to nucleation sites where
electric breakdown may occur [20]. Acceptable transient
temperature rise is cited in the literature as 40K [20], above
which the structure begins to incur damage. The transient
ΔT at the surface is calculated from a Green’s function
solution of the thermal diffusion equation in one dimension
with Neumann boundary conditions as [20]:

ΔTðtÞ ¼ 2

ρcϵ

Z
t

0

dPd

dA
1

δ
exp

�
4αdðt − t0Þ

δ2

	

× erfc

�
2

δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αdðt − t0Þ

p 	
dt0 ð19Þ

where ρ is the material density, cϵ is the specific heat, k is
the thermal conductivity, αd ¼ k=ρcϵ is the thermal dif-
fusivity, and δ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
πfμσ

p
is the skin depth. Here,

dPd=dA, given in Eq. (A9), is the power dissipation density
at the waveguide surface due to the induced currents which
fall off exponentially in the wall with the skin depth δ. This
equation is typically approximated by assuming that the
skin depth goes to zero such that all the thermal energy is
deposited on the surface of the material which simplifies
the integral to
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ΔTðtÞ ¼ 1

ρcϵ
ffiffiffiffiffiffiffiffi
παd

p
Z

t

0

dPd

dA
dt0ffiffiffiffiffiffiffiffiffiffi
t − t0

p : ð20Þ

The error in this approximation is accumulated near the
beginning of the pulse when t is close to zero, causing poor
accuracy when the peak temperature rise is attained quickly
relative to the decay time constant of the pulse. However,
the assumption that the energy is confined to the surface
rather than being distributed throughout the volume guar-
antees that the approximation will always be an overesti-
mate. This allows us to calculate an upper bound on ΔT by
analytically evaluating the integral and maximizing the
result as

ΔTmax ¼ 0.541
RsH2

max
ffiffiffi
τ

p
ρcϵ

ffiffiffiffiffiffiffiffi
παd

p ; ð21Þ

where τ ¼ ð1 − βgÞ=2αvg is the decay time constant of the

rf pulse and Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πfμ=σ

p
is the surface resistance. This

result is valid when αL > 0.427 such that the maximum
ΔT occurs before the end of the pulse. For pure copper at
room temperature, the maximum temperature rise in K
becomes

ΔTmax;cu ¼ 242
H2

max

σ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1 − βgÞ

α0βg

s
ð22Þ

where Hmax is the peak surface field in MAm−1, f is the
frequency in GHz, and α0 is the attenuation constant in
Npm−1 for a pure copper structure with σ¼5.8×107Sm−1.
Here, σ is the effective electrical conductivity of the
structure in Sm−1 which may be reduced from its nominal
value due to surface roughness. The pulse heating depends
primarily on the peak magnetic field and group velocity,
having only a weak dependence on the electrical conduc-
tivity of the material. Higher group velocities lead to less
pulse heating due to the shortening of the effective pulse
length. Figure 12 shows how the pulse heating varies with
the geometry of the maximum radii corrugation. The
temperature rise, ΔT, increases with increasing corrugation
period p=a and decreases with increasing spacing

parameter ξ. ΔT also increases with increasing aperture
ratio. The optimal corrugation design for minimal pulse
heating has a small period, large spacing parameter, and
small aperture ratio.

VII. HOM CONSIDERATIONS

In addition to the fundamental TM01 mode, the wakefield
contains contributions from higher order modes (HOMs).
Since the HOMs span a range of wavelengths, they may
interfere either constructively or destructively with the
accelerating mode at the position of the witness bunch
leading to a potential reduction in the accelerating gradient.
It is desirable to minimize coupling to HOMs to maintain
maximum acceleration [12]. Figure 13 shows the wakefield
impedance simulated with CST’s wakefield solver for
structures with p=a ¼ 0.4 (left panel) and p=a ¼ 0.7 (right
panel), where the HOMs are seen as additional peaks in the
impedance spectrum.
Characterization of the HOMs for the maximum radii

structures was carried out in CST’s wakefield solver by
simulating 20-mm long corrugated waveguides with minor
radius a ¼ 1 and an on-axis Gaussian bunch with standard
deviation length of σs ¼ 0.2 mm. This bunch length
resolves the wake impedance up to 500 GHz, capturing
a large portion of the HOM spectrum which falls off with
frequency. The sum of the loss factors for all modes is
calculated as

κtot ¼
X

κn ¼
2

L

Z
∞

0

RefZjjðfÞgdf; ð23Þ

where Zjj is the longitudinal wakefield impedance and L is
the length of the structure. The HOM content can be
characterized by the sum of HOM loss factors over the sum
of all loss factors:

HOM ratio ¼ κtot − κ

κtot
; ð24Þ

where κ is the loss factor of the TM01 mode. In this
characterization, the HOM ratio goes to 0 as the HOMs

FIG. 13. Comparison of wake impedance for maximum radii
structures with p=a ¼ 0.4 (left panel) and p=a ¼ 0.7 (right
panel) and aperture ratio a=λ ¼ 0.60. The HOMs are seen as
additional peaks for the larger period structure on the right.

FIG. 12. Pulse heating maximum temperature rise for the
maximum radii corrugation with a¼1mm, Eacc¼100MVm−1,
and conductivity σ ¼ 4 × 107 Sm−1 for a=λ ¼ 0.53 (red), a=λ ¼
0.60 (black), and a=λ ¼ 0.67 (blue).

A. SIY et al. PHYS. REV. ACCEL. BEAMS 25, 121601 (2022)

121601-8



vanish, at which point the loss is due exclusively to the
TM01 mode. Figure 14 shows that the HOM content
primarily depends on the corrugation period, where periods
larger than 0.4a lead to significant HOM coupling. The
HOMs also increase modestly with aperture ratio and
corrugation spacing. The HOM ratio shown here assumes
that all modes are excited equally which is not the case for a
finite length bunch with a limited charge spectrum. The
actual HOM energy content must account for the bunch
shape by inclusion of the form factor discussed in
Appendix B.

VIII. CORRUGATED WAVEGUIDE
DESIGN FOR A-STAR

Guided by the preceding analysis of peak fields, thermal
loading, and HOM coupling, we now present the CWG
design for the A-STAR accelerator under development at
Argonne National Laboratory. The dimensions of the
structure, shown in Fig. 15, are selected to maximize
Eacc and fr by maintaining manageable thermal loading,
peak surface fields, and manufacturability. Experimental
measurement of the breakdown rate is required to deter-
mine the maximum accelerating gradient.
The first step in the design process is to choose the

minor radius, a, of the CWG which determines the
maximum value of the loss factor κ according to

Eq. (10). In choosing a, the beam breakup instability
(BBU) caused by the transverse momentum kick on the
particles in the tail of the bunch when the leading particles
traverse the CWG off-axis has to be considered (see [28]
and references therein). Because the kick factor associated
with the BBU scales as a−4 [18], the minimum radius of
the structure and corresponding maximum loss factor κ are
ultimately determined by beam stability constraints.
Simulations show that reducing a below 1 mm may result
in the onset of BBU under certain conditions.
After determining the minor radius, a, of 1 mm, the

frequency and corresponding aperture ratio of the synchro-
nous TM01 accelerating mode must be chosen. We have
shown in Figs. 10 and 12 that the peak surface fields and
associated pulse heating increase with aperture ratio while
the total power dissipation decreases, as shown by its
dependence on the loss factor κ in Eq. (16) and Fig. 7. In
addition to these considerations, the frequency must be
compatible with the electromagnetic output couplers used
to extract rf energy from the structure. An important feature
of A-STAR is its ability to measure the trajectory of the
bunch in the CWA using the HEM11 mode which is excited
when the beam propagates off-axis. Due to mode con-
version, the design of the coupler that extracts the HEM11

mode becomes increasingly challenging as the HEM11

wavelength shrinks with respect to the fixed aperture of the
waveguide. For the 1-mm minor radius cylindrical wave-
guide, the limiting factor in the HEM11 coupler design was
converted to the TE31 mode which has a cutoff frequency of
200 GHz. To address this, the synchronous HEM11 mode
was chosen to be 10 GHz below the TE31 cutoff frequency,
resulting in a 190-GHz HEM11 mode and 180-GHz TM01

mode with an aperture ratio of a=λ ¼ 0.60.
With the minor radius and frequency selected, the

corrugation profile is chosen to maximize the accelerating
gradient as well as provide a high repetition rate. The 1-mm
minor radius of the CWG results in corrugation dimensions
in the hundreds of μm which presents unique manufactur-
ing challenges. Several fabrication methods have been
investigated for constructing the CWG, with electroform-
ing copper on an aluminum mandrel producing the most
promising results [14]. Electroforming at these scales
requires that neither the corrugation tooth width nor the
vacuum gap is made excessively small since this would
result in either a flimsy mandrel or a flimsy final structure.
A sensible choice is to make the tooth width similar to the
vacuum gap, resulting in ξ ≈ 0, while using the shortest
practical corrugation period. The maximum radii and
unequal radii geometries have similar characteristics when
ξ ≈ 0 and we have selected the maximum radii design for
A-STAR. The final corrugation dimensions are shown in
Table II and the electromagnetic characteristics of the TM01

and HEM11 modes are given in Table III.
Maintaining the fundamental TM01 and HE11 frequen-

cies within a�5 GHz-bandwidth specified by the design ofFIG. 15. A-STAR CWG dimensions.

FIG. 14. Ratio of the HOM wakefield to the total wakefield for
an impulse excitation with a=λ ¼ 0.53 (red), a=λ ¼ 0.60 (black),
and a=λ ¼ 0.67 (blue).
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the output couplers requires dimensional tolerances of
roughly �10 μm, as shown by Fig. 5. The most sensitive
dimension to manufacturing error is the corrugation depth,
which must be carefully controlled to produce the desired
frequency. Mode conversion due to the straightness of the
CWG is not expected to change the acceleration properties
over the short length scale between the drive and witness
bunch. However, such effects may become relevant in
the operation of the output couplers and are a subject of
future analysis.
The A-STAR design is made up of 0.5-m long CWG

modules connected in series by 40-mm long transition
sections which contain the rf output couplers, vacuum
pumping ports, and bellows. The addition of the transition
sections increases the overall length of the accelerator by
less than 10%. The transformer ratioR is determined by the
longitudinal charge density of the drive bunch qðsÞ, where
it has been shown in [12] thatR can be maximized by using
a “doorstep” type charge distribution defined as

qðsÞ ¼ N ×

8>><
>>:

1 0 < s < π=ð2knÞ
knsþ ð1 − π=2Þ π=ð2knÞ < s < l

0 else

ð25Þ

where s is the longitudinal displacement from the head of
the bunch, kn ¼ ωn=c is the wave number of the TM01

mode, l ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 1

p
þ π=2 − 1Þ=kn is the bunch length,

and N ¼ 2knq0=ðR2 þ π − 2Þ is a normalization constant
such that

R
qðsÞds ¼ q0 is the total charge of the bunch.

The accelerating wakefield behind the drive bunch is
given by the convolution of the charge density qðsÞ with
the Green’s function of the structure hðsÞ and can be
calculated from Eqs. (26) and (27), and Eq. (B3), resulting
in the accelerating field shown in Fig. 16 for the A-STAR
design.

EzðsÞ ¼
Z

∞

−∞
qðs − s0Þhðs0Þds0 ð26Þ

hðsÞ ¼
X∞
n¼0

2κn cos ðknsÞθðsÞ: ð27Þ

The wakefield falls off exponentially behind the drive
bunch due to ohmic loss in the wall material, leading to an
rf pulse power envelope at the end of a half-meter section of
A-STAR resembling that in Fig. 17. In the copper structure,
the trailing edge of the power envelope is attenuated by
85% after a half meter. For structures longer than ∼1=α, the
pulse length becomes saturated and is determined by the
conductivity of the wall material rather than the length of
the CWG, where lower conductivity produces a shorter
pulse. Because the witness bunch follows close behind the
drive bunch, the loss in accelerating gradient for a lossy
wall CWG can be small while the overall thermal load
remains unchanged according to Eq. (16). This feature of
the CWA can potentially be exploited to allow fabrication
from lossy materials or use of surface coatings to improve

FIG. 16. A 10-nC doorstep charge distribution and resulting
wake potential of the TM01 mode for the A-STAR CWG,
showing a transformer ratio R ¼ 5 and peak accelerating
gradient Eacc ¼ 90 MVm−1.

TABLE II. A-STAR key operating parameters.

Parameter

a 1 mm Corrugation minor radius
d 264 μm Corrugation depth
g 180 μm Corrugation vacuum gap
t 160 μm Corrugation tooth width
rt;g 80 μm Corrugation corner radius
p 340 μm Corrugation period
ξ 0.06 Spacing parameter
L 50 cm Waveguide module length
R 5 Transformer ratio
jFj 0.382 Bunch form factor
q0 10 nC Bunch charge
Eacc 90 MVm−1 Accelerating gradient
Emax 325 MVm−1 Peak surface E field
Hmax 610 kAm−1 Peak surface H field
ϕ 74° Phase advance
fr 20 kHz Repetition rate
Pdiss 1050 W Power dissipation per module
W 55 W=cm2 Power density upper bound
ΔT 9.5 K Pulse heating

TABLE III. A-STAR synchronous electromagnetic mode char-
acteristics. The loss factor κ for the HEM11 mode scales with
the square of the beam offset and is given for the offset of 1 μm.
The attenuation coefficient α is given for a structure with the
conductivity of 4 × 107 Sm−1.

TM01 HEM11 Units

f 180 190 GHz
κ 1.18 × 1016 2.19 × 1010 VC−1 m−1

βg 0.57 0.62 None
α 2.31 1.96 Npm−1
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performance. The reduction in pulse length may be
used as a way to increase the rf breakdown threshold of
the structure.

IX. CONCLUSION

Through simulation, we have shown how the electro-
magnetic parameters characterizing the TM01 synchronous
mode of a cylindrical CWG used as a slow-wave structure
depend on the corrugation period, spacing, sidewall angle,
and frequency of the accelerating mode. In analyzing the
structures, we found that minimizing the corrugation period
plays a key role in reducing the peak electromagnetic fields,
thermal loading, and coupling to HOMs. Taking into
account electromagnetic and manufacturing considerations,
we found the most practical corrugation profile has vertical
sidewalls and a corrugation tooth width similar to the width
of the vacuum gap. Using the results of our analysis, we
have designed a prototype CWG for the A-STAR CWA
under development at Argonne National Laboratory. The
calculated parameters of A-STAR suggest that a CWA
based on a metallic corrugated waveguide is a promising
approach to realize a new generation of high repetition rates
and compact XFEL light sources.
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APPENDIX A: SCALING AND NORMALIZATION

Here, we derive the scaling laws for the loss factor κ,
group velocity βg, and attenuation constant α. We will
assume that σ satisfies the conditions of a good conductor
so that the field solutions are independent of conductivity.

The time harmonic eigenmode solutions E andH produced
by CST are normalized such that the stored energy U in the
unit cell is 1 J and the frequency is ω. Uniformly scaling the
geometry by a constant â while holding the stored energy
fixed results in the scaled eigenmode solutions:

E0ðx; y; zÞejω0t ¼ â−3=2Eðx0; y0; z0Þejω t
â

H0ðx; y; zÞejω0t ¼ â−3=2Hðx0; y0; z0Þejω t
â; ðA1Þ

where

x0 ¼ x
â
; y0 ¼ y

â
; z0 ¼ z

â
; ω0 ¼ ω

â
: ðA2Þ

Scaling the fields by â−3=2 keeps the stored energy U0 of
the scaled structure same as that of the unscaled structure
U, which is seen by integrating the total energy in the
fields:

U0 ¼
ZZZ

ϵ0
2
jâ−3=2Eðx0; y0; z0Þj2

þ μ0
2
jâ−3=2Hðx0; y0; z0Þj2dxdydz

¼
ZZZ

ϵ0
2
jEðx0; y0; z0Þj2

þ μ0
2
jHðx0; y0; z0Þj2dx0dy0dz0 ¼ U; ðA3Þ

where the integrals are over all space. Applying the
normalized fields with U ¼ 1 to Eq. (8) for the group
velocity shows that group velocity is independent of scaling

v0g ¼ âp
ZZ

1

2
RefE0ðx; yÞ ×H0�ðx; yÞgdxdy

¼ p
ZZ

1

2
RefEðx0; y0Þ ×H�ðx0; y0Þgdx0dy0 ¼ vg: ðA4Þ

Using Eq. (7), the induced voltage V 0 in the scaled
structure is

V 0 ¼
����
Z

âp

0

â−3=2Ezðz0Þejω0z
cdz

����; ðA5Þ

which can be written as

V 0 ¼
����
Z

p

0

â−1=2Ezðz0Þejωz0
c dz0

���� ¼ V

â1=2
: ðA6Þ

Since we have normalized the fields with U ¼ 1 J and
shown that the group velocity βg is independent of scaling,
Equation (6) is used to write the loss factor for the scaled
structure as

FIG. 17. rf power envelope at the end of a 0.5-m section of the
A-STAR CWG made from copper (5.8 × 107 Sm−1), aluminum
(3.8 × 107 Sm−1), and stainless steel (1.35 × 106 Sm−1).
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κ0 ¼ V 02=U
4ð1 − βgÞâp

¼ κ

â2
: ðA7Þ

The quality factor Q of the corrugation unit cell is
defined as

Q ¼ ωU
Pd

; ðA8Þ

where U is stored energy and Pd is the power dissipated
in the cavity walls. The power dissipation density per unit
area is

dPd

dA
¼ 1

2

ffiffiffiffiffiffi
ωμ

2σ

r
jHj2: ðA9Þ

In the scaled structure, the power dissipation and
resulting quality factor become

P0
d ¼ â−3=2Pd; Q0 ¼ â1=2Q; ðA10Þ

leading to the scaled attenuation constant from Eq. (9)

α0 ¼ â−3=2α: ðA11Þ

Scaling of the attenuation constant α with conductivity is
accomplished by multiplying α by

ffiffiffiffiffiffiffiffiffi
σ=σ0

p
where σ is the

conductivity of the unscaled structure and σ0 is the
conductivity of the scaled structure.

APPENDIX B: BUNCH FORM FACTOR
DERIVATION

When calculating a bunch’s energy loss to a particular
mode of the corrugated waveguide, the shape of the bunch
described by the bunch peak current distribution iðtÞ is
accounted for by scaling the loss factor κ by the Fourier
transform IðωnÞ of the current, where ωn is the angular
frequency of the synchronous mode. The form factor FðknÞ
of the bunch is defined as IðωnÞ=q0, where kn is the wave
number of the synchronous mode and q0 is the total charge
of the bunch. Here, time t begins when the head of the
bunch passes a fixed observation point in the corrugated
waveguide. We begin by considering the kinetic energy lost
by an element of charge idt as it moves a distance cdt in an
electric field Ez:

d2Uloss ¼ ðidtÞðcdtÞEz: ðB1Þ

Here, the electric field Ez is the wakefield left behind by the
current in the head of the bunch which has already passed
the observation point. The wakefield produced by a current
impulse q0δðtÞ is the Green’s function hðtÞ which is
expressed as an expansion over the normal modes of the
corrugation unit cell as

hðtÞ ¼
X∞
n¼0

2κn cos ðωntÞθðtÞ; ðB2Þ

where θðtÞ is the Heaviside theta function

θðtÞ ¼

8>><
>>:

0 t < 0

1=2 t ¼ 0

1 t > 0

ðB3Þ

and κn is the loss factor given in Eq. (6) in units of
Vm−1 C−1. The fields in the unit cell are time harmonic,
oscillating with frequency ωn. Because the structure is
approximated to be periodic, the oscillating fields are part
of an infinitely long traveling wave that never decays. In
terms of the Green’s function hðtÞ, the wakefield EzðtÞ due
to the total current distribution iðtÞ is then constructed with
the convolution integral

EzðtÞ ¼
Z

∞

−∞
hðt − t0Þiðt0Þdt0: ðB4Þ

Inserting Eq. (B4) into Eq. (B1) and integrating over the
time axis of the bunch produce the power being deposited
into the wakefield

Pw ¼ dUloss

dt
¼ c

Z
∞

−∞
iðtÞ

Z
∞

−∞
hðt − t0Þiðt0Þdt0dt: ðB5Þ

Defining the Fourier transform and its inverse

IðωÞ ¼
Z

∞

−∞
iðtÞe−jωtdt; ðB6Þ

iðtÞ ¼ 1

2π

Z
∞

−∞
IðωÞejωtdω: ðB7Þ

Equation (B5) can now be written in terms of the Fourier
transformed functions as

Pw ¼ c
ð2πÞ3 Re


Z
∞

−∞

Z
∞

−∞
Iðω2Þejω2tdω2

Z
∞

−∞

×
Z

∞

−∞
Iðω1Þejω1ðt−t0Þdω1

Z
∞

−∞
ZjjðωÞejωt0dωdt0dt

�
:

ðB8Þ

Here we have used the convolution’s commutative
property to switch the roles of i and h in the convolution
integral and written the Fourier transform of Green’s
function hðtÞ as the longitudinal wake impedance ZjjðωÞ.
The subscripts added to the ω variables indicate that they
are independent, allowing Eq. (B8) to be rearranged:
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Pw ¼ c
ð2πÞ3 Re


Z
∞

−∞
dω

Z
∞

−∞
dω2

Z
∞

−∞
dω1

Z
∞

−∞
dt

Z
∞

−∞
dt0

× Iðω2ÞIðω1ÞZjjðωÞejtðω1þω2Þejt0ðω−ω1Þ
�
: ðB9Þ

The integrals in t and t0 produce Dirac delta functions
leaving

Pw ¼ c
2π

Re


Z
∞

−∞
dω

Z
∞

−∞
dω2

Z
∞

−∞
dω1

× Iðω2ÞIðω1ÞZjjðωÞδðω1 þ ω2Þδðω − ω1Þ
�
: ðB10Þ

Using the sifting property of the delta function to
evaluate the integral Eq. (B10) becomes

Pw ¼ c
2π

Re

Z

∞

−∞
Ið−ωÞIðωÞZjjðωÞdω

�
: ðB11Þ

Since the current density iðtÞ is a purely real function,
Ið−ωÞ ¼ I�ðωÞ where * denotes complex conjugation,
leading to

Pw ¼ c
2π

Z
∞

−∞
jIðωÞj2 RefZjjðωÞgdω: ðB12Þ

Equation (B12) represents the power being converted
from kinetic energy to electromagnetic energy in the
frequency domain. Considering a single mode denoted
by the subscript n, the wake impedance is

ZnjjðωÞ ¼
Z

∞

−∞
2κn cosðωntÞθðtÞe−jωtdt: ðB13Þ

Using the Fourier transform property

FffðtÞ cosðatÞg ¼ Fðω − aÞ þ Fðωþ aÞ
2

; ðB14Þ

and the Fourier transform of the step function

FfθðtÞg ¼ π

�
1

jπω
þ δðωÞ

�
; ðB15Þ

the wake impedance becomes

ZnjjðωÞ ¼ κn

�
π½δðω − ωnÞ þ δðωþ ωnÞ�

− j

�
1

ðω − ωnÞ
þ 1

ðωþ ωnÞ
�	

: ðB16Þ

Using ZnjjðωÞ in Eq. (B12) and evaluating the integral
yields

Pw;n ¼
κnc
2

ðjIðωnÞj2 þ jIð−ωnÞj2Þ: ðB17Þ

Again, using the fact that the current distribution is a
purely real function, we obtain

Pw;n ¼ κncjIðωnÞj2: ðB18Þ

Assuming the loss factor κn is uniform throughout the
corrugated waveguide of length L, the total energy lost by
the bunch to the wakefield mode is

Uloss;n ¼ κnLjIðωnÞj2 ðB19Þ

In terms of the bunch form factor, FðkÞ is defined as

FðkÞ ¼ 1

q0

Z
∞

−∞
qðsÞe−jksds; ðB20Þ

where s is the longitudinal displacement from the
head of the bunch and k is the wave number, the energy
loss is

Uloss;n ¼ κnq20jFðknÞj2: ðB21Þ

We will now consider the effect of the bunch charge
density qðsÞ on the accelerating field EzðsÞ in order to
understand how Eacc and the peak surface fields depend
on qðsÞ. To begin, we write Ez;n due to a single mode as a
convolution

Ez;nðsÞ ¼
Z

∞

−∞
qðs − s0Þ2κn cosðkns0Þθðs0Þds0: ðB22Þ

Since qðsÞ is a real function,

Ez;nðsÞ ¼ 2κn Re


Z
∞

0

qðs − s0Þejkns0ds0
�
: ðB23Þ

Making the substitution u ¼ s − s0,

Ez;nðsÞ ¼ 2κn Re


Z
s

−∞
qðuÞejknðs−uÞdu

�
: ðB24Þ

Since we are only interested in the fields behind the
bunch, we take the limit as s → ∞, noting that the result
will be valid outside the bunch where qðsÞ ¼ 0:

Ez;nðs → ∞Þ ¼ 2κn Re



ejkns

Z
∞

−∞
qðuÞe−jknudu

�
: ðB25Þ

We can now write the field in terms of the previously
derived form factor FðknÞ given in Eq. (B20):
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Ez;nðs → ∞Þ ¼ 2κnq0RefejknsFðknÞg ðB26Þ

Expanding the real part

Ez;nðs → ∞Þ ¼ 2κnq0½cosðknsÞRefFðknÞg
− sinðknsÞImfFðknÞg�: ðB27Þ

Since we are interested in the maximum value of the
longitudinal accelerating field, we define Eacc as the
amplitude of Ez;nðs → ∞Þ:

Eacc ¼ 2κq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RefFðknÞg2 þ ImfFðknÞg2

q
ðB28Þ

which reduces to

Eacc ¼ 2κq0jFðknÞj ðB29Þ

For the doorstep distribution of Eq. (25) with transformer
ratio R and wave number kn ¼ ωn=c, the form factor
jFðkÞj is calculated from Eq. (B20) as

jFðkÞj ¼ 2kn
R2þπ−2



R2

k2
þ2kn

k3

�
kn
k

�
1− cos

�
kl−

πk
2kn

�	

þ sinðklÞ− sin

�
πk
2kn

�	

−
2

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−1

p �
cosðklÞ þkn

k
sin

�
kl−

πk
2kn

�	�
1=2

;

ðB30Þ

where the bunch length l is

l ¼
π
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 1

p
− 1

kn
: ðB31Þ

Evaluating the form factor at k ¼ kn produces

jFðknÞj ¼
2R

R2 þ π − 2
: ðB32Þ

This result leads to the accelerating gradient Eacc scaling
with the inverse of the transformer ratio R.

[1] A. Zholents, S. Baturin, D. Doran, W. Jansma, M. Kasa,
A. Nassiri, P. Piot, J. Power, A. Siy, S. Sorsher, K. Suthar,
W. Tan, E. Trakhtenberg, G. Waldschmidt, and J. Xu, A
compact high repetition rate free-electron laser based on
the Advanced Wakefield Accelerator Technology, in Pro-
ceedings of the 11th International Particle Accelerator
Conference, IPAC-2020, CAEN, France (2020), https://
ipac2020.vrws.de/html/author.htm.

[2] A. Zholents et al., A conceptual design of a compact
wakefield accelerator for a high repetition rate multi user

X-ray Free-Electron Laser Facility, in Proceedings of the
9th International Particle Accelerator Conference,
IPAC’18, Vancouver, BC, Canada (JACoW Publishing,
Geneva, Switzerland, 2018), pp. 1266–1268, 10.18429/
JACoW-IPAC2018-TUPMF010.

[3] G. Voss and T. Weiland, The wake field acceleration
mechanism, DESY Technical Report No. DESY-82-074,
1982.

[4] R. J. Briggs, T. J. Fessenden, and V. K. Neil, Electron
autoacceleration, in Proceedings of the 9th International
Conference on the High-Energy Accelerators, Stanford,
CA, 1974 (A.E.C., Washington, DC, 1975), p. 278

[5] M. Friedman, Autoacceleration of an Intense Relativistic
Electron Beam, Phys. Rev. Lett. 31, 1107 (1973).

[6] E. A. Perevedentsev and A. N. Skrinsky, On the use of the
intense beams of large proton accelerators to excite
the accelerating structure of a linear accelerator, in Pro-
ceedings of 6th All-Union Conference Charged Particle
Accelerators, Dubna (Institute of Nuclear Physics,
Novosibirsk, USSR, 1978), Vol. 2, p. 272; English version
is available in Proceedings of the 2nd ICFA Workshop
on Possibilities and Limitations of Accelerators and
Detectors, Les Diablerets, Switzerland, 1979 (CERN,
Geneva, Switzerland,1980), p. 61

[7] Y. Chin, The wake field acceleration using a cavity of
elliptical cross section, in Proceedings of the 12th
International Linac Conference, LINAC-1984, Seeheim,
Germany, 1984 (GSI, Darmstadt, Germany, 1984),
pp. 159–161.

[8] W. Gai, P. Schoessow, B. Cole, R. Konecny, J. Norem, J.
Rosenzweig, and J. Simpson, Experimental Demonstration
of Wakefield Effects in Dielectric Structures, Phys. Rev.
Lett. 61, 2756 (1988).

[9] I. Syratchev, D. Schulte, E. Adli, and M. Taborelli,
High RF power production for CLIC, in Proceedings of
the 22nd Particle Accelerator Conference, PAC-2007,
Albuquerque, NM, 2007 (IEEE, New York, 2007),
pp. 2194–2196, https://accelconf.web.cern.ch/p07/
PAPERS/WEPMN071.PDF.

[10] K. L. Bane, P. Chen, and P. B. Wilson, On collinear wake
field acceleration, Proceedings of the 11th Particle Accel-
erator Conference, PAC-1985, Vancouver, BC, Canada,
1985 (IEEE, New York, 1985), Vol. 32, p. 3524.

[11] W. H. Tan, P. Piot, and A. Zholents, Formation of tempo-
rally shaped electron bunches for beam-driven collinear
wakefield accelerators, Phys. Rev. Accel. Beams 24,
051303 (2021).

[12] S. S. Baturin and A. Zholents, Upper limit for the accel-
erating gradient in the collinear wakefield accelerator as a
function of the transformer ratio, Phys. Rev. Accel. Beams
20, 061302 (2017).

[13] CST Microwave Studio, Dassault Systems, Inc. (2020).
[14] A. Siy, N. Behdad, J. Booske, M. Fedurin, W. Jansma, K.

Kusche, S. Lee, G. Mouravieff, A. Nassiri, S. Oliphant, S.
Sorsher, K. Suthar, E. Trakhtenberg, G. Waldschmidt, and
A. Zholents, Fabrication and testing of corrugated wave-
guides for a collinear wakefield accelerator, Phys. Rev.
Accel. Beams 25, 021302 (2022).

[15] K. Suthar, E. Trakhtenberg, S. Sorsher, and A. Zholents,
Vacuum analysis of a corrugated waveguide wakefield

A. SIY et al. PHYS. REV. ACCEL. BEAMS 25, 121601 (2022)

121601-14

https://ipac2020.vrws.de/html/author.htm
https://ipac2020.vrws.de/html/author.htm
https://ipac2020.vrws.de/html/author.htm
https://ipac2020.vrws.de/html/author.htm
https://ipac2020.vrws.de/html/author.htm
https://doi.org/10.18429/JACoW-IPAC2018-TUPMF010
https://doi.org/10.18429/JACoW-IPAC2018-TUPMF010
https://doi.org/10.1103/PhysRevLett.31.1107
https://doi.org/10.1103/PhysRevLett.61.2756
https://doi.org/10.1103/PhysRevLett.61.2756
https://accelconf.web.cern.ch/p07/PAPERS/WEPMN071.PDF
https://accelconf.web.cern.ch/p07/PAPERS/WEPMN071.PDF
https://accelconf.web.cern.ch/p07/PAPERS/WEPMN071.PDF
https://accelconf.web.cern.ch/p07/PAPERS/WEPMN071.PDF
https://accelconf.web.cern.ch/p07/PAPERS/WEPMN071.PDF
https://accelconf.web.cern.ch/p07/PAPERS/WEPMN071.PDF
https://doi.org/10.1103/PhysRevAccelBeams.24.051303
https://doi.org/10.1103/PhysRevAccelBeams.24.051303
https://doi.org/10.1103/PhysRevAccelBeams.20.061302
https://doi.org/10.1103/PhysRevAccelBeams.20.061302
https://doi.org/10.1103/PhysRevAccelBeams.25.021302
https://doi.org/10.1103/PhysRevAccelBeams.25.021302


accelerator, Proceedings of MEDSI2020, p. 160, https://
accelconf.web.cern.ch/medsi2020/papers/tupb07.pdf.

[16] V. Dolgashev and S. Tantawi, Design of high efficiency
high power electron accelerator systems based on normal
conducting RF technology for energy and environmental
applications, design study report, SLAC National Accel-
erator Laboratory (2018), pp. 4–18, 10.2172/1441166.

[17] W. Thomas, RF Linear Accelerators, 2nd ed. (Wiley-VCH,
New York, 2008).

[18] K. Bane and G. Stupakov, Corrugated pipe as a beam
dechirper, Nucl. Instrum. Methods Phys. Res., Sect. A 690,
106 (2012).

[19] M. Dal Forno, V. Dolgashev, G. Bowden, C. Clarke, M.
Hogan, D. McCormick, A. Novokhatski, B. Spataro, S.
Weathersby, and S. G. Tantawi, Experimental measure-
ments of rf breakdowns and deflecting gradients in mm-
wave metallic accelerating structures, Phys. Rev. Accel.
Beams 19, 051302 (2016).

[20] D. P. Pritzkau and R. H. Siemann, Experimental study of rf
pulsed heating on oxygen free electronic copper, Phys.
Rev. ST Accel. Beams 5, 112002 (2002).

[21] A. Grudiev and W. Wuensch, A new local field quantity
describing the high gradient limit of accelerating structures,
in Proceedings of the 24th Linear Accelerator Conference,
LINAC 2008, Victoria, BC, Canada (TRIUMF, Victoria,
BC, Canada, 2008), Vol. 102001, p. 936.

[22] M. Dal Forno, V. Dolgashev, G. Bowden, C. Clarke, M.
Hogan, D. McCormick, A. Novokhatski, B. Spataro,

S. Weathersby, and S. G. Tantawi, rf breakdown tests of
mm-wave metallic accelerating structures, Phys. Rev.
Accel. Beams 19, 011301 (2016).

[23] M. Dal Forno, V. Dolgashev, G. Bowden, C. Clarke, M.
Hogan, D. McCormick, A. Novokhatski, B. O’Shea, B.
Spataro, S. Weathersby, and S. G. Tantawi, rf breakdown
measurements in electron beam driven 200 GHz copper
and copper-silver accelerating structures, Phys. Rev. Accel.
Beams 19, 111301 (2016).

[24] E. I. Simakov, V. A. Dolgashev, and S. G. Tantawi,
Advances in high gradient normal conducting accelerator
structures, Nucl. Instrum. Methods Phys. Res., Sect. A 907,
221 (2018).

[25] V. Dolgashev, S. Tantawi, Y. Higashi, and B. Spataro,
Geometric dependence of radio-frequency breakdown in
normal conducting accelerating structures, Appl. Phys.
Lett. 97, 171501 (2010).

[26] K. Suthar, A. Siy, G. J. Waldschmidt, S. Lee, S. Sorsher, E.
Trakhtenberg, and A. Zholents, Determination of maxi-
mum repetition rate of a corrugated-waveguide-based
wakefield accelerator, Proceedings of MEDSI2020
(2020), Vol. 336, https://accelconf.web.cern.ch/
medsi2020/papers/thio02.pdf.

[27] M. A. Ebadian and C. X. Lin, A review of high-heat-flux
heat removal technologies, J. Heat Transfer 133, 1 (2011).

[28] S. S. Baturin and A. Zholents, Stability condition for the
drive bunch in a collinear wakefield accelerator, Phys. Rev.
Accel. Beams 21, 031301 (2018).

DESIGN OF A CYLINDRICAL CORRUGATED … PHYS. REV. ACCEL. BEAMS 25, 121601 (2022)

121601-15

https://accelconf.web.cern.ch/medsi2020/papers/tupb07.pdf
https://accelconf.web.cern.ch/medsi2020/papers/tupb07.pdf
https://accelconf.web.cern.ch/medsi2020/papers/tupb07.pdf
https://accelconf.web.cern.ch/medsi2020/papers/tupb07.pdf
https://accelconf.web.cern.ch/medsi2020/papers/tupb07.pdf
https://accelconf.web.cern.ch/medsi2020/papers/tupb07.pdf
https://doi.org/10.2172/1441166
https://doi.org/10.1016/j.nima.2012.07.001
https://doi.org/10.1016/j.nima.2012.07.001
https://doi.org/10.1103/PhysRevAccelBeams.19.051302
https://doi.org/10.1103/PhysRevAccelBeams.19.051302
https://doi.org/10.1103/PhysRevSTAB.5.112002
https://doi.org/10.1103/PhysRevSTAB.5.112002
https://doi.org/10.1103/PhysRevAccelBeams.19.011301
https://doi.org/10.1103/PhysRevAccelBeams.19.011301
https://doi.org/10.1103/PhysRevAccelBeams.19.111301
https://doi.org/10.1103/PhysRevAccelBeams.19.111301
https://doi.org/10.1016/j.nima.2018.02.085
https://doi.org/10.1016/j.nima.2018.02.085
https://doi.org/10.1063/1.3505339
https://doi.org/10.1063/1.3505339
https://accelconf.web.cern.ch/medsi2020/papers/thio02.pdf
https://accelconf.web.cern.ch/medsi2020/papers/thio02.pdf
https://accelconf.web.cern.ch/medsi2020/papers/thio02.pdf
https://accelconf.web.cern.ch/medsi2020/papers/thio02.pdf
https://accelconf.web.cern.ch/medsi2020/papers/thio02.pdf
https://accelconf.web.cern.ch/medsi2020/papers/thio02.pdf
https://doi.org/10.1115/1.4004340
https://doi.org/10.1103/PhysRevAccelBeams.21.031301
https://doi.org/10.1103/PhysRevAccelBeams.21.031301

